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We address the problem of multitarget tracking (MTT)

encountered in many situations in signal or image processing.

We consider stochastic dynamic systems detected by observation

processes. The difficulty lies in the fact that the estimation of the

states requires the assignment of the observations to the multiple

targets. We propose an extension of the classical particle filter

where the stochastic vector of assignment is estimated by a Gibbs

sampler. This algorithm is used to estimate the trajectories of

multiple targets from their noisy bearings, thus showing its ability

to solve the data association problem. Moreover this algorithm is

easily extended to multireceiver observations where the receivers

can produce measurements of various nature with different

frequencies.
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I. INTRODUCTION

Multitarget tracking (MTT) deals with the state
estimation of an unknown number of moving targets.
Available measurements may both arise from the
targets if they are detected, and from clutter. Clutter
is generally considered as a model describing false
alarms. Its (spatio-temporal) statistical properties are
quite different from those of the target, which makes
the extraction of target tracks from clutter possible. To
perform MTT the observer can rely on a huge amount
of data, possibly collected on multiple receivers.
Elementary measurements are receiver outputs, e.g.,
bearings, ranges, time-delays, Dopplers, etc. The
main difficulty, however, comes from the assignment
of a given measurement to a target model. These
assignments are generally unknown, as are the true
target models. This is a neat departure from classical
estimation problems. Thus, two distinct problems
have to be solved jointly: the data association and the
estimation.
The simplest approach is probably the nearest

neighbor approach. Using only the observation
the closest to the predicted state, this algorithm
is not robust enough in many situations. As long
as the association is considered in a deterministic
way, the possible associations must be exhaustively
enumerated. This leads to an NP-hard problem
because the number of possible associations increases
exponentially with time, as in the multiple hypotheses
tracker (MHT) [1]. To cope with this problem,
pruning and gating eliminate the less likely hypotheses
but can unfortunately eliminate good ones as well. In
the joint probabilistic data association filter (JPDAF)
[2], the association variables are considered as
stochastic variables and one needs only to evaluate
the validated association probabilities at each time
step. However, the dependence assumption on the
associations implies the exhaustive enumeration of
all possible associations at the current time step.
When the association variables are instead supposed
statistically independent like in the probabilistic
MHT (PMHT [3, 4]), the complexity is reduced. For
instance in [3, 4], the algorithm is presented as an
incomplete data problem solved by an EM algorithm.
There is no measurement gating as in the JPDAF
and all the associations are considered. The results
are then satisfactory when the measurement equation
is linear and when the trajectories are deterministic.
In [5] the algorithm is extended to the tracking of
maneuvering targets with an hidden “model-switch”
process controlled by a Markov probability structure.
A comparison of the PMHT with the JPDAF is
described in a practical two-target scenario in [6],
focusing on the mean-square estimation errors and
the percentage of lost tracks. Unfortunately, the above
algorithms do not cope with nonlinear models and
non-Gaussian noises.
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Under such assumptions (stochastic state equation
and nonlinear state or measurement equation,
non-Gaussian noises), sequential Monte Carlo
methods, also called particle filtering methods,
are particularly appealing. They mainly consist of
propagating, in a possibly nonlinear way, a weighted
set of particles which approximates the probability
density of the state conditioned on the observations
according to Monte Carlo integration principles. The
weights of the particles are updated using Bayes’s
formula. Particle filtering can be applied under very
general hypotheses, is able to cope with heavy clutter,
and is very easy to implement. Such filters have been
used in very different areas for Bayesian filtering,
under different names: the bootstrap filter for target
tracking in [7] and the Condensation algorithm in
computer vision [8] are two examples among others.
In earliest studies, the algorithm was only composed
of two periods: the particles were predicted according
to the state equation during the prediction step; then
their weights were calculated with the likelihood
of the new observation combined with the former
weights. A resampling step has rapidly been added to
dismiss the particles with lower weights and avoid the
degeneracy of the particle set into a unique particle
of high weight [7]. Many ways have been developed
to accomplish this resampling whose final goal is
to enforce particles in areas of high likelihood. The
frequency of this resampling has also been studied.
Also the use of kernel filters [9] has been introduced
to regularize the sum of Dirac densities associated
to the particles when the dynamic noise of the state
equation was too low [10]. Despite this long history of
studies, in which the ability of particle filter to track
multiple posterior modes is claimed, the extension
of the particle filter to multiple target tracking has
progressively received attention only in the last
five years. Such extensions have first been claimed
theoretically feasible in [11, 12] but the examples
chosen only dealt with one single target. In computer
vision a probabilistic exclusion principle has been
developed in [13] to track multiple objects but the
algorithm is very dependent of the observation model
and is only applied for two objects. In the same
context, a Bayesian multiple-blob tracker called
BraMBLe [14] has just been proposed. It deals with
a varying number of objects which are depth-ordered
thanks to a 3-D state space. Lately, in mobile robotic
[15], a set of particle filters for each target connected
by a statistical data association has been proposed.
We propose here a general algorithm for MTT in the
passive sonar context.
This work is organized as follows. In Section II,

we describe the basic particle filter for a single target
with two versions for the resampling step, which
can be systematic or adaptive. The superiority of
adaptive resampling towards systematic resampling is
clearly demonstrated in a passive sonar application in

Section III. Section IV, the central part of this work,
deals with an extension of the basic filter to multiple
objects. The new algorithm combines the two major
steps of prediction and weighting of the classical
particle filter with a Gibbs sampler computing
an estimation of the vector of the assignment
probabilities. We introduce two different versions
of this Gibbs sampler which take into account the
past information in a different way. An extension to
multireceiver data in the context of multiple targets
ends this section and highlights the versatility of
our approach. Finally, Section V is devoted to an
application to bearings-only MTT which enables us to
compare the results obtained with these two versions.
In each case, the data association problem is overcome
and the first version is clearly superior.
As far as the notational conventions are concerned,

we always use the index i to refer to one among the
M tracked objects. The index j designates one of
the mt observations obtained at instant t. The index
n is reserved for the N particles denoted by s. The
index ¿ is used for indexing the iterations in the Gibbs
Sampler and r is used for the different receivers.
Finally, the probability densities are denoted by p is
they are continuous and by P if they are discrete.

II. THE BASIC PARTICLE FILTER

For the sake of completeness, the basic particle
filter is now briefly reviewed. The general principle
of sampling it relies on is used throughout the paper.
We consider a dynamic system represented by the
stochastic process (Xt) 2 R

nx whose temporal evolution
is given by the state equation:

Xt = Ft(Xt¡1,Vt): (1)

We want to estimate the state vector (Xt) at discrete
times with the help of system’s observations which
are realizations of the stochastic process (Yt) 2 R

ny

governed by the measurement equation:

Yt =Ht(Xt,Wt): (2)

The two processes (Vt) 2 R
nv and (Wt) 2R

nw are only
supposed to be independent white noises. Note that
the functions Ft and Ht are not assumed linear.
We will denote by Y0: t the sequence of the random

variables (Y0, : : : ,Yt) and by y0: t one realization of this
sequence. Note that throughout the paper, the first
subscript of any vector always refers to the time.
Our problem consists in computing at each time t

the conditional density Lt = p(Xt j Y0 = y0, : : : ,Yt = yt)
of the state Xt given all the observations accumulated
up to t, and also in estimating any functional g(Xt)
of the state via the expectation E(g(Xt) j Y0: t). The
recursive Bayesian filter, also named optimal filter,
resolves exactly this problem in two steps at each
time t.
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Fig. 1. Basic particle filter without resampling.

