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Tracking millions of humans in crowded space in crowded spaces

Alexandre Alahi, Vignesh Ramanathan, Li Fei-Fei

Stanford University

1. Introduction

As Aristotle noted, “man is by nature a social animal”. We do not live in isolation.
On a daily basis, thousands of individuals walk in terminals, malls or city centers. They
consciously or unconsciously interact with each other. They make decisions on where to go,
and how to get to their destination. Their mobility is often influenced by their surrounding.
Understanding human social dynamics plays a central role in the design of safer and smarter
spaces. It enables the development of ambient intelligence, i.e., spaces that are sensitive
and responsive to human behavior. For instance, many sites such as train terminals were
constructed several years ago to serve an estimated traffic demand. However, this estimated
demand is greatly exceeded by forecasted traffic within a span of one decade. Sensing how
individuals move through these large spaces provides insights needed to modify the space
or design new ones to accommodate increased traffic. This enables reduced congestion and
smooth flow of people.

In this chapter, we present the computer vision techniques behind understanding the
behavior of more than hundred million individuals in crowded urban spaces. We cover the
full spectrum of an intelligent system that detects and tracks humans in high density crowds
using a camera network. To the best of our knowledge, we have deployed one of the largest
networks of cameras (more than hundred cameras per site) to capture the trajectories of
pedestrians in crowded train terminals over the course of two years. At any given time, up to
a thousand pedestrians need to be tracked simultaneously (see Fig. 1). The captured dataset
is publicly available to enable various research communities, from psychology to computer
vision, to dive into a large-scale analysis of human mobility in crowded environments1. In
the remaining of the chapter, we will share all the technical details that lead to successfully
analyze millions of individuals.

While computer vision has made great progress in detecting humans in isolation [1, 2,
3, 4], tracking people in high density crowds is very challenging. Individuals highly occlude
each other and their motion behavior is not independent. We present detailed insights on
how to address these challenges with sparsity promoting priors, and discrete combinatorial
optimization that models social interactions.

Understanding the behavior of pedestrians using a network of cameras is comprised of
the following three steps: (i) Human detection in 3D space, (ii) Tracklet generation, and

1www.ivpe.com/crowddata.htm
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Figure 1: Real-world setup. Illustration of one of the monitored corridors in a train terminal. More than
30 cameras are deployed in the presented corridor, whereas 132 cameras are deployed in the terminal. At
any given time, the occupancy of the corridor can reach more than one thousand of pedestrians. The label
”OD” represents entry/exit zones.

(iii) Tracklet association. We define tracklet as the short trajectory of a human limited
to the field-of-view of a single camera. Each camera extracts tracklets corresponding to
multiple people. The resulting tracklets are linked across cameras to obtain the long-term
trajectories of humans in the full space. In the reminder of this chapter, we expand on each
of the three steps and provide more details required to reach real-time performance with high
accuracy. First, we cast the human detection problem as an inverse problem with sparse
prior, which can be solved in an efficient optimization framework. Then, we formulate the
tracking problem as a linear integer program and use the social affinity of individuals to
effectively associate tracklets for long-term tracking.

2. Related work

We present an overview of relevant works to solve each of the three steps presented in
the introduction: (i) detection, (ii) tracklet generation, and (iii) tracklet association in a
camera network.

Human detection. Pedestrians in isolation are accurately detected using a single image
and robust classification techniques such as R-CNNs or deformable parts models [1, 2, 3, 4].
Individuals are detected in the image plane as opposed to 3D coordinates of people in the
real world. With a calibrated camera, it is possible to map detected bounding boxes to the
real world coordinates [5, 6]. Algorithms with high levels of confidence have been proposed
to locate crowded people with a single top view or several head-level overlapping field-of-
views [7, 8, 9, 10]. For instance, Khan and Shah locate people on the ground by taking the
intersection of projected foreground silhouettes on the ground plane. Fleuret et al. [10] use
a generative model with a probabilistic framework to outperform previous work. Alahi et
al. in [6] propose a sparsity driven framework to handle noisy observations and reduce the
number of false positives. Golbabaee et al. [11] propose a real-time solver to the sparsity
driven framework inspired by the set cover problem. In the next section, we will present
more details on the sparsity driven formulations.

