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Tracking of Migrating Cells Under Phase-Contrast
Video Microscopy With Combined

Mean-Shift Processes
O. Debeir*, P. Van Ham, R. Kiss, and C. Decaestecker

Abstract—In this paper, we propose a combination of
mean-shift-based tracking processes to establish migrating
cell trajectories through in vitro phase-contrast video microscopy.
After a recapitulation on how the mean-shift algorithm permits
efficient object tracking we describe the proposed extension and
apply it to the in vitro cell tracking problem. In this application,
the cells are unmarked (i.e., no fluorescent probe is used) and are
observed under classical phase-contrast microscopy. By intro-
ducing an adaptive combination of several kernels, we address
several problems such as variations in size and shape of the
tracked objects (e.g., those occurring in the case of cell membrane
extensions), the presence of incomplete (or noncontrasted) object
boundaries, partially overlapping objects and object splitting (in
the case of cell divisions or mitoses). Comparing the tracking
results automatically obtained to those generated manually by a
human expert, we tested the stability of the different algorithm
parameters and their effects on the tracking results. We also show
how the method is resistant to a decrease in image resolution and
accidental defocusing (which may occur during long experiments,
e.g., dozens of hours). Finally, we applied our methodology on
cancer cell tracking and showed that cytochalasin-D significantly
inhibits cell motility.

Index Terms—Cell division, cell motility, image processing,
mean-shift, tracking, video microscopy.

I. INTRODUCTION

A. Automatic Cell Motility Analysis

I
N VITRO cell displacement has been shown to be a useful pa-

rameter to consider in several biological applications, such

as the study of cell migration and its variations under different

culture conditions or drug actions (e.g., see [1]–[5]). To analyze

cell migration, it is usual to automatically record sequences of

frames by means of microscopes equipped with video acqui-

sition systems. The locations of each cell have to be tracked

during entire sequences and qualitative and quantitative features
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have to be computed (average speed, maximum displacement,

etc.). Manual or interactive computer-assisted tracking has been

used by many authors [6]–[9]. However, this approach quickly

becomes a tedious task if a large number of cells must be tracked

during long periods (dozens of hours) in order to obtain statis-

tically robust results. This is why automation is becoming in-

creasingly popular [5], [10]–[15]. Unfortunately, some acquisi-

tion modalities, imposed by the tackled biological problem, give

poor image quality for automatic image processing (e.g., phase-

contrast imaging in our case), leading to nonobvious image anal-

ysis problems that remain an interesting issue. Furthermore,

tracking algorithms able to work on gray-level images acquired

from standard cell cultures exempt the users from having re-

course to fluorescent markers, as used by certain authors (e.g.,

[10]).

A number of works aiming to quantify cell motility use a

monolayer wound model (see, e.g., [1] and [16]). This consists

in wounding a confluent monolayer of cells and then evalu-

ating cell migration (usually on the basis of timelapse image

recording) either by determining the rate of advance of the

wound edge as a measurement of the rate of cell locomotion

[1], or by counting the number of migrating cells (i.e., the

number of cells observed across the wound borders) [16]. This

kind of assay does not consider individual cell locomotion nor

does it distinguish between the roles played by cell migration

and cell proliferation in the advance of the wound edge. While

the wound approach is particularly well adapted to model cell

response to a lesion occurring in a tissue, individual cell migra-

tion assay is more adapted for biological mechanisms involving

individual cells (such as inflammatory and immune reactions,

and tumor spreading and metastasis). These mechanisms are

concerned in the present application where the aim is to follow

individual living cells during dozens of hours and to construct

their trajectories from a set of successive positions that we call

“cell centroids.” Experimental observations showed that the

cell centroids chosen by human experts (i.e., cell biologists)

correspond to points located near the centers of the cell soma.

As illustrated in Fig. 1, on various cell cultures, the cell soma

generally appears as a dark area surrounded by a white halo

(under phase contrast imaging). However, this kind of pattern

often appears at various places in a single cell. To help to

identify a good initial centroid for each cell, the first instance

of each cell position will be determined by a human operator

on the first frame of the sequence and will be used as the initial

conditions of the tracking process (see Section III-B). Our aim

is then to identify a dark area surrounded by a white halo in

0278-0062/$20.00 © 2005 IEEE
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Fig. 1. Examples of observed images on different cell cultures under phase
contrast imaging. Cells appear as dark areas surrounded by bright halos. These
halos are sometimes difficult to see on the recorded images [e.g., see frame
(a)]. The preprocessing steps used in our application clearly highlight them
(see Fig. 7). The human cell lines illustrated (and their origins) are (a) MCF7
(breast carcinoma). (b) U373MG (high grade astrocytoma). (c) U87MG (high
grade astrocytoma). (d) HUVEC (human umbilical vein endothelial cells). (e)
HCT15 (melanoma). (f) A549 (colon carcinoma). All the cancer cell lines (i.e.,
all except the HUVEC primoculture) were obtained from the American Type
Culture Collection (ATCC, Manassas, VA). For details about cell cultures, see
[2-4].

the neighborhood of each centroid and then track the centers of

this kind of pattern from frame to frame.

B. Tracking by Segmentation and Model Tracking

There are two main approaches described in literature that

tackle (biological) object tracking.

The first way is frame-by-frame image segmentation tracking

(e.g., see [11]–[13], and [17]). The first segmentation phase con-

sists in automatically detecting object candidates on a given

frame on the basis of their specific properties (border, texture,

color ). After this, a between-frames object-pairing is carried

out in order to follow each object displacement during the se-

quence of frames. This approach is efficient when object borders

are sharp and is useful for temporal and spatial sequences as

well (e.g., where the time axis is replaced by the z axis). As the

segmentation in each frame may be independent from the other

frames, it is possible to handle objects with a changing topology

(in our case during mitoses, i.e., when a mother cell splits into

two daughter cells) but handling contiguous and overlapping ob-

jects may become difficult. In our application, partially overlap-

ping objects are often encountered. Furthermore, image quality

(under phase-contrast microscopy) does not ensure sharp bor-

ders of the tracked objects. This is why we investigated another

approach described in Section II.

The second way deals with object model adjustment. This es-

sentially consists in optimizing a parameterized model shape in

order to fit the model to the targeted objects (i.e., each cell in a

frame in this case). This type of method does not find all possible

objects in the frame, but focuses on one unique candidate (which

corresponds to the predefined model) located around an initial

position. “Active contours” (or “Snakes”) [5], [10], [14], [15]

is such a method, and also gives, as a secondary result, a seg-

mentation of the objects. “Level sets”, a more general approach,

are able to tackle object topology changes [18] but present other

drawbacks for cell tracking [5]. The mean-shift algorithms give

a fast solution for object tracking in video sequences (e.g., ve-

hicle tracking, closed loop video) [19], [20], but usually do not

give object contours. Different methods can be combined such

as mixing the mean-shift and active contour approaches [21].

