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Abstract-There is considerable evidence that visual attention is concentrated at a single locus in the visual

field, and that this locus can be moved independent of eye movements. Two studies are reported which

suggest that, while certain aspects of attention require that locations\be scanned serially, at least one

operation may be carried out in parallel across several independent loci in the visual field. That is the

operation of indexing features and tracking their identity. The studies show that: (a) subjects are able to

track a subset of up to 5 objects in a field of 10 'identical randomly-moving objects in order to

distinguish a change in a target from a change in a distractor; and (b) when the speed and distance parameters

of the display are designed so that, on the basis of some very conservative assumptions about the speed of

attention movement and encoding times, the predicted performance of a serial scanning and updating

algorithm would not exceed about 40% accuracy, subjects still manage to do the task with 87% accuracy.

These findings are discussed in relation to an earlier, and independently motivated model of feature

binding-called the FINST model-which posits a primitive identity maintenance mechanism that indexes

and tracks a limited number ofvisual objects in parallel. These indexes are hypothesized to serve the function

of binding visual features prior to subsequent pattern recognition.

INTRODUCTION

It is generally accepted that humans can attend selectively to only one region in the

visual field at anyone time. Evidence for this belief comes from both psychophysical

and neurophysiological studies (e.g., Posner et al. 1978; Hoffman, 1979; Schulman et al.

1979; Posner, 1980; Jonides, 1983; Prinzmetal and Banks, 1983; Tsal, 1983; Eriksen

and Yeh, 1985; Jolicouer et al. 1985). There has been some discussion in the literature

concerning how broad a region can be covered within focal attention. Some studies

suggest that the region might be quite large under certain conditions (e.g., Eriksen and

Spencer, 1969; Shiffrin and Gardner, 1972; Shiffrin and Geisler, 1973; Kinchla, 1974;

Shiffrin et al. 1976). There is even some support for a variable-size attention hypothesis

(the 'zoom lens' metaphor of Eriksen and S1. James (1986)). Nonetheless, there is

general agreement that there is only one region of focal attention, as opposed to several

independent and noncontiguous regions (see, also, the discussions in Hoffman and

Nelson, 1981; Kahneman and Henik, 1981; Laberge, 1983).

In addition to the evidence that there is a single locus of attention, there are also a

number of studies showing that this locus can be moved within the visual field

independently of any eye movements. The rate of attention movement is very rapid.

Estimates range from a low of 33.3 ms/deg (30deg/s) to a high of 4ms/deg (250deg/s).

*Send reprint requests to Prof. Zenon Pylyshyn, Centre for Cognitive Science, Social Science Building,

University of Western Ontario, London, Ontario, Canada N6A 5C2.



180 Zenon W. Pylyshyn and Ron W. Storm

For example, Posner et al. (1978) report attention movement at 4ms/deg, Tsal (1983)

reports 8.5 ms/deg, Shulman et at. (1979) report 19 ms/deg, 10licour et al. (1983), using

an automatic contour tracing paradigm, found the rate to be 24 and 26 ms/deg, while

Eriksen and Schultz (1977) found that attention moved at 33.3 ms/deg. In studies of

mental image scanning, Pinker (1980) reports 13 and 18.6 ms/deg, Kosslyn (1978)

reports 17 ms/deg, while Finke and Pinker (1982) found the rate to be 19.5 ms/deg. The

latter mayor may not be relevant, although Pylyshyn (1981) has argued that when

subjects scan mental images superimposed on perception they use the same scanning

mechanism as in perception proper. Although a few researchers have questioned the

evidence on which the continuous-movement assumption rests (Remington and Pierce,

1984; Eriksen and Murphy, 1987; Yantis, in press), the assumption nevertheless seems

to be generally accepted.

The view that there is a single region of maximal discriminability, and the view that

people can scan something that might roughly be described as "where they are focusing

their cognitive effort" seems reasonable in the light of the accumulated evidence. The

present paper does not quarrel with this general picttH'e. However, viewing this region

of maximal processing as the locus ofvisual attention may be misleading, insofar as it

suggests that at any point in time there is no access whatsoever to any place other than

the one region in the visual field which is being 'attended' to. We will argue that if one

distinguishes several operations that are involved in what is commonly called

'attending', perhaps defining several stages ofprocessing, atleast one ofthese stages can

be shown to have more than one independent locus and may thus actually be a 'pre

attentive' stage according to the usual use of this term. The particular stage that we

shall be concerned with is the one that maintains the identity of a visual feature as it

moves about in the visual field, i.e. a primitive (pre-attentive) indexing and tracking

mechanism.

The hypothesis that there is a primitive visual mechanism capable of indexing and

tracking features or feature-clusters was first introduced by Pylyshyn et al. (1972) and

has been further elaborated in Pylyshyn (in press). This work is part of a preliminary

exploration of how mechanisms of early vision might allow us to maintain a stable,

distally-anchored representative of the world, despite constantly changing retinal

stimulation, and how the motor system could be commanded to move in relation to

locations sensed by the visual system (the so-called cross-modality binding problem).

Although a great many ofthe details of the model are not germane to the present paper,

the following brief summary of some of the reference-binding or indexing assumptions

of the model will help motivate the studies to be described herein. These assumptions

were initially introduced because they are independently required in order to explain a

variety of phenomena, including aspects of perceptual-motor coordination, the

interface between top-down and bottom-up visual processing through the invocation

of what Ullman (1984) calls 'visual routines', and certain phenomena involving the

registration of 'mental' images projected onto actual displays (see Pylyshyn, 1984,

pp.247-251).

The model hypothesizes a certain primitive operation which is preattentively

performed upon certain features in the visual display and which is a prerequisite to

detecting various relational properties involving those features. This operation consists

of assigning an index or internal reference, called a FINST, to the features in question.

