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Abstract

We develop a newmethod for estimating the effective reproduction number of an infectious

disease (R) and apply it to track the dynamics of COVID-19. The method is based on the

fact that in the SIR model,R is linearly related to the growth rate of the number of infected

individuals. This time-varying growth rate is estimated using the Kalman filter from data on

new cases. The method is easy to implement in standard statistical software, and it performs

well even when the number of infected individuals is imperfectly measured, or the infection

does not follow the SIR model. Our estimates ofR for COVID-19 for 124 countries across

the world are provided in an interactive online dashboard, and they are used to assess the

effectiveness of non-pharmaceutical interventions in a sample of 14 European countries.

Introduction

The effective reproduction number (R) plays a central role in the epidemiology of infectious

diseases.R is defined as the average number of secondary cases produced by a primary case

[1–3]. The effective reproduction number varies over time, due to the depletion of susceptible

individuals as well as changes in other factors, including control measures, contact rates, and

climatic conditions. The basic reproduction number, denoted byR
0
, measures the average

number of secondary cases produced by a primary case when the population is fully suscepti-

ble [4, 5]. Analogously to the effective reproduction number, the basic reproduction number is

also affected by multiple variables [6].

In standard models, the number of infected individuals increases as long asR > 1. Real-

time estimates ofR are therefore essential for public policy decisions during a pandemic [7,

8]. Such estimates can be used to study the effectiveness of non-pharmaceutical interventions

(NPIs), or assess what fraction of the population needs to be vaccinated to reach herd immu-

nity [9–11]. Some social scientists have argued thatR < 1 should be viewed as a fundamental

constraint on public policy during the current COVID-19 pandemic [12].

In this paper we develop a new method to estimateR in real time. The method exploits the

fact that in the benchmark SIR model,R is linearly related to the growth rate of the number of

infected individuals [13]. Our estimation procedure consists of three steps. First, we use data

on new cases to construct a time series of how many individuals are infected at a given point
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in time. Then, we estimate the growth rate of this time series with the Kalman filter. In the

final step, we leverage the theoretical relationship given by the SIR model to obtainR from the

estimated growth rate. We show theoretically that the estimates are not sensitive to potential

model misspecification, and they are fairly accurate even when new cases are imperfectly

measured.

We apply our methodology to estimate theR of COVID-19 in real-time. Our estimates for

124 countries across the world are provided in an online dashboard and can be explored inter-

actively [14]. In empirical applications, we use these estimates to calculate the basic reproduc-

tion number (R
0
) and evaluate the effects of NPIs in reducingR for a sample of 14 European

countries.

Under our baseline assumption that the serial interval for COVID-19 is seven days, we esti-

mate the basic reproduction number (R
0
) to be 2.66 (95% CI: 1.98–3.38). Next, we find that

lockdowns, measures of self-isolation, and social distancing all have a statistically significant

effect on reducingR. However, we also demonstrate the importance of accounting for volun-

tary changes in behavior. In particular, we document that most of the decline in mobility in

our sample happened before the introduction of lockdowns. Failing to account for voluntary

changes in behavior leads to substantially over-estimated effects of NPIs.

Related literature

There are two broad classes of methods that can be used to estimateR in real time [2, 5, 15].

First, one can estimate a fully-specified epidemiological model and then construct a model-

implied time series forR [10, 16–18]. Second, one may use approaches that leverage informa-

tion on the serial interval of a disease (i.e., time between onset of symptoms in a case and onset

of symptoms in his/her secondary cases) [1, 3, 19]. For example, imagine a disease with a fixed

serial interval of, say, three days. In that case, we could estimateR by simply dividing the num-

ber of new cases today by the number of new cases three days ago. Cori et al [3] exploit this

idea to develop a Bayesian estimator that accounts for the randomness in the onset of infec-

tions as well as variation in the serial interval. This method is implemented in a popular R

package EpiEstim [20].

The method proposed in this paper attempts to strike a balance between the two approaches

mentioned above. Although our estimator is derived from standard epidemiological theory,

we use the smallest amount of theoretical structure that is necessary to obtain our estimator. In

particular, the theoretical relationship used to derive our estimator is exactly valid not only in

the standard SIR model with constant parameters, but also in the SIS model and a generalized

SIR model with time-varying parameters and stochastic shocks. Relative to the existing litera-

ture, our estimator does not need any statistical tuning parameters, and it does not require

parametric assumptions on the distribution of new cases (such as assuming that new cases are

Poisson distributed). For example, the method of Cori et al [3] assumes thatR is constant over

fixed windows of duration τ; τ effectively becomes a tuning parameter that needs to be chosen

by the user. Our approach and its mathematical derivation share some similarities with the

estimator proposed by Bettencourt and Ribeiro [21].

