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ABSTRACT
In this paper we develop StationSense, a novel mobile sensing
solution for precisely tracking temporal stop-and-go patterns
of railway passengers. While such motion context serves
as a promising enabler of various traveler support systems,
we found through experiments in a major railway network
in Japan that existing accelerometer-based passenger tracking
systems can poorly work in modern trains, where jolts during
motion have been dramatically reduced. Towards robust mo-
tion tracking, StationSense harnesses characteristic features
in ambient magnetic fields in trains to find candidates of sta-
tionary periods, and subsequently filters out false positive de-
tections by a tailored acceleration fusion mechanism. Then it
finds optimal boundaries between adjacent moving/stationary
periods, employing unique signatures in accelerometer read-
ings. Through field experiments around 16 railway lines, we
show that StationSense can identify periods of train stops
with accuracy of 81%, which is almost 2 times higher than
the existing accelerometer-based solutions.
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INTRODUCTION
Railways have been an essential transportation infrastructure
that supports our daily lives and economic activities, keeping
our society moving. Especially in urban areas, where popula-
tion is significantly concentrating, trains would be usually the
best way for traveling to one’s destination, since other options
like buses, cars, and taxis are often affected by heavy traffic
jams. According to a survey [11], 79% of commuters in the
Tokyo metropolitan area use trains, while 48% of travels by
local residents are primarily composed of train rides. This
in turn means that improved travel support for such railway
passengers (e.g., advanced transfer navigation) has significant
potential to optimize human mobility at the city scale.
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The powerful sensing capabilities of commercial mobile and
wearable devices, combined with the recent advances in mo-
bile sensing technology, have been providing promising so-
lutions in this direction, enabling a variety of people-centric
mobile applications for railway passengers. One of the most
fundamental passenger context is motion state (i.e., moving
or stationary) of vehicles. Despite its simplicity, a time se-
ries of such binary motion context can help a wide range of
mobile-sensing-based passenger support systems:

• Continuous tracking of railway passengers. Given the
initial location of a passenger by GPS or WiFi positioning
systems [2], or by manual input through a mobile app, the
phone can continuously track location of the user thereafter
by counting the number of stops at stations. Thus it allows
people to use navigation apps even under the lack of posi-
tioning infrastructures (e.g., in a subway network) [9].

• Adaptive transfer navigation. Assuming that some pas-
sengers upload their locations that are estimated by such
binary motion tracking, it is possible to track locations of
trains around the whole city. Such timely and fine-grained
operation information can be utilized for advanced trans-
fer navigation, which considers delays of transit vehicles
to minimize the passenger’s waiting time at stations [10].

• Efficient crowd control. When operation of trains is
suspended due to accidents or disaster, stations along the
line usually become overcrowded, causing serious risks of
crowd accidents. The cooperative transit tracking mecha-
nism above also enables early detection of such significant
delays, allowing security bureaus to ask potential passen-
gers to wait at their workplace until operation is resumed,
or to consider using alternative routes, much earlier than
official announcements by railway operators.

A common mobile sensing approach to train stop detection is
to employ phone-embedded accelerometers [9, 10]. The idea
underlying the existing algorithms is that passenger cars con-
tinuously jolt during the train’s motion, making large varia-
tion in accelerometer readings. On the other hand, techno-
logical effort towards better passenger experience has dra-
matically reduced such jolts. Consequently, as we will show
through preliminary experiments, the acceleration noise can
keep low level even during vehicle motion, causing consider-
able errors in accelerometer-based stop detection.

In this paper we design and implement StationSense, a novel
system for precisely tracking motion context of trains, which



smartphone users ride. To this end, StationSense effectively
combines measurements from accelerometers and magne-
tometers in mobile devices by a tailored data fusion algo-
rithm. Analyzing real sensor measurements, we found that
activity of motors and electrical power inverters causes a
characteristic feature in an ambient magnetic field in pas-
senger cars during their motion. StationSense harnesses this
feature to find candidates of stationary periods, and subse-
quently filters out false positive detections that occasionally
happen due to inertia driving of trains by the acceleration fu-
sion mechanism. Finally it determines optimal boundaries
between adjacent moving/stationary periods based on charac-
teristic acceleration signatures, which are typically observed
exactly when train stops and restarts moving. Through field
experiments, we show that StationSense can identify the sta-
tionary periods of trains with accuracy of 81%, which is 80-
93% higher than the existing accelerometer-based solutions.