In contrast to segmentation-based methods, this second group

of methods does not require a between-frames object-pairing

stage in the processing of temporal sequences. Indeed, the re-

sult of the model adjustment process in frame -1 is used to ini-

tialize the process in frame [5], [10], [14], [15], [19], [20]. This

straightforward automatic initialization trivially links object po-

sitions across frames if the objects move relatively little between

consecutive frames (this can be easily satisfied by adjusting the

number of frames acquired by time unit). The object positions

on the first frame of the sequence have also to be identified to

initialize the complete process (e.g., easily done manually).

C. Our Approach: The Combination of Several Model-Based

Mean-Shift Processes

In the context of our application, i.e., tracking migrating

cells, we do not focus on object segmentation but rather on

the tracking of object positions (located by what we call “cen-

troids”). We do not emphasize the precise border detection

for the following reasons. First, phase contrast microscopy

produces bright halos (see Fig. 1) around the observed objects

whose thickness greatly depends on the focus plane. Second,

migrating cells often present membrane extensions out of

the focal plane. In this case, the cell borders do not appear

as a continuum. Third, cells can interact closely with each

other and, thus, parts of their borders can be merged. Finally,

cells which undergo division present splits of their borders

to two different contours (one per daughter cell). All these

facts make the tracking of cells with methods based on object

border detection difficult. It results that “active contours” and

“level sets” methods require a larger number of adaptations

to be successfully applied (see [5] for details). This is why

we consider the border location rather as a qualitative data

and promote the use of an alternative approach, based on the

mean-shift method, to track, from one frame to the next, the

new position of each object. In Section II, we show how to

combine several mean-shift processes to follow complex gray

level patterns. We, therefore, build an adaptive combination

of such processes based on an ensemble of nested kernels

attracted by either black or white pixels, and we detail how to

determine and adapt these kernels to be able to follow living

cells despite their morphological changes and divisions. In

Section III, we specify some particular points linked to our

application (such as image acquisition and preprocessing). In

Section IV we validate our algorithm by comparing results

obtained by means of the automatic tracking algorithm with

those generated manually by a human expert. We also used this



DEBEIR et al.: MIGRATING CELLS UNDER PHASE-CONTRAST VIDEO MICROSCOPY 699

approach to test the algorithm robustness with respect to the

different parameters used in our adaptive model. In Section V,

we present a biological application of the effects of a specific

drug on the motility of tumor cells. Our conclusion is drawn in

Section VI.

II. MEAN-SHIFT ALGORITHM

A. General Mean-Shift

Mean-shift generalized in [22] is a simple iterative procedure

that fundamentally seeks to identify a local mode within a set

of data. This is based on the notion of “kernel.” Briefly, if

is a flat kernel of radius centered on which is defined in the

-dimensional Euclidian space as

and the sample mean at for a finite data set is

The mean-shift is the difference . The algorithm

consists in iteratively replacing the current kernel position

, i.e., shifts it to the average of data points computed

in its neighborhood (which is defined by the kernel).

Fig. 2 illustrates the application of a mean-shift process on

a gray-level image. Fig. 2(a) shows a two-dimendsional (2-D)

data set represented as a gray-level image lattice where bright

pixels (high gray levels) correspond to high densities and dark

to low ones. The flat kernel used is a disk whose initial position

is located by the bounding black square shown in Fig. 2(a). With

respect to this kernel attracted by the bright pixels, the sample

mean is computed as follows:

where is any pixel of the image and its gray level. The

simple iteration process converges toward the central part of the

gray-level distribution [see the black disk in Fig. 2(a)]. The same

process is also applied with a kernel attracted by the dark pixels

[see the white square and disk in Fig. 2(a)] after having inverted

the gray-level value of each pixel (i.e., using

for a 8 bit grayscale image), showing how the kernels escape

from the high intensities area to a low one.

Mean-shift is, thus, a very convenient method to locally find

the brightest (or the darkest) area in a gray-level image. Theoret-

ical results have been provided concerning the convergence of

the algorithm for flat and Gaussian kernels and the link with gra-

dient ascent/descent techniques [22]. In Sections II-B to II-D,

we focus on image application of the mean-shift process with

the density interpretation of the gray levels. We, thus, adapt this

approach in order to detect particular gray level patterns in an

image.

B. Coupled Mean-Shifts

Now let us consider a mean-shift-based method which cou-

ples two (or more) kernels in order to detect gray-level con-

figurations which are more complex than those illustrated in

Fig. 2(a). At this point, the proposed algorithm is slightly dif-

ferent to the standard mean-shift one in the sense that the new

Fig. 2. Two-dimensional mean-shift examples. (a) Illustration of two
independent mean-shift processes carried out on a 2-D-distribution, each using
a flat disk kernel respectively attracted by white or dark pixels. The initial
locations of the kernels are shown by squares (surrounding the initial disks)
and the final by the disks themselves (the resulting mean-shifts are indicated by
the black and white segments). Both trajectories are indicated by lines from the
common initial kernel centers to the final ones. (b) Coupled mean-shifts based
on linked kernels. The line shows the trajectory covered by the “mean” of the
coupled kernels from the initial to the final locations (see text).

position of a center is not defined by the sample mean com-

puted on one kernel but by the averaged position of two (or

more) sample means computed on different and linked kernels.

Fig. 2(b) shows the result obtained with two linked kernels

and , which are attracted by bright and dark pixels respec-

tively (where inverted gray levels are used in the case of , as

introduced in Section II-A). The centers of both kernels (labeled

and , respectively), thus, move together according to the

equations shown below (for an 8-bit grayscale image)

where is the offset of each kernel to the origin of the coupled

model. The iteration becomes

This kernel couple is, thus, able to find borders between con-

trasted regions [Fig. 2(b)]. In Section II-D, we will describe how

to adapt this mean-shift combination to track our objects of in-

terest (i.e., in vitro cells) which often appear as black objects

surrounded by white halos but may change into bright objects

surrounded by a dark background.
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C. Adaptive Combination of Linked Kernels

Previous works proposed methods based on scale space rep-

resentation [20] where the kernel size is one of the parameters

of the mean-shift algorithm. This approach gives algorithms ro-

bust enough to resist changes in the size of the tracked objects.

Because of application reasons detailed in Section II-E we want

the tracking algorithm to remain resistant to huge changes in the

appearance of the tracked objects. Typically we want to design

an algorithm able to track an object as long as possible, knowing

that the object generally presents a type of gray-level configura-

tion (e.g., a black area surrounded by a white halo) which may

change to another type (e.g., a small bright area surrounded by

a dark background) during a certain time interval. We propose

to use different combinations of mean-shift algorithms, like the

one described in Section II-B. Each combination is based on a

set of kernels and their respective weights in the com-

bined model. The shift is defined by

(1)

where is the mean sample computed on .