For example, prior to recognizing that a certain feature is 'inside' or 'above' another

one, both features have to be picked out or individuated in some way so that the inside
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or above predicates can refer to them. According to the FINST model, this process of

individuating the features is carried out by binding one of a small number of available

internal reference tokens or pointers, called 'FINSTs', to these features. The mechanism

that carries out this binding does so in a way that results in the FINST continuing to

point to the same retinal feature as the feature moves about on the retina (where 'same

feature' here refers to the sequence of retinal features that correspond to a single distal

feature). A FINST is thus a 'sticky' reference token (the name derives from an early

observation that these reference tokens act like 'instantiation fingers' that realize

reference bindings by, in effect, 'pointing to' distal places). This automatic tracking

aspect of the FINST hypothesis suggests that the mechanism for assigning and

maintaining these references may be closely related to the mechanism which solves the

'correspondence' problem for apparent motion. Indeed, in the case where motion is

not strictly continuous, the tracking aspect of the FINST hypothesis presupposes the

solution of the correspondence problem (Dawson and Pylyshyn, 1988).

The hypothesize<;l mechanism for binding FINSTs to features provides a stage of

processing which is prior to, and a prerequisite foil, such further processing as

recognition and discrimination. In contrast with the common view of visual attention

focusing (as it appears, for example, in discussions of 'attentionaI scanning'), FINSTing

can occur independently and in parallel at several places in the visual field. In this sense

it is a preattentive operation, although the selection of some subset of these

automatically indexed places for further processing or tracking may involve deliberate

cognitive intervention.

The present study examines this proposal by asking whether subjects can track the

movements of multiple independent targets that are visually indistinguishable, as

suggested by the FINST hypothesis. If they can, they should be able to detect the

occurrence of a distinct visual event located on an object being tracked, and

discriminate it from an event located on some other, visually identical object. Note that

if subjects can successfully carry out this task then this logically entails that they

somehow have kept track ofthe targets over time, since the information as to whether an

object is a target or nontarget cannot be determined from the current state of the

display, nor from some memory trace ofan earlier state, but only from the identity ove-r

time of the individual targets (i.e. from their historical continuity). An additional study

will be described that specifically addresses the question whether this sort of multiple

target tracking can be carried out without serially sampling the set of targets one at a

time (i.e. without using a serial time-sharing algorithm), once again as predicted by the

FINST hypothesis.

EXPERIMENT I

This study constitutes both a concrete illustration of what the hypothesis claims and a

simple test of its plausibility. In itself it is not intended to test all aspects of the

hypothesis. In particular it does not address the question of whether FINSTs can be

maintained in parallel. We shall see that there exists a serial strategy that could allow

tracking of multiple independent targets. This alternative will be discussed in a

subsequent section.

If the hypothesis that we can assign a limited number of 'sticky' indexes (FINSTs) to

features in a visual display is correct, subjects should be able to track a subset of visually

identical and randomly moving objects, providing the target subset is somehow

identified at the start of a trial. This, indeed, is explicitly the claim made by the FINST
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hypothesis which posits a mechanism that can maintain the identity of features

independent of their position. The maintenance of identity despite changes in location

is precisely what we mean by 'tracking'. Thus if the FINST hypothesis is correct we

ought at least to be able to show that subjects can track multiple targets in an animated

display containing a number of randomly moving objects, under conditions where

targets and distractors cannot be distinguished by local visual properties (i.e. where the

targets and nontargets are identical except for their histories).

In this study the number oftargets that had to be tracked was varied from one to five.

There were always ten objects in all so the number of targets never exceeded the number

of distractors (in order to eliminate the more efficient strategy of tracking only

distractors). Tracking had to be done without eye movements. To ensure that eye

movements were not being used in the tracking task, movement of the eyes was

monitored.

Subjects were shown a display consisting of 10 stationary plus (+) signs and were

told to note the subset offrom 1 to 5 that were flashing. After 10 s the flashing stopped

and all 10 objects began moving. The subjects' task w a ~ to track the subset that had

been flashing, without moving their eyes, and to indicate whenever one of those target

objects 'flashed', i.e. briefly changed into a solid square shape. Whenever this

happened, subjects were instructed to press a response key. A detailed description of

the display and the timing is given below. Both accuracy and reaction times were

recorded.

Method

Subjects. Seven University of Western Ontario students, six males and one female,

volunteered to participate in the experiment without pay. All subjects had normal or

corrected-to-normal vision and had no previous experience in psychophysical

experiments of this kind.

Materials. An animated sequence offrames (generated in advance) was displayed by

an Apply II + microcomputer on a 50 cm Sony monochrome monitor at a viewing

distance of 120 ern. The display consisted ofa white fixation square subtending a visual'

angle of 0.42 deg. This fixation square was presented in the center of the screen with a

black background, the background subtending a visual angle of21.5 deg. The animated

stimuli always consisted often moving white crosses. A randomly chosen subset offrom

one to five of the total field often objects was designated as targets. The remainder were

designated as distractors. Each object subtended a visual angle of approximately

0.42 deg and moved with a velocity and direction that was changed at random every few

hundred milliseconds. The velocities of the objects ranged from 1.25 to 9.4 deg/s. The

directions were chosen from among 8 equal divisions of the compass. The random

motion of the objects was subject to the restriction that no two objects could be

closer than 0.75 deg apart, so that the continuity of their identity was never ambiguous

(as it would be if they were allowed to collide). In generating the animation sequence to

meet this restriction, trajectories were generated for each object. After each frame, the

location of objects was tested to determine whether any two objects were too close

together. If they were, the last few frames of the sequence were rejected and the

generation was restarted at that point with a new random choice of directions and/or

velocities. When an object was about to go off the edge of the screen its motion was

reflected ('bounced') off that edge.

