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Abstract Linking multiple databases to create longitudinal data is an important research
problem with multiple applications. Longitudinal data allows analysts to perform studies
that would be unfeasible otherwise. We have linked historical census databases to create
longitudinal data that allow tracking people over time. These longitudinal data have already
been used by social scientists and historians to investigate historical trends and to address
questions about society, history and economy, and this comparative, systematic research
would not be possible without the linked data. The goal of the linking is to identify the same
person in multiple census collections. Data imprecision in historical census data and the
lack of unique personal identifiers make this task a challenging one. In this paper we design
and employ a record linkage system that incorporates a supervised learning module for
classifying pairs of records as matches and non-matches. We show that our system performs
large scale linkage producing high quality links and generating sufficient longitudinal data
to allow meaningful social science studies. We demonstrate the impact of the longitudinal
data through a study of the economic changes in 19th century Canada.
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1 Introduction

The impact of industrialization, one of the most important topics in history and the social
sciences, remains uncertain until we have information that follows individual people through
their lives. Millions of records from census, church and military data sources are available
from the 19th century, but they must be linked together in order to reconstruct the life-
courses of individual people. Computer scientists are collaborating with historians and social
scientists to adapt machine-learning strategies for this purpose in a number of countries. In
Canada, we are linking millions of records from Canadian censuses taken every ten years
(1852-1911) in order to construct life-course or longitudinal data. We describe a successful
linkage between the 1871 and 1881 Canadian censuses, which span a particularly interesting
historical period.

Record linkage is the process of identifying and linking records that refer to the same
entities across several databases. If unique identifiers exist for the entities, this is eas-
ily done using a database join. Without unique identifiers, one must use attributes com-
mon to all of the databases and compare their values to determine whether two records
refer to the same entity. The problem of record linkage has been studied in the statis-
tics community for more than five decades (Fellegi and Sunter 1969; Newcombe 1988;
Newcombe et al. 1959), and advances in databases, machine learning and data mining have
led to a variety of sophisticated methods (Christen 2008; Elfeky et al. 2002). Winkler (2006)
and Elmagarmid et al. (2007) offer a detailed discussion of the field. The record linkage
process is also referred to as data cleaning (Rahm and Do 2000), de-duplication (within
a database) (Bilgic et al. 2006), object identification, approximate matching, approximate
joining, fuzzy matching, data integration and entity resolution (Kang et al. 2008). This is
a challenging problem. Frequently, common attributes are in different formats in different
databases, and they contain typographical and other clerical errors that make naive rule-
based matching ineffective. Furthermore, even in very well-curated databases, it is compu-
tationally too costly to evaluate every potential match.

In the context of creating longitudinal data from census data, record linkage refers to
finding the same person across several censuses. The recent emergence of 100 percent na-
tional census collections enables a systematic identification and linking of the same individ-
uals across censuses in order to create a new database of individual life-course information.
A record linkage system for census data relies on attributes describing individuals (name,
age, marital status, birthplace, etc.) to determine whether two records describe the same per-
son. Difficulties are presented by different database formats, typographical errors, missing
data and ill-reported data (both intentional and inadvertent). Furthermore, not everyone in
a census is present in the next one because death and emigration remove people from the
population, while births and immigration add new people who were not present in the pre-
vious census but who may have characteristics similar to those who were present. Finally,
processing the millions of records in a Canadian census requires significant computation.
Besides these common challenges, in order to be of scientific value we must ensure that the
linked records we produce are representative of the population as a whole, that is, we must
avoid any bias toward linking one sub-population more than another.

We present solutions to these and other challenges in the first part of the paper, in which
we describe a linkage system that incorporates a supervised learning module for classifying
pairs of entities as matches or non-matches in order to automatically link records from the
1871 Canadian census to the 1881 Canadian census. In the second part, we evaluate the per-
formance of the linkage system and discuss the results. Our approach follows most closely
the pioneering efforts of the North Atlantic Population Project (NAPP) on comparable US
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data for 1870 and 1880, where tens of thousands of links were generated (Goeken et al.
2011).

2 Link quality, bias, and variance

The end goal of our record linkage task is to produce datasets that are useful for social
scientists. These end-users wish to know how the lives of individuals in Canada changed
over time between 1871 and 1881. Ideally they would like to know at the population level,
for example, what proportion of farmers became manufacturers. Unfortunately, the entire
population cannot be linked, so this quantity must be estimated from the sub-sample of links
that our system generates. In order for this estimate to be useful, it is crucial that it have both
low bias and have low variance. Low variance can be achieved simply by producing a large
enough set of links; we will see in Sect. 5 that this is not a difficult problem. Achieving low
bias, however, requires a very thoughtful approach and induces us to make design decisions
that are atypical for many machine learning settings.

