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Quantum error correction (QEC) is required
for a practical quantum computer because of the
fragile nature of quantum information [1]. In
QEC, information is redundantly stored in a large
Hilbert space and one or more observables must
be monitored to reveal the occurrence of an er-
ror, without disturbing the information encoded
in an unknown quantum state. Such observables,
typically multi-qubit parities such as 〈σx

1σ
x
2σ

x
3σ

x
4 〉,

must correspond to a special symmetry property
inherent to the encoding scheme. Measurements
of these observables, or error syndromes, must
also be performed in a quantum non-demolition
(QND) way and faster than the rate at which
errors occur. Previously, QND measurements
of quantum jumps between energy eigenstates
have been performed in systems such as trapped
ions [2–4], electrons [5], cavity quantum electro-
dynamics (QED) [6, 7], nitrogen-vacancy (NV)
centers [8, 9], and superconducting qubits [10, 11].
So far, however, no fast and repeated monitoring
of an error syndrome has been realized. Here,
we track the quantum jumps of a possible er-
ror syndrome, the photon number parity of a mi-
crowave cavity, by mapping this property onto an
ancilla qubit. This quantity is just the error syn-
drome required in a recently proposed scheme for
a hardware-efficient protected quantum memory
using Schrödinger cat states in a harmonic oscilla-
tor [12]. We demonstrate the projective nature of
this measurement onto a parity eigenspace by ob-
serving the collapse of a coherent state onto even
or odd cat states. The measurement is fast com-
pared to the cavity lifetime, has a high single-shot
fidelity, and has a 99.8% probability per single
measurement of leaving the parity unchanged. In
combination with the deterministic encoding of
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quantum information in cat states realized ear-
lier [13, 14], our demonstrated QND parity track-
ing represents a significant step towards imple-
menting an active system that extends the life-
time of a quantum bit.

Besides their necessity in quantum error correction and
quantum information, QND measurements play a cen-
tral role in quantum mechanics. The application of an
ideal projective QND measurement yields a result corre-
sponding to an eigenvalue of the measured operator, and
projects the system onto the eigenstate associated with
that eigenvalue. Moreover, the measurement must leave
the system in that state, so that subsequent measure-
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FIG. 1: Experimental device and parity measurement pro-
tocol (P) of a photon state. (a) Bottom half of the device
containing a transmon qubit located in a trench and coupled
to two waveguide cavities. The low frequency cavity, with
ωs/2π = 7.216 GHz and a lifetime of τ0 = 55 µs, is used to
store and manipulate quantum states. The high frequency
cavity, with ωm/2π = 8.174 GHz and a lifetime of 30 ns, al-
lows for a fast readout of the qubit. (b) The protocol for
measuring the parity of the storage cavity field. After an
initial coherent displacement of α, a Ramsey-type measure-
ment is performed. It consists of two π/2 pulses separated by
t = π/χqs, followed by a projective measurement of the qubit,
where χqs is the dispersive interaction between the qubit and
the storage cavity. In this schematic, with the qubit initially
in the ground state |g〉, the Ramsey-type measurement maps
the even (odd) photon state onto the |e〉 (|g〉) state of the
qubit. A subsequent projective measurement indicates the
cavity state parity. The second π/2 pulse can be either Rŷ,−π

2

or Rŷ,π
2
, simply switching the interpretation of the result of

the qubit measurement.
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FIG. 2: Ensemble averaged Wigner functions of cat states
in the cavity created by single-shot parity measurements of
an initial coherent state in the cavity. The Wigner functions
are mapped out with varying displacements β [15]. Here we
follow the protocol depicted in Fig. 1b, using a Rŷ,π

2
as the

second pulse. The qubit is always initialized to the |g〉 state
through post selection on an initial measurement. (a) Odd
cat by post selection on the |g〉 states. (b) Even cat by post
selection on the |e〉 states. (c) No post selection of the par-
ity measurement, thus tracing over the qubit state. Fringes
disappear, indicating a mixed state of two coherent states.
(d) The normalized difference ( a−b

2
), or the expectation of

the parity weighted by 〈σz〉 of the ancilla, emphasizing the
interference fringes.

ments always return the same result. The hallmark of
a continuously repeated high fidelity QND measurement
is that it demonstrates a canonical Gedankenexperiment :
individual quantum jumps between eigenstates are re-
solved in time on a single quantum system. This ideal
measurement capability has only been experimentally re-
alized in the last few decades. The jumps of a two-level
system (qubit) between its energy eigenstates were first
observed for single trapped ions [2–4], and later in single
NV centers in diamond [8, 9]. The jumps of an oscillator
between eigenstates with different numbers of excitations
(Fock states), were first observed for the motion of an
electron in a Penning trap [5]. More recently, the obser-
vation of quantum jumps of light in cavity QED [6, 7],
where the number of microwave photons in a cavity is
probed with Rydberg atoms, has enabled a range of new
experiments in quantum feedback and control [16, 17].