I
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Each trial consisted of a variable number of animation frames with the duration of

the animated portion of the display ranging from 7 to 15 s. After a predetermined time

(at least 3s after the start of the animation), a solid white square, subtending 0.6 deg of

visual angle, was flashed over (i.e. replaced) one of the moving objects for about 83 ms.

Sometimes the 'flash' occurred over a target and sometimes over a distractor. The

target-flash condition (to which subjects had to respond) was sometimes the first flash

in a trial and at other times was preceded by from 1 to 3 distractor-flash conditions

(each ofthese 4 conditions occurring equally often), in order to ensure that subjects did

not merely respond to any flash. There was only one target-flash condition in each trial.

The trial ended after the subject responded to that flash, or at the end of the animation

sequence which occurred at least 4 s after the target-flash.

A telegraph key was interfaced to the microcomputer through aCeS 7440A

programmable timer which was used to measure the subjects' response latencies. Eye

movements were monitored with a Reading Eye Trac II also interfaced to the

microcomputer. A trial on which a detectable eye movement occurred (i.e. a movement

that was greater than 2 deg off the fixation point) was terminated and the subject

informed. An additional trial was then added with the same target size, delay, and type

offlash condition, though with new randomly chosen target and distractor placements.

Procedure. The task was explained to the subjects. They were told that after

initiating a trial by pressing the space-bar on the microcomputer keyboard, a square

would appear in the center of the screen. It was stressed that they must keep their eyes

fixated on that square throughout the trial. To help prevent eye movements a chin rest

was used and subjects were given feedback whenever an eye movement was detected.

Subjects were told that some time while they were tracking the objects a square would

flash on the screen and their task was to press a response key as quickly and as

accurately as possible if, and only if, the flash occurred at the location of a target.

Subjects were provided with 50 practice trials after which they proceeded to initiate the

trials at their own speed. There were 10 blocks of 50 trials. All variables were

randomized, including the 5 different target set sizes.

Results

Inspection ofthe response latency data revealed a number oftrials with unusually long

response latencies. Outliers that were more than two times the interquartile range away

from the median were replaced with the median of the observations for that cell (there

were 35 such cells, one for each of 7 subjects and 5 target numbers). This procedure is a

more conservative correction than that recommended by Tukey (1977) and resulted in

4.9% of the observations being replaced.

In order to determine whether there was a speed-accuracy tradeoff across the 5

conditions, the correlation between response latency and response failure rate was

computed for each subject. The lowest such correlation was 0.74, indicating that the

pattern of response latency did not reflect a shifting response criterion.

Figure 1 shows the accuracy of responding as a function of number of targets.

Overall, subjects failed to respond correctly on only 9.3% ofthe trials on which a target

flashed. The pattern oferrors shows that the trials with a larger number of targets had

poorer performance. A repeated-measures analysis of variance revealed that the

frequency with which subjects failed to respond to target flashes varied with the number

of targets (F(4, 24) = 26.05, P < 0.05). False positive responses (i.e. responses that



184 Zenon W. Pylyshyn and Ron W. Storm

16

14

12

..
100

l:
w..

8c:..
~..
~ 6

4

2

2 3 4 5

Number of Targets

Figure 1. Percent of trials on which subjects failed to respond to a probe flashed on a target, as a function of

number of targets.

followed the flashing of a distractor) occurred on only 4.9% of the trials and an analysis

of variance showed that their frequency was not significantly affected by the number of

targets (F(4, 24) = 1.96, P > 0.05).
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function of number of targets.
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results are shown in Fig. 2. An analysis of variance showed that the response latencies

varied with the number of targets being tracked (F(4, 24) = 26.11, P < 0.05).

Discussion

The results show that subjects are able to perform the task of tracking multiple

independently-moving targets quite well under the conditions of this study, even when

there were five such targets (in which case the performance level was still at 85.6%).

Individual subjects' error scores ranged from 0 to 8% when tracking one target, and

from 6 to 28% when tracking 5 targets.

In appears that, although subjects are able to do this task well, it takes them longer

and they make more errors when they are required to track a larger number of targets.

This pattern of results is not consistent with the view that the tracking is being

performed entirely by a purely parallel process, unless it is a 'limited resource' parallel

process, such as one in which the number of targets affects the quality or precision of

information about each target (as, for example, in the models developed by Anderson

(1973), Townsend (1974) or Townsend & Ashby (1983)J. On the other hand, the fact that

the task can be done as well as it was, does suggest that some parallel processing may be

implicated, even if this processing falls in the category of a 'limited resource' parallel

process. In order to examine this question in detail, it is first necessary to consider

whether the ability to track multiple targets, demonstrated in this study, can be

explained entirely in terms ofa serial scanning process which, for example, 'time-shares'

among the separate targets. This question is discussed in the next section, prior to

introducing a second study designed to address the question more directly and

quantitatively.

THE SERIAL TRACKING ALGORITHM

In the tracking task described earlier, each object in the display can be distinguished

from other objects by one of only two ways. The first is by the historical or temporal

continuity of its identity, which can be traced back to its initial location or other

distinctive property (e.g., whether it was flashing) at the start of the trial. The secon9 is

by its current properties. But the only currently distinguishing properties of any object

are its location or its motion, since the objects are identical with respect to all other

properties. An algorithm which uses the first method of tracking objects (i.e. keeping

track of them in terms of their history) must be able to trace the identity of all target

objects simultaneously, i.e. it must be a parallel algorithm. An algorithm which uses the

second logically possible characteristic to keep track of objects, i.e. their current

location or motion, must, on the other hand, continually update these changing

characteristics by sequentially sampling the objects. This is the basis for the serial

tracking strategy.

