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ABSTRACT
This paper proposes a pointer alias analysis for automatic
error detection. State-of-the-art pointer alias analyses are
either too slow or too imprecise for finding errors in real-
life programs. We propose a hybrid pointer analysis that
tracks actively manipulated pointers held in local variables
and parameters accurately with path and context sensitiv-
ity and handles pointers stored in recursive data structures
less precisely but efficiently. We make the unsound assump-
tion that pointers passed into a procedure, in parameters,
global variables, and locations reached by applying simple
access paths to parameters and global variables, are all dis-
tinct from each other and from any other locations. This
assumption matches the semantics of many functions, re-
duces spurious aliases and speeds up the analysis.

We present a program representation, called IPSSA, which
captures intraprocedural and interprocedural definition-use
relationships of directly and indirectly accessed memory lo-
cations. This representation makes it easy to create demand-
driven path-sensitive and context-sensitive analyses.

We demonstrate how a program checker based on IPSSA
can be used to find security violations. Our checker, when
applied to 10 programs, found 6 new violations and 8 pre-
viously reported ones. The checker generated only one false
warning, suggesting that our approach is effective in creating
practical and easy-to-use bug detection tools.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.3 [Operating Systems]: Security and Protection

General Terms
Algorithms, Languages, Software Security.
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1. INTRODUCTION
A number of practical auditing and error detection tools

have been shown to be effective in finding errors in exist-
ing software systems[2, 11]. Among the errors detected are
buffer overruns and format string vulnerabilities, which ac-
count for a large number of reported security attacks[23].

A common requirement for such tools is the ability to
follow the flow of data efficiently: from a definition to all
its possible uses or from a use to all its possible definitions.
What makes this problem difficult for languages like C is
the presence of pointers; without performing some sort of
pointer analysis it is impossible to say what locations an
indirect load or store will access.

The current state-of-the-art pointer alias analyses are ei-
ther too imprecise or too slow to use for bug detection.
Pointer alias analysis used in program optimizations is nec-
essarily sound: two pointers are considered to be possi-
bly aliased if it cannot be proven otherwise. While flow-
insensitive and context-insensitive analyses are fast[13, 20],
they generate many spurious aliases. Program checkers built
upon these techniques would raise too many false alarms
and would thus be unusable. On the other hand, flow and
context-sensitive algorithms have been proposed[17, 24, 26],
but are too slow to be used on real-life programs.

Practical auditing tools often use unsound pointer alias
analyses instead[2, 4, 11, 23]. Not only are the analyses flow
and context-sensitive, they are even path-sensitive. While
they track memory locations held by local variables and pa-
rameters with precision, they often assume unsoundly that
all other indirect memory references are unaliased. Because
these tools report errors based on information that is most
likely to be true, they generate fewer false warnings. Unfor-
tunately it is sometimes hard to understand which errors go
undetected because of the ad hoc techniques used.

1.1 Contributions
Our goal is to develop a pointer alias analysis expressly

to be used for software auditing and error detection. The
following outlines the major contributions of this work.
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1.1.1 A Hybrid Pointer Alias Analysis
We cannot afford the expense of a context-sensitive and

path-sensitive analysis throughout the whole program, nor
can we afford the inaccuracy of a flow-insensitive analysis.
Thus, instead of using a uniform algorithm to analyze all
pointers in a program, we use a hybrid approach. First, we
propose a precise path and context-sensitive alias analysis to
track locations referred to by simple access paths originating
from parameters and local variables. Distinguishing between
different field structures is crucial in C to achieve good preci-
sion[23], thus fields are kept separate in our representation.
Second, we use an efficient, but imprecise pointer alias an-
alysis to handle all the other references. We currently use
Steensgaard’s unification-based analysis[20], which is flow
and context-insensitive and does not distinguish between
fields within structures. Our design is geared toward catch-
ing errors that arise from inconsistencies around procedure
boundaries and along exceptional control flow paths without
producing too many false alarms.

1.1.2 An Unsound Assumption on Aliases
Unsoundness should be introduced in such a way that still

allows users to reason about the results and to understand
when the results may be incorrect. The unsound assumption
we make has the dual benefit of speeding up the analysis and
suppressing warnings that are likely to be false.

We assume that pointers passed into a procedure, in pa-
rameters, global variables, and locations reached by apply-
ing simple access paths to parameters and global variables,
are all distinct from each other and from any other loca-
tions. Such an assumption reduces the complexity of our
pointer analysis, as it allows the effects of each procedure
to be summarized succinctly. Handling potential aliases be-
tween parameters precisely has proven to be difficult. Pre-
vious approaches either disallow strong updates[24], which
would not be precise enough, or use techniques such as par-
tial transfer functions[26, 25] to create summaries only for
observed contexts. None of the flow-sensitive and context-
sensitive techniques have been demonstrated to scale to large
programs.

This assumption also matches well with how most pro-
grams are written. For modularity, the semantics of a func-
tion is often independent of the presence of possible aliases
among incoming parameters. If that is not the case, a de-
fensive programmer would insert explicit tests in the code
to ensure that the potential aliases are handled properly.
In these cases, our unsound assumption would not cause a
fully path-sensitive analyzer to produce any inaccurate re-
sult. Our system issues a warning if it concludes the un-
sound assumption is definitely violated and that the results
of the analysis are necessarily incorrect. A low-level warning
is also reported if the assumption may be violated, but we
expect that the low-level warnings are too numerous to be
helpful.