We choose to use a unique set of kernels (with adaptive

sizes, see Section II-D) and introduce variations in the weights

which determine their combination. A given set of weights,

represented as a weight vector ,

is associated with a specific gray level pattern (e.g., dark-sur-

rounded-by-bright). To be able to track a given object presenting

changes in its gray-level configuration, we propose using an

adaptive combination determined as follows. For example, let

us consider two different configurations (i.e., kernel combina-

tions) characterized by two different weight vectors (labeled

and ). A mix of both weight vectors determines the adaptive

combination enabling the transition from one configuration to

the other

(2)

where parameter is a function of the current object shape or

size depending on the application (see Section II-D).

D. Chosen Adaptive Kernels and Their Combination

Here, we detail the two adaptation levels introduced in our

model in order to be able to track living cells under phase-con-

trast microscopy imaging. First, we show how to modify the

sizes and shapes of the kernels used to take into account the pos-

sible variations in cell morphology. Second, we show in detail

how to adapt the weight vector of the kernel combination [see

(2)] to allow the transition between two different gray-level pat-

terns encountered during cell mitosis.

Our adaptive model is in fact controlled by several parameters

whose values essentially depend on general cell and image fea-

tures, such as the range of cell sizes encountered in regards to the

image resolution used. The different parameter values summa-

rized in Table I were used with success on various cell types in-

cluding essentially tumor cells of various origins [Fig. 1(a)–(c)

and (e)–(f)] and nontumoral endothelial cells [Fig. 1(d)]. As de-

tailed in Table I, certain parameters are scale-dependent and,

thus, their values are adapted to the magnification ratio and

TABLE I
ALGORITHM AND PREPROCESSING PARAMETERS

image resolution detailed in Section III-A. The robustness of

the algorithm according to these parameter values is illustrated

in Section IV-B.

As mentioned in Section I, the tracked cells are roughly black

objects surrounded by bright halos. In a first approach, we use

the model described in Fig. 3(a) where two mean-shift processes

based on two nested kernels are combined. The first kernel is

attracted by the bright pixels (of high intensities) and is com-

posed of ndir triangles (we use ), labeled (where

index “ ” means “white”), with different heights con-

nected at the centroid of the cell . These triangles de-

fine an irregular apple-pie-like kernel labeled . The second

nested kernel is made up of ndir smaller triangles (where

index “ ” means “black”) also centered in . In order to

have a mean-shift attracted by the darkest part of the image, the

gray levels are inverted in this second kernel. The

heights of these smaller triangles, labeled , are equal to a

fraction of the corresponding (we use ). The

“black-tracking” kernel, thus, remains nested into the “white-

tracking” kernel. The iterative process uses (1), where ,

to compute the new cell centroid in frame from an initial lo-

cation , which corresponds to the centroid location identified

in frame . The weights ( and ) in (1) are constant

(and scale-independent). Values such as and

were successfully used to track various types of cells as long as

the cells did not enter division (as explained later).

To take into account the possible variations in cell shape and

size from frame to the next , the kernels are submitted to

deformations. To these aims, the different heights of the

triangles are adapted (for each cell) on the basis of the distribu-

tion of the mass centers of these triangles. Briefly, given a model

centered on a cell in frame , the mass centers of each tri-

angle are computed. These mass centers [see the black

vertices in Fig. 3(a)] define a polygon centered on the cell cen-

troid and attached to the bright halo. A nested polygon attached

to the dark inner part can be similarly defined by the mass cen-

ters of the triangles [see the white vertices in Fig. 3(a)].
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Fig. 3. Illustrations of the mean-shift models used. Models with (a) two nested kernels and (b) an additional external kernel (see text). (c) Variation of the �
parameter used in (2) as a function of �d, which is the mean distance between the cell centroid and the g mass centers [i.e., the black vertices shown in (a) and
(b)]. This ensures a transition between two models attracted by two different gray-level patterns characterizing either a cell during a mitotic process (small �d) or
in a normal migrating process (larger �d, see text). (d) 3-kernels model adjusted on a cell including the g mass centers and the corresponding polygon, and the
areas corresponding to (e) kernel K (attracted by the inner dark pixels). (f) Kernel K (attracted by the white pixels). (g) Kernel K (attracted by the external
dark pixels), respectively.

To adapt the kernel used in frame , each value

is updated to

(3)

where (we use and ), and

is the average of the distances between the different

and the cell centroid determined in frame .

This maintains a certain level of anisotropy in the kernel (in

the directions established in frame ) which avoids too large cov-

erings between the kernels centered on the different cells. This is

particularly useful when the cells have a lengthened morphology

and are very close (see Section II-E). Factor must be larger

than 1 in order to track objects increasing in size. The corre-

sponding radii of the nested triangles are adapted
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Fig. 4. Illustration of backward tracking during cell division (mitosis). Sequence of frames showing a cell entering the mitotic process (frame 3) until effective
cell division (frames 5–7) resulting in two “daughter” cells (frames 8–12). This illustrates that during mitosis (frames 3–6) the inner (dark) part of a cell shrinks
until few (or no) dark pixels remain visible. After division (frame 7), each “daughter” cell regains a dark-surrounded-by-halo shape (frames 8–12). To establish cell
trajectories during mitosis, the tracking algorithm was used in the reverse direction (illustrated here from frame 12 to frame 1). Each frame illustrates the locations
of the cell centroid determined by the algorithm together with the polygons defined by the g mass centers (corresponding to the kernels attracted by white pixels,
see Fig. 3). The numeric values correspond to the values of the � parameter [defined in (4)] controlling the adaptive model. These values indicate the variations in
the cell sizes observed during a division.

accordingly (to maintain ). This adaptive model is

well suited to track cells containing the targeted pattern, i.e., a

dark area surrounded by a white halo.

However, in spite of their adaptive properties, this kind of

model based on two nested kernels is not appropriate to track

cells entering the mitotic process (i.e., cell division) during

which the cells adopt a completely different pattern (i.e., a small

bright disk with a very small inner darker part, see Fig. 4). We,

therefore, consider a model with two different states: the normal

state (“dark surrounded by white”) and the mitotic state (“white

surrounded by dark”). To take this mitotic state into account

a third kernel, , is considered by adding a trapeze with a

constant thickness at the external side of each triangle

[see Fig. 3(b)]. The union of these trapezes forms kernel for

which the mean-shift is computed on the inverted image as in

the case of kernel (i.e., also attracted by the darkest pixels).