In short, our contributions can be summarized as follows:

1. A comparative study on existing train stop detection
algorithms. We analyze performance of the existing
accelerometer-based solutions through preliminary exper-
iments, clarifying challenges in robust passenger tracking
in modern railway systems.

2. Development of a robust passenger tracking system. We
design a novel train stop detection algorithm to cope with
the challenges above. To fully optimize the system based
on domain knowledge and thorough analysis of real sensor
measurements, we build a task-specific tailored algorithm
rather than applying general machine learning algorithms.

3. Field experiments in real railway networks. We con-
ducted field experiments in 16 railway lines to analyze per-
formance of StationSense under various combinations of
device models, ways of carrying devices, and types of train
vehicles, showing its effectiveness in practical situations.

ACCELEROMETER-BASED PASSENGER TRACKING
SYSTEMS: A COMPARATIVE STUDY
In this section we briefly outline two existing accelerometer-
based solutions, and investigate their performance through a
preliminary experiment in a major subway network in Japan.

Existing Solutions for Train Stop Detection
To detect stops at stations, SubwayPS [9] employs a hard
threshold on magnitude of acceleration. It first filters out
gravity components from the raw sensor readings, and then
calculates magnitude a
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celeration components along three axes of the device’s local
coordinate system. It concludes that the vehicle is in motion
if average acceleration magnitude over a 2-second window
exceeds a pre-defined threshold th. Otherwise the vehicle
is considered to be stationary. To mitigate impact of accel-
eration noise, it changes the estimated state only if the ac-
celeration feature keeps above (or below) th for more than
pre-configured delay periods of 5–7 seconds.

Thiagarajan et al. [10] propose a probabilistic approach to
motion detection. Based on magnitude a of raw acceleration

samples, they derive probability that a train is moving as:

p(mov|a) = p(a|mov)p(mov)

p(a|mov) + p(a|stop) (1)

where p(a|mov) and p(a|stop) are conditional probability
distributions of the acceleration magnitudes while vehicles
are moving and stationary, respectively. They model the em-
pirical distributions p(a|mov) and p(a|stop) as Laplace dis-
tributions f(a|µ, b) = (1/2b) exp{�|a� µ|/b}, where µ is a
median of acceleration magnitude a

i

in a training dataset, and
b =

P
i

|a
i

� µ|. p(mov) is a priori probability that the train
is moving, and is set to 0.5. The probability of train motion
is subsequently averaged over a sliding window of 30 sec-
onds. Assuming that each peak and valley in the sequence of
smoothed motion probability corresponds to a single moving
period and a stationary period, respectively, they consider a
boundary of different motion states exists between each pair
of adjacent peaks and valleys. While the authors do not ex-
plicitly describe how they search for an optimal boundary, we
implement this part by finding a point in time between each
peak-valley pair that maximizes difference in average acceler-
ation magnitudes before and after the candidate of boundary.

Preliminary Experiments in an Urban Railway Network
We analyzed performance of the existing solutions above
through preliminary experiments using Android smartphones
(i.e., Galaxy Nexus). The experiments were conducted in
a municipal subway network in Osaka, which consists of 9
electric train lines. We implemented a logger application
for the Android OS, which records accelerometer and mag-
netometer readings at sampling frequency of 60Hz. In the
experiment, each participant carries two logger phones: one
in a hand and another in a trouser pocket. We also asked
the participants to record actual departure/arrival time by tap-
ping buttons on a dedicated annotation app that runs on an-
other smartphone. Through the experiments, we collected
annotated sensor data for 18 separate train rides. The result-
ing dataset includes more than 120 stops at stations and total
travel time of more than 8 hours, covering all of the 9 lines.

