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Tracking of brain tumors using vision and neurosonography
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We have developed a method to render brain tumours from endoneurosonography. We propose to track an ultrasound probe in
successive endoscopic images without relying on an external optic or magnetic tracking system. The probe is tracked using
two different methods: one of them based on a generalised Hough transform and the other one based on particle filters. By
estimating the pose of the ultrasound probe in several contiguous images, we use conformal geometric algebra to compute
the geometric transformations that yield the 3D position of the tumour, which was segmented in the ultrasound image using
morphological operators. We use images from brain phantoms to evaluate the performance of the proposed methods, and our
results show that they are robust.
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1. Introduction

1.1. Statement of the problem

Recent trends in minimally invasive brain surgery aim at us-

ing the joint acquisition of endoscopic and ultrasound (US)

images – a technique that has been called endoneurosonog-

raphy (ENS). Endoscopic images are of great utility for

minimally invasive techniques in neurosurgery. Ultrasound

images are cheap compared to tomographic and resonance

magnetic images (which are very hard to obtain in an intra-

operative scenario) and allow surgeons to see beyond the

tissues within the brain. Another way would be to extract

three-dimensional (3D) information from the combined en-

doscopic and ultrasound images to help surgeons better lo-

cate brain structures (such as tumours). Some work has

been done in this direction, mainly in the replacement of

the classic ultrasound (2D imaging methodology) with 3D

ultrasound equipment (Unsgaard et al. 2006). We have fo-

cused our attention on using classic ultrasound techniques

and endoscopic images to extract 3D information. We are

proposing to track the ultrasound probe in the endoscopic

images and then to compute the pose of the ultrasound

probe in 3D space without an external method (optical or

magnetic).

1.2. Outline of our method

The equipment setup is as follows: the ultrasound probe is

introduced through a channel in the endoscope and is seen

by the endoscopic camera. Using visual tracking equip-
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ment (Polaris), we can calculate the 3D position of the

endoscope’s tip, and we want to know the pose of the ultra-

sound probe in order to have the exact location of the US

sensor. This is important because the US probe is flexible

and rotates around its own axis. It can also move back and

forth, and since the channel is wider, there is also random

movement around the channel (Figure 1). The US probe

is connected to a drive unit for the micro-tip transducer;

the transducer is rotated to generate a 360 ◦ beam at 10

MHz. By tracking the US probe in the endoscopic image

in successive video frames, we can use multiple-view 3D

estimation techniques to find the pose of the US probe axis.

With this pose and the exact location of the endoscope’s

tip, we can estimate the 3D coordinates of the US probe

tip. This is fundamental since the US image is orthogonal

to the US probe’s axis (see Figure 2). We know that in one

small interval of time x, the ultrasound probe is fixed and

the endoscopic camera undergoes a movement equivalent

to an inverse motion; i.e., the endoscopic camera is fixed,

and the ultrasound probe undergoes a movement. In the Fig-

ures 1 and 2, we show the 3D virtual representation of the

brain phantom used for the experiments. This model is con-

structed with magnetic resonance images of the phantom.

1.3. Structure of the paper

This paper is organized as follows. Section 2 describes

the techniques used to track the ultrasound probe in the

endoscopic images. Two alternative methods are presented:

the generalized Hough transform with further refinement
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Figure 1. ENS equipment setup.

through an analysis of the orientation of the edges (AE) in

the image and particle filtering. Section 3 is devoted to ul-

trasound image processing, and a method to segment brain

structures is presented. Section 4 describes how to calcu-

late the 3D pose of the probe using Conformal geometric

algebra (CGA) and multiple-view methods. We present the

conclusions in Section 5.

2. Endoscopic image processing

2.1. Tracking the ultrasound probe

The goal here is tracking the US probe that is seen in the

endoscopic camera images. In order to achieve this, we use

two alternative techniques: generalized Hough transform

with AE and particle filters. It will be reached by tracking
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Figure 2. Scene for the virtual representation. The plane � that
is to be calculated contains the US image to be segmented and is

orthogonal to the unit vector �ℓ.

the axis line of the US probe throughout the images. Recog-

nizing this line is important because it allows us to compute

its 3D coordinates using the projection matrix of the cam-

era. Such a projection is done as follows: every line is back

projected to form a plane in the space, which contains the

line and the camera’s centre. Using two consecutive images,

the intersection of its respective planes will yield the line

in 3D. To obtain a more accurate result, we are taking only

the unit vector of this line (because the calculation of the

translation in the projection matrix is up to a scalar factor).