Tracklet generation. Once individuals are located on the ground, various graph-based
algorithms can be used to track them. Each node represents a detection and the edges
measure the similarity cost to link the detections. It is possible to find the global optimum
solution with linear programming to solve the data association problem [12, 13]. It out-
performs previous works based on Markov Chain Monte Carlo [14] or inference in Bayesian
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networks [15]. The data association problem is expressed as a graph theoretic problem for
finding the best pathes/flows over the graph. The main challenge is to find a robust simi-
larity measure. Recently, Xiang et al. [16] have shown that tracking multiple humans can
be formulated as a Markov Decision Process instead of a graph-based formulation. They
learn an appearance-based similarity function to outperform previous ones based on color
histograms. Their approach will fail if limited information on the appearance of the pedes-
trian is available or if all pedestrians look the same (e.g. when the back of their head is only
visible). In this chapter, we present the generic graph-based framework to track multiple
humans since both simple and complex similarity measure can be modeled.

Tracklet association. A large body of work models visual appearance to link tracklets
across cameras [17, 18, 19, 20]. Andriluka et al. [21] use person detection as a cue to perform
tracking and vice-versa. Javed et al. in [22] use travel time and the similarity of appearance
features. Song et al. in [23] use a stochastic graph evolution strategy. Tracklets extracted by
each camera are linked with the Hungarian algorithm [24], MCMC [25], or globally optimal
greedy approaches [20]. These approaches have not addressed the linking of tracklets that
are dozens of meters away in a highly crowded scene. Alahi et al. [26] propose to model
social interactions and more precisely social affinities to solve the tracklet association step.
In Section 6.1 on this chapter, we will present more details on their method.

Tracking with social prior. Social behavior has recently been incorporated into exist-
ing tracking frameworks by modeling the well-known social forces [27] with Kalman filters
[28], extended Kalman filters [29], or Linear Programming [13, 30]. Antonini et al. [31]
use Discrete Choice Models to simulate the walking behavior of people. These approaches
improve the operational-level tracking when a few frames are missing ( e.g., when given a
low-frame rate, or short occlusion cases). They also often model a grouping cue to solve the
data association problem [32, 13, 30]. They model it as a set of pedestrians with similar
velocities and spatial proximity. Similarly, [33] use grouping cues in a hierarchical framework
to identify sports player roles. The grouping cue is typically handled as a binary variable
indicating group similarity. However, the key challenge is to use a finer representation to
capture group association and integrate it into the problem of tracklet association. Yang et

al. [34, 32] use a conditional random field framework to jointly estimate group membership
and tracks. Leal et al. [13] iteratively compute the minimum cost flow for various velocity
and grouping assignments until convergence or when a maximum number of iterations is
reached. Qin et al. [30] use the Hungarian algorithm to jointly group and link tracklets.
However, the Hungarian algorithm does not solve the global minimization over the full long-
term track, whereas the minimum network flow formulation does. In this chapter, we present
more details on a descriptor representing the grouping cue as a feature to efficiently match
behavior across pedestrians.

3. System overview

We work with 132 RGB/Thermal/Depth cameras which monitors 20,000 square meters
with human density reaching 1 individual per square meter. This introduces new challenges
in designing detection, and tracking algorithms which can work at such scale. The camera
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Figure 2: Overview of the system: each camera extracts independently tracklets with high confidence.
Then, the tracklets are linked across cameras. For completeness, we illustrate a fourth step: tracklet
completion which will be presented in the next chapter. The goal of this step is to predict the detailed
trajectories of pedestrians.

network constantly collects large volume of visual data. Here are some facts regarding the
dataset: individuals travel time in the monitoring area is 50 seconds and spans 70 meters
in average. At a given time, up to 1000 people can be in the same area. Typically, after 1
minute, more than a million people are detected and the detections need to be linked to each
other. To handle such a deluge of data, we distribute the processing as follows: first every
camera independently locates people on the ground using the method presented in Section
4. Then, detected individuals are tracked within each camera independently given a global
optimization framework (solved with Linear Programming) similar to [13] (see Section 5).
The resulting tracklets are matched across cameras to obtain the long-term tracks over the
full area by modeling social affinities 6.1. Figure 2 illustrates the distributed processing
pipe.

4. Human detection in 3D

4.1. Method

The first step in our system involves locating 3D position of people on the ground within
the field-of-view of each single camera. The scene geometry needs to be estimated across
thermal and optical cameras. Most previous works locating people on the ground (in 3D)
use calibration data to map image coordinates to the real-world [7, 8, 10, 6]. A set of 3D
coordinates or the cameras extrinsic parameters are needed to estimate the homography
matrices. However, when dealing with large-scale setups, it is difficult to obtain calibration
data for all cameras. Some works exist to automatically estimate the scene geometry using
vanishing lines [35], and additional human poses [36]. However such approaches do not work
on thermal images where binary silhouettes are only observed (see Figure 3).
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Figure 3: A collection of camera where people are correctly detected in 3D given the observed foreground
silhouettes only. The learned ground plane points are also plotted.