Suppose we know Lt¡1. The prediction step is done
according to the following equation:

p(Xt = xt j Y0: t¡1 = y0: t¡1)

=

Z

Rnx

p(Xt = xt j Xt¡1 = x)Lt¡1(x)dx: (3)

Using (1), we can calculate p(Xt = xt j Xt¡1 = x):

p(Xt = xt j Xt¡1 = x) =

Z

Rnv

p(Xt = xt j Xt¡1 = x,Vt = v)

£p(Vt = v j Xt¡1 = x)dv: (4)

The observation yt enables us to correct this prediction
using Bayes’s rule:

Lt(xt) =
p(Yt = yt j Xt = xt)p(Xt = xt j Y0: t¡1 = y0: t¡1)R

Rnx
p(Yt = yt j Xt = x)p(Xt = x j Y0: t¡1 = y0: t¡1)dx

:

(6)

Under the specific assumptions of Gaussian noises Vt
and Wt and linear functions Ft and Ht, these equations
lead to the Kalman filter’s equations. Unfortunately
this modeling is not appropriate in many problems
in signal and image processing, which makes the
calculation of the integrals in (3) and (6) infeasible
(no closed-form).
The original particle filter, which is called the

bootstrap filter [7], proposes to approximate the
densities (Lt)t by a finite weighted sum of N Dirac
densities centered on elements of Rnx , which are
called particles. The application of the bootstrap filter
requires that one knows how to do the following:

sample from initial prior marginal p(X0);
sample from p(Vt) for all t;
compute p(Yt = yt j Xt = xt) for all t through a

known function lt such that lt(y;x)/ p(Yt = y j Xt = x)
where missing normalization must not depend on x.
The first particle set S0 is created by drawing N

independent realizations from p(X0) and assigning
uniform weight 1=N to each of them. Then, suppose
we have at our disposal at time t¡ 1 the weighted
particle set St¡1 = (s

n
t¡1,q

n
t¡1)n=1,:::,N where

PN
n=1q

n
t¡1

= 1. The a posteriori marginal Lt¡1 is then estimated
by the probability density LSt¡1 =

PN
n=1 q

n
t¡1±sn

t¡1
.

The prediction step consists of propagating each
particle of St¡1 according to the evolution equation
(1).
The weight of each particle is updated during the

correction step. Up to a constant, (6) comes down
to adjust the weight of predictions by multiplying
it by the likelihood p(yt j xt). In the most general
setting of sequential Monte Carlo methods [16], the
displacement of particles is obtained by sampling
from an appropriate density f which might depend on
the data as well. The general algorithm is summarized
in Fig. 1. The density LSt is often multimodal as
several hypotheses about the position of the object can
be made at one time. It is for instance the case when
one object is tracked in the presence of significant
clutter. Several hypotheses about the object position
can then be kept if the set of particles splits into
several subsets. This is where the great strength of
this filter lies. In [17] for instance, the measurement
vector Yt consists of a set of detected features
along line measurements. The assumed underlying
generative model affects each feature either to the
target boundary, or to its interior or to the background.
The likelihood function is built from this generative
model and then takes into acccount the clutter model.
An extension of the algorithm in Fig. 1, called the
hybrid bootstrap filter, has also been proposed to
deal with significant clutter and spurious objects for
target tracking [12] and guidance [18]. The weighted
sum of Dirac laws is then approximated by a
Gaussian mixture obtained by a clustering method
[19].
The particle sets enable one to estimate any

functional of Xt in particular the two first moments
with g(x) = x and g(x) = x2, respectively. The mean
can be used to estimate the position of one object
but it can be a bad estimator if the posterior is
highly multimodal. In such cases the ideal would
be to calculate the mean only over the particles that
contribute to the principal mode but such an estimator
has not been developed for the moment.
In practice, the number of particles is finite and the

major drawback of this algorithm is the degeneracy of
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Fig. 2. Basic particle filter with systematic resampling.

Fig. 3. Basic particle filter with adaptive resampling.

the particle set: only few particles keep high weights
and the others have very small ones. The former
carry the information, whereas the latter are mostly
useless. The resampling is a good way to remedy
this drawback because it eliminates the particles of
smallest weight. The stochastic resampling consists
of sampling N particles with replacement in the
particle set with the probability qn to draw sn. The
new particles have uniform weights equal to 1=N.
A first solution, adopted in [7] for example, consists
of applying the resampling step at each time period.
The corresponding algorithm of particle filter with
systematic resampling is described in Fig. 2.
To measure the degeneracy of the algorithm,

the effective sample size Neff has been introduced
in [20, 21]. We can estimate this quantity by

N̂eff = 1=
PN
n=1(q

n
t )
2 which measures the number

of meaningful particles. As advocated in [16], the

resampling can be done only if N̂eff <Nthreshold.
This enables the particle set to better learn the
process and to keep its memory during the
interval where no resampling occurs. The algorithm
of the basic particle filter with adaptive resampling is

described in Fig. 3. Details can be found in
[16, 20, 21].
Some convergence results of the empirical

distributions to the posterior distribution on the
path space have been proved when the number
N of particles tends towards infinity [22, 23]. In
the path space (Rnx)t+1, each particle snt at time t
can be considered to be a discrete path of length
t+1. Compared with the particle filter presented
in Fig. 1, particle filtering in the space of paths
consists of incrementing the particle state space at
each time step and representing each particle by
the concatenation of the new position at time t and
the set of previous positions between times 0 and
t¡ 1. In [22], the fluctuations on path space of the
so-called interacting particle systems are studied. In
the context of sequential Monte Carlo methods [23],
which cover most of the particle filtering methods
proposed in the last years, the convergence and the
rate of convergence of order 1=N of the average
mean square error is proved. Under more restrictive
hypotheses, the almost sure convergence is proved as
well [23].
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Fig. 4. Single target bearings-only experiment of Section III (a) Target and observer trajectories. (b) Bearings simulated at each time

period.

III. APPLICATION TO BEARINGS-ONLY PROBLEMS

To illustrate the previous algorithms, we first deal
with classical bearings-only problems. The object is
then a “point-object” in the x-y plane. In the context
of a slowly maneuvering target, we have chosen
a nearly constant-velocity model (see [24] for a
review of the principal dynamical models used in this
domain).

A. The Model

The state vector Xt represents the coordinates and
the velocities in the x-y plane: Xt = (xt,yt,vxt,vyt).
The discretized state equation associated with time
period ¢t is

Xt+¢t =

µ
I2£2 ¢tI2£2

0 I2£2

¶
Xt+

0
@
¢t2

2
I2£2

¢tI2£2

1
AVt

(7)

where I2£2 is the identity matrix in dimension 2 and
Vt is a Gaussian zero-mean vector of covariance
matrix

§V =

µ
¾2x 0

0 ¾2y

¶
:

Let X̂t be the estimate of Xt computed by the particle

filters with g(x) = x, i.e., X̂t =
PN
n=1 q

n
t s̃
n
t . The posterior

covariance matrix of X̂t is

Pt =

NX

n=1

qnt (s̃
n
t ¡ X̂t)(s̃

n
t ¡ X̂t)

T (8)

where T denotes the transposition.
The observations are available at discrete times

according to

Yt = arctan

µ
yt¡ y

obs
t

xt¡ x
obs
t

¶
+Wt (9)

where Wt is a zero-mean Gaussian noise of covariance
¾2w independent of Vt, and xobs and yobs are the
Cartesian coordinates of the observer, which are
known.