We translate the first point (the tip of the endoscope) ob-

tained by the Polaris lecture by a distance d2 (see Figure 2)

along the direction of the unit vector in the direction of the

previously obtained line, and this translated point will be

the position of the US sensor in 3D, making it possible to

obtain the plane � to make the virtual representation. The

Polaris system gives us the linear transformation between

itself and the attached tracker to the endoscope. To calcu-

late the linear transformation between the image frame of

the endoscopic camera and the tracker, we use our hand-

eye calibration method (Bayro Corrochano and Daniilidis

1996). Now we give a brief overview of the generalised

Hough transform and the particle filter methods that were

independently used to track the axis of the US probe.

2.2. Generalised Hough transform and analysis

of edges

2.2.1. Generalised Hough transform

The generalised Hough transform (GHT) is used to find an

object in an image, using a template. The matching process

is based on a voting system for the possible orientations, po-

sitions and also scalings of the template (Vernon 1991). The

votes are stored in an accumulator and the location in the

accumulator with the greatest amount of votes will be the

winner. That is, it will yield the position and orientation

of the template in the image. This tracking method is ro-

bust to occlusion and illumination changes. We are using

it to get a first good approximation of the template in the

Figure 3. Generalized Hough transform: definition of R-table
components.

image. Before applying the GHT algorithm, the size of the

endoscopic images was reduced (to decrease computational

time) with a Gauss pyramid and its edges obtained using a

Canny filter.

To start, we need to make an R-table that completely

describes the template (see Figure 3). We select a reference

point (xref, yref) and draw a line to any point of the boundary.

Then we compute the distance and the direction from that

point to the reference point, i.e., (r, β). The orientation of

the boundary �i will be the index to the (r, β) values. The

R-table is built just one time, at the beginning of the match-

ing process, and (xref, yref) is the centroid of the boundary

points.

Here we present the Hough transform algorithm. We

calculate orientations and positions of the template in the

images:

� Represent the shape by building the R-table:

For all points on the boundary:

compute orientation � (gradient direction +900),

compute r and β,

add an (r ,β) entry into the R-table at a location indexed

by �.
� Quantise the Hough transform space: identify maximum

and minimum values of xref, yref, φ and identify the total

number of each one of them.
� Generate an accumulator array A(xref ,yref, φ); set all val-

ues to 0.
� For all edge points (xi, yi) in the image:

compute the orientation � (gradient direction +900),

compute possible reference points xref, yref.

For each table entry indexed by � and for each possible

shape orientation φ:

compute xref=xi + rcos(β + φ),

yref = yi + rsin(β + φ),

increment A(xref, yref, φ).
� For all cells in the accumulator array, search for maxi-

mum values.

The coordinates xref, yref and φ give the position and

orientation of the shape in the image.

2.2.2. Analysis of edges

We analysed the orientation of the edges (analysis of edge-

sor AE) in the image in order to increase the accuracy of
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Figure 4. AE. (a) ROI in the endoscopic image. (b) Edges on the image frame.

the GHT tracking algorithm. The AE can be seen as a filter

accepting pixels that belong to the US probe and rejecting

the others. In order to achieve this, we used a binary mask,

which describes the area of interest in the endoscopic im-

ages (ROI; see Figure 4a). This mask is computed once in

the beginning of the tracking. We checked the orientations

of the edges in a neighbourhood and their direct distance

to the image frame; the edges that have a position that is

physically possible will have a high weight, while the other

edges will have a low weight. A neighbourhood of edges has

a physically possible position whether it is convex and also

has a region support on the image frame (see Figure 4b).

Thus, we have two estimated lines (the first was obtained

using GHT and the second was obtained using AE), and

these are weighted to obtain a total estimated line (EL):

EL = 0.65 × GHT + 0.35 × AE, (1)

where the factors 0.65 and 0.35 were obtained experimen-

tally.

The results are shown in Figure 5. The figure displays

the estimated line of the ultrasound probe and also a hori-

zontal line indicating the end tip.

2.3. Tracking with particle filters

Another approach to performing visual tracking is to

use a Bayesian tracker; thus, treating motion tracking as

a Bayesian state estimation problem. In order to use a

Bayesian framework, one must model the object being

tracked as a state vector. Additionally, a method to eval-

uate how well the predicted states of the state vector fit

the observation is needed. The most widely used Bayesian

tracker is the Kalman filter. However, Kalman filters re-

quire a Gaussian observation probability and a Gaussian

posterior probability density. Our observations show that

the random movement of the ultrasound probe can hardly

be described as Gaussian. This situation made us look for

a more general tracker: the particle filter.