In order to design a test which rules out the serial tracking algorithm it is necessary to

show first how the maximum performance attainable by such an algorithm depends

upon a number of temporal and spatial factors, such as the distances between targets,

the velocities at which the targets move, the velocity at which attention can move, the

time spent processing information about the targets, and· the type of information the

algorithm uses to identify targets (e.g., location and/or motion). The serial tracking

algorithm described below uses target location to keep track of targets, although we

will modify it shortly so that the target location that is stored is one that is predicted by
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extrapolating the current motion vector. Motion information could also be in

corporated into the algorithm in other ways, and this will be discussed later.

The steps that a serial mechanism would need to go through in order to keep track of

more than one target in a tracking task are as follows.

Serial tracking algorithm

(1) The visually distinct targets (e.g., ones that are flashing at the start of the trial) are

initially sampled by moving attention to each target in turn. When attention is focused

on a target, its position is encoded (according to some location code such as its

Cartesian coordinates) and stored in a 'target location table' in memory. All targets

must be so encoded during the initial setup period.

(2) During scanning, the location of each target is retrieved in turn from the target

location table in some prescribed order.

(3) In accordance with the most widely accepted version of the serial scanning view,

we assume that in going from its current location to the specified location of the next

target in the sampling sequence, attention moves in a continuous fashion, passing

through all intermediate points in the display. Because of this the time for this step

increases monotonically with increasing inter-target distance.

(4) After attention is moved to the next location retrieved from the target location

table, the object nearest to this selected location is taken to be the next target in the

sampling sequence (locating the nearest object at this step may involve some local

searching as well).

(5) The current location ofthis object is encoded and stored as the updated location

of that assumed target.

(6) Steps 2 through 5 are repeated until the tracking task is terminated by the

detection of a flashing object. The detection of a flash is assumed to be a separate

process which occurs in parallel with this algorithm (i.e. it is 'interrupt driven'). It is also

assumed that when a flash is detected, attention is moved to the location of the flash. If
that location is one that corresponds to a location in the target location table, a 'yes'

response is emitted. Otherwise a 'no' response occurs.

The tracking ability of a system using the above algorithm will be poor if a tar:get

cannot be correctly located in step 4 of the procedure. A number offactors influence the

accuracy with which a target can be located. For example, if the targets move quickly,

location information in memory is likely to be outdated by the time the target is

sampled again at some later time. Similarly, ifthe distance between objects is decreased,

the likelihood of mistaking some nearby object for the intended target in step 4 of the

algorithm will increase. Thus the performance of the serial model is adversely affected

by increasing the length of the path joining all the targets, increasing the number of

targets being tracked, increasing the density ofobjects in the display, and increasing the

velocity of the objects. These factors affect the performance of a serial model by

influencing the speed with which information about the display is outdated relative to

the sampling rate of the serial mechanism.

Quantitative predictions of the serial model

In the next experiment, these factors were taken into account in order to design a

display that would result in poor expected performance for the serial scan algorithm.

The initial parameters for the display used in Experiment II were selected based on the

experience with Experiment I and based on some rough estimates of the performance
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that might be expected ifthe speed ofattention movement was in the order of20 ms/deg

(a figure that is roughly around the median of the speeds reported in the studies cited in

the Introduction). It appears that our provisional adoption of a display consisting of 4

targets and 4 distractors, a mean velocity of 8 degree/sec, and the restriction that there

always be an object within 1.5 deg of each target does indeed tax the serial scan

algorithm. These parameters turned out to lead to predicted tracking performance for

~ the serial scan algorithm that did not exceed 20% accuracy, as determined by our more

detail calculations described below. The predicted performance was calculated by

examining the actually sequence of animation frames generated for Experiment II (to

be described in the next section), based on this provisional design. The method of

calculating the expected performance is described below. It should be emphasized,

however, that the actual figures that are used in these calculations are ones that apply to

the experiment that will be described in detail in the next section.

The tracking task carried out by the serial algorithm can be divided into three stages.

Once the objects are set into motion there is a probability that a target will be lost the

first time it is sampled. This depends on how soon the target is sampled after the display

is set into motion, which is turn depends on its serial position in the sampling order.

Next, once all targets have been sampled at least once there is a probability associated

with losing a target during each subsequent sampling. Finally there is a probability that

the target will be lost after its last sampling when a flash is detected and attention

moved to check whether or not the flash occurred on a target. The probability oflosing

a target during this last phase also depends on the serial position of the target in the

sampling order. The probability of keeping track of a target P(K;,f) over an entire trial

can be expressed in terms of its serial position in the scan sequence i and the length of

the interval between samplings f as follows (for convenience, we express all intervals

initially in terms of 'number of animation frames'):

(1)

where P(C) is the probability ofconfusing the intended target with another object after

j frames have gone by (i.e. when the stored location is j frames old), f is the number of

frames between successive samples of the same target, i is the serial position of the target

in the sampling order (in Experiment II we will have, 1 < i < 4), b is the number of

frames prior to the first sampling of target i (in Experiment II we will have

b = (i - 1).f /4), n is an integer representing the number of times target i is

sampled (in Experiment II we will have n = int«59 - b)/f), since there are an average of

59 frames in the animated sequence), and e is the number offrames between the last time

target i was sampled and the termination ofthe trial by a flash (in Experiment II we will

have e = 59 - n. f - b).

Once we know f (which, in Experiment II was a mean of 59 frames, each frame being

50 ms), Equation (1) gives us the probability of successfully tracking a target through an

entire trial, expressed in terms the serial position that the target could occupy and the

function P(C). If we were given a particular value of f and had a way of computing

P(C j ), we could calculate a value ofP(K;.J) for each of4 serial positions i that the target

could occupy. These 4 values could then be averaged to give P(Kf ), the probability of

tracking a single target through the given fframe sampling cycle. Assume for now that

we have P(C j ) and hence can compute P(Kf)' (We will return to the question of how we

obtain P(C j ) shortly.)