A key advantage of using the Kalman filter for estimatingR is that valid confidence bounds

are readily obtained. Explicitly accounting for the dynamics inR via the state equation ensures

that the estimated effective reproduction numbers are not excessively volatile, with the optimal

amount of filtering estimated from the data. In addition, the Kalman smoother allows the

researcher to use full-sample information efficiently when estimatingR. Finally, our method

can be used with both classical and Bayesian techniques, as we demonstrate in the empirical

application.
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Materials andmethods

Data sources

We use data on COVID-19 cases from the John Hopkins CSSE repository [22]. For some of

our statistical analyses, we also use data on the number of daily tests per capita collected by

OurWorld in Data [23], mobility data from Google’s “COVID-19 Community Mobility

Reports” [24], and data on NPIs collected by Flaxman et al [25, 26]. All of these datasets are

publicly available online. The computer code and data used in the study are provided in

S1 File.

New real-time estimator

We now derive our estimator for the SIR model [13]. In S1 Appendix (Sections A.1 and A.2),

we show that we can obtain the same estimator from an SIS model, and an SIR model with sto-

chastic shocks.

The standard SIR model in discrete time describes the evolution of susceptible (St), infected

(It), and recovered (Rt) individuals by the following equations [27, 28]:

St ¼ St�1
� btIt�1

St�1

N

It ¼ It�1
þ btIt�1

St�1

N
� gIt�1

Rt ¼ Rt�1
þ gIt�1

ð1Þ

The model is stated at a daily frequency. Here, N� St + It + Rt is the population size, βt is
the daily transmission rate, and γ is the daily transition rate from infected to recovered. The

recovered group consists of individuals who have either died or fully recovered. We allow the

transmission rate βt to vary over time. For example, individuals may choose to to reduce their

social interactions voluntarily, or they could be subject to government policy restrictions.

The basic reproduction number,RðtÞ
0
, is defined asRðtÞ

0
� bt=g, and it gives the average num-

ber of individuals infected by a single infected individual when everyone else is susceptible.

Since the transmission rate βt varies over time, the basic reproduction number is generally time

varying as well. The effective reproduction number,Rt, is defined asRt ¼ R
ðtÞ
0
� ðSt�1

=NÞ, and

it equals the average number of individuals infected by a single infected individual when a frac-

tion (St−1/N) of individuals is susceptible.

From Eq (1) the daily growth rate in the number of infected individuals is

grðItÞ �
It � It�1

It�1

¼ gðRt � 1Þ: ð2Þ

Denoting the estimated growth rate of infected individuals by ĝrðItÞ, and given a value for

the transition rate γ, the plug-in estimator for the effective reproduction number is

R̂t ¼ 1þ
1

g
ĝrðItÞ: ð3Þ

For the estimator to be feasible, we need to (i) calibrate the transition rate from infectious

to recovered, γ; and (ii) estimate the growth rate of It. There are two potential strategies for

choosing γ. First, we can use external medical evidence given that γ−1 is the average infectious
period. Second, information on the serial interval of the disease can be employed, given that

the serial interval in the SIR model also equals γ−1 [29].
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To estimate the growth rate of It empirically, we first construct a time series for It from data

on new cases. The SIR model in Eq (1) implies that

It ¼ ð1� gÞIt�1
þ new casest: ð4Þ

We initialize It by I0 = C0 where C0 is the total number of infectious cases at some initial

date, and then construct subsequent values of It recursively.

Given the time series for It, we use standard Kalman-filtering tools to smooth the observed

growth rate of It. In particular, we specify the following state-space model for the growth rate

of It:

grðItÞ ¼ gðRt � 1Þ þ εt; εt � i:i:d: N ð0; s2

εÞ

Rt ¼ Rt�1
þ Zt; Zt � i:i:d: N ð0; s2

Z
Þ

ð5Þ

We estimateRt by the Kalman smoother [30]. The Kalman smoother provides optimal esti-

mates ofRt (in the sense of minimizing mean-squared error) given the full-sample informa-

tion on gr(It), provided that the data are generated by the model in Eq (5).