The new cell position is computed with (1) with to

and where the weight vector may vary between
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consecutive frames from a vector corresponding to a normal

state to corresponding to a mitotic state (the weights are

kept constant during the mean-shift itself on a given frame).

The resulting weight vector (labeled ) for any cell being

between these two states is given by (2) where is a parameter

extracted from the cell shape. As a cell in a mitotic phase

appears to be shrinking (see Fig. 4), the interframe adaptive

properties of the kernels in terms of the update of the values

[see (3)] gives us an interesting parameter to identify cells

entering the mitotic phase. Note that (the mean distance from

the cell centroid to the vertices of the polygon attached to bright

pixels) is strongly correlated to cell size, in particular when the

tracked cell adopts the mitotic pattern. Fig. 3(c) summarizes

the underlying idea illustrating the variation of the parameter

[used in (2)] from a cell in the mitotic state to one in a normal

state as a sigmoid function of

(4)

where is the slope of the model transition and the threshold

for transition. In our experiments the value chosen for is 15

pixels that corresponds to the observed mean radius of cells in

the mitotic state. The slope sets the steepness of the transition

between both models (we use ). Fig. 3(d) illustrates the

3-kernel based model applied on a cell in a “normal” state and

the resulting polygon linking the mass centers. Fig. 3(e)–(g)

shows the areas corresponding to kernel (attracted by the

inner dark pixels), (attracted by the white halo pixels) and

(attracted by the external dark pixels), respectively. The typ-

ical values used for the constant weight vectors, and ,

are given in Table I. While the contribution of is strongly

weighted in (normal cell model), the contribution of is

reinforced in (mitotic cell model). A relatively slight con-

tribution of is used in only.

E. Establishing Cell Trajectories Through Mitoses and

Cell Crossing

In Section II-D, we detail how to adapt the combination of

kernels in order to ensure the successful transition between the

“normal” and the “mitosis” state of a cell (and inversely). Fig. 5

shows that the introduction of this adaptive feature is required

to determine acceptable cell centroids. This figure illustrates the

convergence paths generated by the algorithm when it is applied

from different starting points located around the cell analyzed.

These starting points were chosen to simulate different possible

locations of the cell centroid which would be determined by the

algorithm in the previous frame of the image sequence

(and would initialize the convergence process in frame ). To in-

dicate the direction of the convergence the final points are rep-

resented by squares (the starting points are, thus, at the other

path extremities). The paths illustrated in Fig. 5 are obtained

by applying the combined mean-shift process on the 3-kernel

based model (described in Section II-D) on a cell in a “normal”

state [Fig. 5(a) and (c)] and in a “mitotic” state [Fig. 5(b) and

(d)], depending on whether the adaptive properties of the model

are active [Fig. 5(a) and (d)] or inactivated [Fig. 5(b) and (c)].

Frames (a) and (d) evidence expected results. Note, on a cell in

Fig. 5. Convergence paths generated by our combined means-shift model with
[(a), (d)] active versus inactivated [(b), (c)] adaptive features. Illustration of the
convergence paths resulting from the algorithm when it is applied from different
starting points located around the cell analyzed. To indicate the direction of
convergence, the ends of the paths are emphasized by square dots (the starting
points are, thus, at the other path extremities). (b) Illustrates the results obtained
on a cell in a mitotic state by using a fixed model previously adapted on the cell
shown in (a) (i.e., with inactivated adaptive features). Conversely, (c) evidences
what happens if a fixed model adapted to the cell shown in (d) is applied on
a cell in a “normal” state (see text). (a) and (d) Results obtained with a model
adapted to the respective cell states.

a “normal” state (a) each path converges to a point located in

a darker area surrounded by white regions which is always in-

side the cell. These convergence points can, thus, be considered

as “acceptable” cell centroid locations for the tracking process

(compared to humanly located centroids in Section IV-A). On

a cell in a “mitotic” state (d) all the paths converge to the center

of the white disk characteristic of this state. In contrast, frames

(b) and (c) show what happens if the adaptive features of the

model are inactivated (i.e., the model is fixed before applying the

mean-shift process). In fact, frame (b) exhibits the convergence

paths obtained by using a model adapted for the cell shown in

frame (a) (in a normal state) and fixed before being applied on

the cell in mitosis. Similarly, frame (c) shows the convergence

paths obtained by using a model adapted for the cell shown in

frame (d) (in a mitotic state) and fixed before being applied on

the cell in a normal state. These two experiments evidence that

in both cases the process converges to points located near the

cell boundary. These points cannot be considered as acceptable

centroid locations because they would cause the loss of the cell

in the following frames of the sequence.

Another important point which has to be considered is that

cell division increases the number of objects to track. It is in-

teresting to connect cell trajectories during mitoses in order to

establish the migration potential of a cell through its “descent,”

e.g., by measuring the distance covered by a cell and its suc-

cessive cell generations (if the observation time allows it). This

could interestingly characterize the potential of diffusion of a

particular type of cells (e.g., cancer cells). The adaptive com-

bination of kernels enables the successful transition to be car-

ried out from one cell to one of its two daughters (through the

mitosis pattern) and, thus, the connection of the two cell trajec-

tories. However, using this method, only one daughter is taken
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Fig. 6. This sequence of preprocessed images illustrates the tracking of four cells in close contact. Three of them (labeled 1, 2, and 3) present membrane protrusions
crossing the trajectories of the other cells. For the sake of clarity, only 1 on 3 successive frames from the original sequences is shown together with the cell centroids
(white dots), their associated polygons (corresponding to the kernels attracted by white pixels) and the cell paths (black lines) established by the tracking algorithm
between the different frames. The beginning of each path illustrated in a frame corresponds to the associated cell centroid location (i.e., the path end) illustrated in
the previous frame. (a) The crossing of membrane filopods extended by cells 2 and 3 (see the arrow). In (b) and (c), cell 1 crosses the membrane protrusion coming
from cell 3. The same process is illustrated in the case of cell 2 in (c)–(f).

into account and tracked after each division (the second is lost).