In order to compute expected performance we also need P(Tj,f)' the probability that



188 Zenon W. Pylyshyn and Ron W. Storm

exactly j objects are successfully tracked by the serial algorithm when the inter-sample

interval is f frames. Since the targets are independent, this is obtained from,

P(Tj,f) = P(K/Y (2)

(3)

From which, finally, we can express the expected performance E(f) of the serial

algorithm, on 'target' trials, in terms of the intersample interval f as follows:

E(f) = jt! p(Tj,f) x ~

where j is the number of targets successfully tracked over a trial, and P(Tj,f) is the

probability thatj targets are successfully tracked throughout an f frame inter-sample

separation.

From this we can go on to express' the expected performance as a function of

scanning rate, which was our original goal. To complete this computation we need to

known two final quantities: (a) the distances (in degrees) that must be scanned in the f
frames between samples; and (b) the probability P(Cj ) that a target will be lost ifit is not

sampled during some interval of j frames. Both these quantities were determined

empirically by examining the actual animation sequences used in the experiment.

The first quantity-the distance attention must travel inj frames-was measured by

making the conservative assumption that subjects scan the targets using the shortest of

the 3 possible path lengths connecting all 4 targets. The database that generated the

experimental trials was then consulted and actual distances (converted to degrees)

measured. The mean of the shortest paths was used in computing the mapping from

number of frames f to the scanning velocity (or more precisely, the reciprocal of the

velocity, expressed in milliseconds per degree).

The second quantity-the probability oflosing a target as a function of length of

interval-was also found by using the actual database ofanimation sequences for each

trial. The procedure consisted of stepping through each frame of the animation

database and counting the number oftimes that selecting an object in step 4 ofthe serial

algorithm (by taking the object closest to the stored previous location of the assumed

target) would result in picking the wrong object. These probabilities were stored in a

table and used in computing the estimated probability of correctly tracking all 4

targets, stated in terms of f and hence in terms of scanning velocity. The result of these

calculations is expressed graphically in Fig. 3 (note that Fig. 3 also contains some

information that will be discussed in the Discussion of Experiment II section of this

paper, but is included in the same diagram for comparison purposes).

There are a couple of things to note here. First is that the graphs in Fig. 3 are not

strictly predictions of the performance expected in the experiment to be described, since

subjects could possibly still use a guessing strategy in cases where the tracked targets

are lost. The expected performance would then depend on the number of different

responses that could be made and on any response biases that exist. We shall return to

this possibility in discussing the results of Experiment II. In the meantime, a useful way

to view the graphs generated from the equations discussed above, is as the predicted

tracking ability of the serial algorithm as a function of scanning velocity.

The second thing to note is that so far we have assumed that the serial tracking

algorithm uses only an encoding ofthe last target location to relocate the target in step

4 of the algorithm. Perhaps if we took into account the speed and direction of a target,

and ifwe extrapolated that motion over time to predict where the target might be on the
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Figure 3. Expected performance of the Serial Tracking Algorithm ( d e s ~ } i b e d in the text), as a function of the

(reciprocal) of the speed of attention scanning. The data were calculated by running simulations of the serial

tracking algorithm over the actual stimulus sequences 'Used in the experiment. Predictions use the standard

model (curve 1), a model which stores the predicted future location of the sampled point (based on its velocity

and direct) (curve 2), and a model which guesses randomly among the three available responses when it

detects any probe and also detects that it has failed to correctly track all targets (curve 3).

next sample, this might provide a more precise way of relocating the target than just

using the target's current location. To see whether this additional source ofinformation

would improve the expected performance of the serial algorithm, predictions were

computed for this modification of the algorithm. The method used is the same as before

only instead of recovering a target by its old location, the velocity vector was also

extracted from the display and extrapolated to predict where the target would appear

on a later sampling. The object nearest the extrapolated location was then taken to be

the target.

Figure 3 shows that using both location and velocity vectors to compute a predicted

location which is then stored in the target location table, leads to only marginally better

performance than storing only the current location information. (The fact that

performance based on location information alone surpasses performance based on

motion andlocation when the velocity of attention is less than 1 ms/deg, is attributable

to the fact that it takes two 50 ms-frames to compute the velocity vector, so that the

motion-based procedure in effect has a longer 'dwell time'.) The reason is that velocity

vectors do not serve as good predictors of the target's global trajectory in our current

design because the objects' velocity changed often. Indeed, an examination of the object

trajectories revealed that the difference between the direction that an object was

moving at time t and the direction ofits actual location after time t +d(with d chosen to

correspond roughly to the time it would take to scan 4 targets at 20 ms/deg) shows the

relation to be quite poor. The distribution of direction differences was very nearly

uniform in the range from 1to 180 deg and the correlation between these two directions

is only 0.11. In other words the direction in which an object is moving now is a poor

predictor of the direction it ends up in by the time the algorithm gets around to

sampling it next.

A final point about Fig. 3 is that the probability ofcorrectly tracking all targets is not

precisely a monotonically increasing function of scanning speed, as one might have
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expected. It appears that there is an anomalous dip in predicted tracking accuracy at

scanning velocities of around 5-10msjdeg. This is very likely an artifact of the

particular distributions of velocities and trajectories actually used in this experiment.

Recall that the trajectories were generated algorithmically subject to a variety of

constraints, and that records of actual trajectories were used in computing Fig. 3. The

procedure for generating trajectories consisted of attempting a random Brownian

motion of all points (targets and non-targets) and looking for violations of such

restrictions as those on the minimum and maximum distances allowed between points.

When a violation was detected, the last few frames were deleted and the generation

resumed. As a result ofsuch a procedure, the resulting distribution ofsuch properties as

direction, length, and velocity of the set of straight trajectories-segments was skewed.