2.3.1. The particle filter

Particle filters emerged from the pioneering work of (Isard

and Blake 1998). Particle filters were introduced to track

objects in visual clutter and can handle multimodal obser-

vation probabilities.

Let us assume that xt represents the state (state vector)

of the object at time t and that Xt = {x1, . . . , xt } represents

its history over time. The vector Zt = {z1, . . . , zt } encloses

all the observations zi up to time t . In our framework, zt

represents an endoscopic image at time t . The particle fil-

ter approximates the posterior p(xt |Zt ) of the probability

distribution. The key idea in the particle filtering is to ap-

proximate the probability distribution (and consequently

the posterior) by a weighted finite set of samples, the parti-

cles. Let S = {(s
(n)
t , π

(n)
t )|n = 1, . . . , N} be a weighted set

of N different samples. Every sample s(i) represents a possi-

ble object state, and a weight π (i) is associated with it. This

weight represents the likelihood for the associated particle

to be the true location of the target object. The weights are

normalized so that
∑N

i=1 π (n) = 1.

By applying Bayes’ law, the posterior p(xt |Zt ) can be

expressed recursively as

p(xt |Zt ) = ktp(zt |xt )p(xt |Zt−1). (2)

Having the state vector at time t − 1, the posterior

p(xt−1|Zt−1) can be obtained by marginalizing over xt−1,

making it possible to obtain the distribution p(xt |Zt−1).

p(xt |Zt−1) =

∫

xt−1

p(xt , xt−1|Zt−1)

=

∫

xt−1

p(xt |xt−1)p(xt−1|Zt−1), (3)

where the chain rule (p(xt |xt−1) is the dynamical model.

To perform the filtering operation, a new set of parti-

cles is created by picking up with replacement N particles

from the N particles created at time t − 1. The probability

of selecting a particle s(i) is proportional to its normalized
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Figure 5. Estimated line obtained using GHT and analysis of edges.

weight π (i). This is done as follows: to sort the N particles at

time t − 1 from greatest to least weight; to create N ∗ π (0)

particles, to create N ∗ π (1) particles and so on until the

N new particles have been created. Then the new parti-

cles are updated using the evolution model of the system.

The new weights for the updated particles are calculated,

measuring how well the object position represented by each

particle fits the observation zt at time t . After normalising

the weights, the mean state is estimated at each time by

E[S] =
∑N

n=1 π (n)s(n).

Subsequent locations of the probe can be represented

as a rotation and a translation with respect to the ini-

tial line estimate. A state vector can be represented as

s(i) = [d
(i)
x , d

(i)
y , d

(i)
θ ]⊤, with its components describing this

translation and rotation. This model evolves in each stage

according to

St = St−1 + Nt , (4)

with Nt as white Gaussian noise.

To obtain the weight of each particle, the image of the

area selected in the first picture is obtained and rotated

and translated according to the particle (state vector) com-

ponents. The transformed image is then compared to the

observed image via the Bhattacharyya distance between

their colour histograms, as described in Nummiaro et al.

(2003).

2.4. Tracking results

The GHT method was applied as explained and the particle

filter was applied using up to N = 300 particles, but little

difference was observed in the results when N > 100. Sev-

eral images and sequences have been tested. Figure 6 shows

typical results for the particle filter method. Both tracking

methods performed well in practice. However, we prefer

the GHT method (Section 2.2) because it is faster and also

because the particle filter method is nondeterministic; i.e.,

under identical initial conditions, the resulting outcome can

differ in independent runs because it depends on random

estimates. We obtained an accuracy of 94% with the GHT

method.

3. Ultrasound image processing

The goal of this stage is to segment interesting struc-

tures in the brain images, such as tumours. We are using

morphological operators in order to fill small holes that

Figure 6. The results for the particle filter method.



128 R.M. Cadena et al.

Figure 7. A) Original US image. B) Result of segmentation.

appear due to the sub-sampling provided by the Aloka

ultrasound system. The closing morphological operator

of the image I with the sub-image M (structuring ele-

ment) is defined as I · M = (I ⊕ M) ⊖ M , where ⊕,⊖
represent the dilation and erosion morphological operators,

respectively.