An analogous system to cavity QED is the combination
of microwave photons in a superconducting resonator
with superconducting qubits, known as circuit QED [18].
The strong dispersive interaction of qubit and photon,
as in Rydberg atom cavity QED, allows either the qubit
or cavity to act as a QND probe of the other compo-
nent. With the advent of quantum-limited parametric
amplifiers [10, 19, 20], measurement techniques for super-
conducting devices have rapidly advanced. For instance,
the frequency shift of a cavity has been recently used to
observe the quantum jumps of a qubit between energy

eigenstates [10, 11]. So far, however, there have been no
observations of jumps for the cavity field in circuit QED.
In this work, we use the dispersive qubit-cavity inter-

action of circuit QED to observe the jumps of photon
number parity. Importantly, these jumps reveal the loss
of individual photons without projecting the system onto
a state of definite number or energy, but rather into an
eigenspace of even or odd photon number. This char-
acteristic is a crucial requirement for future applications
in quantum information, where the parity measurement
serves as the error syndrome for correcting a quantum
memory. Even in the presence of rapidly repeated mea-
surements, the smooth decay of the ensemble averaged
parity is largely unperturbed. However, when individ-
ual time records of the measurement are examined, the
parity is observed to take on only the extremal values,
±1, indicating the projective nature of each individual
measurement. On examining the statistics of the jumps
recorded over many trajectories, we find excellent agree-
ment with a numerical simulation, suggesting 85% of the
jumps for states with an average photon number n̄ = 4
are faithfully detected (see Supplementary Material C).
When selecting on the outcome of a single parity mea-
surement, we observe via Wigner tomography [15] the
creation of cat states with n̄ up to 4.
In our experiment, we employ a three-dimensional

circuit QED architecture [21] with a single supercon-
ducting transmon qubit coupled to two waveguide cavi-
ties [14, 22], as shown in Fig. 1a. Our qubit has a tran-
sition frequency of ωq/2π = 5.938 GHz, an energy re-
laxation time T1 = 8 µs, and a Ramsey time T ∗

2 = 5 µs.
The high frequency cavity, with ωm/2π = 8.174 GHz and
a lifetime of 30 ns, serves only as a fast readout of the
qubit state. In order to perform a high-fidelity single-shot
dispersive readout of the qubit, we use a Josephson bi-
furcation amplifier (JBA) operating in a double-pumped
mode [23–25] as the first stage of amplification. The low
frequency cavity, with ωs/2π = 7.216 GHz and a life-
time of τ0 = 55 µs, stores the photon states which are
measured and manipulated. Exploiting the nonlinearities
induced in both resonators, we use the transmon qubit
to track the parity of the storage cavity state. For sim-
plicity, we will refer to the storage cavity as “the cavity”
henceforth.
The qubit and cavity are in the strong dispersive cou-

pling regime, which can be described by the Hamiltonian:

H/~ = ωq |e〉 〈e|+ (ωs − χqs |e〉 〈e|)a†a
where a and a† are the annihilation and creation opera-
tors respectively, |e〉 is the excited state of the qubit, and
χqs/2π = 1.789 MHz is the qubit state dependent fre-
quency shift of the cavity. The readout cavity has been
neglected because it remains in the ground state while
the system actually evolves. The interaction between the
qubit and the cavity entangles qubit and photon. In the
rotating frame of the cavity, Fock states associated with
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FIG. 3: Typical repeated single-shot parity measurement traces revealing photon jumps in real time. Horizontal dashed orange
lines delineate the thresholds to distinguish |g〉 , |e〉, and higher excited states of the qubit, denoted as |f〉. The red traces show
the quantum filter that best estimates the parity at every point. The filter has a finite response time and thus does not trust
that a brief change in the measurement pattern corresponds to an actual parity jump. (a) In this protocol we switch the sign
of the second pulse, using a Rŷ,−π

2
instead of a Rŷ,π

2
. The repetition time of the parity measurement is 1 µs, and traces b-e all

have an initial displacement of |α| = 1. (b) For the most part the correlation between neighboring measurements is positive,
indicating an even parity state for the whole 400 µs. The changes in the qubit state between 120 µs and 320 µs are likely due to
qubit decoherence during the parity measurement. (c) One parity jump is observed by the change in the measurement pattern
(oscillating vs. constant) at about 130 µs. (d) Two parity jumps are recorded at about 10 µs and then again at 260 µs. The
change of pattern at about 200 µs is a result of the qubit leaving the computational space for higher excited states, a feature
that disables the parity measurement until the qubit returns to either |g〉 or |e〉. (e) A trace with all features described above
included. In this particular trajectory, the filter can clearly resolve five photon jump events.

the qubit in the excited state acquire a phase Φ = a†aχqst
proportional to their photon number [26]. By waiting
for t = π/χqs, one can realize a controlled-phase gate

Cπ = I
⊗ |g〉 〈g|+eiπa

†a
⊗ |e〉 〈e|, adding a π phase shift

per photon on the cavity state conditioned on the qubit
state [14]. Therefore, Cπ can be inserted between two
π/2 pulses on the qubit in a Ramsey-type measurement
to map the photon parity of any cavity state onto the
qubit (black dashed line enclosure in Fig. 1b). The re-
sult of a qubit measurement after the second π/2 pulse
together with prior knowledge of the initial qubit state
indicates whether the number of photons in the cavity is
even or odd, but reveals nothing about the actual value
of the photon number.

