
Tracking Multiple Targets Using Binary Proximity Sensors ∗

Jaspreet Singh
Upamanyu Madhow

Electrical and Computer
Engineering, University of
California, Santa Barbara

CA 93106 USA
{ jsingh , madhow }
@ece.ucsb.edu

Rajesh Kumar

Subhash Suri

Computer Science
University of California

Santa Barbara
CA 93106 USA
{ rajesh , suri }
@cs.ucsb.edu

Richard Cagley

Toyon Research Corporation
Goleta, CA 93117, USA
rcagley@toyon.com

ABSTRACT
Recent work has shown that, despite the minimal informa-
tion provided by a binary proximity sensor, a network of
such sensors can provide remarkably good target tracking
performance. In this paper, we examine the performance
of such a sensor network for tracking multiple targets. We
begin with geometric arguments that address the problem
of counting the number of distinct targets, given a snapshot
of the sensor readings. We provide necessary and sufficient
criteria for an accurate target count in a one-dimensional
setting, and provide a greedy algorithm that determines the
minimum number of targets that is consistent with the sen-
sor readings. While these combinatorial arguments bring
out the difficulty of target counting based on sensor read-
ings at a given time, they leave open the possibility of ac-
curate counting and tracking by exploiting the evolution of
the sensor readings across time. To this end, we develop a
particle filtering algorithm based on a cost function that pe-
nalizes changes in velocity. An extensive set of simulations,
as well as experiments with passive infrared sensors, are re-
ported. We conclude that, despite the combinatorial com-
plexity of target counting, probabilistic approaches based on
fairly generic models for the trajectories yield respectable
tracking performance.

Categories and Subject Descriptors
I.4.8 [Scene Analysis]: Tracking, Sensor fusion;
G.2 [Discrete Mathematics]: Counting Problems;

∗This work was supported by the National Science Foun-
dation under grants CCF-0431205, CNS-0520335, CNS-
0626954 and CCF-0514738, by the Office of Naval Research
under grants N00014-06-1-0066 and N00014-06-M-0260, and
by the Institute for Collaborative Biotechnologies under
grant DAAD19-03-D-0004 from the US Army Research Of-
fice.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’07, April 25-27, 2007, Cambridge, Massachusetts, USA.
Copyright 2007 ACM 978-1-59593-638-7/07/0004 ...$5.00.

G.3 [Probability And Statistics]: Probabilistic algorithms

Keywords
Target Tracking, Sensor Networks, Binary Sensing, Count-
ing Resolution, Particle Filters

1. INTRODUCTION

We investigate the problem of tracking targets using a
network of binary proximity sensors. Each sensor produces
a single bit of output, which is 1 when one or more targets
are in its sensing range and 0 otherwise. These sensors are
not able to distinguish individual targets, decide how many
distinct targets are in the range, or provide any location-
specific information. Despite the minimal information pro-
vided by a single binary sensor, a collaborative network of
binary sensors has been shown in prior work [18] to yield re-
spectable tracking performance: the resolution with which
a target can be localized is inversely proportional to ρRd−1,
where ρ is the sensor density, R is the sensing range, and
d is the dimension of the space. In this paper, we extend
the work of [18], which considered a single target, and in-
vestigate the problem of tracking multiple targets, without
a priori knowledge of the number of targets.

We have chosen to focus on the simple and minimalistic
setting of binary sensors because the cost and power con-
sumption of sensor nodes is a severe constraint in large-scale
deployments, and both can be significantly reduced by re-
stricting the nodes to provide binary detection. Thus, by
constraining ourselves to a binary sensing model, we can
work with low-power, low-cost sensor nodes that can form
the basis for a highly scalable architecture for wide area
surveillance. This information can, of course, be augmented
by a small number of more capable sensors (e.g., cameras),
although we do not explore such enhancements in this paper.

Examples of sensor modalities that are suitable for low-
cost nodes include [1] Seismic, Acoustic, Passive infrared
(PIR), Active infrared, Ultra wide band radar imaging, Mil-
limeter wave radar, Magnetometer and Ultrasonic. For many
types of sensors, it is possible to use simple thresholding to
get a binary reading or perform onboard signal processing
for rough classification. The former option requires drasti-
cally reduced processing, and leads to significant power sav-
ings. As an example, for acoustic sensing (e.g., the Knowles

EA-21842 sensor) and magnetometer sensing (e.g., the Hon-
eywell HMC1002 sensor), the power consumption can be
reduced five-fold by using binary mode rather than classifi-
cation mode. In our lab-scale experiments, we employ PIR
sensors due to their good performance, low cost, and ease of
systems integration [11].

As shown in [18], the binary sensing model is analogous to
coarse-grained analog-to-digital conversion that filters out
rapid variations in the target’s trajectory. This motivates
algorithms that attempt to track only “lowpass” versions of
the trajectory. For multiple targets, however, we encounter
significant additional difficulties, since we cannot tell how
many targets are within a sensor’s range when it outputs a 1.
Our first task in this paper, therefore, is to understand how
well we can count the number of targets, given a snapshot
of the sensor readings. We employ geometric arguments to
characterize when an accurate count is possible, and provide
a lower bound on the number of targets, based on a greedy
algorithm for explaining the sensor’s observations with the
minimum number of targets. While these arguments bring
out the difficulty of target counting based on a snapshot,
they do not preclude the possibility of accurate counting
and tracking when we account for the evolution of the sen-
sor readings in time, using a model for the targets’ behavior.
To this end, we develop a particle filtering algorithm which
employs a cost function penalizing changes in velocity. It
is shown by simulations that the particle filter algorithm
is effective in tracking targets even when their trajectories
have significant overlap. The algorithm is general enough to
incorporate a simple model for non-ideal sensing, and pro-
vides acceptable tracking performance for our experimental
system with PIR sensors even when one of the sensors fails.

We restrict attention to one-dimensional systems through-
out this paper. This enables us to gain fundamental in-
sight, as well as to easily display multiple trajectories on
two-dimensional space-time plots. However, both our geo-
metric target counting arguments and the particle filtering
algorithm generalize to higher dimensions.