B. Results of Particle Filters with Systematic and
Adaptive Resampling, Respectively

The initial position of the target and of the
observer are

X0 =

0
BBB@

200 m

1500 m

1:0 ms¡1

¡0:5 ms¡1

1
CCCA Xobs0 =

0
BBB@

200 m

¡3000 m

1:2 ms¡1

+0:5 ms¡1

1
CCCA :

The dynamic noise is a normal zero-mean Gaussian
vector with ¾x = ¾y = 0:001 ms

¡2. The observer is
following a leg-by-leg trajectory. Its velocity vector
is constant on each leg and modified at the following
instants:

µ
vxobs200

vyobs200

¶
=

µ
¡0:6

0:3

¶ µ
vxobs400

vyobs400

¶
=

µ
2:0

0:3

¶

µ
vxobs600

vyobs600

¶
=

µ
¡0:6

0:3

¶ µ
vxobs800

vyobs800

¶
=

µ
2:0

0:3

¶

µ
vxobs900

vyobs900

¶
=

µ
¡0:6

0:3

¶
:

The bearings measurements are simulated with a
Gaussian noise of standard deviation ¾w = 0:05 rad
(about 3 deg) every time period, i.e., every 6 s. The
measurements set used and the trajectories of the
observer and of the target are presented in Fig. 4.
First, we have studied the impact of adaptive

or systematic resampling on the estimate posterior
covariance defined by (8). We have used bootstrap
filters, i.e, the importance function f is in fact the
prior law p(Xt j Xt¡1). The initialization of the filters
has been done in both cases according to a Gaussian
law whose mean vector is the true vector X0 and
covariance matrix Xcov is

Xcov =

0
BBB@

20:02 0 0 0

0 1002 0 0

0 0 0:052 0

0 0 0 0:052

1
CCCA :
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Fig. 5. Values of effective sample size N̂eff obtained with 1000

particles and adaptive resampling.

For the filter with adaptive resampling, the threshold
Nthreshold is fixed to 0.9. The average frequency of
resampling obtained for such a threshold is 0.132. The

values of N̂eff are presented in Fig. 5 for one particular
run.
The results are plotted in Fig. 6. The observer

trajectory, the target trajectory, and the estimate
obtained with adaptive and sytematic resampling are
plotted with the 2¾ confidence ellipses on position and
the line of sight of the observer every hundred times
for 1000, 5000, and 10000 particles. The ellipses
represent the regions containing 95% of the particles
assuming they are Gaussian distributed. At each
time, it is interesting to check that the ellipses are
oriented according to the line of sight. Moreover with
only 1000 particles, the advantage of using adaptive
resampling is emphasized: resampling impoverishes
the particle set and when applied systematically,
the particle set can become so reduced that the
ellipse does not contain the true trajectory any more.
It is the case from instant 400 in Fig. 6(e)
whereas with adaptive resampling in Fig. 6(f)
the confidence ellipses still contain the true
trajectory.
The estimates obtained with basic particle filters

using adaptive or systematic resampling are optimal
for a infinite particle number. In practice, the particle
number is of course finite, and the estimation
is determined by the realizations of the random
processes used in the proposal. To further assess the
accuracy of the two filters, we have performed 100
different runs of the particle filters with systematic
resampling on the one hand and adaptive resampling
on the other hand, for a given realization of the
measurement process.1 From these different runs,
we have computed the averaged estimate and the
2¾ confidence ellipses on position containing 95%
of the estimates. They are represented in Fig. 7

1It is also interesting to compute the particle filter estimation for

different realizations of the measurement process, as it is often

done to evaluate the performance of deterministic algorithms such

as the Kalman filter or the extented Kalman filter. It is done in

Section IIIE.

TABLE I

Computational Cost for One Iteration on 863 MHz Pentium III

Particle Number 1000 5000 10000

Systematic Resampling 7.9 ms 41.9 ms 88.5 ms

Resampling Procedure 4 ms 28 ms 64 ms

for N = 1000, 5000, 10000 particles and adaptive
or systematic resampling. The averaged estimates
are similar but the confidence ellipses are globally
twice as small with adaptive than with systematic
resampling whatever the particle number. This
indicates that adaptive resampling significantly
reduces the standard deviation on the particle filter
estimates.
As for the computational cost, Table I contains the

cost for one time iteration with systematic resampling
and the time spent on the resampling procedure
according to the particle number on a 863 Mhz
Pentium III.

C. Overestimated State Noise

It is to be noted that in the case of real data,
the variance of the state noise is not always known
precisely. Some simulations have then been performed
with an overestimated state noise. Intuitively, the
particles are thus predicted in a larger area but are
also more prone to be eliminated in the resampling
step. In pratice this is a great strength of particle
filtering. Fig. 8 shows the averaged estimates and
the 2¾ confidence ellipses obtained with adaptive
resampling, and with 1000 and 5000 particles. The
estimation is less smooth than with a correct state
noise. This jitterring increases the bias and the
standard deviation and more particles are needed for
results comparable with those obtained with a correct
state noise: with 5000 particles the standard deviation
between estimates is drastically lower than with 1000
particles.

D. Shifted Initialization

We have also performed particle filters runs
with a shifted initialization: the initialization is done
according to a Gaussian law whose mean vector Xmean
and covariance matrix Xcov are

Xmean = X0+

0
BBB@

50:0 m

500 m

0:0 ms¡1

¡0:0 ms¡1

1
CCCA

Xcov =

0
BBB@

40:02 0 0 0

0 400:02 0 0

0 0 0:052 0

0 0 0 0:052

1
CCCA :

(10)
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Fig. 6. Estimates for one particular run (dashed lines) and 2¾ confidence ellipses obtained with bootstrap filter. Solid lines stand for

target and observer trajectories. Dotted lines indicate line of sight of observer every hundred times. Top: 10000 particles, middle: 5000

particles, bottom: 1000 particles. Left column: systematic resampling; right column: adaptive resampling.

After around 200 time periods, the particles
have recovered from their shifted initialization
and provide satisfactory estimates as shown in

Fig. 9. The ellipses size is considerably reduced
with 5000 particles compared to only 1000
particles.
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Fig. 7. Averaged estimates (dashed lines) and 2¾ confidence ellipses obtained with bootstrap filter. Top: 10000 particles, middle: 5000

particles, bottom: 1000 particles. Left column: systematic resampling: right column: adaptive resampling.

E. Comparison with a Modified Polar Coordinate
Extended Kalman Filter

We have finally compared particle filtering
methods with a linearized filter, the modified

polar coordinate extended Kalman filter (MP-EKF).
Let us denote by XCt , X

C,Rel
t and XMPt the

state vector in the fixed Cartesian system, in the
Cartesian system relative to the observer, and in
the modified polar system, respectively
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Fig. 8. Averaged estimates (dashed lines) and 2¾ confidence ellipses obtained with bootstrap filter with an overestimated state noise.

(a) 1000 particles. (b) 5000 particles.

Fig. 9. Averaged estimates (dashed lines) and 2¾ confidence ellipses obtained with bootstrap filter with shifted initialization. (a) 1000

particles. (b) 5000 particles.

XCt = (xt,yt, _xt, _yt),

XC,Relt = (xt¡ x
obs
t ,yt¡ y

obs
t , _xt¡ _x

obs
t , _yt¡ _y

obs
t )

and

XMPt =

Ã
¯,
1

R
, _̄ ,

_R

R

!T

=

Ã
arctan

Ã
xC,Relt

yC,Relt

!
,

1q
xC,Rel 2t + yC,Rel 2t

,

yC,Relt _xC,Relt ¡ xC,Relt _yC,Relt

xC,Rel 2t + yC,Rel 2t

,

xC,Relt _xC,Relt + yC,Relt _yC,Relt

xC,Rel 2t + yC,Rel 2t

!T
:

Let fMPC and fCMP be the functions such that:

XMPt = fMPC (XC,Relt ) and XC,Relt = fCMP(X
MP
t ):

(11)

It must be noted that these two functions are
nonlinear. The dynamic model in the Cartesian system
is defined by

XCt+¢t = FX
C
t +Vt (12)

where

F =

µ
I2£2 ¢tI2£2

0 I2£2

¶

and Vt is a Gaussian noise of constant covariance
matrix §V. In the MP system it reads:

XMPt+¢t = f
MP
C (FfCMP(X

MP
t )¡Uobst+¢t

+Vt) (13)
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Fig. 10. Mean estimates (dotted lines) obtained over 10 realizations of measurement process and 2¾ confidence ellipses with shifted

initialization. (a) Estimates obtained with MP-EKF. (b) Estimates obtained with particle filters with adaptive resampling and 5000

particles.

where Uobst+¢t
= (xobst+¢t ¡ x

obs
t ¡¢t _x

obs
t , yobst+¢t

¡ yobst ¡

¢t _y
obs
t , _xobst+¢t ¡ _x

obs
t , _yobst+¢t

¡ _yobst )T. If the observer
follows a leg-by-leg trajectory, the two first
components of Uobst are always null. The two last
components are null except if t is a maneuver time.
In the Cartesian system, the measurement equation

is defined by
Yt =HX

C
t +Wt (14)

where Wt is a Gaussian noise of covariance ¾
2
w. In the

MP system, it reads

Yt =QX
MP
t +Wt (15)

where Q = (1 0 0 0).
Let us now describe the propagation and updating

steps of the MP-EKF used. The predicted state is
given by

X̃MPt+¢t = f
MP
C (FfCMP(X̂

MP
t )¡Uobst+¢t

): (16)

The predicted covariance matrix in the Cartesian
system is

P̃Ct+¢t = FP̂
C
t F

T+§V (17)

and in the MP system it is

P̃MPt+¢t
= JMPC P̃Ct (J

MP
C )T (18)

where JMPC is the Jacobian matrix of fMPC taken around
the predicted state.
As the measurement equation is linear in the

MP system, the updating step is the same as in the
classical Kalman filter:

K = P̃MPt+¢t
QT(QP̃MPt+¢t

QT+¾2w)
¡1 (19)

X̂MPt+¢t = X̃
MP
t+¢t

+K(Yt+¢t ¡QX̃
MP
t+¢t

) (20)

P̂MPt+¢t
= (I¡KQ)P̃MPt+¢t

(I¡KQ)T+K¾2wK
T

= P̃MPt+¢t
¡KQP̃MPt+¢t

(21)

P̂Ct+¢t = J
C
MPP̂

MP
t+¢t

(JCMP)
T (22)

where JCMP is the Jacobian matrix of f
C
MP taken around

the estimated state.
More details on the MP-EKF can be found in

[25—27]. As the MP-EKF is a determinist algorithm,
we have computed the estimates obtained for several
realizations of the measurement process. For a given
realization, the MP-EKF has to be compared with
the mean of the particle filter estimates over several
runs. We have compared the performance in the case
of a shifted initialization like in (10) in the previous
section over 10 realizations of the measurement
process. For each of them, 20 runs of the particle
filter with adaptive resampling and 5000 particles are
computed. The final bias and standard deviation are
similar but the particle filter recover faster from the
shifted initialization than the MP-EKF (see Fig. 10).

IV. MULTITARGET PARTICLE FILTERS

The purpose of the two precedent sections was to
provide a general representation of particle filtering.
We can now turn to its extension to MTT.

A. MTT Problem and Its Classical Treatment

Let M be the number of targets to track. This
number is assumed to be known and fixed for the
moment (the case of a varying unknown number will
be adressed in another work). The index i designates
one among the M targets and is always used as first
superscript. Multitarget tracking consists in estimating
the state vector made by concatenating the state
vectors of all targets. It is generally assumed that
the targets are moving according to independent
Markovian dynamics. At time t, Xt = (X

1
t , : : : ,X

M
t )

follows the state equation (1) decomposed in M partial
equations:

X it = F
i
t (X

i
t¡1,V

i
t ) 8 i= 1, : : : ,M: (23)
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The noises (Vit ) and (V
i0
t ) are supposed only to be

white both temporally and spatially, and independent
for i 6= i0.
The observation vector collected at time t

is denoted by yt = (y
1
t , : : : ,y

mt
t ). The index j is

used as first superscript to refer to one of the mt
measurements. The vector yt is composed of detection
measurements and clutter measurements. The false
alarms are assumed to be uniformly distributed in the
observation area. Their number is assumed to arise
from a Poisson density of parameter ¸V where V is
the volume of the observation area and ¸ the number
of false alarms per unit volume. As we do not know
the origin of each measurement, one has to introduce
the vector Kt to describe the associations between
the measurements and the targets. Each component
Kjt is a random variable that takes its values among
f0, : : : ,Mg. Thus, Kjt = i indicates that y

j
t is associated

with the ith target. In this case, yjt is a realization of
the stochastic process:

Yjt =H
i
t (X

i
t ,W

j
t ) if Kjt = i: (24)

Again, the noises (Wj
t ) and (W

j0
t ) are supposed

only to be white noises, independent for j 6= j 0. We
assume that the functions H i

t are such that they can
be associated to functional forms lit such that l

i
t(y;x)/

p(Yjt = y j K
j
t = i,X

i
t = x).

We dedicate the model 0 to false alarms. Thus,
if Kjt = 0, the jth measurement is associated to the
clutter, but we do not associate any kinematic model
to false alarms.
As the indexing of the measurements is arbitrary,

all the measurements have the same a priori
probability to be associated with a given model i.
At time t, these association probabilities define the
vector ¼t = (¼

0
t ,¼

1
t , : : : ,¼

M
t ) 2 [0,1]

M+1. Thus, for

i= 1, : : : ,M, ¼it
¢
=P(Kjt = i) for all j = 1, : : : ,mt is the

discrete probability that any measurement is associated
with the ith target.
To solve the data association some assumptions are

commonly made [28].

A1. One measurement can originate from one
target or from the clutter.
A2. One target can produce zero or one

measurement at one time.

The assumption (A1) expresses that the association
is exclusive and exhaustive. Consequently,

PM
i=0¼

i
t =

1. The assumption (A2) implies that mt may differ

from M and above all that the association variables Kjt
for j = 1, : : : ,mt are dependent.
Under these assumptions, the MHT algorithm [1]

builds recursively the association hypotheses. One
advantage of this algorithm is that the appearance
of a new target is hypothesized at each time step.
However, the complexity of the algorithm increases

exponentially with time. Some pruning solutions must
be found to eliminate some of the associations.
The JPDAF begins with a gating of the

measurements. Only the measurements which are
inside an ellipse around the predicted state are kept.
The gating assumes that the measurements are
distributed according to a Gaussian law centred on
the predicted state. Then, the probabilities of each
association Kjt = i are estimated. As the variables K

j
t

are assumed dependent by (A2), this computation
requires the exhaustive enumeration of all the possible
associations K lt for l 6= j.
The novelty in the PMHT algorithm [3—5] consists

of replacing the assumption (A2) by (A3).

A3. One target can produce zero or several
measurements at one time.

This assumption is often criticized because it
does not match the physical reality. However, from
a mathematical point of view it ensures the stochastic
independence of the variables Kjt and it drastically
reduces the complexity of the ¼t vector estimation.
The assumptions (A1) and (A3) are kept in the

joint filters presented later. Let us present now the
existing works solving MTT with particle filtering
methods.