The creation of cat states is a natural consequence of
a parity measurement on a coherent state |α〉 since the
phase cat states |α〉 ± |−α〉 are eigenstates of the parity

operator eiπa
†a [27]. After displacing the cavity vacuum

by α with the qubit initially at |g〉, we use the parity pro-
tocol to take (|α, g〉+ |α, e〉)/

√
2 after the first π/2 pulse

to [(|α〉 − |−α〉) |g〉+(|α〉 + |−α〉) |e〉]/2 after the second
pulse, at which point the parity of the cavity state is en-
tangled with the state of the qubit. Detection of the qubit
state using the readout cavity then projects the storage
cavity onto one of the two cat states. To confirm the non-
classical properties of these states, we perform Wigner
tomography of the cavity after a single parity measure-
ment for an initial coherent state of displacement |α| = 2
(n̄ = 4). Post-selecting on the ground or excited qubit
states to obtain the odd or even cats (Figs. 2a and 2b),
respectively, we see the interference patterns that are the
signature of quantum behavior. The overlap between the
measured Wigner function and that of an ideal cat gives
a fidelity of F = 83%. Figure 2c shows Wigner func-
tion without post selection (tracing over qubit states).
Fringes in the Wigner function completely disappear as
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expected and we obtain the statistical mixture of even
and odd states. The high contrast between even and odd
cat states is a central requirement in implementing a re-
cently proposed QEC scheme [12], where these form the
code and error spaces respectively.

As the loss of a single photon changes the parity of a
cat state, monitoring parity repeatedly in real time al-
lows us to track photon jumps of our cavity. Here we
note that to interpret the result of a single parity mea-
surement we must know the state of the qubit prior to
the first π/2 pulse. In other words, it is the correlation of
the qubit states before and after the parity measurement
(an oscillating pattern between |g〉 and |e〉 vs. a constant
pattern remaining in either |g〉 or |e〉) that reveals the
photon state parity. For the following data we have cho-
sen Rŷ,−π

2
as the second qubit pulse, instead of Rŷ,π

2
, in

order to maintain a constant pattern when the cavity is
in the even parity state. Aside from reversing which pat-
tern we assign to be even and odd, this change makes no
difference. Figures 3b-e show typical 400 µs single-shot
traces. The initial displacement is |α| = 1.0 and the rep-
etition interval of the parity measurements is 1 µs, much
smaller than the average photon lifetime τ0 = 55 µs ob-
tained from a free time evolution measurement of the
parity of a coherent state (see Supplementary Material
A). We observe a range of photon jump statistics, from
quiet traces that last for hundreds of microseconds with
no apparent changes in parity, to those that have as many
as five jumps. The clear dichotomy between the patterns
in our traces indicates that although the measurements
are susceptible to qubit decoherence, as evidenced by in-
termittent brief changes in measurement correlations and
excitations to higher qubit states, they nonetheless ex-
hibit a strong sensitivity to single photon jump events.

When analyzing these single-shot traces, in order to
mitigate the effects due to qubit decoherence, excitation
to qubit states higher than |e〉 (denoted as |f〉), and other
imperfections in the qubit readout in extracting the par-
ity, we have applied a quantum filter that best estimates
the photon state parity (details described in Supplemen-
tary Material B). We note that the quantum filter output
depends on the entire previous parity trajectory. Fig-
ures 3b-e show traces with the parity estimator calcu-
lated from the quantum filter, in red. The parity estima-
tor is clearly much less sensitive to qubit decoherence and
|f〉 states. Although our single parity readout fidelity is
80%, due to the smoothing effect of the quantum filter,
we actually can achieve nearly unity detection sensitivity
of single photon jumps. However, given one jump, the
probability to have a second jump within the response
time of the filter (∼ 2 µs) is 4% for n̄ = 1 (or 15% for
n̄ = 4), which limits our overall detection sensitivity over
an entire trajectory (see Supplementary Material C).

The repeated parity measurements shown above con-
stitute just a single point, the origin, in the Wigner func-
tions of the even and odd cats (Figs. 2a and 2b). The loss
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FIG. 4: Ensemble averaged dynamics of the parity estimator
without distinguishing the initial parity of the created cats.
The repetition time of the parity measurement τi = 1 µs. The
dashed horizontal line represents the expected saturation of
the parity due to a background photon number nth = 0.02
in the cavity from an independent measurement (see Supple-
mentary Material A). Solid lines are fitted theoretical curves
for coherent states with nth, but with the time constant (a
global fitting gives τtot = 49 µs) as the only free parame-
ter (see Supplementary Material B). This τtot value closely
matches the expected lifetime τ0, obtained from a free evolu-
tion measurement. Inset: extracted time constants as a func-
tion of different parity measurement repetition intervals. The
decay time τtot is modelled as 1/τtot = 1/τ0 + PD/τi, where
PD is the probability of inducing an extra parity change. A
fit (solid line) gives PD=2×10−3, indicating a 99.8% QND of
each parity measurement. Moreover, as each averaged parity
decay saturates at the expected value (1-2nth) indicates that
repeatedly measuring the cavity does not raise its thermal
population, further confirming how QND our measurements
are.