To estimate the unknown parameters s2

ε and s2

Z
in Eq (5), both classical and Bayesian meth-

ods can be used. However, sample sizes are usually limited in practice, especially early on in

the epidemic. Hence, incorporating prior knowledge generally leads to better-behaved esti-

mates. The state-space model above—also known as the local-level model—can also be

thought as a model-based version of exponentially-weighted moving-average smoothing [31].

The state-space model in Eq (5) can be viewed as a reduced-form time-series specification.

The local-level model can capture fairly rich dynamic patterns in the data [30, 32]. In addition,

in S1 Appendix (Section A.3), we provide a theoretical rationale for the local-level specifica-

tion. In particular, Eq (5) arises naturally in the SIR model (in the early stages of an epidemic)

when the transmission rate βt follows a random walk.

From Eq (4), the growth rate gr(It) is bounded below by (−γ). Hence, for any estimator of

gr(It) that is some weighted average of the observed growth rates, the point estimate ofRt is

automatically non-negative. To ensure that lower confidence bounds are positive as well, we

estimate the q-th quantile ofRt bymaxf0; 1þ g�1ĝ qg, where ĝ q is an estimate of the q-th

quantile of gr(It). In addition (see Section A.4 in S1 Appendix), our empirical estimates remain

similar when we use a modified version of the Carter-Kohn [33] algorithm which discards ran-

dom draws violating the non-negativity constraint. Alternatively, it is possible to avoid this

type of truncation by using non-linear filtering methods [34].

Sensitivity to model misspecification and data problems

Tracking the evolution ofRt is notoriously difficult. Human-contact dynamics, testing, and

changes in case definitions affect the flow and quality of the available information. In this

section, we test the sensitivity of our estimator to two notable issues: (i) model misspecifica-

tion; and (ii) data problems (such as reporting delays or imperfect detection of infectious

individuals).

For the first issue, model misspecification, a natural concern is whether the true dynamics

of the disease are well captured by the benchmark SIR model. We address this issue in two

ways. First, we show that our estimator remains exactly valid in the SIS model in which indi-

viduals do not obtain immunity, and a generalized SIR model with stochastic shocks (see

Sections A.1 and A.2 in S1 Appendix). In addition, provided that the average duration of infec-

tiousness is correctly specified, we find that our estimator yields accurate results even when the

true model is SEIR rather than SIR (see Section A.5 in S1 Appendix). Second, we note that the
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error term εt in the state-space model described by Eq (5) can be interpreted as model error.

Therefore, our estimates as well as their confidence intervals explicitly account for (some

amount of) potential misspecification.

The second issue relates to data reliability. For COVID-19, testing constraints and high

asymptomatic prevalence [35–37], in particular, make it challenging to identify all infectious

individuals. The simplicity of our estimator allows us to analytically characterize the effects of

potential measurement error (see Section A.6 in S1 Appendix). Furthermore, we use these

results to investigate the quantitative performance of the estimator in a number of empirically

relevant underdetection scenarios using Monte Carlo simulations. Overall, we conclude that

our method provides accurate estimates in all cases that we analyze.

Results

In our estimations, we include all countries for which we have at least 20 daily observations

after the cumulative number of confirmed COVID-19 cases reaches 100. Our sample period

starts on 2020-01-23 and finishes on 2020-05-06. For the baseline estimates, we assume that

people are infectious for γ−1 = 7 days on average, consistent with recent literature [38, 39]. This

assumption also accords with the evidence on the serial interval of COVID-19. For example,

Flaxman et al [25] use an average serial interval of 6.5 days. Recent studies find that estimates

of the serial interval for COVID-19 generally range between 4 and 9 days [40–42]. In addition,

we document that γ−1 = 7 leads to estimates of the basic reproduction number (R
0
) that are in

line with the recent estimates in the literature [43]. However, we also investigate the effects of

different choices for γ on our results. In general, by virtue of Eq (3), changing γ tilts the esti-
mates ofRt around one, with higher values of the serial interval pushing the estimates away

from one and lower values pushing the estimates towards one. For example, if R̂t ¼ 1:5 for

γ−1 = 7 days, increasing the serial interval to 8 days increases the estimate to R̂t � 1:57. Con-

versely, if R̂t ¼ 0:5 for γ−1 = 7 days, increasing the serial interval to 8 days decreases the

estimate to R̂t � 0:43. S1 Appendix (Section A.7) describes the details of the estimation proce-

dure. S1 Appendix (Section A.15) also contains the GATHER checklist [44], summarizing the

details of the analysis.