Our focus in this paper is on the efficacy of collaborative
tracking rather on the communication protocols used by the
sensor nodes. Thus, we assume that all of the sensor read-
ings are available at a centralized processor, which can then
estimate the targets’ locations and trajectories. Distributed
implementations of our algorithms, in which neighbors col-
laborate to estimate segments of trajectories, are possible,
but are not considered here. We note that the binary sens-
ing model has minimal communication requirements, hence
this assumption of centralized processing is quite practical:
a sensor need only convey the intervals at which it switches
“on” and “off” (assuming that the readings are averaged
so as to remain reasonably steady, this is far more efficient
than sending a sample of the sensor’s readings at regular
intervals).

The rest of the paper is organized as follows. Section 2
discusses the problem of target counting based on a snap-
shot of the sensor readings. In Section 3, we describe our
particle filtering algorithm. Section 4 provides simulation
results, while Section 5 describes our experimental set-up
and results. We end with the conclusions in Section 6.

Related Work
The problem of tracking multiple targets using sensor net-
works has been explored by many prior references [15, 16, 13,

5, 19, 9, 17]. Owing to its simplicity and minimal commu-
nication requirements, the specific use of binary proximity
sensors for tracking applications has also drawn consider-
able attention of late. However, most of the work related
to binary sensing has been applied to the case of tracking a
single target [3, 8, 18]. The tracking techniques employed in
the large-scale deployment in [2] can be loosely interpreted
in terms of a binary sensing model, even though a variety of
sensing modalities and a variety of targets are considered.
Reference [12] contains a distributed tracking algorithm for a
binary sensor network, but assumes perfect knowledge about
the number of targets and their identities, unlike the present
work.

In our work, we investigate both target counting and track-
ing. Prior work on counting targets includes [14], but it
assumes more detailed sensing capabilities than our simple
binary model. The classical framework for tracking is based
on Kalman filtering, with Gaussian assumptions for the sen-
sor readings; for example, [10] investigates the use of Kalman
filtering for distributed tracking. In recent years, the use of
particle filters, which can handle more general observation
models, has become popular. However, most prior work on
the use of particle filters for tracking in sensor networks [4,
6, 7] assumes a richer sensing model than the binary model
we consider. An exception is our own prior work in [18] on
the use of particle filters for tracking a single target using
non-ideal binary sensing. In this paper, we build on these
ideas to develop particle filters for tracking multiple targets.

2. TARGET COUNTABILITY
In order to develop fundamental geometric insights, we

restrict attention in this section to an idealized model in
which each sensor’s coverage area is a circular disk of radius
R: each sensor detects a target without fail if it falls within
this disk, and does not produce false positives or negatives.
While we develop our basic ideas and theorems in one di-
mension, we comment on their relevance and extensions to
higher dimensions as appropriate.

We want to understand and articulate the conditions un-
der which an algorithm can track multiple targets with prov-
able guarantees. A first step for any tracking algorithm must
deduce how many distinct targets are present in the field,
and so we begin our investigation by asking under what cir-
cumstances an algorithm can reliably determine the number
of distinct targets in the field, given a snapshot of the sen-
sor readings. This is a worst-case model which applies, for
example, when the rate at which the sensors report their
readings is low compared to the rates at which the targets
cross the boundaries of the sensors’ coverage areas. Put an-
other way, this section addresses the most general scenario,
in which we have no model for the targets’ trajectories. As
we shall see in Section 3, when we do employ a plausible
model corresponding to a scenario in which the sensor read-
ings are available at a “high enough” rate, then it is indeed
possible to do better than what is promised by the worst-
case model considered in this section.

2.1 Target Counting with Binary Sensing
Some spatial separation among the targets is clearly a

necessary precondition for accurately disambiguating among
different targets, but what does that mean, and how much
separation is enough? For instance, is the following simple

condition adequate: each target moves sufficiently (arbitrar-
ily) far from the remaining targets at some point during the
motion. Let us call this the condition of individual separa-
tion. Unfortunately, as the following simple result shows,
this alone is not enough to count the number of targets ac-
curately.

Theorem 1. Even arbitrarily large individual separation
is not sufficient to reliably count a set of targets using binary
sensors.

Proof. We give a construction in one dimension estab-
lishing the claim. Imagine a group of m targets moving at
uniform speed along a straight line L. Initially, all targets
are clustered and appear as one target to the sensor field.
Now let target 1 speed up and move away from the rest of
the group. Once it moves sufficiently far to the right, we can
infer that there are at least two targets. Next, target 1 stops
and waits until the rest of the group meets up with it, and
then they all resume their motion. Then, target 2 separates
from the rest of the group and repeats the action of target
1, and so on. One can easily see that in this scenario, ev-
ery target achieves large individual separation from the rest,
and yet no binary sensing-based algorithm can ever decide
whether there are two targets or m targets, for an arbitrary
value of m.

On the other hand, if the group of targets has pairwise
separation more than 4R, then binary sensing permits pre-
cise counting of targets.

Theorem 2. Suppose every pair in a set of targets has
separation more than 4R in d-dimensional Euclidean space,
where R is the sensing range, and suppose that the aver-
age sensor density (per unit area) is ρ. Then, using binary
proximity sensors, we can precisely determine the number of
distinct targets as well as localize each target within spatial
error at most Θ(1/ρRd−1).

Proof. Suppose there are m targets, and let Si be the
set of sensors that sense target i. Because each sensor’s
range has radius R, by the assumption of pairwise target
separation, we must have Si ∩ Sj = ∅, for any two targets i
and j. (This follows because the union of two overlapping
ranges has diameter less than 4R, while any two targets are
assumed to be more than 4R apart.) As a result, the “on”
sensors are naturally partitioned into m groups, one per tar-
get: all sensors in the ith group are on precisely because of
one target. Thus, the target sensed by the ith group Si can
be localized to the common intersection of all the ranges in
Si and the complement of the ranges of all the “off” sensors.
The analysis of our single target localization [18] shows that
the diameter of this intersection region (which need not be
connected) is Θ(1/ρRd−1). This completes the proof.