Performance Metrics
For performance metrics, we consider precision, recall, and
f-measure of train stop detection: We estimate motion state
(i.e., moving or stationary) of a train every second to obtain
a time series of estimated binary state. We define True Pos-

itive (TP) by the total time in seconds when both estimated
and ground truth motion state is stationary. In the same man-
ner, we define False Positive (FP) by the total time when the
estimated state is stationary while the actual state is moving,
and False Negative (FN) by the time when stationary state
is wrongly classified as moving. Based on the above defini-
tions, we define the precision by TP/(TP + FP ), the recall

by TP/(TP + FN), and the f-measure by (2⇥ precision ·
recall)/(precision+ recall).

Performance Analysis of Existing Solutions
Figure 1 shows stop detection performance of SubwayPS [9]
for train rides on (a) Nanko Port Town Line and (b) Mido-
suji Line. The upper plot shows a time series of acceleration
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Figure 1. Train stop detection performance by SubwayPS: (a) Nanko Port Town Line and (b) Midosuji Line.
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Figure 2. Parameter analysis

8.0

9.0

10.0

11.0

a
cc

e
le

ra
tio

n

 m
a

g
n

itu
d

e
[m

/s
2
]

0.22

0.26

0.30

0.34

m
o

tio
n

p
ro

b
a

b
ili

ty

0 200 400 600 800 1000 1200

estimated

groud truth

time [seconds]

stationarymoving

(a)

8.0

9.0

10.0

11.0

a
cc

e
le

ra
tio

n

 m
a

g
n

itu
d

e
[m

/s
2
]

0.22

0.26

0.30

0.34

m
o

tio
n

p
ro

b
a

b
ili

ty

0 200 400 600 800 1000 1200 1400 1600

estimated

groud truth

time [seconds]

stationarymoving

(b)
Figure 3. Train stop detection performance by Thiagarajan et al.: (a) Nanko Port Town Line and (b) Midosuji Line.

magnitude, where gravity components are filtered out by the
linear accelerometer API of the Android OS. The lower plot
shows actual motion state and estimated state calculated by
SubwayPS with acceleration thresholds of 0.3, 0.4, and 0.5
m/s2, where the stationary periods are indicated by higher
level, while lower level indicates moving periods. For the case
(a), acceleration magnitude clearly increases over almost the
whole train motion because of continuous jolts of the passen-
ger car. By setting th to 0.3 m/s2, the system can accurately
identify the periods of time when the train is stationary. The
results for the case (b), however, suggest that the character-
istics of linear acceleration can significantly vary depending
on train lines. While small acceleration spikes are observed
intermittently, similar spikes are also seen in the stationary
periods and can hardly be strong evidence of train motion.
If we set the acceleration threshold to 0.3 m/s2, which is the
optimal configuration for the case (a), estimated motion state
sticks to moving for almost the whole trip. Thus performance
of SubwayPS is considerably sensitive to the configuration
of th. Figure 2 shows stop detection performance by Sub-
wayPS for all train rides in the dataset, when the acceleration
threshold is varied between 0.05 and 0.60 m/s2. Although
larger recall can be achieved by pushing up the threshold, it in
turn causes increase of false positive stop detections. Conse-
quently, f-measure accuracy cannot be higher than 43% even
if the parameter configuration is optimized.

Figure 3 shows stop detection performance of the algorithm
in [10] for the same two train rides as in Figure 1. The three
plots in the figure show a time series of acceleration mag-
nitude, motion probability derived by an empirical acceler-
ation model, and estimated motion state, respectively. For
this experiment, we applied leave-one-out cross validation, in
which each train ride in the dataset is sequentially selected as

test data, while all the remaining data are used for training
the acceleration model. The results show that characteristics
of acceleration magnitude is again significantly different be-
tween the two cases: while each moving/stationary period in
the case (a) contains a single positive/negative peak of the
smoothed motion probability, it does not hold in the case (b),
causing a considerable number of false positive stop detec-
tions. In addition, the smaller variations in the acceleration
feature makes it difficult to accurately identify the time of
state transition, resulting in large errors around boundaries of
adjacent moving/stationary periods.

STATIONSENSE PASSENGER TRACKING SYSTEM
In this section we design the StationSense system based on
thorough analysis of the real sensor measurements.