Bias can occur when the individuals in the recovered links are not representative of the
entire population. This in turn occurs when the probability of being linked is influenced by
the quantity we are studying. For example, if we use occupation information to produce
links, we may disproportionately form links for people who remain in the same occupation,
thus biasing our results. To avoid this problem, and to make our links as broadly useful as
possible, we endeavour to use as little information as possible to find links. Furthermore,
bias can be caused by false negatives (i.e. true links that are omitted by our system) and by
false positives (i.e. recovered links that should not be present). If bias is induced by false
negatives only, we can view our set of links as a subset of the entire population of true links,
and we can reduce bias by using stratified sampling or re-weighting to ensure that among
our links, relevant variables (e.g. gender, occupation, age, etc.) have the same distribution
as they do in the census overall. Even if we do not make such adjustments, if we have only
false negatives, summary statistics based on our links are lower bounds on corresponding
population quantities. If we have bias induced by false positives this argument does not
necessarily hold; thus we endeavour to produce as few false positives as possible even if
we must incur more false negatives. In addition, certain historical questions to be studied
revolve around particular people, families or communities. For this kind of research it is
especially important to avoid false positives.

3 Data

We use the 1871 and 1881 Canadian censuses, which were transcribed by the Church of
Jesus Christ of Latter-Day Saints and cleaned (but not linked; see Sect. 3.1) at the University
of Ottawa (1881) and University of Guelph (1871). The 1871 census has 3,466,427 records
and the 1881 census has 4,277,807 records. We know of no other classification analysis of
historical data on this scale. Our classification is also challenged by a unique combination
of (i) imprecise recording and (ii) extensive duplication of attributes. A third challenge is
that we restrict linking criteria to characteristics that do not change over time' or change
in predictable ways (last name, first name, gender, birthplace, age, marital status) in order

INote that misspelling of names and data imprecision still occur.
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to be able to analyze attributes such as occupation, location etc. that change over the life
course. Last name and first name are strings, gender is binary, age is numerical, birthplace
and marital status are categorical. Social science and historical (SSH) research typically
seeks to analyze the determinants of the attributes that change. Therefore it is inappropriate
to use time-varying attributes to establish links. For example, taking occupation or location
as a linking attribute would bias or, in the extreme, restrict links to those who did not change.
The rate of successful linkage might increase but at a cost of significant bias to SSH analysis
of change versus persistence (Hall and Ruggles 2004; Ruggles 2006). Linkage with time-
varying attributes might be less damaging for other research purposes; if so, there is potential
to adapt the linking strategy to meet different needs.

To train and evaluate our record linkage system, we use a set of true links that human
experts have identified between records in 1871 and records in 1881. We have four sets of
true links matched to unique identifiers” in the 1871 and 1881 censuses:

1. 8331 family members of 1871 Ontario industrial proprietors (Ontario_Props)

2. 1759 residents of Logan Township, Ontario (Logan)

3. 223 family members of communicants of St. James Presbyterian Church in Toronto,
Ontario (St_James)

4. 1403 family members of 300 Quebec City boys who were ten years old in 1871.
(Les_Boys)

The 11,716 total records were linked using family-context matching, which allows a high
degree of certainty (i.e. generates very few false positives) but biases the links toward those
who co-habit with family members. Family-context matching is accomplished by search-
ing for an individual whose vital information (name, age, sex, birthplace, marital status)
matches in two census databases (e.g. 1871 and 1881), and confirming it is the same indi-
vidual by: (1) finding at least one other household member (and preferably two or more)
with matching vital information and (2) making sure there is no significant contradictory
information that makes a link improbable (for example, when one family member matches,
but three others do not). Other data on geography, occupation, religion, name prevalence
etc., may also be considered, but the primacy is on the matching of family spouse and chil-
dren.

Although this approach should generate very few (or perhaps no) false links, it produces
a set that is not demographically representative. It generates links only for people living in
families within a single household; thus single people will not be matched. It also generates
relatively fewer links for children who were around the age of fifteen in 1871 due to diffi-
culty in matching children who left home and young women who got married and changed
their last names during that timespan. There is therefore a bias toward young children and
established adults.

Fortunately, even if our population of true links is not demographically representative,
they can still capture issues such as imprecision of information and name duplication that
are needed to train the linkage system. Thus our system will take this biased set of links and
use it to produce a new set of links that is less biased, more demographically representative,
and therefore more scientifically valuable.

2These unique identifiers do not exist in the original censuses, but they are created during digitization to keep
track of the records.
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Fig. 1 Overview of record linkage system

3.1 Data cleaning

The first step in any linkage process involves cleaning and standardization of data. This
step is needed to effectively compare records from different databases. Each string in 1871
for the sex, age and marital status attributes has been cleaned to match the 1881 database
using a standard format across the databases. We removed all non-alphanumerical characters
from the strings representing names, as well as all titles (e.g., Rev., Dr.). For all attributes,
we cleaned and standardised all the English and French enumerated information (e.g., 5
months, 3 jours, married, marié(e)). We removed duplicate records appearing in 1871, since
several census pages had been digitized and entered into the database twice, and we removed
the records of people who died in 1870/1871. Originally, the 1871 collection had 3,601,663
records. This was reduced to 3,466,427 records when duplicates and deceased individuals
were removed.

As part of the data cleaning process, we also undertook the laborious task of coding
all the first names in the census (e.g. Elizabeth, Beth, Liz would be given the same code).
1871 census has 106,759 distinct first names and 1881 census has 152,880 distinct first
names. This process was semi-automatic and it was a joint effort between a team of computer
scientists and a team of historians. More details about how we use these codes are given in
Sect. 4.1.3.