For example, there appear to be more parallel segments than expected from a random

ensemble, since these are more stable under the restricting criteria. Although such

statistical distortions are inherent in the methodology adopted, they could easily have

resulted in distributions that penalized predicted performance at certain scanning

speeds. This would be true, for instance, if the distribution of distances between targets

and nontargets had a peak around the distance that the average target moved in the

time to scan a complete path at scan velocity of 5-19 msjdeg. Such distributional

anomalies are known to exist in our trajectories and appear to be the most likely

explanation for the departure from monotonicity of the curves in Fig. 3.

EXPERIMENT II

Experiment II was similar to Experiment I except that, as discussed in the previous

section, the display was designed so that the predicted performance of the serial scan

algorithm would be poor. A display consisting of 4 targets and 4 distractors was

adopted. The separation among the 4 targets was such that the mean path length

required to scan all 4 targets was 34 deg of visual angle (computed as the mean, over

trials, ofthe shortest connecting path possible on each frame). By adopting a rather fast

mean velocity (8 deg of visual angle per second) and by arranging for each target to be at

all times close to another object (i.e. no more than 1.5 deg away) in order to increase the

probability that a target would be misidentified in step 4 of the serial algorithm, it was

possible to decrease the expected performance of the serial model to well below that

observed in Experiment I, as discussed in the previous section and shown in Fig. 3.

Method

Subjects. Eleven University of Western Ontario graduate students, seven male and

four female, served as paid subjects. All subjects had normal or corrected to normal

vision and none had participated in the previous experiment.

Materials. The display was the same as that used in Experiment I with the following

exceptions. There were a total of8 objects, four ofwhich were designated as targets. The

speed of movement of the objects, as well as the frequency with which they changed

speed and direction, was somewhat higher in this experiment (the animation frame rate

was higher in this study than in the previous one). The speed and direction of motion of

the objects was changed every l00-150ms. The velocities of the objects ranged from 2

to 15 degjs, with a mean of about 7.6degjs. Unlike the first study, the maximum
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distance between any two objects, as well as the minimum distance, was constrained.

The distance between objects was kept between 0.75 and 1.5 deg.

As in Experiment I, each trial consisted of a variable number of animation frames. In

the present experiment, however, the maximum duration of the animated portion of the

display was only 4s. After a variable number offrames, a solid white square appeared

on the screen for about 50ms. In contrast with Experiment I, there were three types of

flash conditions classified in terms of where the flash could occur. It could occur at the

location ofa target, a distractor, or some other randomly chosen location on the screen,

at least 0.75 deg away from any object.

To allow the subject to indicate which of these possible locations were occupied by

the flash, three telegraph keys were interfaced to the microcomputer in the same

manner as in the previous experiment. Once again eye movements were monitored and

trials on which eyes moved were terminated and a new trial added to the block oftrials.

Procedure. The instructions and experimental procedure were the same as in

Experiment I, except for the use of 3 response keys (in addition, the pre-animation time

during which subjects picked out the 4 targets was reduced to 5 s). Subjects were given

60 practice trials, 20 with each type of flash, and were then instructed to proceed by

initiating the trials at their own pace. They were then given 3 blocks of 90 trials and 2

blocks of 30 trials (a total of 110 trials under each of the 3 conditions).

Results

Outliers were replaced using the same procedure employed in Experiment I. This

resulted in the replacement of 4.7% of the observations. In order to determine whether

there was a speed-accuracy tradeoff, a correlation was computed between standard

ized response latencies and the frequency of correct responses to flashes. The

correlation was based on 33 data points obtained across 11 subjects and 3 stimulus flash

types (z-scores were used in order to remove between-subjects variance in this analysis).

The resulting correlation was 0.52, indicating that the difference in response choices

and response latencies did not result from a speed-accuracy tradeoff.

Table 1 presents the confusion matrix for the various types of stimulus conditions,

with the rows denoting the three stimulus flash conditions, and the columns denoting

Table 1.

Confusion matrix of stimulus and response types (percents are based on all responses given for that stimulus

type).

Stimulus l'W response Target Distractor Other Total

type
"'~,;. \

Target 14" 1042 147 7 1196
87.1%d 123%' 0.6%J

'J: Distractor 21 b 149 988 52 1189. 12.5%" 83.1%h 4.4%k

Other 5' 51 59 1059 1169
4.4%( 5.0"1oi 90.6%"

, '.~~ ...

Total 40 1242 1194 1118

Selected comparisons (a priori retestS), significant (P < 0.05): a-c, b-c, doh, h-m,j-k:. Non-significant (P > O.05~

a-b, d-m, g-c, f-i
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the responses made to each flash type, including failure to respond. The matrix shows

data collapsed over 11 subjects. A priori t-tests were performed between various cells in

this table and are presented at the bottom of the table.

The first column shows subjects' failure to detect the three different types of flashes.

The pairwise comparisons indicate that randomly generated flashes are detected more

frequently than either flashing targets or flashing distractors. There was no significant

difference between detecting flashing targets and flashing distractors. These com

parisons also indicate that correct responses to random flashes and target flashes are

more frequent than correct responses to distractor flashes, and that target flashes are

less likely to be confused with random flashes than are distractor flashes. The reverse

should occur if there were a bias towards distractor responses. The comparison

between the frequency of the 'target', 'distractor' categories when the probe was on

neither also reveals that there is no significant response bias towards either distractor

or target responses.

The figures show clearly that a high level ofperfOl;mance (83-88%) was attained with

these displays. A comparison with Fig. 3 shows that the performance was much higher

than predicted from the serial model, even if the attention scanning speed were equal to

the fastest rate reported in the literature. For example, at the fastest scanning rate of

4 msjdeg, reported by Posner et al. (1979), performance predicted by the serial scanning

algorithm is less than 8% if onl)' location information is encoded and used to re-identify

targets, and less than 20% if velocity information is used to compute a predicted

location, and thus help in relocating targets in step 4 of the serial algorithm. Clearly,

predictions ofthe serial scan algorithm are inconsistent with the obtained results. Some

possible reasons for this discrepancy are considered in the next section.