We propose to solve the single view scene geometry and 3D localization problem using
only extracted binary human silhouettes. As a result, it works across any camera modalitiy
( i.e., thermal or optical). We address the problem as a dictionary-based inverse problem
where both the dictionary and the occupancy vector are unknown. We use the same sparsity
driven formulation as in [6]. An inverse problem is formulated to deduce people location
points (i.e., occupancy vector x) given a sparsity constraint on the ground occupancy grid.
Let y be our observation vector (i.e., the binary foreground silhouettes), andD the dictionary
of atoms approximating the binary foreground silhouettes of a single person at all locations
(see Figure 4). We present an algorithm to find the ground occupancy vector x satisfying
the following equation when the dictionary D is unknown as opposed to previous work:

x,D = argmin
x∈{0,1},Di∈Dc

ky �Dixk
2
2 s.t. kxk0 < εp, (1)

where Dc is the space of all potential dictionaries and εp is the maximum number of people
to be detected.

Algorithm 1 illustrates our ’Detection while Learning’ algorithm solving a relaxation of
Equation 1. We iterate over the space of dictionary 8Di 2 Dc. We solve Equation 1 for a
fixed Di using the ’Set Covering Object Occupancy Pursuit’ (SCOOP) algorithm presented
in [11]. The latter iteratively recovers one element of the support set. More precisely, at each
iteration, it selects the atom a of the dictionary which contributes the most in the signal
energy (the most correlated atom with the signal) and fits well the image. The output
of SCOOP algorithm is an occupancy vector associated with a residual error on the data
fidelity term (ky � Dixk

2
2). We compute SCOOP over all dictionaries and select the one

with the smallest residual errors. Note that the dictionaries Di are not random matrix.
They lie on a manifold. The space of solutions Dc is much smaller than the dimension of
the matrix. It is related to the extrinsic parameters of the cameras, i.e. its height to the
ground, and its orientation (see Figure 4). A coarse to fine sampling step is used to select
potential dictionaries approximating a gradient descent.
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Algorithm 1: SCOOP-Learning: Detecting while Learning

Input: signal y, regularization parameter w.
Output: occupancy vector x, and dictionary D

1) Init :

Es+1 = Es = 0, smin = 0
2) 8Di 2 Dc

- SCOOP algorithm with a fixed Di:

-Initialization:
bS ( {}, r ( y, by ( 0, es+1 =

���supp(y)
���, es =

���supp(y)
���

- Matching pursuit-like process:
while (es+1 � es  0) do

j ( argmin
j0∈U

n
w

��supp(r)\supp(dj0)
��

��supp(r)
�� +

(1� w)

��supp(dj0)\supp(r)
��

��supp(dj0)
��

o

- Updates:
Recovered support: bS ( bS [ {j}
Recovered ŷ: supp(ŷ) ( supp(ŷ) [ supp(dj)
Remainder: supp(r) ( supp(r)\supp(dj)
Error: es ( es+1

Error: es+1 (
���supp(y � ŷ)

���
end

- Updates:

Es = Es+1

Es+1 = ei
if Es+1  Es then

D = Di

x = bS
end

4.2. Evaluation

First, qualitative results are available in Figure 3. It illustrates the performance of the
proposed SCOOP-Learning algorithm in locating people in 3D as well as the scene geometry.
Various height and viewing angle are illustrated. Then, quantitative results are shared
in Figure 5. It presents the accuracy of the presented algorithm to estimate the camera
parameters with respect the estimated heights and angles of various cameras setups. We
can see that the cameras parameters are correctly estimated once enough people are present
in the scene. Indeed, the more number of silhouettes are used to select the dictionary, the less
error-prone the estimations are, since many possible solutions exist with a single silhouette
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Figure 4: Illustration of the dictionary space. We approximate the ideal silhouettes of people with cuboids
on the ground. A dictionary is the collection of atoms representing the observation of the cuboid in the
image plane of the camera with a given height and viewing angle.

as opposed to several ones. Note that the error on the 3D estimation is in average less than
50 cm once 3 people are present in the field of view although the camera parameters have
still about 15% errors.

Once the camera parameters are found, i.e., the dictionary is known, we can evaluate
the performance of human detection in 3D in both low and high density crowds. We refer
the readers to [6] and [11] for a detailed analysis on this topic.