Overview
Figure 4 outlines steps taken by the StationSense system. It
first analyzes magnetometer readings to calculate a time se-
ries of probability that a train is stationary (i.e., stop prob-

ability). As we will show in the following section, motors
and electrical inverters in vehicles emit large magnetic noise
during acceleration periods of the train. Similar magnetic sig-
nals are also observed in deceleration periods, since railway
systems today usually employ dynamic and/or regenerative
braking, both of which slow down the vehicle by converting
kinetic energy of wheels into electricity using the motors as
power generators: the former just convert the recovered en-
ergy into heat using electrical resistors, while the latter feed
it back to the power supply. In addition to acceleration and
deceleration, there can be inertia driving periods in between,
during which both motors and inverters are not active while
the train is still in motion. Since electrical and metal materials
along railroads form complex spatial magnetic patterns, the
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Figure 4. Outline of StationSense passenger motion tracking system
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Figure 5. Stop probability based on an ambient magnetic field: (a) mag-
nitude, (b) variance in magnitude, and (c) stop probability.

ambient magnetic field in a passenger car also exhibits char-
acteristic feature as far as the train is in motion. However,
difference from stationary periods can be relatively smaller
than acceleration and deceleration periods, resulting in poten-
tial false positive stop detections. In the subsequent phase we
filter out such wrong detections by acceleration fusion, and
then search for optimal boundaries between adjacent mov-
ing/stationary periods by fusion of the stop probability and
a unique acceleration signature, which is typically observed
when a train stops and restarts moving.

Motor Activity Detection by Magnetic Field Sensing
Figure 5 (a) shows magnitude of the ambient magnetic field
in a passenger car, observed during the same train ride as in
Figure 1 (b) and Figure 3 (b). Note that we define magnitude
of a magnetic field as (m2

x

+m

2
y

+m

2
z

)

1/2, where m
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, m
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,
and m

z

are magnetometer readings along x, y, and z axes, re-
spectively. Although the magnitude values significantly vary
over time, it does not necessarily have clear correlation with
the train’s motion state. In contrast, variance of the magnitude
values has totally different characteristics depending upon if
the train is in motion. Figure 5 (b) shows variance in mag-
nitude of the magnetic field over a 2-second sliding window.
We chose the window size based on typical parameter con-
figurations (i.e., 1-2 seconds) in previous literature [3, 7, 9],
and set the sliding margin to 1 second. While large variance
values are frequently observed in moving periods, it sticks to
fairly low level for almost the whole stationary periods. Fig-
ure 6 shows cumulative distributions of the variance values
for all the dataset collected in our preliminary experiment. In
stationary periods, more than 80% of the variance samples
are concentrated below 10.0. This is in contrast to moving
periods, in which the variance samples are distributed over a
much wider range. This suggests that variance in magnitude
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of the magnetic field serves as a powerful feature for classi-
fying motion state of trains.

Given a variance sample m, stop probability of a train can be
calculated based on the magnetism models above as:

p(stop|m)

def
=

p(m|stop)
p(m|stop) + p(m|mov)

. (2)

We calculate the stop probability based on each variance sam-
ple to find a set of stationary periods. Figure 5 (c) shows the
resulting stop probability for this train ride. The probability
keeps around 1.0 while the train is stationary, which is much
higher than those in moving periods. However, there can be
temporary increase in stop probability also in some moving
periods due to inertia driving of trains. We mitigate the risk of
potential false positive stop detections in the following phase.

Filtering Inertia Driving Periods by Acceleration Fusion
The jolts of passenger cars would, at least occasionally, hap-
pen throughout a train’s motion. The basic idea for our noise
filtering mechanism is to harness such long-term temporal
patterns in accelerometer readings to remove the undesirable
rise in stop probability in the middle of moving periods.

To define an acceleration feature for noise filtering, we first
calculate variance of acceleration magnitude over a 2-second
sliding window. Figure 7 shows cumulative distribution of
the variance values, which is again modeled using the dataset
from our preliminary experiment. While the resulting vari-
ance values occasionally exhibit large spikes, most of the
variance samples are concentrated below 1.0 for both moving
and stationary periods. This means that acceleration variation
caused by trains’ motion usually fall into this range. Thus we
first filter out large variance samples greater than 1.0, assum-
ing that they are noise produced by motion of user’s body.
Since intensity of jolts can be different among individual rail-
way lines, effectiveness of noise filtering could be further im-
proved by train-dependent parameter tuning at the cost of ini-
tial calibration effort. In this paper, however, we employ a
common threshold to remove the need for such calibration,
and conservatively choose the parameter to suppress the risks
that jolts of vehicles are filtered out unexpectedly.