1.1.3 Handling Paths and Contexts Efficiently
Since analyzing all potential paths in a program is infeasi-

ble, simulation-based approaches tend to use heuristics and
ad hoc solutions to limit the number of paths explored[2,
11]. Our solution is to use a demand-driven approach to
concentrate the resources on those paths found to be of in-
terest.

For handling contexts, we first analyze the program to cre-

ate summaries of the effect of callees on callers. An efficient
whole-program context-sensitive analysis is made possible
by our unsound assumption that incoming parameters are
unaliased. Once this information is available, we can analyze
certain context-sensitive paths efficiently on demand.

Similarly, our algorithm first performs a whole program
analysis to find all the potential definition-use relationships
in a flow-sensitive but path-insensitive manner. On demand,
the predicates of the path of interest are analyzed.

1.1.4 IPSSA: A Representation for Bug Detection
Because all auditing and bug detection tools in C need

to handle indirect memory accesses, we propose to analyze
pointers in an application-independent manner and make
the results accessible to various tools. Our representation,
called IPSSA, extends the basic concept of SSA[7] to include
definition-use relationships due to pointer dereferences and
procedure calls.

1.1.5 Empirical Results: Security Violations
We demonstrate the practicality of our approach by build-

ing a tool that finds buffer overruns and format string vi-
olations using the IPSSA representation. Our tool found
14 security vulnerabilities in 10 application programs. More
importantly, it reported only one false warning, which is sig-
nificantly fewer in number than existing tools. These pre-
liminary results suggest that our approach is effective in
creating practical and easy-to-use bug detection tools.

1.2 Paper Organization
Section 2 presents an overview and design rationale of our

approach. Section 3 describes our algorithm for constructing
the IPSSA representation. Section 4 presents our tool for
detecting security vulnerabilities and our experience in using
the tool. Section 5 discusses related work and Section 6
concludes.

2. AN OVERVIEW OF IPSSA
The IPSSA representation connects definitions and uses

in a program, even if they reside in different functions or
involve indirect accesses. A use may have multiple potential
definitions for four reasons:

1. alternatives in control flow,

2. accesses to dynamically determined memory locations,

3. a procedure may be called from different call sites, and

4. a call site may invoke different callees indirectly.

Gated SSA[1, 21] handles the first of these reasons; this
paper proposes techniques for handling the rest.

2.1 Terminology
Our analysis is designed to be used for C programs. To

keep the discussion simple, we will focus only on a subset of
the language. A program consists of a set of functions F , a
set of variables V , and a set of statements S. Statements are
broken down to simpler statements such that indirect me-
mory accesses occur only in one of two kinds of statements:

1. a load statement loads the contents of an indirectly
accessed location into a simple variable, and

2. a store statement stores the contents of a simple vari-
able into an indirectly accessed location.
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There are three kinds of indirect access operators: derefer-
ence (e.g. *v), field access (e.g. v.fld), and array index
(e.g. v[i]). Structures are treated as a collection of scalar
variables and fields are treated like individual variables.

2.2 Representation of Control Flow
In both SSA and gated SSA, definitions to the same vari-

able are given different names so that there is only one static
assignment to each variable in the program. A particular
definition of variable v is denoted by adding a subscript to
v as in vi. A use of v is replaced with the definition of v
that reaches that particular use. In the rest of the paper,
we refer to the set of all definitions as D.

In the presence of control flow, multiple statements in the
program may be responsible for producing the values used
at a program point. Gated SSA introduces the concept of γ-
functions to capture the multiplicity of reaching definitions
and the conditions under which they apply.

Definition 2.1 A γ-function has the form

d = γ(〈p1, d1〉, . . . , 〈pn, dn〉),

where d, d1, . . . , dn ∈ D and p1, . . . , pn are predicates. Placed
at the confluence of n control flow paths, it says that the new
definition d is assigned di if predicate pi holds.

One and only one of the predicates in a γ-function holds dy-
namically. The definition associated with the held predicate
is the one that defines the value assigned.

By construction, each use of a variable in the gated SSA
representation can be reached by only one definition, which
we refer to as the active definition. Note that the definition
operands to the γ-functions may themselves be definitions of
γ-functions. We can find all the possible values of v defined
by a γ-function by computing the transitive closure of the
operands of the function.

2.3 Handling Pointer Dereferences
We use a hybrid approach to handling indirect memory

accesses. We use a scalable global pointer alias analysis
on the whole program to determine which accesses may be
aliased with each other. The alias information is represented
using a flat context-insensitive name space called abstract
memory locations. To gain more precision, we also introduce
an optimistic and unsound analysis that reasons about the
locations according to their access paths.

2.3.1 Abstract Memory Locations
We use a pointer alias analysis, based on Steensgaard’s

flow and context-insensitive analysis, to partition the me-
mory space of a program into a set of abstract memory lo-
cations M . The abstract memory function, mem : S → M ,
maps a given load or store statement to the abstract me-
mory location it accesses. References mapped to different
abstract memory locations are guaranteed to be unaliased;
on the other hand, accesses mapped to the same abstract
memory location may or may not be aliased.

By mapping all accesses to their abstract memory loca-
tions, indirect accesses can be handled like direct accesses
with one exception. Since an abstract memory location may
represent multiple physical locations, a store does not over-
write all the previously held values. Definitions to abstract
memory locations are thus treated as weak updates—updates

that add new values to the location without destroying the
old ones. Destructive updates are known as strong updates.

