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Abstract. We propose a novel tracking algorithm based on the Wang-
Landau Monte Carlo sampling method which efficiently deals with the
abrupt motions. Abrupt motions could cause conventional tracking meth-
ods to fail since they violate the motion smoothness constraint. To ad-
dress this problem, we introduce the Wang-Landau algorithm that has
been recently proposed in statistical physics, and integrate this algo-
rithm into the Markov Chain Monte Carlo based tracking method. Our
tracking method alleviates the motion smoothness constraint utilizing
both the likelihood term and the density of states term, which is es-
timated by the Wang-Landau algorithm. The likelihood term helps to
improve the accuracy in tracking smooth motions, while the density of
states term captures abrupt motions robustly. Experimental results re-
veal that our approach efficiently samples the object’s states even in a
whole state space without loss of time. Therefore, it tracks the object of
which motion is drastically changing, accurately and robustly.

1 Introduction

Object tracking is a well known problem to computer vision community [1].
Visual tracking has been utilized in surveillance systems and other intelligent
vision systems. Recently, many of the visual tracking systems trends have been
towards addressing complex outdoor videos rather than lab environmental ones.
These complex outdoor videos which can be easily found in web sites, usually
contain drastically abrupt motions.

Traditional tracking methods can be divided into two categories: the sampling
based method (stochastic approach) and the detection based method (determin-
istic approach). In the stochastic approach, the particle filter (PF) has shown
efficiency in handling non-gaussianity and multi-modality [2,3]. In multi-object
tracking, Markov Chain Monte Carlo (MCMC) reduces computational costs to
deal with high-dimensional state space [4,5]. Data-Driven MCMC provides quick
convergence results with efficient proposals [6]. The stochastic approach has an
advantage of reflecting the motion’s uncertainty. In the deterministic approach,
the Adaboost detector has been widely used in detecting a target object [7] and
various data association techniques have been applied to connect the detected
target and make a trajectory [8]. The deterministic approach usually provides
reliable results by utilizing the bottom-up information. In general, both these
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(a) Frame #246 (b) Frame #247 (c) Frame #248 (d) Frame #249

Fig. 1. Example of an abrupt motion. The camera shot change causes the boxer
to have an abrupt motion at consecutive frames, (b)-(c).

two tracking approaches basically assume that the appearance and motion of an
object are smoothly changed over time.

However, in many complex outdoor scenarios, these motion and appearance
smoothness constraints are frequently violated. Recently, online feature selection
techniques have started to tackle this problem [9,10,11]. New features are selected
online to adapt abrupt changes in appearance. Yet, most of tracking methods
rarely consider abrupt motions which cause traditional algorithms to fail. In
this study, we address the problem of tracking objects whose motion is mostly
smooth, but which changes rapidly over one or more small temporal intervals.
This motion typically occurs in two challenging situations: (1) video consists of
edited clips acquired from several cameras (shot change), (2) object or camera
rapidly moves. Figure 1 illustrates an example of the first situation.

The philosophy of our method is that two kinds of the motion, which is smooth
or abrupt, can be efficiently tracked at the same time by trading off two factors
which are the likelihood term and the density of states term. If the likelihood
term is highly weighted, our method is similar with conventional tracking meth-
ods which track the smooth motion. On the other hand, if the density of states
term is highly weighted, the method has the similar properties of detection meth-
ods which could capture the abrupt motion. So, as trading off these two terms,
our method combines merits of tracking methods with ones of detection methods.

The first contribution of this paper is that, to the best of our knowledge, we
firstly introduce the Wang-Landau Monte Carlo (WLMC) sampling method to
the tracking problem. The WLMC sampling method was recently proposed in
the statistical physics literature, which accurately estimates the density of states
[12]. The second contribution is to propose the WLMC based tracking method
and provide the unified framework to track both smooth and abrupt motion
without loss of time. In the unified framework, the method utilizes the efficient
sampling schedule. The schedule encourages to sample less-visited regions of the
state space, while spending more time refining local maxima. And the method
provides a statistical way to reach the global maximum. The third contribution is
that, in order to design more efficient sampling scheme, we modify the WLMC
sampling method into an annealed version and present the annealed WLMC
based tracking method. The method searches for interesting subregions of the
state space by employing the density of states and reduces the state space to
these subregions where the target exists.
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2 Related Works

The quasi-random sampling addresses the problem of tracking pedestrians from
a moving car [13]. To cope with the abrupt changes in motion and shape, the
method combines particle filter with quasi-random sampling. This algorithm has
two drawbacks. First, the method chooses highly weighted particles and densely
samples new states around the states of those particles. However, if there are a
few deeper local maxima, most of samples get trapped in those local maxima.
Second, the method uses uniform sampling over the entire state space to capture
the abrupt changes. However, if entire state space is very large, uniform sampling
scheme can be wasteful.