of a single photon flips not just the parity, but the sign
of the entire fringe pattern as well. Thus, crucially, a
parity measurement acquires no information about the
phase of the cat states. Consequently, one could en-
code quantum information onto the computational bases
|0〉L = N (|α〉 + |−α〉) and |1〉L = N (|iα〉 + |−iα〉) with

N = 1/
√

2(1 + e−2|α|2), and any subsequent parity mea-
surements would make no distinction between the two. It
is this capability of extracting error syndromes without
perturbing the encoded information that is so essential
to QEC.
The degree to which the measurements are QND can

be determined by examining the decay rate for the parity
of a coherent state with different measurement cadences.
We extract the total decay rate of the parity (τtot), from
the ensemble averaged parity dynamics obtained with the
quantum filter (Fig. 4). This total decay rate is well
modelled by the parallel combination of the free decay
time (τ0 = 55 µs) plus a constant demolition probability
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PD = 0.002 per measurement interval τi, as shown by the
fit in the inset of Fig. 4. In other words, a single parity
measurement is 99.8% QND.

Further improvements of this measurement technique
will be required to realize a truly robust error-corrected
quantum memory. The probability of missing a photon
jump, due to the finite measurement rate per cavity life-
time, would be greatly reduced if combined with longer
lived cavities [28]. In addition, the current approach is
not yet fault-tolerant, since relaxation (finite qubit T1) of
the ancilla induces phase errors in the cat states. Improv-
ing these lifetimes and further characterizing these types
of error processes are important next steps. Nonetheless,
we estimate that when combined with an optimized mea-
surement strategy, the current level of performance could
already allow an extension of the lifetime (> τtot/n̄) for
an encoded cat state by over a factor of two (see Supple-
mentary Material D).

In summary, we have demonstrated the real-time
tracking of jumps in the photon number parity in cir-
cuit QED. Significantly, this quantity differs from previ-
ous observations of quantum jumps between energy lev-
els. Rather, it projects the system into a degenerate sub-
space, and can therefore serve as an error syndrome for
QEC. We show that the parity measurement is highly
QND, and has a high fidelity and cadence compared to
the cavity lifetime. These performances represent a sig-
nificant advance in the measurement capabilities neces-
sary for further progress in quantum information.
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A. Experiment setup, device parameters, and readout properties

Our measurements are performed in a cryogen-free dilution refrigerator with a base temper-

ature of about 10 mK. Figure S1 shows the schematic of the measurement setup. A Josephson

bifurcation amplifier (JBA) [1, 2] operating in a double-pumped mode [3–5] is used as the first

stage of amplification between the readout cavity output and the high electron mobility transistor

(HEMT), allowing for a high-fidelity single-shot dispersive readout of the qubit state. We typically

operate the JBA in the saturated regime with about 20 readout photons for a better signal-to-noise

ratio.

The transmon qubit is fabricated on a c-plane sapphire (Al2O3) substrate with a double-angle

evaporation of aluminum after a single electron-beam lithography step. The qubit has a transition

frequency ωq/2π = 5.938 GHz with an anharmonicity αq/2π = (ωge −ωe f )/2π=240 MHz, an

energy relaxation time T1 = 8 µs and a Ramsey time T ∗
2 = 5 µs. Even at the lowest base temper-

ature, the qubit is measured to have about 86% ground state |g〉, 11% excited state |e〉, and 3%

of states higher than |e〉, denoted as | f 〉. These excitations of the qubit could come from stray

infrared photons leaking into the cavity, although the exact source remains unknown.

The qubit serves as an ancilla and provides the necessary non-linearity for the manipulation of

coherent states in the storage cavity. Both the storage and readout cavities are made of aluminum

alloy 6061. The state dependent frequency shifts between the qubit and the storage and readout

cavities are χqs/2π = 1.789 MHz and χqr/2π = 0.930 MHz respectively. For simplicity, we

will refer to the storage cavity as “the cavity” henceforth. The inset of Fig. S2 shows the so-

called number splitting peaks of the qubit due to different photon numbers in the cavity, which is

displaced with a 10 ns square pulse right before the spectroscopy measurement. A second order

polynomial fit χ(N) = −χqsN + χ ′
qsN

2 gives a non-linear correction to the dispersive shift [6]