5. Tracklet Generation

Once humans are located in the field-of-view of each camera, we need to track them across
time (second step in Figure 2). As a reminder, we refer to tracklet as the short trajectories
of humans captured by a single camera. We want to find the set of tracklets X, where
each tracklet x 2 X is represented as an ordered set of detections, (Lx), representing the
detected coordinates of humans (using the method described in previous section). Similarly,

Lx = (l
(1)
x , . . . , l

(n)
x ) is an ordered set of intermediate detections which are linked to form

the tracklets. These detections are ordered by the time of initiation. The problem can be
written as a Maximum a-posteriori estimation problem similar to [19, 20]:

X∗ = max
X

P (L|X)P (X), (2)

where P (L|X) is the probability of the detections in L being true positive detection. The
probability P (L|X) is:

P (L|X) /
Y

x∈X

Y

l∈Lx

Ptp(l)

Pfp(l)
, (3)

where Ptp(l) and Pfp(l) are probabilities of the detection being a true positive, and false
positive respectively.
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Figure 5: Performance of SCOOP-learning algorithm to estimate the scene geometry. Top graph illustrates
the measured error over the estimated camera parameters with respect to the number of people observed
in the sequence of images. Bottom graph illustrates the error in the final 3D localization of people on the
ground.

Next, similar to [20], we assume a Markov-chain model connecting every intermediate

detection l
(i)
x in the tracklet X, to the subsequent detection l

(i+1)
x with a probability given

by P (l
(i+1)
x |l

(i)
x ). The tracklet probability P (X) is:

P (X) =
Y

x∈X

P (x), (4)

P (x) =
nY

i=1

P
�
l(i)x |l(i−1)

x

�
,

where n = |Lx| is the number of intermediate detections in the tracklet.
The MAP problem from Eq. 7 can now be formulated as a linear integer program:

min
f

C(f) (5)

C(f) =
X

xi∈X

αifi +
X

xi,xj∈X

βijfij

s.t fi, fij 2 {0, 1}

and fi =
X

j

fij,

where fi is the flow variable indicating whether the corresponding detection is a true positive,
and fij indicates if the corresponding detections are linked together. The variable βij denotes
the transition cost given by logP (li|lj) for the detection li, lj 2 L. The local cost αi is the
log-likelihood of an intermediate detection being a true positive. In our case, we suppose
that all detections have the same likelihood.

We note that the optimization problem in Eq. 5 is equivalent to the flow optimization
problem widely discussed in [20, 19]. Such problems can be solved through k-shortest paths
algorithm [20, 12].
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The main challenge in solving the tracklet generation step is to define the transition cost
βij. For any two detections, it can be split into several components as shown below:

βij = β
appearance
ij + βmotion

ij , (6)

where βappearance is the cost to ensure similar appearance and βMotion is the cost to ensure
motion smoothness in the connected detections. The choice behind these similarity metrics is
still on open research. Xiang et al. [16] have shown that learning these metrics from training
data outperforms hand-designed features such as color histogram or kalman filters. We refer
the readers to [16] for a detailed evaluation of their method on the public Multi-Object
Tracking (MOT) challenge [37].

6. Tracklet Association

The third step of our intelligent system is to connect tracklets across cameras (see Figure
2). This task becomes even more challenging when cameras are scattered and distant by
several dozens of meters. Previous techniques based on appearance and motion similarities
are not sufficient since the camera viewpoints might be very different leading to strong ap-
pearance changes, and the linear motion assumption is not valid anymore on long distances.
In this section, we present a descriptor that models social interactions to reason on the
data association step. We show how to use the same graph-based framework presented in
previous section to solve the tracklet association step although additional constraints need
to be modeled.

6.1. Social Affinity Map: SAM

When walking in crowded environments, humans often have social affinities that remain
stable over time.

Definition 1. We define “social affinity” as the motion affinity of neighboring individuals.

Social affinities can be consciously formed by friends, relatives or co-workers. However,
in crowded environments, subconscious affinities exist. For example, the “Leader-follower”
phenomenon [38] represents a spontaneous formation of lanes in dense flows, as a result of
fast pedestrians, passing slower ones. More formally, the leader-follower pattern captures
the behavior of a pedestrian (a follower) who adjusts his/her motion to follow a leader to
enable smooth travel. We propose to learn the various social affinities which bind people in
a crowded scene through a feature called as Social Affinity Map (SAM).