We use φ-functions to represent weak updates. A φ-
function has two definitions for operands, the first represents
the new value being assigned, the second represents the old
existing value being held. Since the second operand may it-
self be assigned a φ-function, tracing all the operands to the
φ-function transitively will find all the values assigned to a
definition of an abstract memory location. Note that unlike
the γ-function, the condition under which each definition
takes effect is not specified.

Definition 2.2 A φ-function has the form

d = φ(d1, d2),

where d, d1, d2 ∈ D. Introduced to model weak updates, it
says that the new definition d is either d1 or d2.

Example 1 illustrates how abstract locations are used in
IPSSA to represent array accesses. (Assume that location m
is used by Steensgaard’s analysis to represent D’s elements.)
As shown in this example, the value of c is either that of a
or b depending on whether j = i. While the condition is
relatively simple in this example, it can be quite complex in
general. The φ-function captures the choice between a and
b without recording the condition.

Example 1: Abstract memory locations in IPSSA

Line Source code IPSSA representation

1 int a = 1; a0 = 1
2 int b = 2; b0 = 2
3 int c = 3; c0 = 3
4 int D[10]; m0 = uninit
5 D[i] = a; m1 = φ(a0, m0)
6 D[j] = b; m2 = φ(b0, m1)
7 c = D[i]; c1 = m2

2.3.2 Access Paths
Let us first illustrate the need for a stronger pointer anal-

ysis with the help of Example 2. Suppose we are interested
in developing a tool that detects when a program derefer-
ences a null pointer. In this example, a flow-sensitive, but
not path-sensitive, pointer analysis would infer that u may
point to either a or null. Thus, *u on line 10 yields either
1 or an error as a result of dereferencing null. Analyzing
the paths in the program, however, reveals that u is deref-
erenced only when P is true on line 10, which implies that
u can only point to a. Understanding paths can therefore
help suppress false warnings.

The second, more precise, component in our hybrid pointer
alias analysis uses a name space, separate from abstract me-
mory locations, based on access paths. The name space of
function f includes:

• Local variables.

• Formal parameters.

• New locations returned by invocations of malloc().

• The return location of f denoted as retf .

• Global variables.
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Example 2: Path sensitivity in pointer analysis

Line Source code IPSSA representation

1 int *u;

2 int a = 0; a0 = 0
3 if (P) {
4 u = &a; u0 = &a
5 }else{
6 u = NULL; u1 = null
7 } u2 = γ(〈P, u0〉, 〈¬P, u1〉)
8 a = 1; a1 = 1
9 if (P) {

10 a = *u; t1 = a1

t2 = error
a2 = δ(〈P, t1〉, 〈¬P, t2〉)

11 } a3 = γ(〈P, a2〉, 〈¬P, a1〉)

In addition, the values in formal parameters and global
variables at the entry of a function may be used in a deref-
erence operation or a field access to derive further locations.
We denote the location pointed to by v at the entry of func-
tion f as v∧ and the location stored in field fld of v as
v.fld. We use the term access path to refer to a combina-
tion of dereference and field access operations. An access
path is simple if it does not include any iterated dereference
or field access operations.

We refer to local variables of a function f , its parameters,
global variables, variables created within the function, and
those locations accessible by applying simple access paths
to the values of parameters and global variables at proce-
dure entry, as the hot locations of f . We make the unsound
assumption that these hot locations are distinct from each
other and from any other locations.

Note that using such an assumption may lead to wrong
results. In Example 3, the location pointed to by variable u

on line 10 is given by an iterated access path p(->next)*,
which according to our assumption, is unaliased to the loca-
tion pointed to by q or p. The former is clearly false, and the
latter is also false if the loop is not executed at all. The alias
with q can potentially be discovered by a path-sensitive anal-
ysis; our current pointer analysis will miss the alias, however,
as predicates are considered only after pointer analysis.

Example 3: An iterated access path
1 struct node {

2 struct node *next;

3 };

4 void f(struct node *p, struct node *q){

5 struct node *u, *v;

6 u = p;

7 while (u != q) {

8 u = u->next;

9 }

10 u->next = NULL;

11 }

Contents of hot locations are tracked path-sensitively and
context-sensitively. Indirect accesses to hot locations are
replaced with direct accesses. The representation is path-
sensitive; that is, the condition under which each use or
definition takes place is encoded with γ-functions. All other
accesses are analyzed by mapping them to their abstract
memory locations, as discussed in Section 2.3.1.

Returning to Example 2, the γ-function at the end of the
if statement on line 7 states that variable u holds the value
assigned to definition u0 if P holds and u1 otherwise. Con-
sider the indirect access *u on line 10. The active definition
of u on line 10 is u2. When P is true, u2 is the same as
u0, which has the value &a, thus *u is the active definition
of a, a1. When P is false, u2 is given by u1, which has the
value null. Dereferencing a null would generate an error.
These two possible values of *u are encoded by a γ-function,
with the help of two fresh definitions t1 and t2. This example
illustrates how IPSSA represents definition-use relationships
of indirect accesses simply and directly.

2.4 Data Flow Across Procedure Boundaries
The interface to a function consists of a set of incoming

parameters and a set of outgoing parameters. The incoming
parameters of f include not just the declared formal param-
eters, but all locations whose value upon function entry may
be accessed by f and the functions it invokes. Such locations
may include global variables, abstract memory locations, as
well as locations derived from parameters and global vari-
ables. Similarly, the outgoing parameters of f include not
just retf but all the locations written to in f that are vis-
ible outside f . Such locations may include global variables,
abstract memory locations, results of malloc calls, as well
as locations derived from parameters, global variables, and
the return location.