In some sense, the preceding example and the theorem
settle the “easy” case: when the objects are pairwise far
apart, they can be counted as well as localized quite pre-
cisely, but individual separation does not help in tracking.
We now delve into the more complex (and interesting) sit-
uation when these easy conditions do not hold. We point
out that there is no local fundamental limit based purely on
minimum separation among targets: two targets no matter
how close can always be disambiguated if two sensors with
non-overlapping sensing ranges detect them. At the same

ON

OFF OFF

g1 g2
ON

Figure 1: A sample illustration for the feasible tar-
get space (F). Here, g1 and g2 represent the contri-
butions of the ‘ON’ sensors to F .

time, simply increasing the sensor density to disambiguate
closeby targets does not seem possible either. (However, as
our earlier work shows the “localization” of an individual
target does improve linearly with the increasing density.) It
seems that we need a more global argument to understand
the limit of target counting.

We now focus on one-dimensional space: much of the
difficulty in the binary sensing model has less to do with the
dimension of the ambient space and more to do with the
“interference” between the influence of different targets on
the sensor readings. Any impossibility or hardness results we
prove in one dimension naturally hold in higher dimensions
as well.

2.2 The Geometry of Target Counting

We begin with some geometric preliminaries. Suppose we
have N binary proximity sensors deployed along a line. Each
sensor’s range is then an interval of length 2R. We use the
notation Ci to denote the interval covered by sensor i (that
is, sensor i outputs a 1 if and only if a target falls in Ci). We
assume that the domain of interest is covered by the union
of the {Ci}, i.e., that there are no gaps in coverage.

Any positioning of targets along the line leads to a vector
of binary outputs from the sensors. In particular, we have
contiguous groups of “on-sensors” separated by groups of
“off-sensors.” Geometrically, the on-sensors inform us about
the intervals on the line where the targets might be, and
the off-sensors tell us about the regions where there are no
targets. If we let I be the set of sensors whose binary output
is 1 and Z be the set of sensors whose output is 0, then all
the targets must lie in the region F , which we call the feasible
target space:

F =
⋃
i∈I

Ci −
⋃
j∈Z

Cj

The region F is a subset of the line, whose connected
components are unions of portions of the sensing ranges of
the on-sensors. In particular, for sensor i, the portion of
its sensing range that appears in F is gi = Ci −

⋃
j∈Z Cj ,

namely, the part not clipped by the off-sensors. An example
is shown in Figure 1. The feasible target space is simply the
union of these (overlapping) subintervals: F =

⋃
i∈I gi.

The feasible target space has an interesting geometric
structure. While each on or off sensor contributes exactly
one bit, the information content of the off sensors seems
richer, especially in localizing the targets: the 1 bit only
tells us that there is at least one target somewhere in the
sensor’s range, the 0 bit assures us that there is no target
anywhere in the sensor’s range. This observation leads to
the following geometric property of the region F .

ON

Case 1

ON

OFF

ON
ON

Case 2

Figure 2: Positively independent sensors: Case 1-
sufficiently far apart, Case 2-separated by an off sen-
sor.

Lemma 1. Any two connected components of the feasible
target space F are separated by at least distance 2R.

Proof. Choose a point x that is between two connected
components of F . Since x must lie in the range of some
sensor, and x 6∈ F , that sensor must have binary output 0.
A sensor with binary output zero eliminates length 2R of the
line for possible locations of the targets, and so the “gap”
containing the point x must be at least as wide as 2R.

Fundamental Counting Resolution

We now use this geometric framework to establish a theo-
rem on the fundamental limit of target counting. Towards
that goal, let us define two sensors to be positively indepen-
dent if (i) they both have binary output 1, and (ii) either
their sensing ranges are disjoint or they belong to different
connected components of the feasible target space F . (Note
that the independence property is defined with respect to a
particular instant, for a given vector of sensor outputs.) In
other words, as illustrated in Figure 2, two sensors are pos-
itively independent if they are both detecting targets and
are either sufficiently far apart (case 1) or are separated by
an off sensor (case 2). Then, the following result gives a
necessary and sufficient condition for correctly counting the
number of targets along a line.

Theorem 3. A set of k targets on a line can be counted
correctly if and only if there exist k (pairwise) positively
independent sensors.

Proof. We recall that by definition independent sensors
have output 1. The “if” part of the claim is therefore imme-
diate: due to their independence, no two sensors can be on
because of the same target, and so there must be at least k
targets. In order to show the “only if” part, we argue that
if k independent sensors do not exist, then the counting is
not guaranteed to be correct. In other words, the sensors
cannot distinguish between two scenarios, one with k tar-
gets and one with fewer than k targets, thereby violating
the correctness.

Without loss of generality, let us number the targets 1, . . . , k
in the left-to-right order along the line, and generate a list of
sensors s1, s2, . . . , sj as follows. Let s1 be the leftmost sen-
sor with binary output 1. In general, let si be the leftmost
sensor with output 1 that is independent of si−1. Since we
have assumed that k independent sensors do not exist, we
must have j < k. By the pigeon-hole principle, therefore,
there must be a sensor among s1, s2, . . . , sj whose range in

F includes at least 2 targets. We now observe that the bi-
nary outputs of none of the sensors will be affected if we
translated all the targets to the right until each target was
at the rightmost point of their independent sensor’s range
gi. The sensor with two or more targets clearly has a re-
dundancy, and the binary outputs will not change if one of
those targets was eliminated. It follows that the counting
algorithm cannot distinguish between the case of k targets
and the k − 1 targets. This completes the proof.