In S1 Appendix (Section A.8), we perform two empirical validation exercises of our esti-

mates. First, we document that our estimates ofRt are predictive of future deaths. Given that

deaths are arguably more accurately measured, this finding alleviates concerns regarding

potential data reliability issues that could contaminate our estimates. Second, we find that past

mobility data is predictive of future values ofRt . In S1 Appendix (Section A.12), we addition-

ally compare our estimates to those obtained using the method of Cori et al [3]. We find that

our estimates are highly correlated to the estimates produced by the Cori et al method, with

the average correlation coefficient across different countries equal to 0.80 (median: 0.89).

Jointly, these exercises suggest that our estimates contain valuable information on the dynam-

ics of COVID-19.

Estimated effective reproduction numbers

Our estimates ofRt for selected countries are shown in Figs 1 and 2. Estimates for the remain-

ing countries can be found in the associated dashboard [14].

Fig 1 plots the estimated effective reproduction numbers for China, Italy, and the US. In S1

Appendix (Section A.9, Fig A.7), we also provide a graph of the raw data on the growth rate of

the number of infected individuals that is used for estimatingRt. For all three countries, the

estimatedRt is initially above 3. For China, the estimatedRt declined rapidly, falling below
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one around the third week of February. According to our estimates,Rt in China fell below

one 24 days after the beginning of the epidemic in the country (with the start of the epidemic

defined as reaching 100 cumulative confirmed cases of COVID-19). However, the estimated

Rt in China drifted up towards one during late March and early April, potentially caused by a

Fig 1. Rt of COVID-19: China, Italy, and the US. Estimates of the effective reproduction rate (Rt) of COVID-19 for
selected countries. The sample consists of all dates after the total number of reported cases in the country has reached
100. 65% credible bounds shown by the shaded areas.

https://doi.org/10.1371/journal.pone.0244474.g001

Fig 2. Rt of COVID-19: Brazil, India, and Germany. Estimates of the effective reproduction rate (Rt) of COVID-19
for selected countries. The sample consists of all dates after the total number of reported cases in the country has
reached 100. 65% credible bounds shown by the shaded areas.

https://doi.org/10.1371/journal.pone.0244474.g002
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wave of imported cases. Note that there is an upwards jump in the estimatedRt for China

around the second week of February. This jump was caused by a temporary change in

COVID-19 case definitions in the Hubei province in China; the new definition included clini-

cally-diagnosed COVID-19 cases [45].

In Italy, the estimatedRt fell steadily since March but at a slower rate than previously

observed in China, with the point estimate for Italy falling below one in early April. Our esti-

mates indicate that it took 36 days forRt to fall below one after the start of the epidemic in

Italy. In the US, the point estimates ofRt were fairly flat in the first two weeks of the epidemic,

hovering around 3.5. We note, however, that it is likely that the fraction of non-detected cases

in the US went down substantially in this period, inflating the estimates ofRt upward. In par-

ticular, the daily number of tests conducted in the U.S went up dramatically during this period,

increasing by a factor of 45 between March 8, 2020 and March 25, 2020 [23]. It took 52 days

for the estimatedRt to fall below one for the first time in the US after the start of the epidemic,

or more than twice as long as in China. The point estimate ofRt in the US at the end of the

sample is below one and equal to 0.92 (95% CI: 0.17–1.66).

Fig 2 plots the estimated effective reproduction numbers for Brazil, India, and Germany.

The pattern observed in Germany is similar to that previously seen in Italy and the United

States. The estimatedRt in Germany falls below one 37 days after the beginning of the pan-

demic, almost identically to Italy. In Brazil and India, the point estimates ofRt are lower at the

beginning of the pandemic than in the other countries plotted here. The effective reproduction

numbers at the beginning of the epidemic are estimated to be 2.13 (95% CI: 0.81–3.04) in Bra-

zil, and 1.78 (95% CI: 0.92–2.41) in India. In contrast, for example,Rt is estimated to be 2.86

(95% CI: 1.91–3.81) in Germany at the beginning of the pandemic. We emphasize that the esti-

mated confidence bounds are wide, indicating substantial uncertainty about the true values of

Rt . Hence, substantial caution must be exercised when comparing the estimates ofRt across

countries and over time.