We define a new pair of functions, ι and ρ, to handle
definition-use chains that span procedural boundaries. An
ι-function is placed at a function entry to specify the in-
coming definitions for each incoming parameter. It has one
operand for each call site identifying the call site and the
active definition of the actual parameter. A ρ-function is
placed after each call for every variable that is an outgo-
ing parameter of at least one of the called functions. It has
one operand for each callee identifying the function and the
active definition of the return value.

Definition 2.3 An ι-function has the form

d = ι(〈c1, d1〉, . . . , 〈cn, dn〉),

where c1, . . . , cn are call sites and d, d1, . . . , dn ∈ D. Placed
at the entry of a function f , it says that d, representing
a definition of a formal parameter, is assigned the actual
definition di if called at call site ci.

Definition 2.4 A ρ-function has the form

d = ρ(〈f1, d1〉, . . . , 〈fn, dn〉),

where f1, . . . , fn ∈ F and d, d1, . . . , dn ∈ D. Placed after a
call site, it says that d, representing a definition of a variable
modified by at least one of the callees, is assigned the formal
definition di if fi is invoked.

Example 4 illustrates how parameter passing is repre-
sented in IPSSA. Suppose the function pointer fp has been
found to point to either f1 or f2. An ι-function with two
operands, representing the two potential call sites c1 and
c2, is used to define the formal parameter in each of the
functions, f1 and f2. Special locations retf1 and retf2

are introduced to represent the return values for functions
f1 and f2, respectively. Finally, a ρ-function is introduced
at each call site to combine the results of the two possible
functions invoked.
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Example 4: Interprocedural data flow in the presence of
function pointers

Line Source code IPSSA representation

1 int f1(int a){ n0 = ι(〈c1, d0〉, 〈c2, e0〉)
2 return a+1; retf1

0 = a0 + 1
3 }
4 int f2(int b){ b0 = ι(〈c1, d0〉, 〈c2, e0〉)
5 return b-1; retf2

0 = b0 − 1
6 }
7 void foo(){
8 int d = ...; d0 = ...
9 c1:d = (*fp)(d); d1 = ρ(〈f1,retf1

0〉,
〈f2,retf2

0〉)
10 }
11 void bar(){
12 int e = ...; e0 = ...
13 c2:e = (*fp)(e); e1 = ρ(〈f1,retf1

0〉,
〈f2,retf2

0〉)
14 }

3. CONSTRUCTION OF IPSSA
Our IPSSA construction algorithm is based on the algo-

rithm proposed for SSA[7], as outlined below:

1. Give all the assigned variables new names.

2. Introduce φ-functions in the case of SSA, or γ-functions
in the case of gated SSA, at the iterated dominance
frontier of assignments[7].

3. Rename each use in the program by the definition that
defines the value of that use. The active definition
of a use can be found by walking up the dominator
tree of the program’s control flow graph starting with
the node representing the use and locating the first
definition of that variable.

Our algorithm uses similar steps to handle every state-
ment in the program except for loads, stores and procedure
calls. We make the following major extensions to represent
interprocedural relationships and indirect accesses:

1. Since there are many interprocedural paths in a pro-
gram, gates of the γ-functions are generated on de-
mand as the paths of interest are identified.

2. The IPSSA representation captures the definition-use
relationships within each function, fully taking into
account the effects of the functions invoked therein.
This feature makes it relatively easy to track context-
sensitive paths originating from and terminating in dif-
ferent functions based on demand.

3. All indirect accesses are replaced with direct accesses
to hot or abstract memory locations. For each indi-
rect access, the analysis looks up the definition-use re-
lationships found so far to determine the addresses ac-
cessed and create further definition-use relationships.
Thus, not all definitions are known a priori and a fix-
point computation is necessary to determine the final
representation.

Due to space limitations, we will concentrate only on the
third and most interesting extension below.

3.1 Computing the Fixpoint
We use Steensgaard’s flow and context-insensitive pointer

analysis[20] to identify call targets. This approach seems to
suffice for programs that do not use indirect function calls
aggressively.

In the absence of recursion, the IPSSA representation can
be built in a single pass over the call graph, in a bottom-
up manner starting with the leaf nodes. Each function is
analyzed iteratively to accomplish the following:

1. Replace indirect accesses and definitions with direct
accesses and definitions to abstract memory locations
or hot locations.

2. At each call site, enter the actual incoming parameters
as operands in the ι-functions of each callee.

3. At each call site, build ρ-functions to capture all the
outgoing parameters in the callees.

4. Identify the function’s incoming and outgoing param-
eters, and create ι-functions for the incoming ones.

A fixpoint computation is needed to handle recursion. We
first find the strongly connected components (SCCs) of the
call graph. Interprocedurally, we compute the fixpoint solu-
tion for one SCC at a time in a bottom-up manner, starting
with the leaf SCCs. The iteration stabilizes when no more
changes are made to the representation of an SCC.

To handle strong updates of indirect accesses to hot lo-
cations, our algorithm does not analyze a statement (other
than the entry of the procedure) unless at least one of its
predecessors has been visited. The reason is illustrated by
the following example:

1 x = 1;

2 *p = 2;

3 y = x;

If *p happens to carry the singleton address of &x, x on line
3 can only carry the value 2 and not 1. Without any knowl-
edge of the value of *p, monotonicity requires that line 2 be
modeled as overwriting all variables. Thus, processing line
3 would not have yielded any information. We can proceed
to analyze line 3 as long as *p is known to carry at least
one value and the iteration process is guaranteed to find the
greatest fixpoint. The same principle requires that when-
ever a call site is encountered, at least one of the callees has
to be analyzed from its entry to one exit. This is always
possible unless the call never returns.