6.2. The SAM feature

We observed that in public settings, social forces are mostly determined by the proximity
of people to each other as noted in previous works [27]. Since, people are more easily
influenced by others in their vicinity, we develop a social affinity feature which captures the
spatial position of the tracklet’s neighbors. As shown in Fig. 6, we achieve this by radially
binning the position of neighbouring tracklets.
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Figure 6: Left hand-side: Heatmap of the relative positions of all neighboring pedestrians across all
tracklets. Middle column: it represents the SAM with our semantic description where ”G” is the group
affinity (such as couples, friends), ”S-FL” is the short distance Follow-Leader behavior, ”L-FL” is the long
distance FL behavior, and ”N” can be seen as the comfortable distance to maintain while walking in the
same direction. The right hand-side represents the distribution of presented behavior.

We further learn the spatial binning by first clustering the relative position of surrounding
individuals over all captured trajectories. We considered relative positions within a limit of
3m, to avoid outliers. The distribution of the relative positions across the million trajectories
is visualized in Fig. 6. We obtain 10 bins as a result of this clustering, as shown in the figure.
The percentage of relative positions pooled into this bins is also shown in the figure. It is
interesting to point out that the most used bin is the one on far right side (”N” label in
Fig. 6). It can be interpreted as the comfortable pattern to walk with respect to other
individuals as opposed to the left hand side.

Given a new tracklet, we perform vector quantization (VQ) coding to obtain the SAM
feature. We fit a Gaussian Mixture Model to the relative position of its surrounding tracklets.
The inferred GMM values within the previously learned spatial bins are discretized to obtain
a binary radial histogram, which represents the SAM feature vector. The complete process
is illustrated in Fig. 7. Hamming distance is used to compare SAM across tracklets. Note
that binary quantization has little impact on the efficacy of the feature, and is only used to
speed up the comparison method.

Our SAM feature can differentiate between various configurations of social affinities such
as ”couple walking”, or the ”Leader-follower” behavior. Fig. 8 illustrates the 8 most ob-
served SAM over millions of trajectories. It is worth pointing out that 76% of individuals
belong to a group, hence a SAM provides valuable information in crowded settings, moti-
vating the use of these cues in forecasting the mobility of pedestrians.

6.3. Tracklet association method

Often, there is a sparse network of cameras monitoring the transit of people in a public
setting like a railway terminal. The terminal has a set of entry points referred to as the
origin, and exit points referred to as the destination. One key motivation behind tracking
humans in the terminal is to identify the Origin and Destination (OD) of every person
entering and exiting the camera network. We achieve this by identifying the trajectories
which connect the tracklets starting at the origin to the tracklets ending at the destination.
The number of intermediate tracklets linked to obtain these trajectories decreases with the
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Figure 7: Illustration of a Social Affinity Map extraction (top view). The relative positions of neighboring
individuals are clustered into a radial histogram. The latter is one bit quantized.

24%$ 12%$16%$ 10%$ 8%$

Figure 8: Illustration of the 8 most observed social affinities learned from the data. The above percentage
represents the frequency of occurrence of the corresponding SAM.

sparsity of the camera network. Fig. 9 illustrates an extreme case with only origin and
destination tracklets.

We have a set of origin tracklets O and an equal number of destination tracklets D. Each
tracklet in O is captured at one of the many entrances into the area, and a destination track
in D is captured at an exit. We also have a set of intermediate tracklets X obtained by our
sparse camera network. We want to find the set of trajectories T , where each trajectory t 2 T

is represented as an ordered set of tracklets, (ot, Xt, dt), with ot 2 O and dt 2 D representing

the origin and destination tracklets of the trajectory. Similarly, Xt = (x
(1)
t , . . . , x

(n)
t ) is an

ordered set of intermediate tracklets which are linked to form the trajectory. These tracklets
are ordered by the time of initiation. The problem can be written as a Maximum a-posteriori
estimation problem similar to Section 5:

T ∗ = max
T

P (X|T )P (T ), (7)

where P (X|T ) is the probability of the tracklets in X being true positive tracklets. The
probability P (X|T ) is:

P (X|T ) /
Y

t∈T

Y

x∈Xt

Ptp(x)

Pfp(x)
, (8)

where Ptp(x) and Pfp(x) are probabilities of the tracklet being a true positive, and false
positive respectively.