A natural concern with any estimator ofRt applied to COVID-19 is that the estimator may

be biased if only a fraction of all COVID-19 cases is detected. In S1 Appendix (Section A.6),

we study the performance of our estimator under various assumptions on the reporting of

COVID-19 cases. We show analytically that our estimator remains exactly valid even when

only a fraction of all cases is detected (e.g., 10% of all cases are detected), provided that the frac-

tion of all cases detected is constant over time. The estimates are also accurate under some

other cases of misreporting. However, if the fraction of detected COVID-19 cases changes a lot

over short windows of time, the estimator is biased. Finally, we investigate the performance of

our estimator in a number of additional cases of imperfect reporting (such as a ramp-up in

testing) that may be important in practice using Monte Carlo simulations. Overall, we con-

clude that our estimator is robust to potential mismeasurement of COVID-19 cases in a num-

ber of empirically-relevant scenarios.

In S1 Appendix (Section A.10, Fig A.8), we illustrate the difference between estimates of

Rt for China obtained by the Kalman smoother—as in our baseline estimation—and the

Kalman filter. Intuitively, the Kalman smoother uses information from the full sample when

estimatingRt, while the Kalman filter only uses information up to and including time t

[30]. While the two sets of estimates are fairly similar, the filtered estimates are substantially

more volatile. In addition, the filtered estimates generally have wider credible bounds. As

should be the case, the filtered and smoothed estimates are identical at the endpoint of the

sample. From the perspective of epidemiological theory, the Kalman filter essentially pro-

duces what Fraser [46] refers to as the instantaneous reproduction number, while the Kal-

man smoother yields the case reproduction number. The estimator proposed in the present
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paper therefore allows researchers to estimate the two types of reproduction numbers in a

single unified framework.

In S1 Appendix (Section A.10, Fig A.8), we also demonstrate the difference between our

Bayesian estimates ofRt and classical estimates obtained via maximum likelihood. For China,

the two sets of estimates are virtually indistinguishable, indicating that the chosen priors have

a small effect on the estimates. Of course, for other some countries in our sample, the data are

less informative, and hence the priors have a more pronounced effect.

Basic reproduction number

We now use our estimates ofRt to measure the basic reproduction number (R
0
), i.e., the aver-

age number of individuals infected by a single infectious individual when the population is

fully susceptible. We estimateR
0
by the average value ofRt in the first week of the epidemic.

Table 1 shows the results for a sample of 14 European countries (Austria, Belgium, Den-

mark, France, Germany, Greece, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Swit-

zerland, and United Kingdom), as in Flaxman et al [25]. Under our baseline assumption that

the individuals are infectious for 7 days on average (γ = 1/7), we obtain an estimate ofR
0
¼

2:66 (95% CI: 1.98–3.38). For COVID-19, a recent meta-study has estimated a medianR
0
of

2.79 [43], suggesting that our results are consistent with the current consensus estimates.

Table 1 also provides the estimatedR
0
under different assumptions on the duration of

infectiousness (or, equivalently in the SIR model, the average serial interval). As expected, the

median estimate is sensitive to the choice of γ; we find an additional day of infectiousness

increasesR
0
by around 0.3.

Assessing non-pharmaceutical interventions

Finally, we use our estimates to assess the effects of non-pharmaceutical interventions (NPIs)

in the same sample of 14 European countries as in the previous section. We study a total of five

NPIs: (i) lockdowns; (ii) bans of public events; (iii) school closures; (iv) mandated self-isolation

when exhibiting symptoms; and (e) social distancing measures. We adopt the definitions of

NPIs and their introduction dates provided by Flaxman et al [25].

We first perform an event-study exercise, inspired by event studies commonly used in eco-

nomics and finance [47]. In this exercise, we compare the dynamics of the effective reproduc-

tion number before and after the introduction of a particular control measure. If the control

measure is effective, we expect to observe a difference in the behavior ofRt after its introduc-

tion. The difference may appear as either a change in levels (“jump”) or a change in trends

(“kink”); the latter possibility is more likely in the present empirical context. This simple

before-versus-after comparison is not free of potential bias. In particular, the comparison

Table 1. Estimates of the basic reproduction number (R
0
).