A complementary and easy way to establish trajectory connec-

tions between a cell and its two daughters is to track cells in the

inverse time direction (i.e., from frame to frame ). The

mitotic event is very easy to detect in the inverse time direction

because the centroids of two daughter cells progressively be-

come close enough to be merged and the subsequent locations

of both cells remain the same from the moment of division until

the beginning of the sequence (in the reverse direction). Back-

ward (or reverse) tracking, thus, enables both daughter cells to

be taken into account in each cell division. Two trajectories are

finally available including proper and common parts (the latter

corresponds to the mother cell). Moreover, the detection of mor-

phology changes described in the forward procedure (see Sec-

tion II-D) is a very good way to avoid confusions between actual

mitoses and cell trajectories presenting very near or overlapping

parts. Fig. 4 illustrates the interest of the model adaptation and

backward tracking from a dynamic point of view during a cell

division. While the frames are numbered following the “natural”

time, the tracking process is carried out in the reverse time di-

rection (i.e., from frame 12 to 1). Each frame shows the poly-

gons linking the mass centers together with the computed

value of parameter (see (4) in Section II-D) and the final cell

centroid obtained after convergence. During reverse tracking,

frames 12 to 6 illustrate the polygon contraction (characterized

by decreasing values) observed on two cells merging into a

single one (in frame 6) and the inverse process occurring in

frames 2 and 1 (with progressively larger values). Frame 12

to 7 also illustrate the ability of the (backtrack) algorithm to cor-

rectly follow two cells which remain close to one another and

present overlapping halos. Overlapping may also occur when

one cell crosses another cell trajectory (e.g., when it climbs on

a membrane protrusion of another cell). Fig. 6 illustrates that

our tracking algorithm is able to follow cells in such situations.

It shows 4 cells in close contact, their associated polygons (de-

fined by the mass centers) and centroids (white dots) and

their linkings across frames (black paths) which are automati-

cally determined by our algorithm on a sequence of frames (a) to

(f). The cells labeled 1, 2, and 3 in Fig. 6 exhibit membrane pro-

trusions which cross another cell trajectory. While in frame A

cell 3 extends a long membrane protrusion (see the arrow) over

the two other cells (1 and 2), in Fig. 6(b) and (c) cell 1 moves

below this membrane protrusion toward another location [see

Fig. 6(c)]. As illustrated the algorithm is able to follow cell 1

during this crossing. The same process is illustrated in frames (c)

to (f) in the case of cell 2 (see arrows) which also moves below

the membrane protrusion extended by cell 3 toward another lo-

cation. Again, the tracking algorithm does not lose cell 2 during

its movement. Of course, in some cases the model associated

to a cell converges to another close cell during the mean-shift

process, causing an incorrect inter-frame association. The oc-

currence of these tracking errors is evaluated in Section IV-A.

It should be noted that the results illustrated in Figs. 4, 5, and

6 concern images preprocessed as detailed in Section III-C.
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III. APPLICATION FEATURES

A. Acquisition

Cell cultures in Falcon plastic dishes maintained at 37 C

were observed and recorded automatically every 4 min by

means of the device described previously [12], [13]. Briefly,

the images were acquired under a phase-contrast microscope

(Olympus, model IX50, magnification ratio 10:1), with a

charge-coupled device video camera (Hitachi Denshi, model

KP-M1E/K-S10) coupled with an acquisition board (32-bits

Matrix Vision PC-GRAB-GI frame grabber). The image di-

mensions are 700 500 pixels (with a pixel resolution of 0.92

m at the magnification ratio abovementioned) discretized on

256 gray levels (8 bits/pixel). The uncompressed images were

stored on a computer hard disk.

B. Manual Initialization

As the sole interactive part of the algorithm, the human oper-

ator is asked to manually select the cells to be tracked on either

the first frame (forward tracking) or the last frame (backward

tracking) of the sequence by marking them with the computer

mouse. To allow the operator to execute this task quickly, the

tracking algorithm described in Section II is already used to au-

tomatically adjust the mark position at the cell centroid position.

In Section II-E we show that our tracking algorithm exhibits

paths converging sharply to a small number of regions reduced

in size and which correspond to almost acceptable cell centroid

locations, i.e., situated inside the cell (in a relatively central re-

gion). The distances between centroid locations automatically

and manually determined are illustrated in Section IV-A.

C. Preprocessing

As we want to be able to observe cell migration during a long

period of time (we carried out experiments lasting 72 h, cf. [12]

and [13]), we cannot use high intensity illumination that could

disturb living material under study. So the images acquired gen-

erally have low contrast. This is why we apply a preprocessing

step to enhance the image contrast and prevent lighting prob-

lems (such as vignetting and illumination changes). The prepro-

cessing consists in first roughly detecting the image background,

i.e., the part of the image including no cell. The background is

almost continuous compared to the cell areas which are charac-

terized by the presence of many borders. We extract the border

information from the image using a gray level morphological

gradient [23] with a circular structuring element of radius equal

to 15 pixels (equivalent to the smallest cell size encountered

in our various experiments). The resulting gradient image is

thresholded at value 50 (in the 8-bit scale used). Fig. 7(a) and

(b) illustrates a typical cell culture image and the corresponding

thresholded gradient (binary) image used as the background

mask, respectively.

Contrast enhancement and illumination correction is

achieved using a local equalization described as a local

enhancement in [24]. In our version, the new equalized value is

computed for each pixel on the basis of the gray level distribu-

tion of the circular neighborhood around the pixel. The radius

used is fixed to 20 pixels and ensures a good contrast between

the inner part of the cells (darker areas) and the surrounding

Fig. 7. Illustrations of the preprocessing steps used in our application (see
text).

region (brighter areas). As illustrated in Fig. 7(c) this kind of

local equalization [applied on the image shown in Fig. 7(a)]

produces a high level of contrast and a uniform gray level distri-

bution across the image. To remove the amplified background

noise, the image is masked (i.e., multiplied) by the previously

computed background mask, as shown in Fig. 7(d).

Thresholding, equalizing, and masking are applied to the

complete sequence.

It should be noted that several constant values have been in-

troduced in the different preprocessing steps (summarized in

Table I). Of these constants, the two radius values are scale-de-

pendent. In Section IV-C we investigate the sensitivity to these

different parameters.

D. Cell Trajectory Features

As defined in our previous works [12], [13], for each cell

trajectory, we computed the average speed (AS), which is the

mean distance covered by a cell per time unit and the Maximum

Relative Distance to Origin (MRDO) feature. The latter feature

refers to the greatest linear distance between the original posi-

tion of the cell and the farthest position reached by the cell in its

trajectory. MRDO is in fact the maximal distance normalized by

the observation time for the cell analyzed (to be able to compare

cell trajectories corresponding to different observation times). In

contrast with AS, MRDO is able to distinguish between cell tra-

jectories constituted of many small movements (around the orig-

inal cell location) and those presenting few large displacements,

as detailed in [13]. In the present paper, we extended the MRDO

feature to two others, labeled HULL and MAXDIST. The HULL

feature is based on the convex hull polygon constructed on all

the positions occupied by a cell during its displacement; this is

the smallest convex set that includes all the points of the cell

trajectory. The HULL feature is the area (pixel ) of the convex

hull (i.e., the area covered by the cell trajectory) normalized by

the observation time of the cell analyzed (similarly to MRDO).