B. Related Work: MTT with Particle Filters

In the context of MTT, particles filters are
appealing: as the association needs only to be
considered at a given time iteration, the complexity
of data association is reduced. First, two extensions
of the bootstrap filter have been considered. In [11],
a bootstrap-type algorithm is proposed in which the
sample state space is a “(multitarget) state space.”
However, nothing is said about the association
problem that needs to be solved to evaluate the sample
weights. It is in fact the ability of the particle filtering
to deal with multimodality due to (high) clutter that
is pointed out compared with deterministic algorithms
like the nearest neighbor filter or the PDA filter. No
examples with multiple targets are presented: the
simulations only deal with a single target in clutter
with a linear observation model. In [12], a hybrid
bootstrap filter is presented where the particles evolve
in a single-object state space. Each particle gives
a hypothesis on the state of one object. Thus, the
a posteriori law of the targets given the measurements
is represented by a Gaussian mixture. Each mode
of this law then corresponds to one of the objects.
However, as pointed out in [12], the likelihood
evaluation is possible only under the availability of
the “prior probabilities of all possible associations
between” the measurements and the targets. Even if
the likelihood could be evaluated, the way to represent
the a posteriori law by a mixture can lead to the loss
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of one of the targets during occlusions. The particles
tracking an occluded target get very small weights and
are therefore discarded during the resampling step.
This fact has been pointed out in [15].
In image analysis, the condensation algorithm

has been extended to the case of multiple objects as
well: in [13], the case of two objects is considered.
The hidden state is the concatenation of the two
single-object states and of a binary variable indicating
which object is closer to the camera. This latter
variable solves the association during occlusion
because the measurements are affected to the
foreground object. Moreover, a probabilistic exclusion
principle is integrated to the likelihood measurement
to penalize the hypotheses with the two objects
overlapping. In [14], the state is composed of
an integer equal to the number of objects and of
a concatenation of the individual states. A 3-D
representation of the objects gives access to their
depth ordering, thus solving the association issue
during occlusions. Three other works combine
particle filtering with the JPDA. In mobile robotic
[15], a particle filter is used for each object tracked.
The likelihood of the measurements is written like
in a JPDAF. Thus, the assignment probabilities
are evaluated according to the probabilities of
each possible association. Given these assignment
probabilities, the particle weights can be evaluated.
The particle filters are then dependent through the
evaluation of the assignment probabilities. The
algorithms presented in [29, 30] are both applied to
target tracking. The state space of each particle is the
concatenation of the state space of each target and
the likelihood of the measurements given a particle is
derived according to the JPDAF. Independently of the
latter works [14, 15, 29, 30], we have developed the
joint filters where the data association is approached
in the same probabilistic spirit as the basic PMHT
[3, 4].
First, to estimate the density Lt = p(Xt =

(X1t , : : : ,X
M
t ) j Y0: t = y0: t) with particle filtering

methods we must choose the state space for the
particles. We could use particles of X it s dimension and
distribute them among the objects (providing that the
objects have the same dimension which might not be
the case for complex objects in image processing).
Each of them would then be known to represent a
given object. The weight of particle n is then:

qnt / p(Yt = (y
1
t , : : : ,y

mt
t ) j X

i
t = s

n
t ): (25)

As the observations cannot be supposed independent
conditioned on only one of the M objects, the
likelihood cannot be decomposed in the product of
likelihoods of each observation. One solution could
be to use Bayes’s rule and to compute p(X it = s

n
t j

Yt = (y
1
t , : : : ,y

mt
t )), but this requires that every object

produces at least one measurement (to be able to
use the Total Probability Theorem), which seems
too restrictive. Moreover, as mentioned before, a
unique particle filter with a single-target state space
seems inappropriate as the particles tracking an
occluded object would be quickly discarded. We
have considered using one particle filter per object
but without finding a consistent way to make them
dependent. The stochastic association vector Kt
introduced in Section IVA could also be considered
as an additional particle component. However, as the
ordering of the measurements is arbitrary, it would not
be possible to devise a dynamic prior on it. Moreover,
the state space would increase further making particle
filter less effective. Finally, we have chosen to use
particles whose dimension is the sum of those of the
individual state spaces corresponding to each target,
as in [13, 14]. Each of these concatenated vectors then
gives jointly a representation of all targets. We will
call the filters associated with this representation the
joint filters.

C. MTPF Algorithms

Let us first study the joint density p(Xt,Yt,¦t,Kt)
(implicitly conditioned on Xt¡1) where ¦t is the
stochastic variable associated with the probability ¼t.
We drop the subscript t for a few lines

p(X,Y,¦,K) = p(Y j K,¦,X)p(K j¦,X)p(¦,X)

(26)

= p(Y j K,X) p(K j¦) p(¦)p(X)

(27)

where the last equality is based on the following
independence assumptions.

1) Y and ¦ are independent given K and X.
2) the association vector K is independent from

the state vector X given ¦.

The factors in (27) write:

3)

p(Y jK,X) =
Y

j

p(Yj jKj ,X)

=
Y

j

½
li(yj j xi) with i= Kj 2 f1 : : :Mg

1=V if Kj = 0:

4) To simulate according to p(K j¦) it is sufficient

to generate N(K) where N i(K)
¢
=]fj : Kj = ig. The

vector (N0(K), : : : ,NM(K)) follows a multinomial law
of size mt and of parameters (¦

0, : : : ,¦M).
5) p(¦) = p(¦0)p(¦1, : : : ,¦M j¦0) where

p(¦1, : : : ,¦M j¦0) is uniform on the [0,1¡¼0]Ms

hyperplane
PM
i=1¼i = 1¡¼

0. Moreover, ¼0 is a
constant that can be computed:
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Fig. 11. Independence graph of stochastic variables X, Y, K, ¦.

¼0 = P(Kjt = 0) (28)

=

mtX

l=0

P(Kjt = 0 jN
0
t = l)P(N

0
t = l) (29)

=

mtX

l=0

l

mt
exp(¡¸V)

(¸V)l

l!
: (30)

Assuming that there are l measurements due to clutter
among the mt measurements collected at time t, the
a priori probability that any measurement comes from
the clutter is equal to l=mt hence the equality P(K

j
t =

0 jN0t = l) = l=mt used to derive (30) from (29).
6) p(X), i.e., p(Xt j Xt¡1) conditional on Xt¡1.

This independence structure of this distribution is
illustrated in Fig. 11.
The initial particle set S0 = (s

n
0,1=N)n=1,:::,N is such

that each component sn,i0 for i= 1, : : : ,M is sampled
from p(X i0) independently from the others. Assume
we have obtained St¡1 = (s

n
t¡1,q

n
t¡1)n=1,:::,N withPN

n=1 q
n
t¡1 = 1. Each particle is a vector of dimensionPM

i=1n
i
x where we denote by s

n,i
t¡1 the ith component

of snt¡1 and where n
i
x designates the dimension of

object i.
The prediction can be done according to the

following equation

s̃nt =

0
BBBBB@

F1t (s
n,1
t¡1,v

n,1
t )

...

...

FMt (s
n,M
t¡1 ,v

n,M
t )

1
CCCCCA

for n= 1, : : : ,N:

(31)

Examine now the computation of the likelihood of the
observations conditioned on the nth particle. We can
write for all n= 1, : : : ,N:

p(Yt = (y
1
t , : : : ,y

mt
t ) j Xt = s̃

n
t )

=

mtY

j=1

p(yjt j s̃
n
t ) (32)