The cascade particle filter addresses tracking in low frame rate videos [14]. In
this approach, the detection algorithm is well combined with particle filter to deal
with abrupt motions. It demonstrates efficiency in a face tracking case. However,
this approach requires complex observers and an offline training process. On the
other hand, we consider the human as a target object, which makes it more
challenging than the face, and treat much larger areas in an image for tracking.

3 Wang-Landau Monte Carlo Algorithm

The density of states is the number of states which belongs to a given energy sub-
region. Let us consider the 2D Ising model and assume that the energy function
of the model is defined by only pairwise term [12]. Then, at the lowest energy, the
density of states is 2 because the states which yield the lowest energy, are follow-
ing 2 cases; all nodes have same values, -1 or +1. As it is intractable to accurately
calculate the density of states in all energy subregions, the WLMC method [12]
approximately estimate the density of states through a Monte Carlo simulation.
Let us assume that the energy space E is divided into d disjoint subregions such
that

Ei ∩ Ej = φ for i �= j, i, j ∈ {1, . . . , d} and
d

∑

all i

Ei = E. (1)

Each energy subregion is visited via random walk in the energy space. If Ei is
visited, we increase the histogram h(Ei) by one and modify the density of states
g(Ei) by a modification factor f > 1. One proper modification method is

g(Ei) ← g(Ei) ∗ f, (2)

where g(Ei) is initially set to 1 for all i and gradually updated by (2). While
the simulation progresses, the random walk produces a flat histogram over the
energy space. Note that flat has a different meaning; As described in [12], if
the lowest bin of the histogram is larger than 80% of the histogram average, we
consider the histogram is flat. Since the flat histogram means that all energy
subregions are visited at least to some degree, the algorithm proceeds to the
next random walk in a coarse-to-fine manner.

f ←
√

f. (3)
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Fig. 2. Example of a state and subregion. (a) Xp
t represents the center of an

object and Xs
t indicates the size of the boundary box. (b) Sp is divided into 30 equal-

size subregions.

The modification factor is reduced to a finer version by (3), and the histogram is
reset. Simulation continues until the histogram becomes flat again and restarts
with a finer modification factor. The algorithm is terminated when the factor
becomes highly close to 1 or the number of iterations reaches a predefined value.

In the WLMC simulation, a new state is proposed at each time. This new state
is accepted or rejected according to the transition probability. The transition
probability of the current state from Ei to Ej is defined by

p(Ei → Ej) = min

[

1,
1/g(Ej)

1/g(Ei)

]

. (4)

Note that the transition probability is calculated with the inverse of the density of
states. This means that the transition is guided to less visited energy subregions.

4 WLMC Based Tracking Method

4.1 Preliminary

The state Xt at time t consists of the position and scale of an object; Xt =
(Xp

t , Xs
t ). And the state space S is defined by a set of all possible states. This

state space S can be decomposed into the state space of position and scale;
S = Sp × Ss. As, in many cases, an abrupt motion occurs by the change of the
position, we assume that the scale of an object is smooth over time and only
consider abrupt changes in Sp. Sp is then divided into d disjoint subregions;
Sp

i , i = {1, . . . , d}. A simple dividing strategy is to partition Sp into equal-size
grids as shown in Figure 2(b). Note that, to adapt the WLMC method to an
image-based tracking problem, we replace Ei in Section 3 with Sp

i and calculate
the density of states at each Sp

i . Our method can be easily extended to deal with
abrupt changes of the scale by calculating the density of states at Ss.