The MAXDIST is the maximum distance between two points

of the cell trajectory (whatever are these points), also normal-

ized by the observation time of the cell. MAXDIST is, thus, a

generalization of MRDO, freed of the first cell position (taken
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as reference in MRDO). This also corresponds to the maximum

distance between two points of the convex hull.

IV. ALGORITHM VALIDATION AND ROBUSTNESS STUDY

A. Automatic Versus Human Cell Tracking

Our automatic tracking process was compared to that

achieved by a human operator on image sequences of A549

cells (illustrated in Fig. 1(f) and also used in the application

reported in Section V) filmed during 24 h (1 frame acquired

every 4 min). This was carried out as follows. Each cell in

three different image sequences (360 frames/sequence) was

automatically and manually tracked in the backward direction.

In order to make the manual task less tedious, the operator

used an interface that showed a given cell in a close up display

every 10th frame. For each cell, the successive centroid loca-

tions marked by the operator were then interpolated using line

segments to determine the complete trajectory. The locations

of all the cells marked by the human operator in the last frame

were used to initiate the backward automatic tracking process.

This experiment is based on 280 supervised cell trajectories

(i.e., between 90 and 100 trajectories per sequence). For each

cell trajectory we computed the average distance (in pixels) at

each time step between the supervised (and interpolated) cell

locations and those computed by the algorithm. Fig. 8(a) shows

the distribution of these distances (means standard errors

computed on the 280 trajectories analyzed) according to time.

As the automatic tracking was carried out backward, a slight

and progressive increase in distance occurs in the reverse time

direction (from frame 360 to 1) and probably results from error

accumulation. The final mean distance (on frame 1) is 15.22

pixels . This distance is near to the average

radius of cells during mitosis, while the typical radius of cells

(in a normal state) is around 25 pixels. This indicates that the

location errors are small compared to the size of the cells.

Furthermore, it can be noted that the interpolation applied on

the manually marked cells might introduce a certain error rate

according to the actual cell locations and pessimistically biases

the distances reported here. Fig. 8(b) displays the percentages

of cells successfully tracked by the algorithm according to

time. To simplify this evaluation a cell was considered as

definitively “lost” by the tracking algorithm the first time that

the distance between the supervised and automatic centroid

locations exceeded a given threshold value (we observed that

sometimes the algorithm loses and then recovers a cell). Each

curve in Fig. 8(b) corresponds to a particular threshold value

(25, 50, 75, or 100 pixels). As expected the percentages of lost

cells increased with time (in the backward direction). However,

only 10% of cells can be considered as lost at the end of the

automatic tracking (i.e., after 24 h) in the case of a threshold

value fixed to 50 pixels. This value (which equals twice the

mean radius of a cell in its normal state), thus, corresponds to

the distance to the possible centroid location of another cell

which would be very close (i.e., adjacent) to the tracked cell.

We indeed observed that a large majority of these cases of

Fig. 8. Validation of the automatic tracking procedure by a human operator.
Comparison between cell trajectories manually tracked by a human operator and
those automatically generated by our tracking procedure used in the backward
direction (from frame 360 to frame 1 indicated on the horizontal axis). The
data, based on a total of 280 trajectories, show (a) the mean distances between
the manually and the automatically tracked trajectories, and (b) the percentages
of cells successfully tracked by the algorithm, determined according to a fixed
threshold of the distance to the supervised trajectories. While the data in (a)
are displayed as mean distances� their standard errors (in pixels), the different
curves in (b) correspond to different threshold values (25, 50, 75, and 100 pixels)
for which the distances to the supervised trajectories are considered too large
and the cells labeled as “lost.”

cell losses correspond to an incorrect inter-frame association

carried out by the mean-shift process.

B. Sensitivity to Algorithm Parameters

We evaluated the model sensitivity to the parameters (for

which typical values are given in Table I) by comparing the

tracking results obtained with a series of several modified pa-

rameter sets. For each set, we perturbed one parameter value

in a certain range. The sensitivity was evaluated in two different

and complementary ways. First, we compared the automatic and

supervised tracking results by means of the error measurements

introduced in Section IV-A (the mean errors and the percent-

ages of the lost cells computed using threshold values of 50 and

75 pixels). Second, we evaluated the different features charac-

terizing the cell trajectories introduced in Section III-D, and an-

alyzed their possible variations.
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Fig. 9. Sensitivity to algorithm’s parameters. The parameters analyzed are (a) the number of pies used in the mean-shift kernels (see Fig. 3). (b) Threshold d

of the sigmoid function used in the model transition [see (4)]. (c) factor k of model expansion [see (3)]. The different parameter values considered are indicated
in each frame. The variations observed are reported in terms of the trajectory features introduced in Section III-D (MRDO, AS, HULL, and MAXDIST) and the
error measurements illustrated in Fig. 8, i.e., the mean errors (corresponding to the mean distances to the supervised trajectories) and the percentages of the lost
cells computed using 50 and 75 pixels as threshold values (labeled %’’lost 50 and % lost 75). While the values of MRDO, AS, and MAXDIST are expressed in
pixel/h, the HULL ones are in pixel /h.

Fig. 9 illustrates the results concerning tracking sensitivity to

three important parameters controlling our algorithm, i.e., the

number of pies used in our kernels , threshold

of the sigmoid function used in the model transition (see

(4); ) and factor of model expansion (see (3);

). With respect to the kernel geometry, Fig. 9(a)

shows the results obtained when the number of pies varies from

5 to 16. The mean error and the percentages of lost cells are

very large if the number of pies is lower than 6, probably due to

a lack of flexibility of the model. Some slight fluctuations also

appear when the number of pies becomes large, e.g., increase

in the percentage of lost cells (considering a threshold of 50) if

more than 8 pies are used. This increase (paralleled by a pro-

gressive increase in the mean error) could be due to the fact that

by increasing the number of pies, we decrease the number of

relevant pixels (black or white) inside each pie, thus making the

model more sensitive to noise. The choice of the number of pies,

thus, has to establish a tradeoff between model flexibility (i.e.,

the ability to track deformable objects) and robustness to noise

(which occurs when the pies cover small areas). Concerning

the trajectory features, while the distance-based features (e.g.,

MRDO and MAXDIST) appear as being statistically very stable

(even in the case of 6 pies), the HULL feature is more sensitive

(as expected for an area measurement depending on each of the

cell positions), paralleling the profile of the mean error measure-

ment. The AS feature (depending on the total trajectory length)

exhibits an intermediary profile.

Fig. 9(b) similarly investigates the sensitivity to the sigmoid

threshold with values between 13 and 20, and shows that

very similar results are obtained for values between 15.5 and 18

(minimizing the errors). These values correspond to the radii of

cells in a mitotic state.