3.2 Indirect Accesses
We handle indirect accesses by tracking down the defini-

tions of the dereferenced variables to determine the set of
hot locations that might be accessed. We use abstract me-
mory locations whenever accesses outside the hot locations
are made. If a variable to be dereferenced is defined by a
copy statement, a γ-function, a ρ-function, or an ι-function
in a callee, we need to follow its definition transitively to find
the sources of all the values assigned. We describe the pro-
cess of resolving an indirect access as an iterative application
of a set of conditional rewrite rules. The process terminates
when no dereferencing operations are left in the represen-
tation, or if the access path is determined to be recursively
defined, as discussed in Section 3.2.2.
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Case [Load] s: ws = ∗d [Store] s: ∗d = d′

[Direct] d = &v ws = ad(v, s) vs = d′

[Expression] d is assigned an expression,
m = mem(s)

ws = ad(m, s) ms = φ(d′, ad(m, s))

[Abstract] d = m′
s′ ,

m = mem(s)
ws = ad(m, s) ms = φ(d′, ad(m, s))

[Copy] d = d1 ws = ∗d1 ∗d1 = d′

[γ-function] d = γ(〈p1, d1〉, . . . , 〈pn, dn〉)
t1, . . . , tn fresh

t1 = ∗d1

. . .
tn = ∗dn

ws = γ(〈p1, t1〉, . . . , 〈pn, tn〉)

t1 = ∗d1

∗d1 = γ(〈p1, d
′〉, 〈¬p1, t1〉)

. . .
tn = ∗dn

∗dn = γ(〈pn, d′〉, 〈¬pn, tn〉)
[ρ-function] d = ρ(〈f1, d1〉, . . . , 〈fn, dn〉)

t1, . . . , tn fresh,
s pushed on call stack
when traversing di

t1 = ∗d1

. . .
tn = ∗dn

ws = ρ(〈f1, t1〉, . . . , 〈fn, tn〉)

t1 = ∗d1

∗d1 = ρ(〈f1, d
′〉, . . . , 〈fn, dn〉)

. . .
tn = ∗dn

∗dn = ρ(〈f1, d1〉, . . . , 〈fn, d′〉)
[ι-function: 1] d = v0

v0 = ι(〈s1, d1〉, . . . , 〈sn, dn〉)
call stack is empty

ws = ad(v∧, s) v∧s = d′

[ι-function: 2] d = ι(〈s1, d1〉, . . . , 〈sn, dn〉)
si popped from call stack

ws = ∗di ∗di = d′

Table 1: Conditional rewrite rules for pointer resolution

3.2.1 Conditional Rewrite Rules
The rewrite rules are summarized in Table 1. We assume a

set of definitions d ∈ D, abstract memory locations m ∈ M ,
statements s ∈ S, variables v, w, t ∈ V . For clarity, the
definition of variable v at statement s is given the name
vs. We denote the active definition for v at statement s as
ad(v, s). All local variables are initialized with uninit. If the
active definition of variable v is demanded in the application
of a rewrite rule and none is available, variable v is identified
as an incoming parameter and a definition v0 = ι(...) is
inserted at the entry of the function.

Load s: ws = ∗d and store s: ∗d = d′ statements are
rewritten as follows:

[Direct] If d is assigned an address-of operation &v,
∗d is simply the variable v.

[Expression] If d is a definition involving arithmetic or
array element reference, model it with its abstract memory
location m = mem(s). If s is a load statement, replace ∗d
with the active definition of m at s. If s is a store statement,
a new definition for m is created. To model the weak update,
the right-hand side is a φ-function, whose new value is d′ and
the old value is given by ad(m, s).

[Abstract] If d is a definition to an abstract memory lo-
cation m′, simply model the address accessed by its abstract
memory location. We do not look up the definitions of m′

because m′ can only be updated weakly and thus may point
to many different locations.

[Copy] If d is assigned another definition d1, d is
substituted with d1.

[γ-function] If d is assigned the result of a γ-function,
we create fresh variables t1, . . . , tn, to represent the derefer-
enced result for each of the possible definitions. For a load
statement, a γ-function, which preserves predicates prop-
erly, is defined to collect the dereferenced results. For a
store statement, a definition is generated for each potential
destination. A dereferenced location retains its old value if

the predicate under which it is chosen is false.

[ρ-function] If d is assigned the result of a ρ-function, the
statement is rewritten like γ-functions, with the exception
that the temporary variables are assigned definitions in the
callees. When interpreting definitions in a callee, to sup-
port context sensitivity we need to record that the search
was initiated at call site s, in case the pointer resolution
takes the search to the entry of the callee and back to the
caller. This information is used when rewriting ι-functions
described below. To model the function call semantics, call
sites encountered are pushed onto a call stack.

[ι-function] If d = v0 is assigned the result of an ι-function,
the action depends on whether the call stack is empty. If the
call stack is empty, the search has reached the entry of the
function that initiated the pointer resolution. The location
accessed is simply represented symbolically as v∧. If the call
stack is not empty, the search continues back to the caller by
popping the call site and selecting the corresponding actual
parameter.