Remark on Counting Resolution

By the previous theorem, the number of distinct targets that
can be “resolved” at any snapshot of the sensing output
equals the number of positively independent sensors. Each
such sensor is either distance 2R away from its left neigh-
bor (if that neighbor is in the same connected component),
or it is preceded by a sensor with binary output 0, which
guarantees that no target is present in its coverage area of
length 2R. This can be interpreted “geometrically” to mean
that in a space of length 2`R, at most ` + 1 targets can be
resolved. Thus, irrespective of sensor density, we can only
hope to achieve the counting resolution of about 1 target
per distance 2R. The payoff of a higher density deployment
comes either in tracking widely separated targets or in re-
solving two closely spaced targets.

2.3 A Lower Bound on the Target Count
Given the ambiguity in the mapping between sensor read-

ings and target locations, it is of interest to ask what the
simplest explanation for a given snapshot of sensor readings
is. This Occam’s razor viewpoint translates to determining
the minimum number of targets consistent with the sen-
sor readings. Interestingly, in one dimension, this minimum
number matches precisely the maximum number of indepen-
dent sensors used in Theorem 3.

Theorem 4. Given a one-dimensional field of binary prox-
imity sensors, let F be the feasible target space corresponding
to their signals at a particular time. Let T be a minimal set
of targets consistent with F and let S be a maximum set of
positively independent sensors for F . Then, we must have
|T | = |S|.

Proof. Let s1, s2, . . . , sm be the sensors with binary out-
put 1, and let g1, g2, . . . , gm be the intervals they contribute
to F , (Recall that gi is just the range of si clipped by
the off sensors’ ranges.) We can now think of T as the
minimum number of points needed to “hit” all the inter-
vals g1, g2, . . . , gm, and S as the maximum number of pair-
wise non-overlapping intervals in this collection. That these
quantities are equal can be seen by the following simple
greedy scheme, illustrated in Figure 3:

sort the intervals g1, g2, . . . , gm in the increasing
order of their right endpoints; pick the first in-
terval (call it h) in this order and add it to S;
delete all intervals that overlap with h; pick the
next available interval; and repeat until no more
intervals are left.

A simple analysis shows that this greedy scheme finds the
maximum possible non-overlapping intervals in the set, and
this correctly returns S. It is also clear that by putting

Step 1

Step 2

s3

g3
s2

g2

g4

s5

g5

s1

g1

s4

s5
g5

off
s̄

s4

g4

Figure 3: Illustration of the greedy scheme in Theo-
rem 4. s̄ indicates an off sensor, while other sensors
are on. The interval h in Step 1 is g1, while in Step
2, it is g4.

a target at the right endpoint of each of these intervals,
we get the minimum possible set T : since intervals of S
are disjoint, we clearly need at least one member in T for
each member in S; that this is also sufficient follows because
the only intervals not considered are the ones that overlap
with members of S at their right endpoints, where the target
point is placed. This shows that |T | = |S|, and the proof is
finished.

The previous theorem establishes a pleasing fact that a
minimal target hypothesis is consistent with the fundamen-
tal limit of target countability using binary sensors. More-
over, the greedy algorithm in the proof can be used to de-
termine a set of target locations that provides a minimal
explanation for the readings, and can be used as a building
block for tracking across snapshots. The algorithm is also
highly efficient: it requires a single sorting and a scan, so
takes O(n log n) time, if n is the number of intervals. How-
ever, we find that probabilistic, model-based, techniques for
tracking are more effective in exploiting the continuity of
trajectories in time. The latter approach is pursued in Sec-
tion 3, where we investigate particle filter algorithms for
tracking.

The ideas of the minimum target set T as well as the max-
imum independent sensor set S extend naturally to two or
more dimensions, although computing them becomes prov-
ably intractable (NP-complete). In addition, while both
these quantities offer an Occam-like minimalism, in two or
more dimensions, they do not always have the same value.
In general, however, we always have the inequality that
|S| ≤ |T |; that is, the maximum number of independent
sensors is a lower bound on the minimum number of targets
that are consistent with F .

The preceding geometric arguments highlight the intrinsic
limits of target counting and tracking using sensor snapshots
only. In a worst-case, where the targets move along arbitrary
(adversarial) trajectories with arbitrarily changing veloci-

ties, we cannot hope to do better. However, in a more be-
nign and practical setting where targets move smoothly, the
temporal correlation in their trajectories can be exploited to
track them with much greater resolution than promised by
our worst-case results. In the following section, we develop
a particle filter algorithm that takes advantage of our geo-
metric framework for its sampling, and show through simu-
lations and lab-scale experiments that it is quite effective in
tracking multiple targets.

3. PARTICLE FILTER ALGORITHM

We consider a centralized model in which a tracker node
collects the information gathered by all the sensors over a
certain interval of time, and processes the collected data to
estimate the trajectories. This centralized architecture may
be the most practical option in many settings, given the
minimal communication needed to convey the binary sen-
sor readings. However, there are many possible approaches
for obtaining distributed or hierarchical versions of our al-
gorithms, and some of these may be fruitful topics for future
work.

Before providing details of the particle filter algorithm,
we first provide a formal problem statement. Suppose that
there are Q targets, moving in a field of binary proxim-
ity sensors. Each sensor reports its 1-bit reading, regard-
ing the presence or absence of targets within its range, at
the discrete set of time instants t ∈ {1, 2, · · · T}. Based on
the sensor readings, let the set of feasible target spaces be
F = {F [t]}, where F [t] denotes the feasible target space at
instant t. Denote the location of the qth target at the time
instant t by xq[t], for q ∈ {1, · · · Q}. The true trajectory of
the qth target is given by the set of its locations at the T
time instants, that is, {xq[t] : t ∈ {1, · · · , T}}. Given the
set F , and without any prior information about the number
of targets Q, we wish to generate estimates of the target
trajectories, denoted by {yq[t] : t ∈ {1, · · · T}}, where yq[t]
is an estimate of the location of the qth target at instant t.

The use of particle filters for tracking a single target has
been illustrated before in [18]. We next provide an outline
of the approach used in [18], discuss its limitations in the
setting of multiple targets, and then present its modified
version tailored to the multiple target problem.