Since high frequency components in the sequence of acceler-
ation variance are also usually dominated by noise due to mo-
tion of user’s body, we subsequently average the filtered vari-
ance samples over a long sliding window of 30 seconds. Note
that the window size is empirically determined through pa-
rameter analysis over our Osaka Municipal Subway dataset,
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and we set the sliding margin to 1 second to update the accel-
eration feature every second. Figure 8 (a) shows the result-
ing smoothed variance for the ride we have been discussing
earlier. While the variance values take a positive peak in a
moving period and a negative peak in a stationary period in
most cases, the peak values are not stable even during a single
ride on the same train, causing ambiguity in the acceleration-
based motion classification model. To cope with the problem,
we first find peaks in the smoothed acceleration variance by
Algorithm 1, and subsequently normalize it into the range be-
tween 0 and 1 based on the most recent peak values, as out-
lined in Algorithm 2. We set the parameter � for the peak
detection to 0.03, which on average achieved reasonable per-
formance in preliminary parameter analysis on our subway
dataset. Figure 8 (b) shows smoothed acceleration variance
after the normalization process, say a, while Figures 9 and
10 show cumulative distributions of the acceleration feature
before and after normalization, respectively. The variation in
the peak values is successfully canceled out after normaliza-
tion, making distributions of the resulting acceleration feature
clearly different according to the train’s motion state.

We use this acceleration model for filtering out the rises in
stop probability during inertia driving periods. Assuming that
the magnetism-based feature m and the acceleration feature a
are probabilistically independent, we fuse these distributions
by the Naı̈ve Bayes model [6]:

p(stop|m, a)

def
=

p(m|stop)p(a|stop)
p(m|stop)p(a|stop) + p(m|mov)p(a|mov)

.

(3)
Subsequently we update the stop probability as follows:

p(stop)

def
= min(p(stop|m), p(stop|m, a)). (4)

Algorithm 1 Peak detection
1: find max false, mx �1, mn 1
2: for each smoothed acceleration sample a do
3: if a > mx then mx a

4: if a < mn then mn a

5: if find max then
6: if a < mx� � then
7: mn a, find max false, output mx as a positive peak
8: else
9: if a > mn+ � then

10: mx a, find max true, output mn as a negative peak

Algorithm 2 Peak-based adaptive normalization
1: Initialize max var and min var by pre-defined parameters
2: for each smoothed acceleration sample a do
3: find peaks in smoothed acceleration variance
4: if positive peak is detected then max var  peak value
5: if negative peak is detected then min var  peak value
6: a min(max{0, (a�min var)/(max var �min var)},1)

Note that we upper bound the stop probability by the original
magnetism-based probability p(stop|m) rather than directly
employing p(stop|m, a) for stop detection, because the nor-
malized acceleration variance can occasionally take relatively
low values in some moving periods. In that case, the stop
probability during motion can be rather pushed up after accel-
eration fusion, potentially causing additional false positives.
Figure 8 (c) shows the filtered probability for the example
ride, where stop probability in moving periods is successfully
suppressed, compared to Figure 5 (c).

Stop Detection and Boundary Optimization
Given the sequence of stop probability in Equation (4), Sta-
tionSense finally identifies a set of stationary periods.

The system first averages the sequence of stop probability
over a sliding window of 30 seconds and then detects peaks in
the resulting smoothed probability curve. As shown in Figure
11 (a), each stationary period usually contains a single posi-
tive peak, for each of which we search for optimal boundaries
with its adjacent moving periods.