Fig. 9(c) concerns the sensitivity to factor with values be-

tween 1 (i.e., no expansion) and 2 (i.e., double expansion). Com-

paratively to the results described above on the other algorithm

parameters studied, Fig. 9(c) evidences a higher level of sensi-
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tivity of the results (in terms of errors essentially) according to

variations in values. The errors are minimal for values around

1.40. Again, the MRDO and MAXDIS features appear to be sta-

tistically insensitive to these variations.

We also tested sensitivity to other algorithm parameters

such as the sigmoid slope for model transition [see (4)], the

anisotropy level introduced by factor in (3), as well as the

weights used in the kernel combination [see (1)]. We did not

observe particular sensitivity to these parameters around the

default values % mentioned in Table I (data not shown).

C. Sensitivity to Preprocessing Parameters

The preprocessing phase is based on three parameters which

are the radius of the border detection, the threshold of the gra-

dient value, and the radius of the local contrast enhancement

(see Section III-C). To test the method’s sensitivity to these

parameters, we preprocessed two series of images (one based

on a cell in a mitotic state and the other on a cell in a normal

state) with different preprocessing parameter values, such as

a gradient radius varying from 5 to 30 pixels, a background

threshold from 10 to 50 and an equalization radius from 5 to

30 pixels. In each case, we applied the tracking algorithm from

different starting points located around each cell analyzed (as al-

ready illustrated in Fig. 5). We then tested if the position of the

model (i.e., the cell centroid determined by the algorithm) con-

verged into a region of acceptable cell centroid locations (deter-

mined by a human expert). Fig. 10(a)–(c) shows the percentage

of satisfactory centroid locations found for each series of pre-

processed images according to the different values of the three

parameters analyzed. These data show that the results relative

to the gradient radius and background threshold are very stable

[Fig. 10(a)–(b)]. In contrast, the equalization radius seems to

have more effects on the results, particularly in the case of a

mitotic cell [Fig. 10(c)]. However, these variations stabilize for

equalization radii larger than 14.

This can be explained by the fact that a mitotic cell is reduced

in size (as compared to a normal cell) and is, thus, more sensi-

tive to the noise introduced by the enlarged image background

resulting from a decrease in the equalization radius.

D. Robustness Against Defocusing

One typical problem that occurs during long sequences (more

than 1 day), is the loss of focus due to evaporation of the sub-

strate, mechanical shift of the microscope, etc. In the present

study, no autofocus device was considered in the acquisition

setup. We were, thus, interested in the robustness of the algo-

rithm against small change in the Z position of the sample. Due

to the general principles of the method, small changes of the

focus only affect high spatial frequency details of the image (i.e.,

texture of the background and intracellular refractive objects).

To corroborate this assumption we generated synthetic blurred

versions of an acquisition sequence by a spatial Gaussian con-

volution kernel of increasing standard deviation ( , cf. [24]).

Five blurred sequences (with or ) were gen-

erated from a sequence for which 49 manually supervised tra-

Fig. 10. Sensitivity to preprocessing parameters. The parameters analyzed
(and detailed in Section III-C) are the gradient radius (b), the background
threshold (a), and the equalization radius (c). The effects were evaluated on
two series of images, one based on a cell in a mitotic state and the other on a
cell in a normal state. Applying the tracking algorithm from different starting
points located around each cell analyzed (as illustrated in Fig. 5), we tested
if the positions of the model (i.e., the cell centroids located by the algorithm)
converged into a region of acceptable cell centroid locations given by a human
expert. (a)–(c) shows the percentage of satisfactory centroid locations (found
for each series of preprocessed images) according to the different values of the
three parameters analyzed.

jectories were available. The blurred and supervised sequences

were compared with the evaluation method described in Sec-

tion IV-A. This is illustrated in Fig. 11(a) which shows different

curves (corresponding to increasing ) plotting (according to

time) the mean distances between the (linearly interpolated) su-

pervised trajectories and the automatically generated ones using

backward tracking. Of course, the tracking process lost its ef-

ficiency when the blur level increased too much [Fig. 11(a)].
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Fig. 11. Robustness of the tracking process with respect to loss of focus and
image resolution. (a) Distribution over time of the mean distances measured
between 49 supervised cell tracks and those established automatically in the
presence of different blurring levels. (b) Distribution over time of the mean
distances measured between 49 supervised cell tracks and those established
automatically in the case of different levels of image resolution decrease. The
automatic tracking was carried out in the backward direction (i.e., from frame
360 to frame 1 indicated on the horizontal axis).

However, low blur levels did not significantly affect the perfor-

mances. An autofocus device does not, therefore, seem essential

in our application.

E. Robustness Against Change in Resolution

In order to evaluate the effects of image resolution on the

tracking results we artificially built a degraded version of the

reference sequence by subsampling it (factors used: 0.666, 0.5,

0.4, and 0.333). The scale-dependent algorithm parameters (see

Table I) were rescaled accordingly. The supervised and subsam-

pled sequence tracking were compared and the mean distances

computed (after rescaling each subsampled track back to the su-

pervision scale). Similarly to Fig. 11(a), Fig. 11(b) shows that

the tracking performances remain acceptable even if acquisition

is half the size.

F. Handling Funnel

One limitation of our algorithm concerns the tracking of

rapidly moving cells which present a funnel-shaped displace-

ment, as illustrated in Fig. 12(a) (where each arrow indicates the

Fig. 12. Funnel shape displacement. (a) Example of migrating cells presenting
a funnel shape. (b) Top: Progressive shift of the kernels in the absence of funnel
detection and correction. Bottom: Principle of funnel detection (frame 2) and
correction of the kernel shifts accordingly. The kernels are located by the mass
centers g and g .

cell movement direction). This cell shape deformation showing

a large membrane protrusion in front of the cell is the result

of a polarization process which occurs in migrating cells [25].

We observed that the algorithm lost the cell during tracking if

the cell deformation was strong [as schematically illustrated in

Fig. 12(b)] and associated with a high displacement speed. The

problem is due to the presence of an excess of bright pixels

(halo) in the narrow part of the funnel. As a consequence,

kernel , which is attracted by bright pixels (see Section II),

and its gravity center are shifted to the narrow part of the

funnel [see the top of Fig. 12(b)]. Due to the kernel linkage, the

combined iterative process [(1) in Section II-C] consequently

displaces the cell centroid toward this funnel area, i.e., in the

opposite direction to the expected cell displacement. Using

the representation introduced in Fig. 3, the top of Fig. 12(b)

schematizes this progressive shift by showing the successive

locations of the local mass centers ( and ) relative to the

triangles constituting the two nested kernels, (attracted by

the bright pixels) and (attracted by the internal dark pixels).