We define POD(o, d) as the OD-prior term which states the probability of a person en-
tering at the origin corresponding to o exiting at the destination corresponding to d. Such
prior is often neglected and assumed to be uniform. However, in many applications, it is a
strong prior, such as avoiding forbidden paths in airports.
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Figure 9: Predicting the behavior of pedestrians given Social Affinity Maps (SAM) with few cameras.
Orange regions represent the monitoring areas of cameras. We illustrate the extreme case when cameras are
only placed at entrance or exit zones, referred to as OD cameras.

Next, similar to Section 5, we assume a Markov-chain model connecting every interme-
diate track x

(i)
t in the trajectory T , to the subsequent track x

(i+1)
t with a probability given

by P (x
(i+1)
t |x

(i)
t ). The trajectory probability P (T ) is:

P (T ) =
Y

t∈T

P (t), (9)

P (t) = POD(ot, dt)P
⇣
x
(1)
t |ot

⌘

nY

i=2

P
⇣
x
(i)
t |x

(i−1)
t

⌘
P
⇣
dt|x

(n)
t

⌘
,

where n = |Xt| is the number of intermediate tracklets in the trajectory.
The MAP problem from Eq. 7 can now be formulated as a linear integer program in a

manner similar to [20]:
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min
f

C(f) (10)

C(f) =
X

xi∈X

αifi +
X

xi,xj∈X

βijfij +

X

xi∈X,
o∈O

βoifoi +
X

xi∈X,
d∈D

βidfid +
X

o∈O,
d∈D

γodfod

s.t fi, fij, fod 2 {0, 1}

and fi =
X

j

fij +
X

d

fid =
X

i

fji +
X

o

foi,

X

od

fod = |O| = |D|,

X

d

fod =
X

i

foi,

X

o

fod =
X

i

fid 8 xi, xj 2 X, o 2 O, d 2 D,

where fi is the flow variable indicating whether the corresponding tracklet is a true positive,
and fij indicates if the corresponding tracklets are linked together. The variable βij denotes
the transition cost given by logP (xi|xj) for the tracks xi, xj 2 X. The log-likelihoods βoi, βid

are also defined similarly, for the origin track o and destination track d. The local cost αi is
the log-likelihood of an intermediate track being a true positive. Finally, the OD-prior cost
is represented as γod = logPOD(o, d).

We note that the optimization problem in Eq. 10 is equivalent to the flow optimization
problem in Equation 5 in the absence of the OD prior term. The addition of the OD-prior
term leads to loops in the network-flow problem, and can no longer be solved exactly through
shortest path algorithms. Hence, we adopt a heuristic approach to solve Eq. 10, as discussed
in Sec. 6.4.

The local cost αi is proportional to the length of a tracklet. This helps us to remove short
tracklets that might represent false positives. The transition cost βij for any two tracklets
is split into two components as shown below.

βij = βSAM
ij + βM

ij , (11)

where βSAM is the social-affinity cost and βM is a cost to ensure smoothness in the connected
tracklets.
Social Affinity cost. In our model, we wish to ensure that tracklets moving in similar
social groups have a stronger likelihood of being linked to each other. This affinity forms an
important component in large scale tracking scenarios like ours, where the appearance of an
individual is not very discriminative. The SAM features introduced in Sec. 6.1 are used to
measure the social affinity distance between tracklets moving in groups as shown below

13



βSAM
ij = H(sami, samj), (12)

where H(.) denotes the Hamming distance between two binary vectors, and sami, samj

denote the SAM feature vector of the two tracks.
Motion similarity. Another cue βM , which is used to ensure smoothness in trajectory
motion is obtained by measuring the distance between the motion patterns of two tracklets
similar to [25, 23]

The OD-prior cost is the log-likelihood of the prior probability of transiting from an
origin point to the destination. In most surveillance settings, we can use prior knowledge
on the geography of the terminal, as well as rough estimates of the passenger freight to
obtain an OD prior. In addition, the OD prior can be used to enforce constraints such
that passengers entering a certain entry point would not return to the same location from a
parallel entrance. In our experiments in later sections, the OD prior is obtained by a short
survey in the location.