χ ′
qs/2π = 1.9±0.1 kHz which is small enough to be neglected in the cavity dynamics. Figure S2

shows the probability of the first seven Fock states n = 0,1,2, ...6 as a function of displacement

amplitude |α| in excellent agreement with a Poisson distribution, indicating a good control of the

coherent state in the cavity. We scale the x-axis from the voltage amplitude of the displacement

pulse applied from an arbitrary waveform generator and use this scaling as a calibration. There

is a small residual amplitude for the n = 1 peak even with no displacement (point near origin),

allowing us to infer that there is a background photon population nth = 0.02 in the cavity. The

lifetime of the cavity is characterized by measuring a free parity evolution of a coherent state as
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FIG. 1: Schematic of the measurement setup. We use two separate lines to drive the readout and the storage

cavity. Qubit state manipulations are realized through the readout cavity input line. The readout cavity

output signal is first amplified by a JBA operating in a double-pumped mode, and the reflected signal then

goes through three isolators in series before being further amplified by a HEMT at 4 K. The amplified signal

is finally down-converted to 50 MHz and then digitized by a fast 1 GS data-acquisition card.

shown in Fig. S3, which is nearly identical to Fig. 4 in the main text. A global fitting gives a time

constant τ0 = 55 µs.

We have adjusted the phase between the JBA readout signal and the pump such that |g〉, |e〉,
and | f 〉 states can be distinguished with optimal contrast. Figure S5a shows the histogram of

the qubit readout for the parity protocol used in repeated single-shot traces in Fig. 3 in the main

text. The histogram is clearly trimodal. Thresholds between |g〉 and |e〉, and between |e〉 and | f 〉
states have been chosen to digitize the readout signal to +1,−1, and 0 for |g〉, |e〉, and | f 〉 state

respectively. We assign a zero to the | f 〉 states to indicate a “failed” measurement with no useful

information about the parity. These | f 〉 states can be fixed with a field programmable gate array

applying proper pulses to drive the qubit back to either |g〉 or |e〉 in real time. Figure S5b shows

the basic qubit readout properties with the cavity left in vacuum. The |g〉 state is prepared through

a post-selection of an initial qubit measurement, while |e〉 and | f 〉 are prepared by properly pulsing

the selected |g〉 state. The loss of fidelity predominantly comes from the T1 process during both
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FIG. 2: Poisson distribution of photon numbers in the cavity. Dotted color lines are data for the first seven

Fock states n = 0,1,2, ...6 as a function of displacement amplitude |α |. The measurements are performed

with a selective π pulse on each number splitting peak and the resulting signal amplitude should be pro-

portional to the corresponding number population. These oscillation amplitudes have been normalized to

probabilities such that the sum of the amplitudes corresponding to n = 0 and n = 1 equals to unity. Dashed

lines are theoretical curves with a Poisson distribution P(|α |) = |α |2ne−|α |2/n! where the x-axis has had a

single scale factor adjusted to fit all these probabilities. The excellent agreement indicates a good control

of the coherent state in the cavity. Based on the probability of n = 1 at |α | = 0, we find a background

photon population nth = 0.02 in the cavity. Inset: spectroscopy (left axis) of the number splitting peaks of

the qubit when populating different photon numbers in the cavity. Top panel shows the difference between

peak positions and a linear fit. The curvature necessitates a second order polynomial fit resulting a linear

dispersive shift χqs/2π = 1.789±0.002 MHz and a non-linear dispersive shift χ ′
qs/2π = 1.9±0.1 kHz.

the waiting time of the initialization measurement (300 ns) and the qubit readout time (340 ns).

To perform a good parity measurement, the π/2 pulses Rŷ,± π
2

should equally cover as many

number splitting peaks as possible without significantly exciting the | f 〉 state. We choose a Gaus-

sian envelope pulse truncated to 4σ = 8 ns (σ f = 80 MHz) for a good compromise. Figure S4

shows the effectiveness of those Rŷ,± π
2

pulses as a function of n̄ in the cavity. The curvature for
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FIG. 3: Ensemble averaged free parity evolution of a coherent state. The measurement protocol is shown in

the inset. The single parity measurement gives a readout voltage that has been converted to parity through

thresholding. All measured evolution curves saturate at the same value in the long time limit. This saturation

level has been forced to 0.96 (due to nth = 0.02), represented by the dashed Horizontal line. The solid lines

are global fits, giving a time constant τ0 = 55 µs.

n̄ > 4 is due to the finite bandwidth of those pulses in the frequency domain.

We emphasize that it is the correlation Ct of the qubit states before and after the parity mea-

surement that reveals the photon state parity. Figure S5c shows the parity readout properties of

our system. The loss of fidelity of the parity measurement mainly comes from qubit decoher-

ence process during the parity measurement. Conditional probabilities P(+1|even), P(+1|odd),

P(−1|even), P(−1|odd), P(0|even), and P(0|odd) are time-independent probabilities which have

a positive, negative, and zero correlation between the digitized qubit readouts before and after a

parity measurement for a given even or odd state. However, a pure even or odd state cannot be

prepared easily in our system due to the finite thermal population of the cavity, which is small but

can still introduce systematic errors. We determine P(±1,0|even/odd) by post-selecting the cases

with five consecutive identical parity results, which give a good confidence of the photon state

parity, and then performing a histogram on the sixth parity measurement.
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2
, Rŷ, π

2
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2
, Rŷ,− π

2
) respectively as a function of

different n̄ introduced into the cavity. The curvature for n̄ > 4 comes from the finite bandwidth of the pulses

in the frequency domain. Green curve (top axis) is a time Rabi trace for an amplitude comparison with no

initial cavity displacement.