4 The record linkage system

We wish to link records from one data collection A to another, B. A record a in A (viz. b in
B) consists of all the information pertaining to a particular entity; in our case the entity is a
person, and the information includes all answers collected in the census, e.g. first name, last
name, date of birth, birth place, and so on. Our goal is to find all pairs (a,b), a€ A, be B
such that a matches b, that is, such that a and b refer to the same entity. In this case we write
a~>~b.

The record linkage process has two main steps. First, for each pair, a feature vector ¢, 1)
is constructed that contains information about the similarity between a and b. In the second
step, a classifier is used to label the pairs of records as matches or non-matches based on their
feature vectors. We learn this classifier from a training set derived from the data described
in Sect. 3. An overview of the system is shown in Fig. 1.

Sections 4.1 and 4.2 describe in detail the two main steps of the system.
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4.1 Feature construction, blocking, and thresholding

During the feature construction step, the attributes in each pair (a, b) of records are used
to compute a set of similarity measures which are used as features. We use the following
attributes to generate features that reflect record-pair similarity:

Tag L F GD AGE BP MS
Attr. Lastname  Firstname  Gender Age Birthplace Marital status
Type  String String Binary Integer  Categorical  Categorical

We will refer to specific attributes using subscripted tags, for example ar represents the first
name associated with record a.

In the feature construction step, there are two challenges that we address. First, the sim-
ilarity measures must be tailored to the different attribute types. We therefore select spe-
cialized similarity measures for each attribute. Second, we must avoid explicitly evaluating
@) for all possible pairs, as this quickly becomes intractable as the size of A and B in-
creases. We accomplish this by blocking, described below.

4.1.1 String comparison and processing

To compare names (last and first names) we use two character-based similarity measures
(Winkler 2006) that are well-suited to comparing names: edit distance and Jaro-Winkler
score. In addition, we make use of two different phonetic representations of the original
string using the double metaphone algorithm (Philips 2000).

The edit distance between two strings S; and S,, which we denote by Edit(S, S,), is the
minimum number of edit operations (insert, delete and replace) on single characters needed
to transform the string S into S, divided by max(|S;|, | S2|) where |.| denotes the length of
a string.

The Jaro-Winkler score is a string similarity measure® developed for comparing names
in the U.S. census (Winkler 2006). It is based on the Jaro similarity score given by

Jaro(S,. $1) 1 c n c +c—t
aro(S;, )=z —+—+—
PEERUs TIs e

where c¢ is the number of common characters and ¢ is the number of transpositions of the
common characters. A character at position i in S} has a common character in position j of
S, if the characters are the same and |i — j| < [max(|Si], |S2])/2]. Let C; and C, be the
subsequences of common characters in S;, ;. Then ¢ is the number of transpositions we
must apply within C; so that C; = C,. Note that 0 < Jaro(S}, S;) < 1. The Jaro-Winkler
score is a modification based on the idea that fewer errors typically occur at the beginning
of names. It takes the Jaro score and increases it if there is agreement on initial characters
(up to four) so that

JW(S,, S,) =Jaro(S;, ) + 0.1 - min(s, 4)(1 — Jaro(S;, Sz))

3Unfortunately, the term “Jaro-Winkler distance” is commonly used to describe this quantity, even though
larger values are associated with greater similarity. We use the term “score” throughout when describing
features that positively correlate with similarity.
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where s is the length of the longest common prefix of S| and S,.

The double metaphone algorithm takes a string S and produces two codes DM1(S) and
DM2(S) for the string. Each of the two codes are themselves strings over a reduced 21-
character alphabet, and they are both designed to represent the phonetic pronunciation of S.

4.1.2 Feature construction

Name comparison features We use a total of eight features derived from the first and last
names in the records. They are given by

$mD = Edit(ar, by) St = Edit(ar, br)
SV =IW(ar.b) $EIW = IW(ar, by)

¢L-DMI — Edit(DM1(a1), DM1(b))  ¢f DM = Edit(DM1(ar), DM1(bp))

¢L-DM2 _ Edit(DM2(a), DM2(by))  of DM2? = Edit(DM2(ar), DM2(br)).

Age comparison feature Let aagg be the age in years from a record in the 1871 census,
and bagg be the age in years from a record in the 1881 census. We construct a binary feature
indicating whether the ages match given by

by, =1{8 < |bace — aace| < 12} 4))

where 1 is the indicator function. Since the two censuses are 10 years apart, if in fact a >~ b,
we would expect that in most cases bagg — aace = 10. We allow a 20 % error in the age
difference, as census experts consider this window when performing manual linking.

Gender, birthplace, and marital status comparison features  For the gender and birthplace
code attributes we perform an exact match comparison, giving two features

¢81;3 = 1{acp = bep}, ¢(13,1;) = 1{agp = bgp}.

For the marital status attribute, we construct a feature that is 1 if a valid marital status change
appears (e.g. single to married) and O otherwise.