/
mtY

j=1

"
¼0t
V
+

MX

i=1

lit(y
j
t ; s̃

n,i
t )¼

i
t

#
: (33)

It must be noted that (32) is true only under the
assumption of conditional independence of the
measurements, which we will make. Moreover, the
normalization factors between lit and p(Y

j
t = y j K

j
t =

i,X it = x) must be the same for all i to write the last
equality (33).
We still need to estimate at each time step the

association probabilities (¼it)i=1,:::,M , which can be
seen as the stochastic coefficients of the M-component
mixture. The simplest way would consist in estimating
the ¼ vector from the problem parameters like
the number of targets M, the obtained number of
measurements mt and the clutter density ¸. Assuming,
the ¼it are equal for all i 6= 0, we can empirically
estimate ¼it = (mt¡¸V)=M. However, these estimates
do not take into account the current measurements.
In particular, if a target is not detected during a time
period, we would like the associated ¼ component
to be smaller than the others. For that we must
incorporate information about the adequation between
the measurements and the estimated targets in the
¼ estimation procedure. Two main ways have been
found in the literature to estimate the parameters of
such a mixture: the EM method (and its stochastic
version, the SEM algorithm [31]) and the Data
Augmentation method. The second one amounts in
fact to a Gibbs sampler.
In [3—5] the EM algorithm is extended and applied

to multitarget tracking. This method implies that the
vectors ¼t and Xt are considered as parameters to
be estimated. The maximization step can be easily
conducted in the case of deterministic trajectories.
In case of nondeterministic trajectories a maximum
a priori (MAP) estimation is required to complete
the M step. Yet, the nonlinearity of the state and
observation functions makes this step very difficult.
Finally, the estimation is done iteratively in a batch
approach which we would like to avoid. For these
reasons, we have not chosen an EM algorithm to
estimate the association probabilities.
The Data Augmentation algorithm is quite

different in its principle. The vectors Xt, Kt, and ¼t are
considered to be random variables with prior densities.
Samples are then obtained iteratively from their joint
posterior using a proper MCMC technique, namely
the Gibbs sampler. This method has been studied in
[32—36] for instance. It can be run sequentially at
each time period. Gibbs sampler is a special case of
the Metropolis-Hasting algorithm with the proposal
densities being the conditional distributions, and the
acceptance probability being consequently always
equal to one. The interested reader can refer to [37]
for an introduction to Markov chain Monte Carlo
simulation methods and also for a presentation of the
EM algorithm.
For µt = (Xt,Kt,¦t), the method consists in

generating a Markov chain that converges to the
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stationary distribution p(µt j Y0: t) which cannot be
sampled directly. For that, we must be able to get a
partition µ1t , : : : ,µ

P
t of µt, and to sample alternatively

from the conditional posterior distribution of each
component of the partition. Let the index ¿ denote
the iterations in the Gibbs sampler. The second
subscript of the vectors refers to the iteration counter.
Assume the ¿ +1 first elements of the Markov chain
(µt,0, : : : ,µt,¿ ) have been drawn. We sample the P
components of µt,¿+1 as follows:

Draw µ1¿+1 from p(µ1 j Y0: t,µ
2
¿ , : : : ,µ

P
¿ )

Draw µ2¿+1 from p(µ2 j Y0: t,µ
1
¿+1,µ

3
¿ , : : : ,µ

P
¿ )

...
...

Draw µP¿+1 from p(µP j Y0: t,µ
1
¿+1, : : : ,µ

P¡1
¿+1 ):

The proof of the convergence of the Markov chain
(µ¿ )¿ is outlined in the Appendix. We propose to use it
in the particle filter extended to multiple targets.
In our case, at a given instant t, we follow this

approach with
8
><
>:

µj =Kjt for j = 1, : : : ,mt

µmt+i = ¼it for i = 1, : : : ,M

µmt+M+i = X it for i = 1, : : : ,M:

(34)

The initialization of the Gibbs sampler consists of
assigning uniform association probabilities, i.e.,
¼it,0 = (1¡¼

0
t )=M for all i= 1, : : : ,M, and taking

Xt,0 =
PN
n=1q

n
t¡1s̃

n
t , i.e., the centroid of the predicted

particle set. The Kt variables do not need initializing
because at the first time step of the Gibbs sampler
they will be sampled conditioned on ¼it,0, i= 1, : : : ,M
and Xt,0. Then, suppose that at instant t we have
already simulated (µt,1, : : : ,µt,¿ ). The ¿ +1th iteration
is handled as follows.

+ 1) As the (Kjt )j=1,:::,mt are supposed to be
independent, their individual conditional density reads

p(Kjt j Y0: t,Xt, (K
l
t )l 6=j ,¦t) = p(K

j
t j Y

j
t ,Xt,¦t):

(35)
(Kjt ) are discrete variables and we can write:

2

P(Kjt = i j Y
j
t = y

j
t ,Xt,¦t)

=
p(Yjt = y

j
t j K

j
t = i,Xt,¦t)P(K

j
t = i j Xt,¦t)

p(Yjt = y
j
t j Xt,¦t)

(36)

/

½
¼it l

i
t(y

j
t ;x

i
t) if i= 1, : : : ,M

¼0t =V if i= 0:
(37)

The realizations kjt,¿+1 of the vector Kt,¿+1 are

then sampled according to the weights pj,0t,¿+1 =

¼0t =V,p
j,i
t,¿+1 = ¼

i
t,¿ l

i
t(y

j
t ;x

i
t,¿ ) for i= 1, : : : ,M.

2Using Bayes’s rule, p(a j b,c) = p(b j a,c)p(a j c)=p(b j c).

2) Mixture proportion vector ¦1:Mt,¿+1 is drawn from
the conditional density:

p(¦1:Mt j Kt,¿+1,Xt,¿ ,Y0: t)

= p(¦1t , : : : ,¦
M
t j K

1
t,¿+1, : : : ,K

M
t,¿+1,Xt,¿ ,Y0: t)

(38)

= p(¦1t , : : : ,¦
M
t j K

1
t,¿+1, : : : ,K

M
t,¿+1) (39)

/Dirichlet(¦1:Mt j f1+N i(Kt,¿+1)gi=1,:::,M)

(40)

where we denote by N i(K) the number of kj equal to
i and where Dirichlet(±1, : : : ,±M) denotes the Dirichlet
distribution on the simplex f(¼1t , : : : ,¼

M¡1
t ,1¡¼1t ¡

¢¢ ¢¡¼M¡1t ) : ¼1t + ¢ ¢ ¢+¼
M¡1
t · 1g with density

proportional to ¼1(±1¡1)t £¢¢ ¢£¼M¡1(±M¡1¡1)t £ (1¡¼1t ¡
¢¢ ¢¡¼M¡1t )±M¡1. The vector ¦1:Mt,¿+1 is first drawn
according to (40) and then normalized to restore the
sum

PM
i=1¼

i
t,¿+1 to 1¡¼

0
t .

3) Xt,¿+1 has to be sampled according to the
density

p(Xt j Y0: t,Kt,¿+1,¦t,¿+1) =
MY

i=1

p(X it j Y0: t,Kt,¿+1,¦t,¿+1):

(41)
The values of Kt,¿+1 can imply that one object is
associated with zero or several measurements. Let us
defineMi

t,¿+1 = fj 2 [1 : : :mt] : K
j
t,¿+1 = ig. Hence we

decompose the preceding product in two products:

Y

i :Mi
t,¿+1

6=Ø

p(X it j Y0: t¡1,y
Mi

t,¿+1

t ,¦t,¿+1)

£
Y

i :Mi
t,¿+1

=Ø

p(X it j Y0: t¡1,¦t,¿+1) (42)

where y
Mi

t,¿+1

t = fyjt ,j 2M
i
t,¿+1g. The first product

contains the targets that are associated to at least one
measurement under the association Kt,¿+1. In this case,

the measurements are denoted by y
Mi

t,¿+1

t . The second
product contains the targets that are associated with no
measurements under Kt,¿+1.