3.2.2 Terminating Pointer Resolution
If either of the conditions below is detected during the

pointer resolution process, the process is aborted and the
access is simply modeled with its abstract memory location.

1. The access path is recursively defined, as illustrated
in Example 3. By collecting the definitions visited so
far, we can detect when the same definition is revisited
and identify recursive paths.

2. New objects are ambiguously named. Newly allocated
variables, returned by malloc(), are treated as unique
objects, named by the call site. Such a scheme is
not powerful enough to handle the case when a pro-
gram uses several hot locations to hold onto several
instances created by the same call site, as illustrated
in Example 5. We do not allow pointer resolution to
loop around malloc calls.
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Example 5: Calls to malloc in a loop

1 p = malloc(...)

2 while (...) {

3 q = malloc(...);

4 *q = 1;

5 x = *p;

6 *q = 2;

7 p = q;

8 }

On line 5, q and p point to two different objects created in
two consecutive iterations of the loop. They have values 1
and 2, respectively. The single malloc() call site on line 5
cannot be used to refer to both objects.

3.2.3 Inserting New Definitions
Inserting a new definition in the IPSSA representation at

statement s may introduce new definitions at the iterated
dominance frontier of s and require updating some of the
uses of the variable being defined. To facilitate this opera-
tion, we keep track of not just the use-definition relations in
SSA but also the definition-use relations. We denote the set
of uses of a definition d by uses(d) and the set of definitions
used in u by defs(u). The steps to create a definition d of
location l at statement s are:

1. Collect Dl, the set of all reaching definitions[7] of l at
s. Usually this set contains just the active definition
of l at s, but when s is a join node, Dl may contain
more than one element, one for each predecessor of s
in the control flow graph.

2. For each d′ ∈ Dl and each use u ∈ uses(d′), if d is
located after d′ on each path from d′ to u, update
ad(l, s′) to be d and update uses(d) and defs(u) ac-
cordingly.

3. For each statement on the dominance frontier of s, in-
sert a new γ-function definition for l if none is present.
Otherwise, substitute the definition active at s with d
in the existing γ-function.

Clearly, further definitions can be introduced in step 3, which
would require the process to be repeated. Termination is
guaranteed, however, because the iterated dominance fron-
tier of s is bounded.

3.3 Handling call sites
At each call site, we connect the actual incoming parame-

ters to the formal parameters of each callee and connect the
formal outgoing parameters to the actual.

Recall that an incoming parameter may be a declared pa-
rameter, a global variable or an abstract memory location.
For the former, the correspondence between the formal and
actual parameters is given by the operands supplied in the
call itself. For all the other cases, the names of the formal
and actual are the same. ∧ and field operators in the access
path of a formal parameter are translated into dereference
and field operations of the actual parameter. At call site c,
for each actual incoming parameter p, and for each callee
f , we insert 〈c, ad(p, c)〉 as an operand of the ι-function for
the corresponding formal parameter in f . If the same ac-
tual parameter is passed in as different formal parameters,
we detect a violation to our unsound assumption and report
a warning.

The matching of actual and formal outgoing parameters
is similar to that of incoming parameters, except for the
return value. The actual parameter matching the formal
return value of f , retf , is the one assigned the result of the
function call. Different callees may have different outgoing
parameters. The set of actual outgoing parameters of the
call site is thus the union of those for each callee. For each
actual outgoing parameter p, we create

ps = ρ(〈f1, d1〉, . . . , 〈fn, dn〉)

such that di has the value ad(p′, exit(fi)), if fi has corre-
sponding formal parameter p′, and ad(p, s) otherwise.

4. EXPERIMENTAL RESULTS
We have implemented our IPSSA construction algorithm

in the SUIF 2 compiler infrastructure. To demonstrate the
practicality of our approach, we have also built a checker
that utilizes the IPSSA representation to find two of the
most common sources of security vulnerability: buffer over-
runs and format string violations.

4.1 A Security Vulnerability Detector
We say that a program has a security vulnerability if there

exists a definition-use chain such that:

1. The source of the definition-use chain is a user-supplied
string. Examples include the return results of library
functions such as gets, fgets, read, msgrcv, getpw,
readdir, as well as the argv argument of main. We
refer to such strings as tainted because the user gets to
control their lengths and contents.

2. The sink of the chain is one of the following:

(a) A write into a buffer with a statically declared
size. The user-supplied string may be longer than
the buffer and may thus overrun it.

(b) A format string argument to a system function of
the printf family. The user-supplied string may
contain format specifiers that can cause program
data be overwritten.

3. Definition-use chains leading to static buffers must not
contain calls to functions like snprintf. Guaranteed
not to store anything beyond a given buffer length,
snprintf effectively untaints the user-supplied string
and prevents buffer overrun. This does not apply to
format string violations.

Note that our definition of vulnerabilities does not include
buffer overruns where arrays strings are manipulated as ar-
rays of characters.

Our checker starts by finding the sources of taintedness
in the program, and follows the definition-use chains in the
IPSSA representation until a sink satisfying one of the above
conditions is reached. The gates of the γ-functions along the
paths are created and the predicates are analyzed, using the
Yacas computer algebra system[16], to determine if the path
is feasible. If a potential violation is discovered, our checker
prints the complete definition-use chain found including the
predicates that must hold for that particular path to be
executed.