M3 — is-valid(aus. bus)-

Feature vector  Our feature vector for a pair of records (a, b) is given by

L-ED F-ED L-JW  F-JW
d)(a,b):((p(a,b) ’¢(a.b) ’¢'(a.l7) ’¢(G,b) ’

L-DM1 ,F-DM1 ,L-DM2 .F-DM2 ,GD ,BP ,MS
¢(a,h) ’ ¢(a,b) ’ ¢(a,b) ’ ¢(u,b) ’ ¢(a,b}’ ¢(ll¢b)’ ¢((4,b))'

4.1.3 Blocking and thresholding

The most straightforward way to approach the record linkage problem is to apply a classifier
to all possible pairs of records (a, b) € A x B, that is, the entire Cartesian product of the two
sets of records. There are two problems with this approach.

First, there are certain rules that experts use when matching that should eliminate certain
record pairs as candidates for a match. While these rules eliminate some pairs that are true
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matches, this is viewed as an acceptable cost because the quality of SSH analyses is degraded
much more by false positives than by false negatives, as we discussed in Sect. 2.

Second, computing feature vectors for all possible pairs is impractical as there would be
3,446,427 x 4,277,807 ~ 14.8 - 10'? feature vector computations. Our system is written in
C to be efficient in the calculation of similarity between census records. Benchmarking indi-
cates that our system calculates string comparisons at a rate of approximately 4 million per
second. Although at first glance this throughput might seem sufficiently fast, it is actually not
fast enough to run on a single machine for our application in a reasonable time. Assume for
the moment that we would run our record linkage system on a single processor. Computing
similarity between all 14.8 - 10'? pairs would give us a run-time estimate of close to a CPU-
year: (14.8 - 10'? pairs x 8 string-based features) /(4 - 10° comparisons/s) /(86400 s/day) =
342.6 days. This does not include the cost of classifying each pair.

To mitigate these two problems, we use blocking and thresholding to reduce the number
of candidate pairs. Blocking is the process of dividing the databases into a set of mutu-
ally exclusive blocks under the assumption that no matches occur across different blocks.
Thresholding allows us to abort the computation of a feature vector if, based on a subset of
the features, it appears no match will result.

In our system, we block by the first name code (recall that “Beth” and “Liz” would
be within the same block, for example) and within that block we block again by the first
letter of the last name. Experts have empirically noted that fewer mistakes are found in
the beginning of a name, thus by choosing to block on the first letter only, we reduce the
probability of eliminating a true match. Based on this blocking, “Eliza Jones” and “Beth
Jonze” are a candidate match, but “Eliza Jones” and “Eliza Phair” are not. Thus, women
who change their last name between 1871 and 1881 are not matched by our system. This
source of false negatives is also present in our hand-labeled data, and is extremely difficult to
correct without inducing false positives given the data we have. Social scientists who study
this group are well aware of this problem. Many analyses, including the one in Sect. 7, are
unaffected by it and where it is an issue, statistical social science techniques to treat selection
bias are used.

Note that we block by the name code, but when we perform the similarity calculations
we do so on the original string. This allows us to better link persons who were consistent
in reporting their name in a certain way (e.g. someone named Beth is part of the Elizabeth
block, but will be more similar to those named Beth than Eliza). After name blocking, we
require that records in a candidate pair must have the same birthplace, an attribute known to
have few errors.

Within blocks, we apply thresholds on the similarity of last name: For a pair (a, b) to be
a candidate, it must satisfy

oLED —015, oW o085, L PMlcoas,  gL-PM2 o5,

By applying these thresholds, we further eliminate dissimilar pairs that are unlikely to be
linked by the classifier. These thresholds were selected based on expert evaluation of the
last-name similarities we observed on our training data.

4.2 Pair classification
Now that we have defined our feature vectors, we can cast our matching problem as a binary

classification problem. We construct a training set based on the true matches described in
Sect. 3, and we learn a Support Vector Machine (SVM) with a Radial Basis Function (RBF)
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kernel. We use LIBSVM (Chang and Lin 2001) as the classifier implementation, and we
make use of the LIBSVM facility for producing class probability estimates based on work
by Wu et al. (2004). The probability estimate scores allow us to see how confident the
system is in each prediction, and they can be used to select the most confident matches.
These estimates are used for manual verification of links; we discuss this in Sect. 6.

4.2.1 Training set and class imbalance

Our training set is based on the 11, 716 true links described in Sect. 3. These pairs of records
represent the match class. To create examples for the non-match class, we generate all of the
11,716 - (11,716 — 1) ~ 1.4 - 10® incorrect pairs of records. To produce our training set,
we apply our similarity thresholds to the total 11,716 pairs, resulting in a training set of
size 81,281, with 8,543 matches (positive class) and 72,738 non-matches (negative class).
Note that the number of matches has considerably decreased when the similarity thresholds
are applied. This shows the imprecision of the data and that dissimilar records could in
fact be matches. However, when building the training set, we consider it better to build our
classification model from pairs of records that are less likely to produce errors.