The particle filter algorithm for a single target (Q = 1
known beforehand) works as follows. We begin at t = 1,
and proceed step by step to t = T , while maintaining a
(large) set of K candidate trajectories (or particles) at each
instant. Each of the K particles at an intermediate time t
is a candidate for the estimated trajectory till time t, i.e.,
a candidate for {y1[t

′] : t′ ∈ {1, · · · t}}. Let us denote the
kth particle at time t by Pt

k, for 1 ≤ k ≤ K. For each k,
Pt

k is a vector of length t, and let it be specified by the set
of locations (x̂k[1], · · · , x̂k[t]). For instance, at t = 3, each
particle would be a vector of length 3, and would be a can-
didate for an estimate of the true target path till the first
three time instants. The algorithm is initialized by picking
K points in a uniform manner from the set F [1] to get the
set of K particles at the first time instant {P1

k}. Each of
these is extended to t = 2 by picking a point randomly (in
a uniform manner) from the set F [2]. This generates the
set {P2

k}. Now, given K particles at time t ≥ 2, the K
particles at time t+1 are obtained in the following manner.
Each of the particles Pt

k is extended to time t + 1 by choos-

ing m > 1 candidates for x̂k[t + 1], using uniform sampling
over the feasible set F [t + 1]. This produces a total of mK
particles, each of length (t + 1). Based on a cost function
(specified shortly), the K lowest cost particles out of these
mK particles are picked and designated as the K surviving
particles at time (t + 1). At the last instant T , the parti-
cle with the smallest cost function out of the K particles
{PT

k } is picked and designated as {y1[t] : t ∈ {1, · · · T}},
i.e., it is our estimate of the true target trajectory. The
basic premise underlying this approach is that, if the cost
function is picked in accordance with the anticipated model
of the target motion (e.g., small change in velocity between
successive time instants), then particles that do not conform
to this anticipated motion will eventually drop out due to
large cost functions, while the surviving particles would be
good estimates of the true trajectory.

We now specify the cost function used to prune the set of
particles at each time instant. In keeping with the notion
that high frequency variations in a trajectory cannot be cap-
tured by binary sensors [18], we choose the cost function to
be an additive metric that penalizes changes in velocity. Let
P = (x̂[1], · · · x̂[n]) denote a particle. The instantaneous es-
timate of this particle’s velocity vector at time t is the incre-
ment in position x̂[t+1]−x̂[t]. The corresponding increment
in the cost function in going from time t to t + 1, which is
taken to be the norm of the change in velocity, therefore is

c[t] = ||(x̂[t + 1]− x̂[t])− (x̂[t]− x̂[t− 1])||
= ||x̂[t + 1] + x̂[t− 1]− 2x̂[t]||

where ||·|| denotes Euclidean norm. Assuming that rapid ac-
celerations are unlikely in smooth paths, the cost c[t] should
be inversely related to the probability that a target moves
from the location x̂[t] at time t to x̂[t + 1] at time (t + 1),
given that it had moved from x̂[t − 1] to x̂[t] between time
instants (t−1) and t. The net cost function associated with
the particle P is simply the sum of the incremental costs:∑n−1

a=2 c[a].
While the “best” particle (i.e., the lowest cost particle at

the last time instant T) provided by the above algorithm
would hopefully fit the true trajectory the best, we also ex-
pect that a large fraction of the K particles {PT

k } would
not differ appreciably from each other, and would tend to
form a cluster of “good” particles around the “best” one.
This observation is crucial as we now consider multiple tar-
gets, since the clustering of particles enables us to distin-
guish between, and track, multiple targets. Specifically, if
the paths taken by any two targets are reasonably separable
over time, we would expect that the K surviving particles
at the last time instant would be comprised of two distinct
clusters, corresponding to the two targets. This leads to
the intuition that the particle filtering approach can be em-
ployed to track multiple targets by looking for clusters of
particles among the survivors at the last time instant, in-
stead of choosing a single best particle. Unfortunately, this
naive extension of single target tracking does not quite serve
our purpose. First, the naive scheme is likely to fail to dis-
tinguish between targets whose trajectories have significant
overlap, since the corresponding clusters of particles would
not be very distinct. Moreover, even when all trajectories
are clearly distinguishable, the naive scheme can miss some
of the targets. This can happen, for instance, when one of
the targets (say q1) is far from the others, and moves in a
regular manner that leads to a small value of the cost func-

tion. Since the particle filter algorithm retains the K best
particles, it is quite possible that all of these “lock onto” the
trajectory of target q1, discarding particles corresponding to
other targets. A brute force approach to this problem would
be to increase the number of particles as a function of time,
but the number of particles needed to make this work, and
the associated computational complexity, can be excessive.
Instead, we propose an algorithm in which we identify clus-
ter formation as we go, and limit the number of particles
allocated to each cluster.

3.1 The ClusterTrack Algorithm
We call our proposed scheme ClusterTrack. The method

is specifically designed to prevent a single target from mo-
nopolizing all of the available particles. To this end, instead
of looking for clusters at the end, we monitor their forma-
tion throughout the tracking process, and limit the number
of particles per cluster. We still retain K particles at each
time instant. However, instead of picking the K best parti-
cles, we pick the K best particles subject to the constraint
that the number of particles per cluster does not exceed a
threshold H. A cluster is defined as a group of particles
which are “similar”, where similarity between two particles
is measured in terms of a distance metric to be specified.
Thus, we scan the set of particles in increasing order of cost
functions as before, but we retain a particle only if the num-
ber of similar particles retained thus far is less than the
threshold H. This procedure enhances the likelihood that
the particle filter catches all of the targets. In order to en-
sure that we do not end up scanning the entire sequence of
particles at each instant, we can also put a limit L (L > K)
on the number of particles that we consider. In this case,
we stop the search for particles when either K particles have
been retained, or L of them have been scanned, whichever
happens first. The actual number of particles retained at
time t is denoted by Kt, where Kt ≤ K.