4.2 Bayesian Object Tracking Approach

The object tracking problem is usually formulated as the Bayesian filtering.
Given the state of an object at time t, Xt and the observation up to time t,
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Y1:t, the Bayesian filter updates the posteriori probability p(Xt|Y1:t) with the
following rule:

p(Xt|Y1:t) = cp(Yt|Xt)

∫

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1, (5)

where p(Yt|Xt) is the observation model that measures the similarity between
the observation at the estimated state and the given model; p(Xt|Xt−1) is the
transition model which predicts the next state Xt based on the previous state
Xt−1, and; c is the normalization constant. The observation model generally
utilizes color, edges or texture as a feature [1]. With the posteriori probability
p(Xt|Y1:t) computed by the observation model and the transition model, we
obtain the Maximum a Posteriori (MAP) estimate over the N number of samples
at each time t.

XMAP
t = arg

X
n

t

max p(Xn
t |Y1:t) for n = 1, . . . , N, (6)

where XMAP
t denotes the best configuration which can explain the current state

with the given observation. However note that the integration in (5) is unfeasible
in high dimensional state space. To address this problem, we use the Metropolis
Hastings (MH) algorithm that is one of the popular MCMC method. The MH
algorithm consists of two main steps; proposal step and acceptance step.

In this work, the traditional transition model p(Xt|Xt−1) is reinforced by the
approximated prior term p∗(Xt) to track the abrupt motion. Then our transition
model is defined by

p(Xt|Xt−1) ≈ p(Xt|Xt−1)
p∗(Xt)

p(Xt)
= cp(Xt|Xt−1)p

∗(Xt), (7)

where the inverse of the prior term p(Xt) is replaced with constant c. We sequen-
tially estimate the approximated prior term p∗(Xt) using the density of states
that is calculated by the Wang-Landau recursion step.

4.3 Proposal Step

The proposal density designs the transition from a given state to a new state
based on some prior knowledge about the motion. Our prior knowledge on a
motion is that objects can go anywhere in a scene even at one proposal step.
With this assumption, we design a new proposal density that covers the whole
state space and proposes highly diverse states.

Q(X′
t;Xt) =

{

QAR(Xs′

t ; Xs
t ) for the scale

QU (Xp′

t ) for the position
. (8)

QAR proposes a new scale state Xs′

t based on Xs
t with a second-order autore-

gressive process. This process well describes the characteristic of the smooth
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change in scale [2], and fits our smoothness assumption of the scale. To propose
a new position state, QU utilizes two steps. The first step randomly chooses one
subregion Sp

i to obtain diverse states which cover abrupt changes in position.

And the second step uniformly proposes a new state Xp′

t over the chosen Sp
i to

simulate the density of states at Sp
i .

For the success of our proposal step, its efficiency has to be considered. The
proposal density (8) can be wasteful if it proposes numerous inefficient states
where the probabilities that the target exists are very low. Hence, our algorithm
addresses this inefficiency utilizing the density of states in the acceptance step.

4.4 Acceptance Step

The acceptance step determines whether the proposed state is accepted or not
and can be simply calculated by the likelihood ratio between the current and
proposed states as follows.

a = min

[

1,
p(Yt|X

′
t)Q(Xt;X

′
t)

p(Yt|Xt)Q(X′
t;Xt)

]

, (9)

where p(Yt|X
′
t) denotes the likelihood term over the state X′

t and Q(X′
t;Xt)

represents the proposal density.
Our algorithm combines the density of states term with the acceptance ratio

in (9). Let M be a mapping function from the state Xt to the subregion Sp
i

which contains the position state, X
p
t of Xt.

M : Xt → S
p
i . (10)

Then the modified acceptance ratio is

a = min

[

1,
p(Yt|X

′
t)

αp∗(X′
t)Q(Xt;X

′
t)

p(Yt|Xt)αp∗(Xt)Q(X′
t;Xt)

]

= min

⎡

⎣1,

p(Yt|X
′

t
)α

g(M(X′

t
)) Q(Xt;X

′
t)

p(Yt|Xt)α

g(M(Xt))
Q(X′

t;Xt)