In many applications, it is important to “correct” class imbalance by one of several
mechanisms, e.g. over-sampling, under-sampling, sample re-weighting, etc. This is most
commonly done because class imbalance can cause learning machines to place much more
emphasis on false negative rate than false positive rate, or vice versa. As we discussed in
Sect. 2, in our application, false positives are much more damaging than false negatives, so
the ambient class balance of our training set with its abundance of negative examples biases
our classifier in a desirable way—it emphasizes getting the negative examples right. We
therefore do not try to achieve class balance in the training set, and we will show in Sect. 5
that the resulting classifier has the properties we want.

4.2.2 Classification and linking

Once we have learned our classifier, in order to produce links we take a record a from 1871,
we find all records in 1881 that fall within the same block, compute the feature vector from
each pair while removing vectors that do not meet our thresholds. We then classify each pair.
If all pairs are negative, we produce no link for record a. If exactly one pair (a, b) is labeled
positive for a record b in 1881, and if there is no other 1871 record ¢ for which (c, b) is
labeled positive, then we produce the link (a, b). For any other result, we view the output as
ambiguous, and we produce no link for record a. This linking rule, like many of our other
design choices, aims to minimize the chance of generating false positive links. We examine
other potential rules in Sect. 5.

5 Empirical evaluation

This section evaluates the linkage system we propose and shows the results for linking the
Canadian census of 1871 to the Canadian census of 1881. We begin with a standard eval-
uation of our SVM-based classifier in terms of cross-validation estimates of relevant error
rates. We illustrate that we can produce a classifier that has the properties we require: our
system has an adequate true positive rate and a very low false positive rate. We then de-
scribe the challenges associated with the application of our system to the full censuses, and
we discuss the bias present in our links, which we can measure using the full, unlabeled data
sets.
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Table 1 Classification system evaluation—>5 fold cross validation—mean (std. dev.)

Positives Negatives TP FP FN TN AUC
Mean 1708.6 16256.2 1427.2 70.2 281.4 14477.4 0.9662
Std. Dev. 45.09 0.45 30.46 8.23 19.96 43.71 0.0004

Table 2 Types of candidate

links generated by the system Type Number Percentage
One to One 596,284 24.22 %
One to Many 831,145 33.76 %
Many to One 240,482 9.77 %
No Link 793,501 32.23 %

5.1 Classification system evaluation

We perform 5 fold cross validation on the training data to evaluate the proposed classification
system. We report the true positives, false positives, false negatives, true negatives and the
area under the ROC curve. Averages and standard deviation over the 5 folds are presented
in Table 1.

We can see that our classifier achieves a very low number of false positives, and a rea-
sonably low number of false negatives. It therefore meets the criteria we set out in Sect. 2.
However, this evaluation does not illustrate the biases incurred when we apply the system to
link the full censuses. This is discussed in detail in the next section.

5.2 Full Canadian census linkage results

As we discussed in Sect. 4.2.2, not every pair labeled “positive” by our classifier becomes
a link. In effect, we end up with three types of potential links after pair classification. The
number and type of potential links generated by the classifier are shown in Table 2. We
consider a link successful (a match) if the classification system found only a one-to-one link
between a person in 1871 and a person in 1881. One-to-many (a record in 1871 is linked to
two or more records in 1881) and many-to-one links (several records in 1871 are linked to
the same record in 1881) are removed. We consider these links ambiguous; thus we do not
consider them for evaluation and we do not present them to the user.

The ‘no link’ proportion of 32.23 % is consistent with expectations. We know from other
sources that roughly 10 % of the population died between 1871 and 1881 (Bourbeau et al.
1997); another 10 % emigrated largely to the United States (Emery et al. 2007); a majority
of young single women changed their surname after marriage; some people were missed in
the enumeration and others inadvertently or deliberately misreported their characteristics in
one census year or the other. None of these records can be confidently linked using the data
we have available. Table 2 also indicates that roughly 45 % of the links were many-to-one
or one-to-many. Again, this is not surprising because of considerable duplication of names,
the limited number of fields with which to link and, equally important, the imprecision with
which name and age were reported (Goeken et al. 2011). We cannot use these ambiguous
links for social science analysis. We interpret a ‘one-to-one’ link, a single 1871 record con-
nected to a single 1881 record, as providing information about the same person at different
points in his or her life. This group accounts for 24.22 % of all links. The number of links,
nearly 600,000, is sufficient to support a wide range of social science and historical studies.
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Table 3 Full linkage system evaluation estimates—S5 fold cross validation—mean (std. dev.)

True Links TP FP FN TPR FPR

1,708.6 (45.1) 684.8 (38.4) 36.0 (9.6) 1,023.8 (24.1) 40.1 % (1.5 %) 5.0% (1.3 %)

5.2.1 False positives and bias

In this section we present and discuss evaluation of the true links in the context of linking the
full census data. Note that in our problem, we cannot evaluate all the generated links because
we do not know their correct class. We perform this evaluation on the positive examples in
the 5 folds used in Sect. 5.1. This evaluation is different from the one done in the previous
section due to considering all the pairs of records classified. Under these circumstances,
some of the people may have been linked to multiple other persons and vice versa. Such
cases would not be presented to the user due to their ambiguity; thus they are not part of this
evaluation. We consider only the one-to-one links for evaluation.