We process the ultrasound images in the following way:

� Do a copy of the original image ([rgb]1,1,1[rgb]1,1,1

[rgb]1,1,1 for not modify it); select a region of interest

(ROI), otherwise the ROI will be the complete image.

The ROI will be the same for all images.
� If the ROI contains either a section of or the complete

central part of the image, we exclude that part of the ROI

because it only contains noise.
� Apply a threshold to the grey levels of the ROI to select

only the highest levels.
� Apply the closing morphological operator to fill the holes

of the ROI.
� Use the chain code to calculate the smallest areas of the

ROI and eliminate them.

� Apply a logical AND operation between the ROI and

the original image. The result is the segmented tumour,

which is to be represented in 3D.

Figure 7, shows an example of the segmented tumour in

ultrasound images.

We obtained a processing time of 0.005305 s for the

morphological operators method, which is 188 fps. We rec-

ommend it for inline implementation, because it is fast and

reliable.

4. Calculating the 3D pose of the tumour

Conformal geometric algebra (CGA) represents geomet-

ric entities as points, lines, planes, spheres, pair of points,

dilators, etc. in an economical and compact form (Li and

Hestenes 2001). It has great potential for applications in

medicine, artificial vision and robotics. CGA preserves

the Euclidean metric and adds two basis vectors: e+, e−

(where e+
2 = 1 and e−

2 = −1), which are used to define

the point at the origin e0 = 1
2
(e− − e+) and the point at

Figure 8. a) Virtual representation of the segmented US image. b) Applying a convex hull to the results.
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Figure 9. The tumour in a brain phantom model.

infinity e = e− + e+. The points in CGA are related to

the Euclidean space by p = p + p2

2
e + e0. A sphere in

dual form is represented as the wedge1 of four conformal

points that lies on sphere s∗ = a ∧ b ∧ c ∧ d . Its radius ρ

and its centre p in R3 can be obtained using ρ2 = s2

(s·e)2 ,

p = s

−(s·e)
+ 1

2
ρ2

e. A plane in dual form is defined as a

sphere, but the last point is at infinity: π∗ = a ∧ b ∧ c ∧ e.

A line in dual form is represented as the wedge of two points

and the infinity point: L∗ = a ∧ b ∧ e. A line can also be

calculated as the intersection of two planes: L = π1 ∧ π2.

This equation is used to calculate the 3D line that represents

the ultrasound probe’s axis. As we mentioned, we only took

the unit vector of this line. To achieve a translation by a

distance d2 from a point p1 in the direction of a line and to

obtain p2 : T = exp( 1
2
d2L), p2 = T p1T̃

The last equation is used to find the position of the ul-

trasound sensor in order to put the segmented ultrasound

image in 3D space; p1 represents the tip of the endoscope

obtained by the Polaris tracking system and d2 is the dis-

tance between two retro-projected points taken from our

overlapped template on the found US probe in two consec-

utive images. One of these two points is the intersection

between the horizontal line indicating the end tip and the

estimated line of the US probe, as we showed in Figure

5, and the other one is the intersection between the top of

our template and the estimated line of the US probe. Fig-

ure 8a shows the virtual representation of the segmented

US image.

1The wedge product, which is also known as the exterior product
of multivectors Ar y Bs (of degree r and s, respectively), is defined
as Ar ∧ Bs = 〈ArBs〉r+s , where 〈Ar〉i is the blade of degree i taken
from the multi-vector of degree r .

Further results are presented in Figures 8b and 9. The 3D

model was built by stacking several estimates and finding

the convex hull of their 3D space (Barber et al. 1996).

5. Conclusions

We addressed the problem of obtaining 3D information

from joint ultrasound and endoscopic images obtained with

ENS equipment. In order to register both sources, we de-

veloped two alternative methods to locate the US probe tip

in endoscopic images: one of them using the generalised

Hough transform with further refinement through an analy-

sis of the orientation edges in the image and the other one us-

ing a particle filter. Some preliminary results are shown. As

for the ultrasound image, we presented a method to segment

brain structures of interest. Results are shown in 3D space;

the 3D information was calculated from the results obtained

by the tracking process in endoscopic images. The perfor-

mance of the proposed approach was demonstrated using

several images that were subject to occlusions and changes

in illumination and contrast, as we showed in Figures 5

and 6. The results indicate that the proposed approach

is robust.

Currently, we are conducting a series of new experi-

ments using an accelerator board in order to estimate con-

tours and to re-create the 3D form of the tumour in real

time.
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