For boundary optimization, we consider another sliding win-
dow of 40 seconds long, centered at each time step. The win-
dow size is again empirically determined based on the Osaka
Municipal Subway dataset. We then calculate difference in
average stop probability over the former and the latter half of
the window to find the time when the probability changes the
most. Figure 11 (b) shows the resulting differential probabil-
ity for the same example ride. Negative peaks and positive
peaks appear at almost the same time as the beginning and
the end of each actual stationary period, respectively.

Analyzing the dataset, we also found that there is usually
a spike in magnitude of horizontal acceleration components
exactly when trains stop at and depart from stations. Station-
Sense reduces the solution space for optimal boundaries by
finding such peaks: It extracts gravity components in accel-
eration samples by the algorithm in [3], and calculates the
components that are orthogonal to the estimated gravity vec-
tor. Since the resulting horizontal acceleration vector con-
tains a large amount of high frequency noise, we subsequently
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smooth it by a median filter over a 2-second window. Finally
we find positive peaks in the smoothed magnitude of horizon-
tal acceleration, as shown in Figure 11 (c). Then it employs
these peaks as candidates of state boundaries.

For finding an optimal former (latter) boundary of a station-
ary period, StationSense first searches for the time when the
differential stop probability is minimized (maximized), and
considers it as an initial solution for a boundary. It then cal-
culates a list of points in time over a 30-second window cen-
tered at the initial solution, at which horizontal acceleration
peaks out. If at least one peaks are detected in the window,
it regards the one with the largest change in stop probabil-
ity as the estimated boundary. Otherwise it adopts the initial
solution as the final estimate for the state boundary.

Figure 11 (d) shows a time series of motion state, which
is estimated by our StationSense system. In contrast to the
accelerometer-based solutions, it precisely identifies bound-
aries of each stationary period, providing fine-grained passen-
ger motion tracking typically in a few seconds granularity.

EVALUATION
To evaluate tracking performance of StationSense, we con-
ducted additional field experiments to collect a larger dataset
under a variety of conditions. This section describes details of
the experiment, followed by analysis of the evaluation results.

Field Experiment
We conducted measurement experiments in 16 major railway
lines, including 9 lines from the Osaka Municipal Subway, 3
lines from the Hankyu Railway, and 1 line each from other
4 local railway companies around Osaka. For the experi-
ment, we recruited 6 volunteers and asked each participant
to carry a smartphone (i.e., Galaxy Nexus and Galaxy Note II

from Samsung Electronics, or ZenFone 5 from ASUSTeK) in
a hand or in a trouser pocket. In addition to the logger phone,
they also carry another smartphone in their hand for annota-
tion with our dedicated mobile application. The participants
freely choose to stand or sit on a seat during their rides, while
they are asked to keep the same pose (i.e., standing or sitting)
over the whole single ride for ease of annotation. Through
the experiments above, we collected sensor readings for to-
tally 66 train rides, composed of 386 stops at stations.

Performance Comparison with Existing Solutions
Figure 12 shows precision, recall, and f-measure accuracy of
train stop detection by SubwayPS [9], Thiagarajan et al. [10],
and our StationSense system (labeled as Proposed (fusion)).
To examine effectiveness of acceleration fusion and peak-
based boundary optimization, we also show performance of
a simplified version of StationSense, which employs only
magnetometer readings (labeled as Proposed (mag)). In the
simplified version, we directly use the magnetism-based stop
probability in Equation (5) for the subsequent stop detection
and boundary optimization, assuming that state boundaries
are at points in time when changes in the magnetism-based
stop probability is maximized. For SubwayPS, we set the ac-
celeration threshold th to 0.35 m/s2, which achieved the high-
est performance in our parameter analysis in Figure 2. Thia-
garajan et al. and StationSense are again evaluated by leave-
one-out cross validation, where each train ride in the data set
is sequentially selected as test data while the acceleration and
magnetism models are trained using all the remaining data.

Both SubwayPS and Thiagarajan et al. suffer from frequent
false stop detections due to insufficient intensity of jolts dur-
ing trains’ motion. Consequently, they result in low preci-
sion of 30% and 31%, respectively, and f-measure accuracy of
42% and 45%. Performance of Proposed (mag) shows effec-
tiveness of our magnetism-based stop detection mechanism,
achieving precision of 72% and recall of 82%. Thus the ro-
bust magnetism-based feature can even serve alone to achieve
much higher accuracy than the existing accelerometer-based
solutions. The acceleration fusion mechanism of Station-
Sense further enhances precision by 8% by filtering out false
stop detections in inertia driving periods, keeping the equiva-
lent recall of 82%.