For evaluation, we calculate the following: true positives (TP): pairs of records that have
been labelled as a match by both the classification system and the human expert; false pos-
itives (FP): pairs of records that have been labelled as a match by the classification system,
but have not been labelled as a match by the human expert; false negatives (FN): pairs of
records that have been labelled as a non-match by the classification system but have been
labelled as a match by the human expert.

We are interested only in the positive examples (matches), thus the evaluation for our
application is slightly different than a standard classification evaluation. The calculation of
true positives is straightforward: a pair of records in our testing set that is also found in
the matches produced by the classifier is a true positive. To calculate the false positives we
search for records in our testing sets that were incorrectly linked by the classifier (e.g. (a, b)
is a pair labelled as a match by the expert, we find (a, c) as a pair labelled by the classifier as
a match; given that we know that the correct link would have been (a, b), we can conclude
that (a, ¢) is a false positive). We count as a false negative all the pairs from the testing
set that were not found. Note that for this particular application, we are most interested
in finding high quality links that would allow us to build reliable longitudinal databases;
thus the true positive and false positive values are key to our evaluation. For this reason we
calculate how many of the true links were recovered (true positive rate) by the system as
well as how many of the generated links were false. The true and false positive rates on
one-to-one links are defined in (2) and (3), respectively. Table 3 presents the evaluation for
our testing sets based on these measures.

TP
TPR=—— 2)
TP + EN
FP
FPR= — . A3)
TP + FP

One should note that it is very difficult to recover all true links with the limited number
of attributes we use for linking, and that when links are manually created by experts, they
use more information such as family context and location. Table 4 shows the distribution
of the attribute values for the created links in comparison with the distribution of records in
1871. We see that while many of the proportions match well, we are under-linking females,
persons between 15 and 25 years of age, and single persons. This can be attributed in part
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Table 4 Attribute distribution

Attribute 1871 Links
Female 49.35 % 44.47 %
Male 50.61 % 55.53 %
0-15 years 41.61 % 41.64 %
15-25 years 20.39 % 15.85 %
25-50 years 26.40 % 30.71 %
50+ years 11.60 % 11.80 %
Married 30.75 % 37.67 %
Widowed 3.26 % 2.44 %
Single 66.00 % 59.88 %
Birthplace 1871 Links
Ontario 32.68 % 32.90 %
Quebec 28.74 % 28.00 %
England 4.21 % 5.96 %
Scotland 3.54 % 3.54 %
Ireland 6.39 % 5.57 %
Germany 0.65 % 0.71 %
USA 1.83 % 1.89 %
Table 5 Distribution of false - - .
negatives Multiples Blocking Classifier
66.14 % 6.36 % 27.48 %

to the difficulty of linking females who marry and change their last name—there is often no
way of being sure that a married woman in 1881 should link to the record of a single woman
in 1871. It is very important to minimize these biases and to ensure that end users are aware
of them so that they can decide if the data are useful, and what correction methods, if any,
they will want to use for their analyses.

In addition, we are interested to explore why we have such a large number of false nega-
tives. There are three categories that generate false negatives: pairs of records missed due to
the blocking technique, records being part of one to many and many to one links, and false
negatives generated by the classifier. Table 5 shows the distribution of the false negatives in
these categories. It can be observed that most false negatives (66.14 %) are coming from the
one-to-many and many-to-one links. The cases where the classifier incorrectly classifies the
true links represent a considerably smaller percentage of the total number of false negatives.

Our team of historians is able to verify about 20 links per hour. To make a complete
analysis of all the generated links (596,284) would require close to 30,000 hours of manual
verification. This shows the unfeasibility of manually checking all the produced links and it
also shows how costly and difficult it is to create even training and evaluation data.

The data generated with the system presented in this paper is available from http://hdru.
cal.
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6 Implications for machine learning

In our pursuit of a useful set of social science data, the most important lesson we have
learned is that in this setting, standard performance measures for classifiers in ML—even
more “comprehensive” ones like area under the ROC curve—are not sufficiently descriptive
measures of the quality of the data we produce. To convince ourselves and our collabora-
tors of the quality of our results, we investigated how the confidence asserted by our system
corresponded with human confidence in the links produced, and we took time to understand
biases in the data by examining the attribute distributions of different subsets of links. These
investigations facilitated a dialogue between the ML practitioners and social scientists in
our group, and we anticipate that our approach will be useful in other areas where machine
learning methods are used to produce “new data” for applied fields. Here we briefly sum-
marize our findings.

High-confidence versus low-confidence links ~As we mentioned, we use an SVM that pro-
duces a confidence in its classification; these were examined in two different ways. First,
these confidences were used to see how well the classifier matched what the human la-
bellers were doing. We pulled the most-confident links and, upon discussion with our la-
bellers, we found that they did indeed appear most “obvious” to a human. This was an
important sanity check, and we recommend that practitioners use this approach to facilitate
discussions of system performance and reliability with subject-area collaborators. We also
investigated whether we could reduce the false-positive rate by carefully selecting a thresh-
old confidence for links. We found that the distribution of confidences among the TP and
FP links was similar; thus we do not believe the current system could be improved by using
a carefully-selected confidence threshold for distinguishing positives from negatives. This
was in line with our expectations given the limited amount of personal characteristics used
in the linking process.