⎤

⎦ ,

(11)
where p∗(X′

t) denotes the approximated prior term in (7), g(M(X′
t)) expresses

the density of states at the subregion that includes the position state X
p′

t of
X′

t, and α indicates the weighting parameter. Our acceptance ratio in (11) has
two different properties compared to that in (9). The first property is that (11)
provides a way to escape from local maxima and reach to the global maximum.
This property is crucial to the success of our tracking algorithm. If an abrupt
motion exists in a scene, the algorithm has to sample the states in larger areas
to deal with that motion where the Markov Chain has higher chances of meeting
local maxima. In our acceptance step, the Markov Chain is guided by the ratio

between the likelihood score and the density of states score, p(Yt|Xt)
g(M(Xt))

. At a

local maximum, this ratio initially has a large value since the likelihood has the
higher score around the local maximum. However, while the simulation goes on,
the ratio continues to decrease as the density of states generally increases around
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Fig. 3. Properties of our acceptance ratio. (a) If the density of states in region
3 is much larger than one in region 4, the proposed state can be accepted although
the state has a lower likelihood score than that of current state. (c) The brighter the
color, the larger the density of states. Our method gets more samples at regions of two
boxers while exploring all subregions at least to some degree.

local maxima. The proposed state is accepted when the ratio over the current
state sufficiently decreases compared to one over the proposed state. Figure 3(a)
illustrates the process of escaping from the local maximum.

As the second property, (11) efficiently schedules a sampling procedure so
that the Markov Chain resides in a local maximum for a longer period, while
guaranteeing to explore the whole state space at least to some degree. This
property provides increased flexibility over the proposal density in (8). Note that
the density of states term allows chances for the proposed state to be accepted
at rarely visited subregions. On the other hand, the likelihood term forces the
proposed state to be frequently accepted around local maxima. Since the length
of the Markov Chain is limited, these two terms form the trade-off relationship.
α in (11) controls this trade-off relationship. Higher weights on the likelihood
term result in increasing the accuracy of MAP estimate. Conversely, the density
of states term has to be increasingly weighted to cover the whole state space.
Our acceptance ratio efficiently deals with this trade-off relationship as shown
in Figure 3(c).

4.5 Wang-Landau Recursion Step

In this section, we propose a new efficient step called the Wang-Landau recursion
to calculate the density of states g(M(Xt)) in (11). This step follows the similar
procedure as in the original Wang -Landau algorithm discussed in Section 3.
Figure 4 provides the detailed process of our WLMC based tracking method
that include the proposal, acceptance and Wang-Landau recursion step. This
figure shows how the density of states is adapted for our tracking problem.

The key point is that the Wang-Landau recursion step addresses the chicken-
egg-type problem. In order to estimate the density of states accurately, the accep-
tance ratio in (11) should guide the Markov Chain in the direction of producing a
flat histogram over the whole state space. While, to calculate the acceptance ra-
tio in (11), the density of states has to be known in advance. This recursion step
provides a systematic way to visit all the subregions at least to some degree and
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1) Initialize the Wang-Landau recursion: 

Given     disjoint subregions 

and set 

2) MCMC sampling: Repeat N times, where N is the total number of samples

a) Given the current state    (n-th sample at time t), 

propose the new state   using proposal density (8).

b) Compute the acceptance ratio (11), 

If accepted,          other wise, 

c) Wang-Landau update:

Update

If  the histogram is flat, reinitialize              for all i  and set 

3) Compute the MAP estimate 
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Fig. 4. WLMC based tracking method

(a) Frame #292 (b) Stage 1 (c) Stage 2 (d) Stage 3

Fig. 5. Annealing process. A-WLMC sequentially reduces Sp from (b) to (d) using
the density of states. Then, A-WLMC leaves some subregions that contain robust
candidates of the target position and eventually tracks the target as shown in (a).

simultaneously acquire the exact density of states. Note that the Wang-Landau
algorithm typically converges although it does not satisfy detailed balance [15].

5 Annealed WLMC Based Tracking Method

We extend our WLMC based tracking method to an annealed version (A-
WLMC) for more efficient sampling. In A-WLMC, the Markov Chain is defined
over the annealed state space. And A-WLMC concentrates sampling on theses
annealed subregions that compactly contain the target object. Figure 5 shows
the process on how the state space is reduced to the interesting subregions. The
algorithm starts the process over the whole state space and performs each stage
using the WLMC based tracking method presented in Section 4. At the end of
each stage, the state space is reduced by half, and the Chain is restarted over
the reduced state space.