Figure 13 shows cumulative distributions of errors in esti-
mated time of state transition: for each time a train stops or
starts moving, we find the nearest corresponding transition in
the sequence of estimated motion state, and define the error
by absolute difference between the actual and estimated tran-
sition time. The StationSense can bound the errors in state
transition time to less than 10 seconds in about 80% of the
cases, while the corresponding percentage for SubwayPS and
Thiagarajan et al. are around 20-40%.

Impact of User/Device Poses
To examine impact of poses of users and how they carry mo-
bile devices, we separately evaluated stop detection perfor-
mance under different combinations of user poses (i.e., stand-
ing or sitting on a seat) and phone poses (i.e., held in a hand
or kept in a trouser pocket). As with other analyses in this
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Figure 16. Impact of vehicle models

section, we construct the acceleration/magnetism models by
leave-one-out cross validation over the whole data set with-
out any pose-dependent calibration. Figure 14 compares per-
formance under the four different measurement conditions.
The results suggest that stop detection accuracy is not signifi-
cantly dependent on user/device poses, and StationSense can
achieve reasonable accuracy in all the cases with f-measure
accuracy of about 80%. This robustness mainly comes from
the pose-independent feature of the magnetometer readings,
which are not largely attenuated by human bodies and rela-
tively stable against motion noise produced by users. While
the acceleration fusion mechanism can be potentially affected
by such motion noise to some extent, its impact is effectively
mitigated by averaging the acceleration variance over a long
time window, followed by normalizing the smoothed features.

Impact of Difference in Vehicle Types
Urban trains are usually composed of multiple passenger cars,
and some of them may be trailer vehicles which are not
equipped with any motors and inverters. To examine the im-
pact of vehicle types on our magnetism-based stop detection
mechanism, we conducted the following additional experi-
ment in the Tanimachi Line of the Osaka Municipal Subway.
Each volunteer carries a Galaxy Nexus phone in their hand
and simultaneously rode different types of passenger cars in
the same train. By repeating such experiments 8 times, we
formed a dataset, composed of 109 stops at stations. Figure
15 shows cumulative distributions of the magnetism-based
feature, which are separately calculated for motor-equipped
vehicles and trailer vehicles. The fluctuation of magnetic
fields in trailer vehicles tend to be relatively smaller than
in those equipped with motors, since magnetic signals emit-
ted from the electric equipment are attenuated with distance.
However, there is still significant difference between feature
distributions for each state, making the magnetism-based fea-
ture a powerful evidence for train stop detection. Conse-
quently, StationSense achieved f-measure accuracy of 84%
in both types of vehicles, while precision for motor-equipped
vehicles were slightly higher by 1% than in trailer vehicles.

DISCUSSION

Energy Consumption
Energy efficiency is a key design criterion for mobile sensing
systems. Hemminki et al. [3] report that battery expenditure
for continuous sampling of accelerometer and magnetome-
ter measurements are 73-88% lower than GPS sampling and
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Figure 17. Impact of trains on neighboring tracks

90-96% lower than a phone screen. In addition to the in-
herent low-power feature of the sensors, there could even be
potential for further reduction in energy consumption, if train
schedules are available online: once a train’s departure is de-
tected, the system could temporarily suspend sensing for a
certain time interval, which is sufficiently shorter than stan-
dard travel time to the next station. We leave this possible
extension for future work.

Delay in Passenger Tracking
StationSense employs sliding window techniques to mitigate
impact of noise in sensor measurements. In return for the im-
proved robustness, there is a typical delay of 20 seconds (i.e.,
a half of the 40 second window for state transition detection)
before the system outputs estimated motion state. While we
could reduce such delay by adopting shorter windows at the
cost of certain accuracy degradation, we believe that delay of
a few tens of seconds would be acceptable in many practical
passenger support systems discussed in the introduction.