TP, TN, FP, FN links We examined the attribute similarity distributions of these different
categories of links in the training/validation data to investigate whether there were obvi-
ous biases, for example, whether certain types of links were much easier for our system to
recover. We did not find any such biases.

Discarded many-to-one and one-to-many links For the current application, we discard all
the one-to-many and many-to-one links. This is due to the fact that we can not disambiguate
them given the information we use for linking. One approach to disambiguate some of these
links would be to consider the classifier probabilities distribution and to find a threshold that
would resolve some of these links. We have investigated this avenue and we were unable to
find a good threshold because the resulting one-to-one links introduce more false positives
which is unacceptable for our application. Figure 2 shows the distribution of the classifier
probabilities for those links that belong to one-to-many and many-to-one groups. It can be
observed that the distribution is very skewed with more than 80 % of the links having the
same probability score. This is expected since many records share very similar personal
characteristics. This is especially true for people with common names.

7 Impact to historical census linkage

The classification system identifies a large number of people, each of whom is observed
in 1871 and again in 1881. We have used the linked data, generated with the system de-
scribed in this paper, to resolve a long-standing puzzle in the historical literature. The later
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nineteenth century was a period of rapid social and economic change in the North Atlantic
world. Numerous community and institutional case studies, extensive bankruptcies and re-
configuration of companies, and qualitative evidence of personal anxieties indicate that eco-
nomic change in this period was rapid and disruptive (Chambers 1964; Drummond 1987;
Gagan 1982; Inwood and Keay 2012; Kealey 1980). And yet the standard aggregate in-
dicators, GNP and workforce composition, show little or no change (Urquhart 1986;
Green and Urquhart 1987). In another paper we reconcile the conflicting micro and macro
evidence using longitudinal data created with the linkage system described in this paper
(Antonie et al. 2014). In that paper, we analyze the work transitions for large numbers of
individuals in order to demonstrate that many people changed jobs, but that the changes
partially offset each other and are thus hidden if we examine only the unlinked data. This
fact, which is not visible in aggregate data but can be seen in the linked data (see Table 6),
is one step toward a reconciliation of micro and macro evidence. The linked records allow
us to determine, for the first time, how individuals moved between different occupations.
Canada at this time had a largely agricultural economy. Farming was still the largest
source of employment; the availability of inexpensive farmland continued to attract Euro-
pean immigrants. But the decisions of young people to leave and enter particular sectors
would determine the future shape of the economy. Already in the 1870s significant numbers
of young people were beginning to leave farming. Based on the occupational distribution in
1871 (47 % in farming) we can calculate that 12.6 % of the entire young working popula-
tion left farming as opposed to 11.4 % who entered. Other sectors experienced a net gain;
for example 1 % exited and 5 % entered commerce while 6 % left and 8 % entered industry.
Individual-level linked data reveal the complexity of job changing even at this high level
of aggregation that reduces a myriad of jobs to five broadly-defined sectors. The linked data
also demonstrate that the patterns of job change were different among younger and older
people (Table 7). During the decade a higher proportion of the 15-25 year olds changed sec-
tors (41 % against 27 % of the 26-55 year olds). The older group showed a net movement
out of industry (0.7 %) and into farming (1.9 %), in contrast to the younger group which
had a net flow out of farming (1.3 %) and into industry (2.2 %). Moreover the younger
group shifted more decisively into commerce (3.0 % against 1.2 % among older workers).
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Table 6 Individual occupational transitions, by sector

Occupations 1871 Occupations 1881
15-25 year olds in 1871

Farming Industry Commerce Labour Other services
(46 %) (16 %) (6 %) (18 %) (14 %)
Farming (47 %) 74 % 7 % 3% 12 % 5%
Industry (14 %) 15 % 57 % 5% 12 % 11 %
Commerce (2 %) 9 % 14 % 54 % 12 % 12 %
Labour (20 %) 31 % 15 % 4 % 40 % 10 %
Other services (17 %) 17 % 10 % 12 % 15 % 46 %
26-55 year olds in 1871
Farming Industry Commerce Labour Other services
(54 %) (13 %) (5 %) (16 %) (13 %)
Farming (52 %) 86 % 3% 2 % 6 % 3%
Industry (13 %) 18 % 61 % 5% 9 % 7%
Commerce (5 %) 15 % 11 % 50 % 9 % 2 %
Labour (16 %) 24 % 9 % 3% 56 % 8 %
Other services (14 %) 16 % 6 % 6 % 12 % 60 %

Table 7 Net flow of workers, by age and sector

Occupation 15-25 year olds in 1871 26-55 year olds in 1871
Out of Into Out of Into

Farming 12.69 % 11.37 % 7.28 % 9.17 %
Industry 6.02 % 8.27 % 5.07 % 4.39 %
Commerce 0.94 % 4.95 % 1.85 % 3.01 %
Labour 12 % 10.11 % 7.04 % 6.42 %
Other services 9.18 % 6.13 % 5.6 % 3.85 %
Total 40.83 % 40.83 % 26.84 % 26.84 %