To avoid this shift problem, we designed a funnel indicator

based on the analysis of the distances between two consecutive
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local mass centers, and . A funnel-shaped displace-

ment is characterized by the fact that some of these distances

are relatively large, indicating the presence of membrane pro-

trusions [see frame no. 2 in Fig. 12(b)]. The funnel indicator,

thus, only checks if those distances are greater than a certain

proportion (e.g., 1.2) of the average distance mean (meaning

that there are rather different distances between the cen-

ters). If it is the case, we determine the direction given by the

mediating line to the segment joining the two most distant mass

centers. This direction is indicative of the polarization axis of the

cell [Fig. 12(b)]. To attenuate the centroid shift a small displace-

ment is added in the direction of this median line. The bottom

of Fig. 12(b) illustrates the effects on the cell centroid location

of the corrections so introduced.

It should be noted that a large number of experiments were

successfully carried out without this algorithm adjustment. We

observed that funnel-shaped cell displacement is more marked

(and, thus, requires the adjustment described in this section) in

certain specific cell culture conditions, in particular in the case

of cells growing in Dunn Chamber [7], [8] (data not shown).

G. Computation Time

The computation cost of the complete tracking procedure

is directly proportional to the number of tracked cells. We

evaluated that the tracking of 100 simultaneous trajectories

(a common situation in reverse tracking) requires about 0.5

s/image on a Pentium IV computer. To this must be added

2–3 s/image for the preprocessing steps, i.e., the complete

procedure takes less than 4 s/image.

V. APPLICATION TO ANTI-MOTILITY DRUG TESTING

A. Experimental Setup

We applied our cell tracking algorithm to a series of in vitro

experiments aiming to test the effects of cytochalasin-D on the

migration of A549 colic tumor cells [illustrated in Fig. 1(f)]. It

is known that cell motility requires a highly dynamic actin cy-

toskeleton with a rapid actin filament assembly and disassembly

[25]. Cytochalasin-D, which is known as an inhibitor of actin

polymerization, acts on these dynamics and is, thus, suspected

to affect cell motility [26]. Cell cultures in Falcon plastic dishes

maintained at 37 C were observed and recorded during 24 hrs

as described in Section III-A. We investigated the motility be-

havior of A549 cells in 4 experimental conditions. The cells

were either left untreated (control), or treated with cytocha-

lasin-D at 3 decreasing concentrations ( , and

M). These concentrations were noncytotoxic (i.e., without sig-

nificant effects on the A549 cell growth level, data not shown).

Each condition was run in triplicate. The image sequences were

processed according to the (backward) tracking algorithm de-

scribed in Section II (with the default parameter values indi-

cated in Table I) after the preprocessing steps described in Sec-

tion III-C and the manual initialization made on the last frame

of each sequence (see Section III-B). In each experimental con-

dition cell motility was characterized by means of the different

trajectory features introduced in Section III-D (i.e., MRDO, AS,

HULL, and MAXDIST). The significance of the cytochalasin

Fig. 13. Effects of cytochalasin-D on A549 cell motility. The effects of
three decreasing concentrations of cytochalasin-D (10 ; 10 , and 10

M) were evaluated on A549 cells observed during 24 hours (CT = control,
i.e., untreated cells). The motility features analyzed are the different trajectory
features introduced in Section III-D, i.e., MAXDIST and MRDO (a), AS (b),
and HULL (c). The data show the means � SE in each condition.

effects was tested by means of the nonparametric Wilcoxon and

Mann-Withney tests.

B. Tracking Results

By pooling the 3 image sequences recorded for each exper-

imental condition, we finally analyzed 274 cell trajectories in

control and 177, 297, and 199 trajectories under ,

and M of cytochalasin-D respectively. Fig. 13 illustrates

the variations observed for each motility feature as compared to

the untreated cells (control). Cytochalasin-D affected each fea-

ture in a dose-dependant way. Indeed, while a clear decrease

was observed (from 30% for AS to 70% for HULL) in presence

of the highest drug concentration, more reduced effects were

exhibited under the other conditions. However, statistical tests

confirmed the significance of all these effects as compared to

control . As evidenced in Fig. 13 the two lowest

concentrations (conditions B and C) exerted similar effects

on the different features analyzed. We can, thus, conclude

that cytochalasin-D is able to significantly inhibit A549 cell

motility. These experiments are included in a study carried out

at the Laboratory of Toxicology (U.L.B., Brussels, Belgium),

which study aims to characterize the effects on cancer cell mi-

gration of different drugs targeting actin (unpublished data).

VI. CONCLUSION AND FUTURE WORKS

We have presented a (quasi-)automatic method to track many

cells through large image sequences covering relatively long pe-

riods of time (such as 1 to 3 days). This enables cell responses

to physiological stimuli or culture conditions near biological re-

ality (e.g., different matrix supports) to be analyzed. The pro-

posed method is able to track cells from image sequences ac-

quired under standard phase-contrast video microscopy. This

avoids the use of luminescent cell markers and multiple cell ir-

radiation (consequently required for image acquisition) which

might influence and modify cell behavior. Furthermore, the use

of luminescent probes strongly limits the period of observation

because of fading, and, thus, only quick cell responses (to a

strong stimulus, like a drug) can be screened.
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The proposed method is based on the mean-shift prin-

ciples and introduces the use of adaptive combinations of

linked kernels. This approach allows the detection of various

gray-level configurations and the transition between them. We

demonstrated its ability to track a large number of cells in

culture in the presence of cell divisions. As the method does

not focus on cell boundary detection, it shows robustness with

respect to variability in cell morphologies (between different

cell cultures), cell overlaps, and dynamical changes in cell

shape during cell migration. Furthermore, the running time of

the software is very short, allowing improved possibilities in

acquisition frequency and, consequently, improved descriptions

of complex cell trajectories presenting quick displacements and

strong cell shape deformations.

The present method has also some limitations which could be

overcome by additional developments.

— As in other related works (e.g., [5]) the method requires

manual initialization of the cell centroids on the first

(or last) frame of the sequence. It is, thus, unable to

handle new cells entering into the analyzed microscope

field later. An automatic initialization scheme should

be introduced by adding kernel-based models at the

borders of the field, “awaiting” the entry of new cells

to be active.

— As the method is directed toward a model-matching ap-

proach without any segmentation aim, no precise infor-

mation is available on the cell boundaries and shapes.

If this kind of information is required for analyzing fea-

tures other than cell trajectories, postprocessing steps

could be added, such as the use of active contours or

level sets initialized on the cell centroids detected by

the mean-shift based method.

— In the present study, no temporal filtering or time-de-

pendent feature has been used. It could be interesting

to extend the spatially combined model described in

this paper, into a space-time-coupled model by linking

the mean-shift process on successive frames (similarly

to the spatial kernel linkage described in this paper).

— Finally, as the method shows robustness against de-

focusing, we are now considering the possibility of

tracking living cells embedded into a 3-D substrate.
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