B. Quantum filter and correlated data

In order to mitigate the effects due to qubit decoherence, | f 〉 state of the qubit (an undesir-

able state that obscures the parity measurement), and other imperfections in the qubit readout in

extracting the parity, we have applied a quantum filter that best estimates the photon state parity.

We note that the quantum filter depends on the measured trajectory, that is on the past history

of measurement results. Figure S6 shows the schematic of the quantum filter. This quantum

filter at each point in time is realized in two steps: first, a new density matrix ρ̃(Ct+dt) is calcu-

lated from the best estimation ρ(Ct) at the previous point based only on the decoherence of the

cavity; second, the density matrix ρ̃(Ct+dt) gets updated as the best estimation ρ(Ct+dt) accord-

ing to Bayes law based on the newly acquired knowledge from the current parity measurement.

This best estimated density matrix ρ(Ct+dt) is then used as the input for the next iteration. We

have truncated the dimension of the density matrix to N = 5n̄, which is large enough to cover

all relevant number states. To initialize the density matrix after a displacement D(α), we have

set ρ(t = 0) = (1−nth)D(α) |0〉〈0|D†(α)+nthD(α) |1〉〈1|D†(α), taking into account the back-

ground photon population in the limit nth ≪ 1.

At time t, the density matrix of the photon state is ρ(Ct), which depends on all previous cor-

relations. At t + dt, only considering the decoherence of the cavity, the expected density ma-
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FIG. 5: (a) Histogram of qubit readout for the parity protocol used in repeated single-shot traces in Fig. 3

in the main text. The phase between the JBA readout and the pump has been adjusted such that |g〉, |e〉,

and | f 〉 states can be distinguished with optimal spacings. Thresholds between |g〉 and |e〉, and between |e〉

and | f 〉 have been chosen to digitize the readout signal to +1,−1, and 0 for |g〉, |e〉, and | f 〉 respectively.

Note that we assign a zero to the | f 〉 states to indicate a “failed” measurement with no useful information

about the parity. (b) Qubit readout properties for an initial qubit state at |g〉, |e〉, and | f 〉 state respectively.

(c) Parity readout property for a given even and odd parity state. P(±1,0|even/odd) are determined by

post-selecting the cases with five consecutive identical parity results, which give a good confidence of the

photon state parity, and then performing a histogram on the sixth parity measurement.
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FIG. 6: Schematic of the quantum filter. At time t, the density matrix of the photon state is ρ(Ct), which

depends on all previous correlations. At t+dt, only considering the decoherence of the cavity, the expected

density matrix from free evolution becomes ρ̃(Ct+dt). The additional information Ct+dt acquired from the

parity measurement at t +dt changes the knowledge of the parity of the photon state according to Eq. S1.
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trix from free evolution becomes ρ̃(Ct+dt) = Mdownρ(Ct)M
†
down +Mupρ(Ct)M†

up +Mnoρ(Ct)M†
no,

where Mdown =
√

κdowndta, Mup =
√

κupdta†, and Mno = I − (M†
downMdown +M†

upMup)/2 are the

Kraus operators for photon loss, absorption of thermal photons, and no jump events respectively.

We have κdown = (nth +1)κ and κup = nthκ , and κ = 1/τtot is the energy decay rate in the cavity

under repeated parity measurements. The additional information Ct+dt acquired from the parity

measurement at t +dt changes the quantum state according to:

ρ(Ct+dt) =











P(even|Ct+dt)
P̂evenρ̃(Ct+dt)P̂even

tr(P̂evenρ̃(Ct+dt)P̂even)
+P(odd|Ct+dt)

P̂oddρ̃(Ct+dt)P̂odd

tr(P̂odd ρ̃(Ct+dt)P̂odd)
, if Ct+dt 6= 0,

ρ̃(Ct+dt) if Ct+dt = 0.

(1)

where P̂even and P̂odd are the projectors onto the even and odd manifolds, P̂ = P̂even− P̂odd = eiπa†a

is the parity operator, P(even|Ct+dt) and P(odd|Ct+dt) are the probabilities of being in the even

and odd parity respectively for a measured Ct+dt . To simplify the quantum filter, we assume that

the event of the qubit jumping to the | f 〉 states is independent of the cavity parity being even or

odd. Hence, if the measured correlation is zero, the density matrix of the photon state is assigned

to the expected one from free evolution. Based on Bayes law, Eq. S1 becomes:

ρ(Ct+dt) =











P(Ct+dt |even)P̂evenρ̃(Ct+dt)P̂even+P(Ct+dt |odd)P̂odd ρ̃(Ct+dt)P̂odd
P(Ct+dt)

, if Ct+dt 6= 0,

ρ̃(Ct+dt) if Ct+dt = 0.
(2)

where P(Ct+dt) = P(Ct+dt |even)tr[P̂evenρ̃(Ct+dt)P̂even] +P(Ct+dt |odd)tr[P̂oddρ̃(Ct+dt)P̂odd]. The

best parity estimation of the photon state is then:

P(t +dt) = tr[ρ(Ct+dt)P̂] (3)

This formula has been used extensively in the main text to estimate the parity of the photon state.