The generational differences are not large but they identify a slow but powerful historical
movement that eventually, in the long-run, would fundamentally change the character of
economic activity. The net loss of young people from agriculture is especially notable be-
cause it signals a fading of the appeal of a sector that once had been the most desirable in
the entire economy.*

There has been some uncertainty about how to interpret change in the agriculture sector,
the single largest economic area, at this time. Regional and community micro-studies have
pointed to “a genuine crisis” in 1860s agriculture, especially in Ontario, and with it sub-
stantial economic instability and social mobility. Farming remained the preferred alternative

4Two other sectors, labour/construction and other services, also experienced a net loss of young people. Many
young men began their working lives in these sectors and then, after gaining experience, moved into farming,
industry or commerce. We do not dwell on this movement because it reflects a familiar life-cycle process
rather than structural change in the economy.
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choice for all occupation groups (suggesting it was a default occupation), although individ-
ual trajectories provide evidence of a decline in appeal for the young. And when the linked
data are viewed in combination with cohort data in 1881 for the youngest and oldest males,
we can anticipate the longer-term shift out of agricultural occupations that took place over
ensuing decades.

Of course, the beginnings of a shift out of agriculture and into industry and commerce
is unsurprising to the extent that a similar process of macro change had been visible in Eu-
rope for several decades. A familiar label for this important process is industrialization. The
most important contribution of the linked individual-level data is to reveal the beginnings
of industrial transformation even in a classic primary product exporting economy such as
Canada.

These arguments have been presented at conferences in London, Chicago, Toronto and
Victoria and are now forthcoming in a book from a prestigious university press (Baskerville
and Inwood 2014).

Another paper in the same volume uses our longitudinal data to improve our under-
standing of rural adjustment to economic stress (Baskerville 2014). Our collaborator Peter
Baskerville demonstrates that previous estimates of rural residential persistence were seri-
ously flawed because in the absence of machine learning techniques the research was based
on linking records within the local area only. The linkage system provides much more ac-
curate data used by Baskerville to analyze who moved and who stayed. He finds surprising
differences by ethnicity; farmers of German origin were much less likely to move. Another
paper in the same volume by Gordon Darroch uses a smaller set of census data from dif-
ferent years (Canada 1861 and 1871), linked with a semi-automatic method to analyze the
choices made by young men as they first entered the labour market (Darroch 2014). Two
other papers in the volume use data linked deterministically and on a smaller scale between
World War One enlistment records and the 1901 census. One of these papers exploits linked
data to show that early life family circumstance was an important influence on adult health
(Cranfield and Inwood 2014) and that child socio-economic circumstance explains only a
small part of the difference between French and English Canadians. The other paper identi-
fies Canadian soldiers of aboriginal origin and analyzes the different patterns of education,
occupation and language for pure-blood and mixed race Indians (Fryxell et al. 2014). None
of these important research findings would have been possible without methodology for
linking historical records.

The importance of machine learning applications to historical data is reflected in broad
international participation in a series of annual workshops on the topic at the University of
Guelph since 2007. Machine learning principles provide the basis for a prestigious ‘Digging
in Data’ award (http://www.diggingintodata.org) in which the People in Motion classifica-
tion system is being used. The People in Motion project has attracted the attention of the
Ontario Genealogical Society, which recently opened a collaboration with the University
of Guelph. Another indicator of impact is the use of our linked historical data by seven
graduate students to date as part of their degrees (in History, Economics, Demography and
Computing Science) at four Canadian universities and at Cambridge.

Longitudinal data derived from the application of machine learning to historical data
comprise key data infrastructure for the next generation of historical and social scientific
research. The broader public impact will be felt after specialized domain research find its
way into textbooks and is synthesized in meta-review publications read by policy-makers.
The knowledge of occupational change in the 19th century, for example, will provide long-
term context and perspective for modern analysis of labour market mobility. Five years from
first journal publication is a plausible timescale for this distribution of knowledge.
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8 Conclusions

In this paper we presented and discussed the implementation of a record linkage system
for historical census data. The goal of the system is to produce longitudinal data tracking
people in 19th century Canada. We described how, for this application, we must pay careful
attention to the false positive rate of our system and to demographic biases that may be intro-
duced by our classifier. In our experimental study, our cross-validation analysis showed that
our system produces very few false positives. At the same time, it is capable of successfully
linking nearly 600,000 records that are, for the most part, demographically representative.
Because the discrepancies in demographics between the links and the full census are rela-
tively small, stratified sampling or re-weighting can be used to correct the difference prior
to analysis. We have therefore created high-quality longitudinal data that will be used to
investigate important historical trends.

Future directions of this research include incorporating more census collections for build-
ing longitudinal data over multiple decades. In this case, we will want to recover n-tuples
that represent an individual over the course of n censuses; this will make the computational
challenges even greater. We are also planning to include United States and British census
data to be able to track those Canadians who emigrated and immigrated in that time frame.
The challenges associated with bringing in other census collections will present themselves
both at the data cleaning phase and the feature construction phase—the census was con-
ducted differently in different countries, thus making the data more difficult to compare.
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