Space limitations preclude a full description of our algo-
rithm, so only a brief overview is presented here. To handle
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library functions such as strcpy, strncpy, strcat, sprintf,
we create models for them written in a small special-purpose
language designed for the purpose. The analysis is fully
context-sensitive; when following the definition-use chains,
call sites are pushed on a call stack at function entries and
popped off at function exits to avoid unrealizable interpro-
cedural paths. We detect cycles in our search and cache
intermediate results to avoid exploring the same path more
than once.

4.2 Applications in the Experiment
We applied our security vulnerability checker to 10 appli-

cations, many of which are server programs. As vulnerabil-
ity in these programs poses a significant security risk, many
of them have received a great deal of scrutiny. The programs
are listed in Table 2, in order of their lengths. About 50,000
lines of code were analyzed in our experiment in total, with
the largest program being in excess of 13,000 lines. lhttpd is
a small web server, polymorph cleans up Unix filesystems af-
ter downloading binaries from Usenet, bftpd and trollftpd

are FTP servers, man displays Unix manual pages, pgp4pine
adds PGP encryption to the Pine mail reader, cfingerd is
a finger daemon, muh is a network game, gzip is a com-
pression tool, and pcre is a regular expression library.

Program Version Lines # IPSSA
of code proc’s constr.

lhttpd 0.1 888 21 5.2 s
polymorph 0.4.0 1,015 19 1.0 s
bftpd 1.0.11 2,946 47 3.2 s
trollftpd 1.26 3,584 48 11.3 s
man 1.5h1 4,139 83 29.3 s
pgp4pine 1.76 4,804 69 17.5 s
cfingerd 1.4.3 5,094 66 15.5 s
muh 2.05d 5,695 95 20.4 s
gzip 1.2.4 8,162 93 17.0 s
pcre 3.9 13,037 47 22.4 s

Table 2: Applications and their analysis times

Table 2 reports the versions of the programs analyzed, the
number of lines of code, the number of procedures, and the
time taken to create the IPSSA representation, assuming
that the control flow graph, dominators, and Steensgaard’s
pointer alias analysis have already been computed. The
measurements were taken on a 2.2 GHz Pentium 4 machine
with 2GB of memory running Linux. IPSSA is constructed
in under 30 seconds for each of the applications.

The results of running our security vulnerability checker
are summarized in Table 3. For each application, we show
the number of warnings reported and a break-down of these
warnings into three categories: buffer overrun vulnerabili-
ties, format string vulnerabilities, and false alarms. Some
of the paths reported share the same sources and sinks; we
also report the total number of sources and sinks identified
in the warnings. To provide insight into the nature of these
paths, we report the number of definitions found along each
path and the number of procedures it spans. Finally, we
report the time our checker took for each program. With
the exception of lhttpd, described below, the analysis ran
in under 30 seconds for each application.

4.3 Detected Vulnerabilities
Our checker found a total of 11 buffer overruns and 3

format string errors in 10 applications. All the previously
reported overruns and format string vulnerabilities in these
programs were detected by our checker, except for two in
trollftpd and pgp4pine because they manipulate strings
directly as character arrays. The checker also found six vul-
nerabilities, which to the best of our knowledge, were not
previously known. Four of these, found in pgp4pine, can
be easily exploited by supplying a specially crafted com-
mand line argument to the program. The other two, one in
trollftpd and one in polymorph, however, do not appear
to be exploitable.

All the violations detected span more than one procedure.
This is not unexpected: all of our applications have been rel-
atively well tested and most remaining bugs are not easy to
find. Errors that span different functions from different files
are harder to find. For example, the format string viola-
tion in muh passes through two files and one library function
(strcpy). Some of these definition-use chains are long; for
example, there are 23 and 24 definitions in each of the re-
ported paths in lhttpd and trollftpd, respectively. It is
imperative that bug detectors be able to track long inter-
procedural definition-use chains. The sparse IPSSA repre-
sentation is designed expressly for this purpose.

4.4 False Positives
What perhaps is even more significant is that our checker

reports only one false alarm after analyzing about 50,000
lines of code. The single false positive, found in pcre, is due
to the following statement:

sprintf(buffer, "%.512s%c%.128s",

filename, sep, nextfile);

filename is a tainted variable and buffer is declared stati-
cally. The reported overrun warning is a false alarm because
the width specifier %.512s limits the length of the copied
string. Without detailed knowledge of format strings, our
checker is unable to filter out this false positive.

Our unsound assumption that hot locations are unaliased
reduces spurious aliases that would otherwise cause many
more false warnings. We came across only one definite vio-
lation of our assumption, in trollftpd. The offending state-
ment is:

if (snprintf(wd,PATH_MAX,"%s/%s",wd,dir) < 0) {

quit421("Path too long",__LINE__);

}

The same variable wd is passed into snprintf twice. This
code essentially appends dir to wd, while ensuring that doing
so does not overflow the buffer allocated for wd. The alias-
ing of the first and third arguments is potentially dangerous
because an implementation of snprintf that clears the out-
put string first would not provide the intended functionality.
Our experience suggests that our assumption matches how
programs are usually written.