We utilize the density of states to anneal the state space. The state space basi-
cally consists of d disjoint subregions. Since the density of states becomes larger
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1) Process the WLMC based tracking method.

2) Annealing step: if the histogram is flat, 

a) Choose           number of subregions      according to      in    

descending order and represent the chosen subregions as

b) Divide each      into two regions:

c) Update the density of states and subregions.

where        represents the annealed subregion.
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Fig. 6. Annealed WLMC based tracking method

around the local maxima, we choose the d/2 number of subregions according to
the density of states in descending order. The chosen subregions are individually
divided into two regions so that the total number of subregions becomes d again.
The overall procedure of the annealed version is summarized in Figure 6.

6 Experimental Result

In this paper, the observation model utilized the HSV color histogram as a fea-
ture which is known to be robust to the illumination changes, and Bhattacharyya
coefficient as a similarity measure [16]. We tested three video sequences: Seq.1,
Seq.2 for camera shot changes, and; Seq.3 for rapid motions.1 For the fair com-
parison, we used equal number of samples; 600, and compared the proposed
algorithm with five different tracking methods: standard MCMC is based on
[4]. Proposal variances are separately set to 8, 4 for the x, y direction; Adaptive
MCMC is based on [17]; Quasi-random sampling is based on [13]; Particle filter is
based on [3]. The motion model utilized the second-order autoregressive process
and noise model is defined by the gaussian function of which the variance is set
to 250; Mean shift is based on the implemented function in opencv.

6.1 Quantitative Comparison

Coverage test: The recall ρ and the precision ν measure the configuration
errors between the ground truth state and the estimated state.

ρ =
AX

t ∩ AG
t

AG
t

, ν =
AX

t ∩ AG
t

AX
t

, (12)

1 The tracking results are available at http : //cv.snu.ac.kr/WLMC tracking.html.
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Table 1. F-measure in Seq. 1. As α value increases, the weight on the likelihood term
in (11) also increases.

α A-WLMC Adaptive MCMC Standard MCMC Quasi-random Particle filter

0.5 0.783126 0.780664 0.773494 0.726511 0.715354
1.0 0.795748 0.774263 0.769159 0.726511 0.715354
1.5 0.816221 0.773265 0.756279 0.726511 0.715354

where AX
t denotes the estimated area and AG

t indicates the ground truth area at
time t. For good tracking quality, both the recall and precision should have high
values. In information retrieval literatures, F-measure is often used for evaluating
this quantity.

F =
2νρ

ν + ρ
. (13)

When the ground and estimated area perfectly overlap, F-measure is 1.0.
We obtained the ground truth states by manually drawing the bounding box

around the target. Note that, in other methods, the state is re-initialized to the
ground truth before they fail to track the abrupt motion. Then, the results in Table
1 indicates the accuracy of tracking the smooth motion, and states that the A-
WLMC method is also as good as existing methods in the smooth motion case.

Autocorrelation time: The autocorrelation time measures the degree of sta-
tistical independence between samples. This independence property is important
in terms of sampling efficiency. If samples are highly correlated, the statistical
error does not decrease at the rate of the square root of the number of samples.

Let us define the autocorrelation function as follows:

Cxx(k) = E
[

(Xn
t − E[Xn

t ])(Xn+k
t − E[Xn+k

t ])
]

, (14)

(a) Integrated autocorrelation time (b) Success rate

Fig. 7. Evaluation of the tracking methods. (a) Integrated autocorrelation time
at Seq. 2. (b) Success rate at Seq. 3 as a function of down-sampling interval for different
tracking methods.
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where E is the expectation operator, Xn
t and Xn+k

t are the n-th and (n + k)-th
samples at time t , respectively. This function generally decays exponentially by
the number of samples k such that,

Cxx(k) ≈ exp(−
k

τexp

), (15)

where τexp is the exponential autocorrelation time. For the computational sim-
plicity, we use integrated autocorrelation time τint suggested by [18].

∫ ∞

0

Cxx(k)dt =

∫ ∞

0

Cxx(0) exp(−
k

τint

)dk = τintCxx(0), τint =
∑

k

Cxx(k)

Cxx(0)
.