At the last time instant, we take the best particle from
each of the clusters obtained, and designate it as our esti-
mate of the trajectory followed by one of the targets. An
alternative would be to choose a ‘consensus path’ (e.g., based
on a median filter at each time instant) for each cluster.

The pseudo code description for the ClusterTrack at a
particular time instant (t) is given in Algorithm 1. Clusterj

represents the jth cluster, countj denotes the number of par-
ticles retained in Clusterj , NC is the number of clusters, H
is the maximum number of particles to be retained from a
particular cluster, and L is the maximum number of parti-
cles to be inspected in order to find the surviving particles
at time t.

Step 2 of the Algorithm requires the generation of samples
from the feasible target space F [t]. We employ the following
simple sampling strategy. Suppose that F [t] consists of Nt

disjoint intervals (for higher dimensions, we would need to
consider connected sets rather than intervals). These inter-
vals are obtained from the set of subintervals gi mentioned
in section 2.2, by repeatedly merging overlapping subinter-
vals till a disjoint set is obtained. We pick mo samples ran-
domly (in a uniform manner) from each of these Nt intervals,
thereby generating a total of mt = moNt samples. (This is
done for each of the Kt−1 surviving particles from time t−1).

The decision in step 6 of the algorithm (whether the par-

ticle under consideration, P̂i, belongs to any of the existing
clusters) is made as follows. For each of the NC existing

Algorithm 1 ClusterTrack (F) at time (t)

1: Get the set {Pt−1
k } of Kt−1 surviving particles from time

t− 1.
2: Extend this set to time t, generating a total of mtKt−1

particles.
3: Sort the mtKt−1 particles in ascending order of cost to

get the set {P̂1, . . . , P̂mtKt−1}
4: Put P̂1 in Cluster1, Pt

1 = P̂1, NC = 1, Count1 = 1,
i = 2, k = 1

5: while (i ≤ L and k ≤ K) do

6: if (P̂i ∈ Clusterj for some j) then
7: if Countj < H then
8: Countj ← Countj + 1, k ← k + 1

9: Retain P̂i and Pt
k = P̂i

10: else
11: Abandon P̂i

12: end if
13: else
14: Make new cluster for P̂i, NC ← NC + 1, k ← k + 1
15: Pt

k = P̂i

16: end if
17: i ← i + 1
18: end while

clusters, denote by CHj the first particle that joined the
jth cluster, where j ∈ {1, · · · , NC}. We refer to this first
particle CHj as the cluster-head of the jth cluster. For time

instant t, both P̂i and CHj are vectors of length t. Define
the distance between them to be the sum of the absolute dif-
ferences between their components, that is, D(P̂i,CHj) =∑t

l=1 |P̂i[l]−CHj [l]|. Compute D(P̂i,CHj) for each j, and
compare the minimum of these distances against a threshold
D0(t). (Note that the threshold is a function of the length
of the particles). If the minimum is smaller than the thresh-

old, conclude that the particle P̂i belongs to that cluster
whose cluster-head has the minimum distance from it. Oth-
erwise, conclude that the particle does not belong to any of
the existing clusters. The performance of ClusterTrack
depends on the choice of the threshold sequence D0(t). Our
numerical results bring out this dependence, and provide
guidance for arriving at good choices for it.

For any particular time instant t, it is not guaranteed
that the particles eventually selected by Clustertrack will
cover all the disjoint intervals that form the feasible target
space F [t]. In practice, the particles do cover the feasible
target space when sensors behave reliably, but this may not
be the case when sensors exhibit severe non-idealities. In
this situation, a simple extension of ClusterTrack can
be used to generate new trajectories until all “unused” in-
tervals are covered. For simplicity of exposition, we omit
a detailed description of this scheme, although some of the
presented results rely on this modification. (Details of this
modification are available from the authors upon request).

4. SIMULATION RESULTS

We now present simulation results to evaluate the perfor-
mance of our tracking algorithm. We begin with an ideal
sensing model for each sensor, wherein each sensor has a
fixed range, and detects the targets within its range with-
out any misses.

5 10 15 20
0

200

400

600

800

1000

time
lo

ca
tio

n

(B) ClusterTrack

5 10 15 20
0

200

400

600

800

1000

time

lo
ca

tio
n

(A) Naive Particle Filter

Figure 4: Comparison of the naive particle filter
with ClusterTrack. The naive approach locks onto
a single clearly distinguishable path. ClusterTrack
tracks all paths quite well.

4.1 Tracking with Ideal Sensing

We consider a one-dimensional system with 30 sensors
placed uniformly along a straight line (X-axis) starting from
0, and separated by a distance of 35 units each. The sens-
ing radius of each sensor is 30 units (i.e., each sensor covers
an interval of length 60). Five targets were considered, and
we generated trajectories of 20 time instants for each one
of them. The velocity of a particular target at each instant
was picked randomly within 20% (on either side) of some
mean value, using a uniform distribution. The model ap-
plies, for instance, if we consider the motion of vehicles on
a freeway, over a reasonably short time window. Each of
the plots shown ahead is an x–t plot (location along the
X-axis plotted against time). Solid curves are used to de-
note the actual target paths, while dashed curves denote the
estimated trajectories.

We took K = 500 and m0 = 12. For different choices of
mean target velocities, we tested the performance of Clus-
terTrack, and also the naive particle filter. Fig. 4 depicts
the results obtained for one such case. As can be seen, the
naive approach is not able to detect all the targets and ends
up giving a big cluster around the target that has a smooth
path far away from the other trajectories. Insight into the
failure of the naive algorithm is obtained from Fig. 5, which
shows the surviving particles at different time instants. We
can see that the particles corresponding to other targets
drop out as the algorithm progresses.

1 2 3 4 5
0

200

400

600

800

1000

time

lo
ca

tio
n

t=5

2 4 6 8 10
0

200

400

600

800

1000

time

t=10

5 10 15
0

200

400

600

800

1000

time

t=15

5 10 15 20
0

200

400

600

800

1000

time

t=20

Figure 5: The progress of the Naive particle filter. All surviving particles lock onto one path as time
progresses.