6.4. Optimization

As stated before, the optimization in Eq. 10 cannot be trivially solved through existing
shortest path algorithms [20] as in the case of traditional tracking. Hence, we adopt a
heuristic approach as explained below.
Greedy optimization with OD-prior. We first run a greedy algorithm to identify the
low-cost solutions in the graph:

1. Find the shortest path which links an origin tracklet to the destination tracklet in
Eq. 10

2. Remove the tracklets which are part of the trajectory obtained in the previous step
and repeat.

The greedy algorithm provides an approximate solution to the problem and is computation-
ally efficient. However, it does not solve the global optimization problem. We use a simple
heuristic explained below to obtain a better solution.
Optimization with OD re-weighted cost. The solution of the greedy algorithm helps
us identify the paths which agree with the OD-prior. Hence, the transition flow variables set
by this algorithm provide a rough estimate of the pairwise affinity between tracklets in the
presence of OD-prior. We use this intuition to add an additional cost which penalizes the
link between tracklets which were not originally connected by the greedy algorithm. While
adding this cost, we remove the original OD-prior cost γod, thus resulting in a network-flow
problem which can be solved by k-shortest path approach. The modified cost C̃ is shown
below:

C̃(f) =
X

xi∈X

αifi +
X

xi,xj∈X

β̃ijfij + (13)

X

xi∈X,
o∈O

β̃oifoi +
X

xi∈X,
d∈D

β̃idfid,
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(b) Coarse-to-fine data association

Figure 10: (a) Toy example of 3 tracklets which could be wrongly linked. The dashed red arrows illustrate
wrong assignments that are likely to occur without a coarse-to-fine data association. (b) Coarse-to-fine
data association given SAM cardinality. Each sub-graph corresponds to the tracklet association problem
over tracklet groups of specific cardinalities, denoted by C(sam) representing the sum of the elements of
the SAM feature. The flow variables obtained by solving these sub-problems are used to defined additional
transition costs used in the final optimization.

where β̃ is the OD-re-weighted cost defined below.

β̃ij = βij + λ1(f greedy
ij = 1), (14)

where f
greedy
ij is the solution obtained from the greedy algorithm and λ is a parameter

indicating the strength of the OD-prior cost. The transition cost is re-weighted for all pairs
of tracklets including the origin and destination tracklets.

6.5. Coarse-to-Fine Data Association

The model presented in Sec. 6.3, uses a social affinity cost to ensure that tracklets with
similar grouping cues are connected. However, it does not account for the fact that people
belonging to groups of different cardinalities (number of people in a group) can still share
the same SAM feature. An example is shown in Fig. 10.a, where two tracklets belonging
to groups of different cardinalities are wrongly connected (indicated in red) due to similar
SAM. However, we want to encourage tracklets from groups of similar sizes to be connected
together (black arrows). We account for this by proposing a coarse-to-fine data association
method.
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We cluster tracklets co-occurring at the same time, into different groups based on the
social separation. The cardinality of a tracklet denoted by C(xi) is the number of people
belonging to the group corresponding to the tracklet xi. We can imagine that if the clustering
is perfect and people moved in the same configuration across the entire camera network, it
would suffice to link the tracklet groups instead of the tracklets. This would also solve
the problem of tracklets being linked across groups of different cardinalities. However, in
practical setting, the grouping is not perfect and people break away from groups. Hence, we
link the groups of same cardinality and use the links obtained from this group tracking to
define additional transition costs. The complete method is explained in the supplementary
document. The method is briefly visualized in Fig. 10.b.

7. Experiments

7.1. Large-scale evaluation

The data collection campaign helps us conduct various experiments in real life setting
with a large and dynamic crowd. In this section, we present a set of experiments to address
the tracking problem in scattered camera network. We select a subset of cameras in our
network and measure the performance of our algorithm to track mobility with only these
cameras.

Measurement. In this section, we evaluate the correct estimation of the origin and
destination of a person entering the camera network. We have limited the monitoring to
14 origins and destinations leading to 196 possible OD-path for a trajectory. We have
clustered the cameras into two groups: cameras belonging to OD locations ( i.e., capturing
the beginning or ending of long-term tracks), and cameras in-between these locations. We
compute the OD error rate as the percentage of wrong predictions out of the total number
of people covered by the camera network.

Ground truth. Since Big Data is collected, it is not realistic to label the millions of
trajectories. We hence use as labels the output of our detection and tracking algorithm.
To reach high level of tracking accuracy, we have installed a dense network of cameras to
reduce the blind spots as much as possible and link tracklets that are only a few centimeters
away from each other. The trajectories computed from this dense network is used as a
baseline (our labels). While the trajectories (and OD) computed from the dense network is
not the perfect ground truth, in practice they are less easy and less expensive to obtain than
manually annotating trajectories at our scale. The goal of our forecasting algorithm is to
reach the same performance as the dense network of cameras while using a sparse network.