(16)
Figure 7(a) displays the efficiency of the A-WLMC method to produce both

uncorrelated and meaningful samples. Although the random sampling method
is the best in terms of statistical independence, this method is not guided in a
principled manner. In contrast, A-WLMC is the winner in terms of efficiency. A-
WLMC guarantees samples to converge to the target density and simultaneously
generates higher uncorrelated samples than those by other methods.

Success rate: If F-measure is larger than 0.5, the target is considered as cor-
rectly tracked at that frame. The success rate indicates the ratio between the
number of correctly tracked frames and the number of total frames. For this test
we down-sampled Seq. 3 with the sampling interval from 10 frames to 30 frames.
The results are depicted in Figure 7(b). In comparison with the other results, the
success rate of the A-WLMC method is less affected by the change of the sam-
pling interval, whereas those of other methods rapidly decrease as the sampling

(a) Frame #448 (b) A-WLMC (#449) (c) Particle filter

(d) Standard MCMC (e) Adaptive MCMC (f) Mean shift (g) Quasi-random

(h) Frame #727 (i) A-WLMC (#728) (j) Adaptive MCMC (k) Quasi-random

Fig. 8. Tracking results when the camera shot change occurs in Seq. 2, Seq. 1
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(a) A-WLMC (#551) (b) A-WLMC (#554) (c) A-WLMC (#557) (d) A-WLMC (#560)

(e) Quasi-rand (#551) (f) Quasi-rand (#554) (g) Quasi-rand (#557) (h) Quasi-rand (#560)

Fig. 9. Tracking results of the smooth motion case in Seq. 2

(a) A-WLMC (#18) (b) A-WLMC (#22) (c) A-WLMC (#25)

Fig. 10. Tracking results in videos where rapid motions exist. In Seq. 3, the
video is down-sampled to 25 sampling interval.

interval increases. It is significant to note that A-WLMC successfully tracks the
target even in highly down-sampled video which contains severe abrupt motions.

Speed: A-WLMC has no additive computational burden compared to the other
sampling based tracking methods since the density of states can be calculated
at extremely less computational cost. A-WLMC runs at 1∼10 fps for 320 × 240
videos. Note that our code is not optimized.

6.2 Qualitative Comparison

Figure 8 presents the tracking results in the camera shot change case. In the
video, A-WLMC successfully tracked the target whereas other methods failed
to escape from the previous position of the target. The quasi-random method
also tracked the abrupt motion in Seq. 2 (Figure 8(g)) whereas the method
failed to track the motion in Seq. 1 (Figure 8(k)). We also illustrate the density
of states obtained at frame #449 of Seq. 2 in the right part of Figure 8(b).
The whiter regions indicate that A-WLMC got more samples at those regions
which can be regarded as local maxima. As shown in the figure, there are a
number of local minima found by A-WLMC. This means that our method has a
ability to escape one local maximum and reach to another one. Furthermore, we
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tested to track the target of which motion is smooth. As A-WLMC and quasi-
random sampled states at the larger portions of the state space compared with
the conventional tracking methods, it is very crucial to check the accuracy of
tracking the smooth motion and robustness to the clutters. As shown in Figure 9,
A-WLMC accurately tracked the target of which motion is smooth over time. In
contrast, the quasi-random sampling was easily distracted by clutter and often
got trapped in local maxima which are the right boxer at the video. Figure 8
and 9 demonstrate that A-WLMC well tracks the smooth and abrupt motion at
the same time compared with the other tracking methods. Note that most of the
tracking performance comes from the A-WLMC filter rather than randomness
of the proposal density. Quasi-random also used the similar proposal density,
but which results were worse. As another example of an abrupt motion, we
tested down-sampled video that included rapid motions of which directions and
distances were quite unpredictable. A-WLMC addressed this uncertainty of the
motion and accurately proposed the object’s position as shown in Figure 10.

7 Conclusion

In this paper, we have proposed an effective tracking algorithm based on the
Wang-Landau Monte Carlo. The algorithm efficiently addresses tracking of
abrupt motions while smooth motions are also accurately tracked. Experimental
results demonstrated that the proposed algorithm outperformed conventional
tracking algorithms in severe tracking environments. Our current algorithm has
not fully considered the abrupt changes in appearance. We leave this problem
to be addressed in future research studies.
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