For ClusterTrack, we took the threshold sequence
D0(t) = 45t: that is, the threshold at time t is propor-
tional to the length t of the particles being compared. The
maximum number of particles retained for any cluster, H,
was taken to be 30, while the maximum number of parti-
cles scanned at any particular time instant, L, was taken
to be 5K = 2500. The plot in Fig. 4(B) shows that the
performance is quite good. The algorithm generates 5 clus-
ters finally, and the best particle from each cluster is plotted
in the figure. However, the dependence of ClusterTrack
on the choice of parameters we make becomes evident if for
the same example we take D0(t) = 15t. Since the threshold
has been lowered, we expect more clusters to arise 1, and
indeed, the algorithm now generates 9 clusters. Picking the
best particle from each of them provides us 9 estimated tra-
jectories. However, we observe that 5 amongst these 9 still
provide excellent approximations for the actual target paths.
Furthermore, the additional spurious trajectories that we
obtain are typically seen to be built out of portions of the
true trajectories, and depending on the nature of the true
trajectories2, a subset of these spurious paths can usually
be identified by their relatively higher cost functions. In-
deed, such high-cost trajectories could be a perfectly good
explanation of the sensor readings if our model allowed for
trajectories which could exhibit rapid changes on occasion.

In general, for sensing radius R, we find that a thresh-
old D0(t) between Rt and 2Rt works well for ensuring that
ClusterTrack catches all of the paths most of the time.
While our simulations yield useful design criteria, obtain-
ing analytical rules of thumb for design of the threshold
sequence D0(t) is an important topic for future work.

Next, we consider target motion where velocities vary ap-
preciably, but smoothly with uniform accelerations. We
evaluated the performance for different choices of acceler-
ations, and observed that ClusterTrack still gives ac-
ceptable performance. Fig. 6 shows the performance for
5 targets moving with constant accelerations; the estimated
trajectories are fairly good representations of the true paths.
For multiple simulation runs, we observe that the number

1While we intuitively expect more clusters for low thresh-
olds, this may not always be true. For instance, making the
threshold too small means that ClusterTrack approaches
the naive scheme, which in this example would generate just
one big cluster.
2If the true trajectories allow smooth transitions from one
to another, then we may get spurious estimates that have
low cost functions.

5 10 15 20
0

200

400

600

800

1000

time

lo
ca

tio
n

Figure 6: An example of the performance of Clus-
terTrack with constant acceleration motion.

Ri

Ro

Figure 7: The non-ideal sensing model.

of trajectories obtained varies between 5 and 10, with 5 of
the best 6 almost always approximating the true paths.

Next, we consider tracking with non-ideal sensing.

4.2 Tracking with Non-Ideal Sensing
For real world deployments with imperfect and noisy sen-

sors, it is necessary to extend the ideal sensing model con-
sidered thus far. For instance, a sensor may fail to detect a
target within its nominal sensing range, or may sometimes
detect targets outside the range. We use a simple model for
this non-ideal behavior (Fig. 7). A target within the inner
interval of radius Ri is always detected, and a target out-
side the outer interval of radius Ro is never detected. The
interval between Ri and Ro is a region of uncertainty, and
the algorithm that we consider does not require a specific
model for the sensor output when the target falls in this
region. This is because we use a worst-case interpretation

5 10 15 20
0

100

200

300

400

500

600

700

800

time

lo
ca

tio
n

Figure 8: Performance with non-ideal sensing. In
this particular example, ClusterTrack finds 7 trajec-
tories, 5 of which approximate the actual paths.

of the model to generate the feasible target space from the
sensor data, assuming the maximum uncertainty consistent
with the sensor readings. An on-sensor tells us that the
target is somewhere inside the outer interval of radius Ro,
while an off-sensor indicates that there is no target inside
the inner interval of radius Ri. Despite its simplicity, this is
a fairly generic model for non-ideal behavior, since it arises
naturally if sensors integrate noisy samples over a reason-
able time scale to make binary decisions regarding target
presence or absence.

The set up for simulation is kept the same as before, with
the modification that each sensor now has an Ri = 30 units,
and an Ro = 50 units. In order to simulate the sensor read-
ings, we assume that a target falling in the region of uncer-
tainty of a particular sensor is detected with probability 0.5
by that sensor. 5 targets are considered, each moving within
20% (on either side) of its mean velocity. As shown in Fig.
8, ClusterTrack performs well. For different choices of
D0(t), the number of trajectories obtained varies between 5
and 7. The figure shows a simulation run in which 7 trajec-
tories were output. The best 5 are quite close to the actual
paths. The remaining two trajectories are marked with plus
signs (+), and we can see that they are made up of pieces
of true paths. The costs associated with these 7 trajectories
are [31.54 38.08 41.67 54.54 57.36 80.45 95.87] units, with
the last two corresponding to the spurious paths. The re-
sults above demonstrate the robustness of the particle filter
approach to non-ideal sensing.

Finally, we present some experimental tracking results
from a lab-scale testbed with PIR sensors.

5. EXPERIMENTS
We use a small testbed with 5 PIR sensors placed uni-

formly along a line; see Figure 9. Each sensor sends a mea-
surement to the base station when it changes state, and the
base station is interfaced to a PC through a serial port. The
data gets time stamped at the PC, so that each of the fi-
nal set of measurements includes : ‘value, position (mapped
from node ID), and time’. For the ground truth regarding
target trajectories, the (human) targets are provided with
separate sensor nodes (equipped with localization engines)

Figure 9: A view of the experimental set-up, with
sensor modules placed uniformly along a line.

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y o
f d

et
ec

tio
n

Figure 10: Probability of target detection against
distance for a particular sensor module.

with buttons, which they press as they pass by a set of
known locations on the way.