7.2. OD forecasting

Figure 11 presents the resulting OD error rates for 7 sparse networks of cameras. The
evaluation is carried out at several levels of network sparsity, from 0% to 75% of in-between
cameras. For instance, networks N4 and N5 use only half of the cameras available in the
corridor (see figure 1). The cameras are selected to heuristically minimize the average
distance between them at any given sparsity. At a given sparsity, we also evaluate on
different camera configurations such as N4 and N5 for 50% sparsity. In average, tracklets
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Figure 11: Performance of OD forecasting with different number of in-between cameras. The percentage
of in-between cameras are shown in brackets. Seven network configurations are evaluated (referred to as N1
to N7).

from network N1 to N3 are several dozen of meters away from each other, and tracklets from
networks N4 to N7 are dozen of meters away from each other. To validate our algorithm,
we evaluate the performance of greedy optimization methods against the proposed global
one. We measure the impact of using SAM as an additional feature, as well as the impact
of modeling the OD prior with coarse to fine tracking.

As expected, the global optimization methods always outperform the greedy methods
with and without OD prior. The performance improvement is more than doubled, in the
global optimization method. The SAM feature and use of OD-re-weighted cost (use of OD-
prior) are both seen to have a positive impact while using global optimization. This justifies
our decision to model heuristically model the effect of OD-prior during optimization.

We also compare with the algorithms from [12] and [13]. Our final full model, i.e.,

“Global optimization + OD + SAM”, outperforms these methods when observations are
limited to the corridor. Note that the camera placement has an impact on the forecasting.
Although the same number of cameras are used by networks N2 and N3, or N4 and N5,
the forecasting accuracy differs for these networks. If an in-between camera is strategically
placed to capture frequent route choices, it reduces the uncertainty in the linking strategy.
This leads to different performance for networks with same number of cameras as shown in
Fig. 11

We evaluate the extreme setup when there are no in-between cameras (label as N1), i.e.,
we only have cameras at entrance and exit zone (OD cameras). In such setup, tracklets are
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Figure 12: Qualitative results on the linked tracklets within the sparse network 1 where 50% of the in-
between cameras within the corridor are not used. Tracklets selected by the method are only shown. The
lines illustrate the linked tracklets. On the right side, we illustrate the OD prior as a heatmap, as well as
the forecast and ground truth. We can see that although the prior is different, the final result is still similar
to the ground truth.

up to 100 m away from each others. Figure 11 presents the resulting drop in performance.
The gap between greedy and global optimization is much smaller. In addition, the SAM
feature and OD prior do not have an significant impact on such extreme case. These results
motivate our future work to handle such extreme case.

Figure 12 illustrates some qualitative results demonstrating the power of SAM. We also
plot the OD prior, forecasted OD with a sparse network of cameras with half the number of
cameras as the dense network (ground truth).
Impact of SAMWe illustrate the tracklet linking achieved by our full method and compare
it with a global optimization method which does not use SAM in Fig. 12. As expected,
we see that in the absence of SAM, tracklets travelling in similar group configurations
are not connected together, leading to erroneous results. On the other hand, SAM helps
disambiguate between tracklet choices which are similar to each other, except for the group
configuration.
Impact of OD prior In Fig. 12, we present the final OD-matrices estimated by our full
model, and compare it with the OD-prior and the ground truth OD (from dense camera
network). Clearly, the prior only provides weak cues about the true OD, but helps by
down-weighting paths which are highly unfavorable like blocked corridors. The OD-matrix
forecasted by our method is close to the ground truth OD matrix obtained from a dense
camera network.

8. Conclusions

We have presented an efficient system to detect and track millions of individuals in real-
world crowded environments. The first step in the system used a dictionary based sparsity
promoting method to detect and track people within the field-of-view of a single camera.
These short “tracklets” from multiple cameras were then linked to each other to obtain long-
term human trajectories. We showed that social affinities between people can be modeled
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in an effective fashion to improve this tracklet association. These affinities were captured
through a new powerful SAM descriptor, which empowers tractable global optimization of
the tracklet association problem. We also deployed a large network of cameras to enable
large-scale analysis of real-world crowd motion. Several hundred thousands trajectories
were collected per day leading to more than 100 million trajectories to date. It helps in the
development of new motion priors to predict human behavior in crowded scenes. In the next
chapter, we will show that it is possible to not just track but also predict long-term human
behaviors from these millions of trajectories.
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[37] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, K. Schindler, MOTChallenge 2015: Towards a benchmark

for multi-target tracking, arXiv:1504.01942 [cs]ArXiv: 1504.01942.
URL http://arxiv.org/abs/1504.01942
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