Let i be an integer in the first product. We propose
two approaches to sample Xt,¿+1

1) Without making any additional assumption we
can write

p(X it j Y0: t¡1,y
Mi

t,¿+1

t ,¦t,¿+1)

=
p(y

Mi
t,¿+1

t j X it )p(X
i
t j Y0: t¡1)

p(y
Mi

t,¿+1

t j Y0: t¡1)
: (43)

We are not able to sample directly from the density

p(y
Mi

t,¿+1

t j X it )p(X
i
t j Y0: t¡1)

p(y
Mi

t,¿+1

t j Y0: t¡1)
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Fig. 12. Particle filter for multiple objects with adaptive resampling.

for the same reasons as those exposed in Section II
to justify the use of the particle filter (intractability of
the integrals). A first solution consists in building the
particle set §¿+1 = (¾

n
¿+1,Â

n
¿+1)n=1,:::,N whose weights

Ân¿+1 measure the likelihood of the observations
affected by Kt,¿+1 to object X

i
t . More precisely, we

let

8
>><
>>:

¾n¿+1 = s̃
n,i
t

Ân¿+1 =
p(y

Mi
t,¿+1

t j X it = ¾
n
¿+1)q

n
t¡1

PN
n=1p(y

Mi
t,¿+1

t j X it = ¾
n
¿+1)q

n
t¡1

:
(44)

As the predicted empirical law L
S̃t
=
PN
n=1 qt¡1s̃

n,i
t is

“close” from the predicted law p(X it j Y0:t¡1), we expect

the empirical distribution ¤¿+1 =
PN
n=1Â

n
¿+1±¾n

¿+1
to

be close to p(X it j y
Mi

t,¿+1

t ,Y0: t¡1). However the weak

convergence of ¤¿+1 to p(X
i
t j y

Mi
t,¿+1

t ,Y0: t¡1) when N
tends towards infinity remains to be proved. Not being
able to sample from this last density, X it,¿+1 is drawn
as a realization from ¤¿+1.
2) The second solution assumes the measurement

equation enables us to sample from the density
P(Xt = x j Yt = y) and to forget the observations from

the past. The likelihood p(X it j Y0: t¡1,y
Mi

t,¿+1

t ,¦t,¿+1) is

then reduced to p(X it j y
Mi

t,¿+1

t ). We do not assume that

the observations y
Mi

t,¿+1

t are independent but we use

their centroid y and replace p(X it = x j y
Mi

t,¿+1

t ,Kj
1

t =

i, : : : ,Kj
i

t = i) by p(X
i
t = x j y).

As far as the complexity of these two solutions
is concerned, it is to be noticed that the first one
depends linearly on the total number of particles
whereas the second is independent of it. On the
other hand, the second solution requires the ability
to sample from p(Xt j Yt).
Now let i be an integer in the second product.

As we do not have any measurement to correct the
predicted particles we draw a realization from the
density

PN
n=1 q

n
t¡1±s̃nt for X

i
t,¿+1. After a finite number

of iterations, we estimate the vector ¼t by the average
of its last realizations:

¼̂it =
1

¿beg¡ ¿end

¿endX

¿=¿beg

¼it,¿ : (45)

Finally the weights can be computed according to
(33) using the estimate ¼̂it of ¼

i
t . By construction,

¼̂it follows the law p(¦
i
t j Y0: t). Thus, the use of a

Gibbs sampler enables to take into account the current
measurements. Consequently the estimates measure
in a way the a posteriori detection probability of
each target. It improves the estimation of the targets
because the measurements contribute to the estimation
proportionally to these probabilities ¼̂t. Moreover,
the a priori probability of detecting a target, which
is usually denoted by Pd is not needed in the MTPF.
This probability is needed when the associations are
considered in classical algorithms like the PMHT or
the JPDAF.
The resampling step is performed in an adaptive

way when the estimated effective sample size N̂eff is
under the threshold Nthreshold.
Due to the estimation of the ¼t vector needed

for the computation of the particles likelihood, the
convergence of the MTPF could be affected. It could
be interesting to evaluate the error on the estimate of
Xt implied by the error made on the estimate of ¼t.
This is not addressed in this work. Figs. 12 and 13
summarize the whole algortihm.
Before presenting the results of some simulations,

let us detail the approach used in [29, 30] which is the
closest to our approach.

D. SIR-JPDA Algorithm

The initialization of the particle set is done in the
same way as for the joint filters and the prediction
step as well, according to (31). The likelihood is then
computed in a different way:

p(Yt = (y
1
t , : : : ,y

mt
t ) j Xt = s̃

n
t )

=
X

all associations

p(Yt = (y
1
t , : : : ,y

mt
t ) j Xt = s̃

n
t ,K

u
t )p(K

u
t )

(46)
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Fig. 13. Particle filter algorithm for multiple objects with adaptive resampling.

=
X

all associations

mtY

j=1

p(yjt j s̃
n
t ,K

u
t )p(K

u
t ) (47)

where Kut denotes the uth association hypothesis at
time t. The associations between the measurements
and the targets are established under the assumptions
(A1)—(A2) exposed in Section IVA. The a priori
probability of this association is:

p(Kut ) =
©u!

mt!
pF(©

u)

MY

i=1

PD
u(i)

d

MY

i=1

(1¡Pd)
1¡Du(i)

(48)

where ©u is the number of false alarms in Kut ,
pF(©

u) the probability to have ©u false alarms, Pd the
probability for a target to be detected, and Du(i) =
f1,0g depending on whether target i is detected or
not.

E. Extension to Multireceiver Data

A natural extension of the MTPF is to consider
that observations can be collected by multiple

receivers. Let R be their number. We can easily adapt
the particle filter to this situation. We always consider
that the M targets (their number is fixed again) obey
the state equation (23). Some useful notations must
be added to modify the measurement equations. The
observation vector at time t will be denoted by yt =
(y1
t,r1
, : : : ,ymtt,rmt ) where r

j refers to the receiver which
received the jth measurement. This measurement is
then a realization of the stochastic process:

Yj
t,rj
=H i

t,rj (X
i
t ,W

j
t ) if Kjt = i: (49)

We assume the independence of the observations
collected by the different receivers. We denote by
li
t,rj
(y;x) the known functions which are proportional

to p(Yj
t,rj
= y j Kjt = i,X

i
t = x). The likelihood of the

observations conditioned on the nth particle is readily
obtained:

p(Yt = (y
1
t,r1 , : : : ,y

mt
t,rmt ) j Xt = s

n
t )

=

mtY

j=1

p(yj
t,rj
j snt ) (50)
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Fig. 14. Three targets bearings-only experiment in Section V (a) Trajectories of three targets and of observer. (b) Simulated bearings at

each time with detection hole for one target between times 600 and 700.

/
mtY

j=1

"
¼0t
V
+

MX

i=1

lit,rj (y
j
t,rj
;sn,it )¼

i
t

#
: (51)

There is no strong limitation on the use of the particle
filter for multireceiver and MTT. The MRMTPF
is obtained from the MTPF by replacing the
likelihood functions lit(y;x) by the functions
li
t,rj
(y;x). Moreover it can deal with measurements

of varied periodicities.

V. APPLICATION TO BEARINGS-ONLY PROBLEMS

The following multitarget scenario has been
considered for illustrating our algorithm. Three targets
follow a near-constant-velocity model defined by (7)
with ¾x = ¾y = 0:0005 ms

¡2. The initial positions and
velocities of the targets and of the observer are the
following:

X10 =

0
BBB@

200 m

1500 m

1 ms¡1

¡0:5 ms¡1

1
CCCA X20 =

0
BBB@

0 m

0 m

1 ms¡1

0 ms¡1

1
CCCA

X30 =

0
BBB@

¡200 m

¡1500 m

1 ms¡1

0:5 ms¡1

1
CCCA Xobs0 =

0
BBB@

3500 m

¡2500 m

¡0:5 ms¡1

0 ms¡1

1
CCCA :

The observer is following a leg by leg trajectory. Its
velocity vector is constant on each leg and modified
as follows:

µ
vxobs30

vyobs30

¶
=

µ
1:2

0:3

¶ µ
vxobs100

vyobs100

¶
=

µ
¡3:0

0:3

¶

µ
vxobs200

vyobs200

¶
=

µ
1:2

0:3

¶ µ
vxobs500

vyobs500

¶
=

µ
¡3:0

0:3

¶

µ
vxobs600

vyobs600

¶
=

µ
1:2

0:3

¶ µ
vxobs800

vyobs800

¶
=

µ
¡4:0

0:3

¶

µ
vxobs900

vyobs900

¶
=

µ
1:2

0:3

¶
:

(52)

The trajectories of the three targets and of the
observer are plotted in Fig. 14(a). The targets produce
one measurement at each time period according
to (9) with ¾w = 0:02 rad except during the time
interval [600 700] where the first object does not
produce any measurement. The simulated bearings
are plotted in Fig. 14(b). As soon as the difference
between two bearings issued from two different
targets is lower than the standard deviation of the
observation noise, the two measurements cannot be
distinguished, which makes the data association of
this scenario very difficult. This difficulty is increased
by the detection hole for the first object. We compare
the estimated trajectories when the assignment
probabilities are, respectively, estimated by the two
versions of the Gibbs sampler in Section IVC. In
both cases, the particle filters have been initialized
according to a Gaussian law whose mean vector Xmean
and covariance matrix Xcov are

X1mean = X
1
0 +

0
BBB@

200 m

200 m

0 ms¡1

0 ms¡1

1
CCCA

X2mean = X
2
0 +

0
BBB@

¡200 m

¡200 m

0 ms¡1

0 ms¡1

1
CCCA (53)

X3mean = X
3
0 +

0
BBB@

¡100 m

200 m

0 ms¡1

0 ms¡1

1
CCCA

X icov =

0
BBB@

2002 0 0 0

0 2002 0 0

0 0 0:052 0

0 0 0 0:052

1
CCCA

for i= 1,2,3: (54)
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Fig. 15. Averaged estimates (dotted lines) and 2¾ confidence ellipses obtained with 1000 particles. (a) Estimation of ¼t with first

version of Gibbs sampler. (b) Estimation of ¼t with second version of Gibbs sampler.

Fig. 16. Estimated components of vector ¼t obtained with first version of Gibbs sampler and 1000 particles. (a) ¼̂
1
t . (b) ¼̂

2
t . (c) ¼̂

3
t .

Fig. 17. Estimated components of vector ¼t obtained with second version of Gibbs sampler and 1000 particles. (a) ¼̂
1
t . (b) ¼̂

2
t . (c) ¼̂

3
t .

The burn-in period of the Gibbs sampler has been
fixed to Nbeg = 100 and the total amount of iterations
to Nend = 500.
The averaged estimates with the associated 2¾

confidence ellipses obtained with 1000 particles and
adaptive resampling are presented in Figs. 15(a) and
15(b) using, respectively, the first and the second
version of the Gibbs sampler to estimate the vector
¼t. The two plots show that the data association is
overcome in the two versions of the algorithm. There
is no trajectory reversal and the estimates are quite
satisfactory for the two versions. The confidence
ellipses increase when the simulated bearings are
very close, i.e., especially between times 450 and

600. After this time period, their size stabilizes. The
obtained estimates are very similar for both versions
of the algorithm. However, the estimation of the ¼t
vector is much more satisfactory for the first version.
Figs. 16 and 17 show the results of the estimation
of the three components of ¼t, respectively, with
the first and the second versions of the algorithm.
Fig. 18 represents the average of each component
¼it over successive intervals of 100 time steps and
over the 20 trials. At time 100 u, the average over
the time interval [100 u 100(u+1)] and over the 20
trials is plotted for each component. When there is
an ambiguity about the origin of the measurements
(i.e., when the difference between the bearings is
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Fig. 18. Average of estimated components of vector ¼t over consecutive ten time intervals of length 100 and over 20 trials. (a) First

version. (b) Second version of Gibbs sampler. Averaged estimates marked with “+” for ¼1, “0” for ¼2, and “¤” for ¼3.

lower than the standard deviation noise), the first
version makes ¼ vary in average around 1=3 for
M = 3 objects and produces uniform estimation
(1=3 for M = 3 objects) when the ambiguity
disappears (before time 400 or after time
700 for instance). Second, the momentary
measurement gap for the first object is correctly
handled: the first component ¼1t is instantaneously
estimated as 0.26 in average from instant 600
to 700 and the second and third components
as 0.37.
The obtained estimates with the second version of

Gibbs sampler are much less satisfactory. First, the
measurement gap for the first object is not detected
by this version as the ¼1t estimate does not decrease
during the time interval [600 700]. Second, as shown
in Fig. 18(b), the averaged estimates diverge from
instant 100 from the expected value 1/3, whereas all
the targets are detected at that time.
The expected superiority of the first algorithm

seems to hold in practice, with a better estimation
of ¼t. However, one can be surprised that the bad
estimation of ¼t obtained with the second algorithm
has no impact on the estimation of the targets. On this
subject, it must be noticed that during the hundred
first instants, the vector ¼t is correctly handled by both
versions. Moreover the particles recover very quickly
from their shifted intialization. Thus, from time 100,
as the dynamic noise on the targets is low enough,
the predicted particles are all “good.” Moreover,
during the time interval [400 700], the targets produce
very close bearings. Consequently, the likelihood
lit(y

j
t ;x

i
t) of a measurement given a target is almost

independent from the target index: lit(y
j
t ;x

i
t)' l for

all i and then
PM
i=0 l

i
t(y

j
t ;x

i
t)¼̂

i
t ' l

PM
i=0 ¼̂

i
t = l whatever

the ¼̂t estimates. The estimation quality of ¼t has then
little impact on the likelihood of the particles during
this time interval. As for the computational cost, it

takes almost 450 ms per iteration with N = 1000
particles, Nbeg = 100 and Nend = 500 on a 863 Mhz
Pentium III.

VI. CONCLUSION

The MTT has been investigated in the framework
of particle filtering and Gibbs sampling. Target state
vectors and association probabilities are estimated
jointly without enumeration, pruning or gating,
by means of particle sets representing the joint
a posteriori law of the target states. Two versions,
derived from a common formalism, have been
considered. This framework is sufficiently versatile
to handle a wide variety of situations like MTT for
multireceivers, including nonlinear models.

APPENDIX. GIBBS SAMPLER

By construction, (µ¿ )¿2N is a Markov chain. Let us
prove it admits the stationary distribution ¸=p(µ jY0: t).
For that, let us prove that if µ¿ is distributed according
to ¸ then µ¿+1 is also distributed according to ¸.
Assume µ¿ = (µ

1
¿ , : : : ,µ

P
¿ )» ¸. Then, for all (z

1, : : : ,zP):

p(µ1¿+1 = z
1,µ2¿ = z

2, : : : ,µP¿ = z
P)

= p(µ1¿+1 = z
1 j µ2¿ = z

2, : : : ,µP¿ = z
P)

£p(µ2¿ = z
2, : : : ,µP¿ = z

P)

= p(µ1 = z1 j Y0: t,µ
2 = z2, : : : ,µP = zP)

£p(µ2 = z2, : : : ,µP = zP j Y0: t)

= p(µ1 = z1, : : : ,µP = zP j Y0: t): (55)

The second equality is obtained from the first in
(55) as, by construction, µ1¿+1 » p(µ

1 j µ2:P¿ ,Y0: t).
(µ1¿+1,µ

2
¿ , : : : ,µ

P
¿ ) is then distributed according to the

law p(µ1,µ2, : : : ,µP j Y0: t). In the same way we can
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show that (µ1¿+1,µ
2
¿+1, : : : ,µ

P
¿ ), : : : , (µ

1
¿+1, : : : ,µ

P
¿+1) are

distributed according to p(µ1, : : : ,µP j Y0: t).
Moreover, provided that the conditional

distributions p(µ1 j x,µ2, : : : ,µP), : : : ,p(µP j x,µ1, : : : ,µP¡1)
are strictly positive, µ¿ is irreducible. These two
conditions imply the convergence for ¼-almost all µ0
of (µ¿ )¿2N to ¸.
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