Discussion of Experiment II

Although the results of Experiment II provide strong evidence that the serial

algorithm discussed earlier is not capable of yielding the observed performance, there

are a number of other considerations that need to be addressed. One set of

considerations concerns a possible modification of the serial algorithm, s p e c i f i c ~ l l y in

the use of a different method to relocate targets in step 4. Other questions concern the

possibility that the target might be accidentally recovered or that there might be a

trade-off between speed of scanning and time for encoding. These two questions were

explored by simulating the serial algorithm and recording performance. Another issue

concerns the possibility that a guessing strategy, used in conjunction with the serial

scan algorithm, might lead to high performance. A final issue concerns the possibility

that tracking was accomplished by a mixture ofparallel and serial methods, specifically

by a process of tracking some small subset of targets in parallel and then of serially

attending to the remaining targets. These questions will be addressed in this section.

Modification of the serial algorithm. Several possible modifications of the serial

algorithm were examined. The first is the question ofwhether there is other information

that can be used to help locate targets in step 4 of the serial algorithm. In the

calculations so far velocity information has only been used in order to aid in predicting

target location. But the velocity of a target might also be used more directly in helping

to distinguish targets from nontargets. Instead ofjust recovering the nearest object, the

nearest object with a motion similar to the target sampled earlier could be recovered.

Such a method would only work, however, if the velocity of a target was a reliable
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discriminative property of that target. Since targets change their velocity every 50-

150 ms, this is not a reliable method. Indeed, the correlation between the direction of

velocity vectors that are separated by approximately the time needed to scan attention

i . between all targets at 20 ms/deg, was 0.084.

Additional questions explored by simulations. Two additional questions were

explored by simulating the serial algorithm and applying it to the database of

animation sequences used in Experiment II. The first was the possible trade-off between

scanning speed and time taken to encode the location of each target. An extreme case

was simulated, in which it was assumed that attention could be shifted instantaneously

and that a dwell time of lOOms was required to compute and encode the location of

each object and its velocity vector. In Experiment II this is in fact the minimum time that

a subject could take since determining the velocity requires that at least two frames be

sampled and this takes lOOms. In this simulation, it was found that a target flash was

correctly identified on only 30.6% of the target trials. \

The second question explored by simulating the serial tracking process was the

possibility of accidental target recovery during the execution of the serial algorithm. It

should be noted that the expected performance levels shown in Fig. 3 were computed

assuming that a lost target is never recovered. Although there is no reliable way of

recovering a lost target, such a target may nonetheless still be recoverable by chance.

For example, a distractor may be selected on one sampling rather than the real target

but on a later sampling a target might be recovered by chance instead of the distractor

being erroneously tracked. This possibility was not taken into account in Equation (3).

It is possible, however, to determine the likelihood of such chance recovery by

simulating the serial model and running it on the actual animation sequence. Because

of the large amount of processing involved, the stimulation was run only for a scanning

speed of 20 ms/deg, a figure that represents close to the median of the scan rates

reported in the studies cited in the Introduction. The simulation used both the location

and velocity vector of the target to predict where the target would be on a later

sampling, since that had yielded slightly better performance in our earlier calculations..

In this simulation the serial algorithm correctly identified target flashes in 398 out of

1000 target trials, yielding a performance or 39.8%. Although this is about twice as

good as the prediction based on Equation (3), it still falls far short of the observed

performance level.

Use ofa guessing strategy. Although formula 3 provides a method ofcomputing the

probability that the targets are successfully tracked, subjects' performance may also

reflect a strategy ofguessing in cases where the target has been lost. Two relevant points

should be noted from the data in Table I: (1) There appears to be no systematic bias in

the use of the three response categories; (2) subjects are able to discern whether or not a

;4t~ flash had occurred, even when they were wrong about whether it occurred on a target,- .~ ._~

':'::~i distractor, or neither (since the number of cases of failure to respond was extremely

low). It is natural to assume that subjects might guess whenever they were uncertain as

to where the detected flash occurred, thus raising their performance levels. Ifthat is so,

then we may assume that on those occasions where a subject detects a flash and yet the

target has not been successfully tracked, the subject will select one of the three possible

responses with equal probability-and will thus select the correct 'target' response

on 1/3 of those trials. Thus the expected performance, allowing for guessing,
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will be:
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Eg(f) = E(f) + [1 - E(f)]/3 (4)

Where Eg(f) is the expected performance on a 'target' trial, corrected for guessing, and

E(f) is the probability that the target in question has been successfully tracked.

The resulting values of Eg(f) are shown in Fig. 3, plotted as a function of scanning

speed. They show that even with guessing, the performance of the serial algorithm is

clearly inferior to that of our subjects. Note that comparing observed performance

against this measure represents an extremely conservative test of the serial algorithm,

since this estimate is sure to be an inflated one. The reason it is inflated is that it

assumes: (1) that the subject can detect the occurrence ofa flash event when its location

is not known; and (2) the subject is prepared to guess on just those trials where a

mistracking has ·occurred. Assumption (2) is unrealistic since the subject cannot in

general tell when the serial algorithm has gone astray. However, if the subject guesses

on other (i.e. correct) trials the performance will dec~ase, eventually regressing towards

a mean value of 0.33.