In order to make a comparison with the best parity estimation based on the above quantum filter,

we also directly correlate the neighboring parity measurements without any further processing.

For zero correlation cases, since no information of the photon state parity is acquired, the best

knowledge of parity at those points is just the last measured non-zero correlation. We assume the

repeated parity measurement is a Markovian process. The ensemble averaged parity dynamics

obtained from the correlation under a repeated parity monitoring is then simply:

<Ccor(t)>= P(+1, t)−P(−1, t)+P(0, t)
P(+1, t)−P(−1, t)
P(+1, t)+P(−1, t)

(4)
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where P(+1, t), P(−1, t), and P(0, t) are the probability of measuring positive, negative, and zero

correlations at time t. The third term comes from the fact that the cases with zero correlation is

assigned to previously measured non-zero correlation +1 or -1 whose probability is P(+1, t −∆t)

and P(−1, t −∆t). For small ∆t, P(±1, t −∆t)≈ P(±1, t).

The probabilities P(+1, t), P(−1, t), and P(0, t) depend on both the measured parity readout

property P(±1,0|even/odd) and the even and odd parity evolution Pe(t) and Po(t) of the photon

state:

P(+1, t) = P(+1|even)Pe(t)+P(+1|odd)Po(t)

P(−1, t) = P(−1|even)Pe(t)+P(−1|odd)Po(t)

P(0, t) = P(0|even)Pe(t)+P(0|odd)Po(t)

(5)

where Pe(t) = (e−|α|e−κt
+)/ and Po(t) = (− e−|α|e−κt

)/.

With all the parameters in Eq. S4 known, < Ccor(t) > can then be predicted. The agreement

with the measured data is excellent as shown in Fig. S7. This data set is the same as that shown

in Fig. 4 in the main text. Equation S4 even accurately predicts the offset in the averaged parity at

t = 0 which comes from the asymmetric parity readout fidelities between the even and odd states.

The fact that the saturated parity value in the long time limit in Fig. S7 is much lower than that

in Fig. 4 in the main text mainly comes from the qubit decoherence and the imperfections in the

qubit readout. This large difference is additional proof of the effectiveness of the quantum filter.

For a coherent state in a thermal bath, its parity dynamics is simply [7]:

P =


+nth
e−|α|e−κt/(+nth), (6)

which has been used to fit Fig. 4 in the main text.

C. Statistics of photon jumps

In order to test how faithfully our repeated parity measurement can track photon losses, we

simply count the number of jumps extracted from the parity estimator during 500 µs repeated par-

ity measurements. We have applied a Schmitt trigger to digitize the parity estimator to reject the

unavoidable noise (spikes in the estimator) coming from qubit decoherence and erred parity read-

out. The two thresholds for the Schmitt trigger are chosen to be ±0.9 for a large discrimination.

Then the number of parity jumps is inferred from the number of transitions in the digital data after

the Schmitt trigger.
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FIG. 7: Ensemble averaged parity dynamics obtained directly from the correlation of qubit states between

neighboring parity measurements under a repeated parity monitoring. The data set is the same as that

shown in Fig. 4 in the main text. Solid lines are predictions based on Eq. S4, in excellent agreement with the

measured data. The offset of the averaged parity at t = 0 comes from the asymmetric parity readout fidelities

between the even and odd states. The fact that the saturated parity value in the long time limit is much lower

than that in Fig. 4 in the main text mainly comes from the qubit decoherence and the imperfections in the

qubit readout. This large difference is additional proof of the effectiveness of the quantum filter.

Although our averaged single parity readout fidelity is 80% (90% to be correct and 10% to be

wrong), due to the averaging effect of the quantum filter, we actually can achieve nearly unity

detection sensitivity of single photon jump events. However, because of the finite bandwidth of

the filter, if two photon jumps occur within the response time of the filter τ f (defined as the time

to make a transition between the two thresholds for the Schmitt trigger), our Schmitt trigger will

not catch both jumps. Figure S8 shows the time response of the quantum filter applied to typical

photon jump events. Green and cyan curves are fits of the parity estimator at the transition based

on a tanh function, giving a transition time constant less than 1 µs. We also find the response time

of the filter to make a transition between ±0.9 is τ f ∼ 2 µs. The probability of having a second

photon jump within τ f after the first jump is simply P jump =
n̄

τtot

∫ τ f
0 e−tn̄/τtot dt = 1−e−τ f n̄/τtot . For

n̄ = 1 and τtot = 49 µs, the above probability is P jump = 4%, while P jump = 15% for n̄ = 4, which

is the probability of missing both jumps.