5.1 Sensor Characterization
We first performed some experiments to characterize an

individual sensor module. The readings obtained were highly
non-ideal, with the sensor completely failing to detect a
nearby target on some occasions. Moreover, even when a
target was detected as it entered the field of a sensor, the
sensor output became 0 immediately after the detection,
and kept toggling between 0 and 1 as the target moved to-
wards the sensor. This is probably because these modules
are meant for triggering a relay that resets after a certain
amount of time, with the aim of minimizing false alarms, at
the cost of some missed detections. To deal with this issue,
we simply decided to neglect every 1 → 0 transition that
was immediately followed by another 0 → 1 transition. In
order to fit the sensor behavior to our non-ideal model of
Fig. 7, we estimated the probability of detection with dis-
tance. Based on the results we obtained, shown in Fig. 10,
we set Ri = 3 feet and Ro = 6 feet.

5.2 Tracking Performance
In our experiments, we placed the sensors uniformly along

a line, separated by 4 feet (represented by the circles in Fig.
11). We considered two targets, which started from oppo-
site ends and crossed each other. The non-ideal behavior of
the sensors was evident as one of the sensors, placed at the

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

time

lo
ca

tio
n

Experimental results with ClusterTrack

T1

T2

Figure 11: Experimental results with the sensor
modules. Respectable performance is achieved, in
spite of one sensor not even detecting a target.

location of 16 feet (shown by an asterisk ∗ inside the cir-
cle) completely missed the presence of target T1. With the
threshold sequence D0(t) = 2R0t, we ran ClusterTrack
multiple times. In spite of the missed detection, we found
that respectable to good tracking performance was achieved
in most of the simulation runs (about 70%), as shown in the
figure for one such good run.

6. CONCLUSIONS
The promising results obtained here, as well as prior re-

sults in [8, 18] for the same sensing model, indicate that
binary proximity sensors, can form the basis for a robust ar-
chitecture for wide area surveillance and tracking. Our tar-
get counting results show that interesting conclusions can be
drawn regarding the number of targets and the feasible tar-
get space even without any model for the target paths. On
the other hand, when the target paths are smooth enough,
our ClusterTrack particle filter algorithm gives excellent
performance in terms of identifying and tracking different
target trajectories.

A host of questions remain to be investigated in future
work, of which we provide a partial list as follows. Is there
a good way of combining the combinatorial techniques for
target counting with the probabilistic techniques of particle
filtering to enhance performance? Are there analytical rules
of thumb for design of the threshold sequence {D0(t)} used
in ClusterTrack? How broadly does our particle filter
algorithm apply, in terms of robustness to different models
for the targets’ trajectories? When does it break down?
How does tracking performance depend on the dimension of
the space we operate in (in particular, how well can we track
and count targets in two dimensions)?

7. REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci. A survey on sensor networks. IEEE
Communications Magazine, 40:102–114, Aug. 2002.

[2] A. Arora and et. al. A line in the sand: A wireless
sensor network for target detection, classification, and
tracking. The International J. of Computer and
Telecom. Networking, 46:605–634, Dec. 2004.

[3] J. Aslam, Z. Butler, F. Constantin, V. Crespi,
G. Cybenko, and D. Rus. Tracking a moving object
with a binary sensor network. In Proc. ACM SenSys,
2003.

[4] M. Coates. Distributed particle filters for sensor
networks. In Proc. of IPSN, pages 99–107, 2004.

[5] B. Jung and G. S. Sukhatme. Tracking targets using
multiple robots: The effect of environment occlusion.
Autonomous Robots, 13(3):191–205, Nov 2002.

[6] Z. Khan, T. Balch, and F. Dellaert. Efficient particle
filter-based tracking of multiple interacting targets
using an mrf-based motion model. In Proc. IEEE/RSJ
Conference on Intelligent Robots and Systems, 2003.

[7] Z. Khan, T. Balch, and F. Dellaert. Mcmc-based
particle filtering for tracking a variable number of
interacting targets. IEEE Trans. Pattern Analysis and
Machine Intelligence, 27(11):1805–1819, Dec. 2005.

[8] W. Kim, K. Mechitov, J.-Y. Choi, and S. Ham. On
target tracking with binary proximity sensors. In Proc.
IPSN, 2005.

[9] J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao.
Distributed state representation for tracking problems
in sensor networks. In Proc. of IPSN, 2004.

[10] D. McErlean and S. Narayanan. Distributed detection
and tracking in sensor networks. In Proc. of 36th
Asilomar Conference on Signals, Systems and
Computers, volume 2, pages 1174–1178, 2002.

[11] M. Moghavvemi and L. C. Seng. Pyroelectric infrared
sensor for intruder detection. In Proc. TENCON,
pages 656 – 659, Nov. 2004.

[12] S. Oh and S. Sastry. Tracking on a graph. In Proc. of
IPSN, April 2005.

[13] S. Oh, L. Schenato, and S. Sastry. A hierarchical
multiple-target tracking algorithm for sensor
networks. In Proc. International Conference on
Robotics and Automation (ICRA), April 2005.

[14] F. Z. Qing Fang and L. Guibas. Counting targets:
Building and managing aggregates in wireless sensor
networks. In Palo Alto Research Center (PARC)
Technical Report, June 2002.

[15] D. Reid. Aan algorithm for tracking multiple targets.
IEEE Trans. Automatic Control, 24:843–854, Dec
1979.

[16] Y. B. Shalom and X. R. Li. Multisensor, Multitarget
Tracking: Principles and Techniques. YBS Publishing,
1979.

[17] J. Shin, L. Guibas, and F. Zhao. A distributed
algorithm for managing multi-target identities in
wireless ad-hoc sensor networks. In Proc. of IPSN,
April 2003.

[18] N. Shrivastava, R. Mudumbai, U. Madhow, and
S. Suri. Target tracking with binary proximity sensors:
Fundamental limits, minimal descriptions, and
algorithms. In Proc. of ACM SenSys, 2006.

[19] K. R. Songhwai Oh, Inseok Hwang and S. Sastry. A
fully automated distributed multiple-target tracking
and identity management algorithm. In Proc. AIAA
Guidance, Navigation, and Control Conference,
August 2005.