A possible hybrid tracking strategy. A final possibility that might be considered is

that, although parallel tracking may be occurring, it may involve only a subset of the 4

targets. Perhaps subjects can track, say, two targets and guess whenever a flash occurs

that is not on one of the targets being tracked. Since we found in Experiment I that

tracking performance on a small number oftargets is higher than on a larger number of

targets, perhaps it is possible to optimize performance when four targets are presented

by tracking only a subset. When tracking fewer targets, the scan path is shortened and

the travel time of attention is shorter, permitting targets to be sampled more quickly

and thus reducing the probability of an error in step 4 of the serial algorithm. The

improved performance on the tracked subset would, of course, be offset by a higher

error rate on the non-tracked targets. Nonetheless, the question arises whether there

might not be a net benefit from such a strategy, which would require that the subject

guess on the cases where the flash was not on the subset being tracked. The expe.cted

performance Es(t) for tracking subsets t of 1,2 and 3 targets was computed as follows:

E.(t) = (0.979Y x (t/4) + (0.333) x [(4 - t)/4] (5)

This equation contains two terms, the first term reflects expected performance if the

flash occurs on one of the targets being tracked, and the second term reflects expected

correct performance when a flash occurs on a target not being tracked. These are

weighted according to the probability of the occurrence of these two types of events.

The proportion oftrials in which a tracked target flashes is equal to the size of the subset

t being tracked divided by the number of targets in the display (i.e. 4). The estimated

probability of a correct response to a flashing target when the corresponding target is

actually being tracked is based on the results of Experiment I, where it was found that

when only one target was being tracked, a flash was correctly detected 97.9% of the ~

time. For lack of better evidence this is taken as our best estimate of performance in

recognizing targets actually being tracked. For purposes of this calculation, we assume

that when a flash occurs on a target not being tracked, the subject simply guesses. Since

there are three possible responses (which occur approximately equally often), we

assume that the guess is correct on 1/3 of the target trials.

Using this estimator, the expected number of correct responses on target trials was
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computed when tracking subsets of different sizes. The resulting predictions were for a

performance of49.4% when tracking only one target, 64.6% when tracking two targets,

and 78.6% when tracking 3 targets. Comparisons of these performance scores with the

observed performance (87.1%) revealed that the former were all significantly lower than

the observed score (P < 0.05). Thus the strategy of tracking a subset of the targets and

guessing on the remainder would not in general lead to better performance. (Note, by

the way, that if Equation (4) is used to calculate the expected performance for tracking

': all four of the targets, the resulting performance level, 91.9%, does not differ significantly

from the observed score (P > 0.05). This at least shows that extrapolating the prediction

of Equation (5) to the full set of 4 targets does not lead to a contradiction.)

GENERAL DISCUSSION AND CONCLUSIONS

The results of these experiments show that subjects are able to accurately track up to 5

independently moving targets, and that this ability cannot be explained entirely in

terms of a serial attention scanning process-at least not of the kind that has been

investigated in experiments dealing with the movement of a locus of maximum

discrimination. On the other hand, the incfease in reaction time and drop in accuracy

that occurs when the number of targets being tracked is increased, shows that either

some serial processing is occurring, or else there is an interaction between global

attentionalload and the rate at which information associated with individual targets is

processed. The latter approach (advocated in certain applications by Townsend, 1974;

Townsend & Ashby, 1983) amounts to hypothesizing a resource-limited parallel

process.

The present data are compatible with a parallel but limited-resource process, though

not with a strictly serial process ofthe sort that has become widely accepted. However,

even if one adopts a limited-resource parallel process explanation of the present results,

it is still of interest to ask what sort ofmechanisms may be responsible for the trade-offs

that have to be assumed in this kind of model. For example, it would be desirable to

develop a detailed computational model that specifies which computational resources

are limited and shows how certain resource-allocation strategies lead to a slowdown in.

the individual processing speeds ofparallel processes when the Qverallioad is increased

on the system (i.e. when more objects must be tracked).

The FINST model discussed in the introduction, which was developed for

independent reasons, suggests an alternative analysis which does not need to assume

that an increasing load on a parallel process results in a deterioration in performance.

The alternative is to factor the tracking task into a limited number of parallel

components, each with unlimited capacity within the bounds of this task, and a more

conventional serial component. The model hypothesizes a primitive parallel mechan

ism which can 'track' visual features in a special sense, namely it provides a set of

pointers or indexes (called FINSTs) that can be bound to visual features in such a way

that they remain bound as the features move about.

The notion of a pointer (or FINST) plays the same role here as it does in computer

systems. In neither case does a pointer directly provide information about the objects

being pointed to; it merely provides an access path to such information for any process

which can follow the path. For example, in our case the pointer does not directly encode

such information as the type offeature it is pointing to, or the number of such features,

or whether one or more of the features has changed. To determine those properties it
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may be necessary to applying a serial process to the set of objects pointed to. For

instance, this is clearly the case for the property 'number of objects'. To determine how

many objects are being FINSTed, it appears to be necessary to scan the FINSTed

objects one at a time and count them-at least that is the natural interpretation of the

results of subitizing studies such as those reported by Klahr (1973) or Klahr and Chi

(1975). Similarly, it may be that determining whether one of the FINSTed objects has

just flashed may require that each ofthe objects be checked serially, following the access

path provided by the FINST indexes.

This view has the advantage that it accounts for both the phenomena reported in this

study. It accounts for the fact that the ability to track multiple targets does not appear

to depend upon serially scanning attention to all the objects being tracked. Thus

maintaining the identity and location ofthe subset being tracked appears to be carried

out by a parallel process. On the other hand, the FINST hypothesis also explains why it

takes longer to detect a change in one of the targets when there are more targets. This,

presumably, is due to the fact that when the flash occurs, each of the FINSTed objects

must be checked serially to determine whether it *as the one that flashed, a process that

takes more time the more such targets there are.

Whether the two stage approach advocated here, or some limited-resource parallel

process provides the best explanation of the present data remains an open research

question. From our perspective it is interesting that the FINST model, initially

developed to serve rather different purposes, suggests that it may be useful to

distinguish at least two stages in multiple-target visual tracking; one a parallel

preattentive indexing stage and the other a serial checking stage invoked in selecting a

response.
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