Figure S9 shows the histograms of the extracted number of jumps for an initial even or odd cat
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FIG. 8: Response time of the quantum filter applied to typical photon jump events. Blue curve is the raw

data from a repeated parity measurement. Red curve is the corresponding parity estimator based on the

quantum filter. Green (cyan) curves are fits to tanh functions of the parity estimator at the transition down

(up), giving a transition time constant of less than 1 µs. However, the response time of the filter to make a

transition between ±0.9 is τ f ∼ 2 µs.

state by post selections. We note that the almost non-mixing distribution of even and odd numbers

is trivial due to the following reason. At the end of 500 µs repeated parity measurements, the

cavity is already in a steady state with nth = 0.02 photons, that is 98% probability at vacuum (even

parity) and 2% probability with one photon (odd parity). When the initial parity of the cat state, for

example an even parity, is determined by post selections, the number of jumps should have 98%

probability of being even and only 2% probability of being odd closely tied with the distribution of

the final parity at t = 500 µs. Similar argument applies to an initially odd parity cat. The even/odd

distributions in Fig. S9 indeed show a 98%-2% mixing, providing another way of determining nth.

In reality, we have no way of knowing the true number of photon jumps for each parity mea-

surement trajectory. The only way to test how faithfully our repeated parity measurement can

track photon jumps is to see whether the distribution of jumps agrees with what we expect. Due to

the complication of background thermal excitation and finite response time of the filter, to get an

analytic solution is difficult. Instead, we perform a numerical Monte Carlo simulation to compare

with the experiment. In the simulation, we use a coherent state as the initial state without distin-
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guishing the parity. Each simulation trajectory is 500 µs long including a transition probability

n → n+1 from the background thermal excitation. In the simulation, we also neglect those who

have neighboring jumps within the response time τ f of the quantum filter. Then for each trajectory

we count the number of jumps and finally we perform a histogram (black solid lines in Fig. S9) of

those numbers based on 100,000 trajectories. The good agreement between simulation and data

demonstrates that the repeated parity measurement can track the error syndromes faithfully.

D. Quantifying parity tracking performance

Our demonstrated parity tracking protocol has two major sources of infidelity that lead to the

decay of our cat states, ultimately putting a bound on the improvement we would be able to achieve

in an actual QEC protocol. These are: missing photon jumps and qubit T1 decay. Missing a jump

would result in an errant interpretation of the cavity state we are decoding. Qubit T1 decay would

instead impart an arbitrary phase on the cat states that without some auxiliary correction protocol

would be impossible to recover from.

Given our system’s parameters, we can quantify what level of improvement we can achieve

with the demonstrated parity tracking protocol over a photon jump rate n̄κ . An optimal balance

must be struck between the infidelity induced by each of the two mechanisms. If one measures

too frequently, qubit T1 decay will dominate the decay due to missing jumps. Conversely, not

measuring often enough, although mitigating the effects of qubit errors, risks missing a photon

jump. In particular, one can write down an effective decay rate κe f f as:

κe f f = [
(n̄κ)2(τM + τW )2

2
+PC(T1)]

1

τM + τW
, (7)

where τM is the parity measurement time, τW is a waiting time between two consecutive parity

measurements that can take on any value ≥ 0 µs, and PC(T1) is a constant probability of dephasing

due to qubit decay. The minimum κe f f is achieved when the decay rates are equal:

(τM + τW )2 =
2PC(T1)

(n̄κ)2
⇒ κe f f = n̄κ

√

2PC(T1)

The improvement over n̄κ is thus on the order of
√

2PC(T1). The probability PC(T1) can simply be

taken as τM/T1, the relevant figure of merit that quantifies a worst case scenario, namely that the

qubit remains in |e〉 during and after each measurement. However, with current real-time feedback

technologies rapidly advancing, it should in principle be possible to keep the qubit in |g〉 after

12
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FIG. 9: Histograms of the number of jumps extracted from the parity estimator during 500 µs repeated

parity measurements for an initial even or odd cat state by post selections. (a) and (b) are for |α |= 2.0, (c)

and (d) are for |α |= 1.4, and (e) and (f) are for |α |= 1.0. Solid lines are numerical simulations including

the background thermal excitation and finite response time of the quantum filter. In the simulation, we use

a coherent state as the initial state without distinguishing the parity. The good agreement between data and

simulation demonstrates that the repeated parity measurement can track the error syndromes faithfully.

13



each measurement. Given each full parity measurement takes 1 µs in our system, τM could in

principle be cut down to ∼ 400 ns, with π/χqs ∼ 275 ns and a projective measurement lasting

just over ∼ 100 ns. Putting the numbers together, one could in principle enhance the lifetime

of a quantum bit encoded in the resonator by a factor of 3, from 1/n̄κ = 12 µs to ∼ 36 µs. In

addition, the optimal waiting time between measurements τW would be ∼ 4 µs. Given that τM is

dominated in large part by the parity protocol waiting time t = π/χqs, a relevant benchmark for the

overall performance becomes the product χqsT1. We emphasize that even for this system’s modest

coherence properties, a factor of 3 improvement would be significant. Indeed, just doubling T1

would already take the lifetime of the information to 52 µs, the lifetime of a single photon Fock

state in the storage cavity.
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