Impact of Difference in Vehicle Models
It would be natural to expect that intensity of magnetic noise
during motion can vary depending on vehicle models. Figure
16 shows cumulative distributions of magnetism-based fea-
tures, separately calculated for each railway operator (i.e., 5
local railway companies and the Osaka Municipal Subway).
These operators usually use vehicles made by different sets of
manufacturers, while there can be a certain amount of over-
lap. Although the feature distributions in moving state vary
among operators, all of them have significant difference from
those in stationary state, making the magnetism-based feature
effective for stop detection.

Magnetic Noise from Trains on Neighboring Tracks
Figure 17 shows a time series of magnetism-based stop prob-
ability observed during a ride on the Hanshin Railway. At
the middle of the long stationary period around 280-440 sec-
onds, there was another train having a brief stop at the oppo-
site side of the platform. Consequently, stop probability for



the stationary train temporarily dropped due to the magnetic
noise, caused by acceleration/deceleration of the neighboring
train. We suspect that such magnetic noise from other trains
would be a major error-inducing factor, which caused false
negative stop detections in our evaluation. A possible way to
mitigate such errors would be noise filtering in a temporal do-
main (e.g., filtering out short-term drops in stop probability).
Further analysis on this issue is also an important piece of our
future work.

RELATED WORK
A body of research has focused on transportation mode es-
timation for accurate monitoring of users’ mobility behavior
[7]. Hemminki et al. [3] employ accelerometers in mobile de-
vices to classify user context into stationary, walk, bus, train,
metro, and tram. Analyzing a variety of acceleration features,
they find that horizontal acceleration components offer effec-
tive features for characterizing vehicular mobility. Sankaran
et al. [8] use phone-embedded barometers for transportation
mode estimation to remove impact of acceleration noise pro-
duced by phone holders. These works are orthogonal to ours,
which aims for accurate motion tracking of railway passen-
gers. Note, however, that we could use these systems to auto-
matically start passenger tracking when users get on a train.

Some recent works propose mobile sensing solutions for real-
time tracking of transit vehicles. Zhou et al. [12] developed a
crowd-sourced bus location system to predict arrival time of
buses at each bus stop. For energy efficient vehicle tracking,
they employ a time series of received signal strength from
cell towers, which is observed by passengers’ mobile phones
along their bus routes. EasyTracker [1] enables similar bus
tracking system by analyzing GPS traces collected from mo-
bile phones installed in each bus. Although these systems
can be, in theory, also applied to tracking of railway passen-
gers, radio signals from cell towers and GPS satellites may
not be always accessible during train rides (e.g., in a subway).
Maier et al. [5] develop a system to recognize context of sub-
way passengers by combination of phone-embedded motion
sensors and microphones. In return for fine-grained recogni-
tion of 17 different activities, it requires continuous sampling
and processing of ambient audio, making the system power-
hungry. Stockx et al. [9] and Thiagarajan et al. [10] devel-
oped accelerometer-based solutions, employing jolts of trains
to detect their motion. Although they successfully remove
dependence on any positioning infrastructures (e.g., GPS),
and at the same time achieve energy efficiency, the potentially
small jolts of passenger cars and acceleration noise produced
by device holders can seriously harm reliability of the system.
Lee et al. [4] suggest possibility of employing magnetome-
ters for train stop detection. Their finding is that intensity of
magnetometer readings peaks out soon after the trains’ de-
parture. Thus they search for positive peaks in the intensity
values and regard the previous negative peak as the departure
time. However, they also report that this characteristic may
not always hold. The problem can also be seen in our data in
Figure 5 (a), where intensity values do not necessarily have
clear correlation with the train’s motion state. StationSense
copes with the problems above by a robust magnetism-based
feature and the tailored data fusion algorithm.

CONCLUSION
In this paper we have proposed StationSense, a novel mobile
sensing solution for precisely tracking motion context of rail-
way passengers. It harnesses characteristic feature in ambi-
ent magnetic fields in trains to coarsely identify their motion
state, and subsequently applies a tailored acceleration fusion
mechanism for accuracy enhancement. Through field experi-
ments, we have shown that StationSense can identify station-
ary periods at stations with much higher accuracy than exist-
ing accelerometer-based passenger tracking systems.
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