We found that path sensitivity is useful in reducing false
warnings in the lhttpd program. lhttpd uses a standard
library function strtok for parsing lines of a file. If the
first string argument to strtok is not null, the argument
is saved as part of strtok’s internal state. Subsequent calls
to strtok return portions of that string. We capture the
conditional data flow faithfully using a function model. This
allows the checker to analyze the predicates and conclude
that data flow between two invocations of strtok with a
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Program Total Buffer Format False Sources Sinks Definitions Proc. Analysis
warnings overruns strings alarms on path spanned time

lhttpd 1 1 0 0 4 1 24 14 99.0 s
polymorph 2 2 0 0 2 2 7, 8 3, 3 2.4 s
bftpd 2 1 1 0 5 2 5, 7 1, 3 2.3 s
trollftpd 1 1 0 0 4 1 23 5 8.5 s
man 1 1 0 0 3 1 6 4 9.6 s
pgp4pine 4 4 0 0 3 4 5, 5, 5, 5 3, 3, 3, 3 27.1 s
cfingerd 1 0 1 0 5 1 10 4 7.4 s
muh 1 0 1 0 3 1 7 3 7.5 s
gzip 1 1 0 0 3 1 7 5 2.0 s
pcre 1 0 0 1 3 1 6 4 9.2 s
Total 15 11 3 1 — — — — —

Table 3: Detected security violations and the checker’s running time

non-null first argument does not exist. This information
subsequently leads to a suppression of 20 false warnings. We
note that the analysis for lhttpd took about 100 seconds,
which is short compared to the time a programmer would
have to spend had these false warnings been reported.

Most other tools report a significantly larger number of
false warnings. For example, Shankar et al.’s checker re-
ported 12 false warnings for the one bug in muh. Our results
suggest that our checker is more effective than existing tools
in suppressing false warnings.

5. RELATED WORK

5.1 SSA and Gated SSA Construction
The commonly-used efficient algorithm for SSA construc-

tion was proposed by Cytron et al[7]. Ballance et al. show
how to construct gates on top of an existing SSA representa-
tion[1]. Tu and Padua speed up the algorithm by introduc-
ing the gates during the construction of the SSA represen-
tation[21, 22]. We extended their approach to create gates
on demand.

Chow et al. address the problem of using SSA in lan-
guages with aliasing for the purpose of program optimiza-
tion[5]. New functions χ and µ are introduced to model
may-define and may-use relations, respectively. These func-
tions are similar to the φ function we use in IPSSA. Cytron
et al. describe how may-aliasing information can be incor-
porated into SSA[8]. The representation is refined until a
given optimization problem can be solved, thus the size of
the representation is kept relatively small. Lapkowski et al.
introduce the concept of primary and secondary SSA num-
bers[14]. The primary number refers to the version of the
variable itself; the secondary one refers to the version of the
dereference and is defined for pointer variables. As in regu-
lar SSA, variables with the same number refer to the same
value. Our representation for interprocedural definition-use
relationships share some similarity with the SSA-like rep-
resentation proposed by Liao et al. for slicing Fortran pro-
grams[15].

Our work is different from the above in that we propose
using a custom, unsound pointer analysis, rather than just
incorporating the results of a known pointer analysis in the
representation. Chase et al. deal with the issue of performing
pointer analysis while incrementally constructing the repre-
sentation[3]. Wilson and Lam also use a sparse representa-
tion in pointer alias analysis[26].

5.2 Error Detection Tools
A number of multi-purpose error-detection tools have been

proposed in recent years. Some systems, such as Vault[10],
are sound; Intrinsa’s PREfix[2] and the xgcc checker[4, 11]
are not. The representation proposed here is designed to
facilitate the development of practical, unsound checkers.

Since the emergence of costly buffer overflow vulnerabil-
ities in the last few years, several lexical tools have been
created to help with source-level security auditing. PScan is
a fast and simple tool that searches for non-constant strings
passed into varargs functions[9]. The RATS scanning tool
provides a security analyst with a list of potential trou-
ble spots on which to focus, along with suggested reme-
dies[19]. It tries to rule out unexploitable problems and
assesses the potential severity of each vulnerability. ITS4
scans the source code, looking for function calls that are po-
tentially dangerous[6]. Neither RATS nor ITS4, however,
perform definition-use chain analysis, which leaves the secu-
rity analyst with a lot of manual work.

Wagner et al. developed a flow-insensitive range analysis
that detects potential buffer overruns; it finds 1 real bug for
every 10 warnings generated[23]. Shankar et al. use a type-
based analysis on a number of benchmarks similar to ours to
detect format string violations[18]. Despite various refine-
ments introduced to reduce the number of false positives,
the analysis still occasionally registers a high false-positive
ratio. Evans et al. present the results of their type-based
taintedness analysis for several programs[12]. This tool can
be quite time-consuming to use because programmers must
supply a large number of annotations to reduce the number
of false alarms.

6. CONCLUSIONS
This paper proposes a new pointer alias analysis for auto-

matic error detection. The analysis is based on an unsound
assumption that pointers passed into a procedure, in param-
eters, global variables, and locations reached by applying
simple access paths to parameters and global variables, are
all distinct from each other and from any other locations.
This assumption matches the semantics of many functions,
reduces spurious aliases and speeds up the analysis. To cre-
ate an efficient and precise pointer alias analysis, we use a
hybrid approach. Pointers accessed through simple access
paths are analyzed precisely; an efficient flow and context-
insensitive analysis is used for other indirect accesses.
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Our proposed IPSSA captures intraprocedural and inter-
procedural definition-use chains for both directly and indi-
rectly accessed memory locations, making them available to
subsequent analysis. We have implemented a checker that
finds buffer overruns and format string violations to demon-
strate the effectiveness of our approach.

Our preliminary experience with the checker suggests that
IPSSA is effective. Our checker found 6 new violations and
8 previously reported ones in 10 programs. The checker
generated only one false warning, making it much easier to
use than existing tools.
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