Number of Days Infectious: 5 6 7 8 9 10

R̂
0

2.07 2.35 2.66 2.89 3.10 3.29

CI Lower Bound (95%) 1.51 1.75 1.98 2.17 2.37 2.54

CI Upper Bound (95%) 2.67 3.01 3.38 3.67 3.86 4.06

Estimates of the basic reproduction number (R
0
) for a sample of 14 European countries. The countries included in the sample are Austria, Belgium, Denmark, France,

Germany, Greece, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and United Kingdom. The basic reproduction number is calculated by averaging

our estimates of the effective reproduction number in the first 7 days of the epidemic, where the start of the epidemic is defined as the day when the cumulative number

of cases reaches 100.

https://doi.org/10.1371/journal.pone.0244474.t001
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implicitly assumes that the behavior ofRt before the intervention provides a good counterfac-

tual for the (unobserved) future behavior ofRt in the absence of the intervention. Neverthe-

less, we find this exercise instructive as a preliminary step in our analysis.

Fig 3 plots the estimated values ofRt one week before and three weeks after the introduc-

tion of a lockdown. Since Sweden did not have a lockdown in the sample period considered,

the figure is constructed using data from 13 countries.Rt declines substantially after a lock-

down is introduced, going from 2.11 (95% CI: 1.84–2.38) on the day of the intervention to 0.99

(95% CI: 0.87–1.11) three weeks later. However,Rt is decreasing before the lockdown as well.

In particular, there is no visually detectible break in the slope ofRt in the three-week period

after the introduction of the lockdown (i.e., no “kink”). In S1 Appendix (Section A.13, Fig

A.10 to Fig A.13), we show that other NPIs follow a similar pattern. In particular, we document

the behavior ofRt around the introduction of public-event bans, case-based measures (such as

self-isolation whenever feeling ill and experiencing fever), school closures, and social-distanc-

ing measures. Except for school closures and public-event bans, there is no visually apparent

break in the trend ofRt around the date of the policy intervention.

To further investigate the behavior ofRt in the four-week window around lockdowns, we

use mobility data from Google’s “COVID-19 Community Mobility Reports” [24]. Google uses

smartphone location data to measure changes in mobility (relative to pre-pandemic levels) for

six six types of places: (i) groceries and pharmacies; (ii) parks; (iii) transit stations; (iv) retail

and recreation; (v) residential; and (vi) workplaces. Since these measures are strongly corre-

lated, we take the first principal component of the six time series to construct an overall mobil-

ity index. The first principal component explains 83.03% of the total variation in Google’s

mobility data.

Fig 4 shows that most of the decline in mobility occurs before the imposition of the lock-

down, and remains low thereafter. This finding shows a clear change in people’s behavior in

Fig 3. R and policy interventions: Lockdowns. Estimated effective reproduction number (Rt) one week before and
three weeks after a lockdown is introduced in a country. The original sample consists of 14 European countries studied
by Flaxman et al [25]. Heteroskedasticity-robust confidence bounds are shown by the shaded areas.

https://doi.org/10.1371/journal.pone.0244474.g003
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the early days of the pandemic. Shifting habits before the introduction of NPIs is consistent

with the existence of private motives that can induce a reduction in mobility as people avoid

becoming infected [48–50]. Our results are also consistent with empirical evidence for the U.S

and anecdotal reports from Sweden [48, 51]. The documented relationship betweenRt and

mobility does not necessarily constitute evidence against the effectiveness of lockdowns. On

the contrary, it is possible that lockdowns reinforce attitudes towards disease-awareness and

self-isolation, helping to ensure lower values ofRt in the long run.

A potential concern with the evidence in Fig 3 is that our estimates ofRt use information

from the full sample. Hence, estimates ofRt before the lockdown implicitly depend on the esti-

mates ofRt after the lockdown. This feature of the estimation procedure may result in low sta-

tistical power to detect any effects of NPIs. To investigate this possibility, we conduct a power

analysis (see Section A.11 in S1 Appendix). Given our empirical estimates of signal-to-noise

ratios, we find that the statistical procedure appears sufficiently powerful to detect moderate

changes inRt .

To assess the effects of NPIs more formally, we employ the following fixed-effect regres-

sions (Table 2). Specifically, we regressRt on a set of indicator variables capturing interven-

tions and different types of fixed effects:

log ðRi;tÞ ¼ ðfixed effectsÞ þ
X5

j¼1

biNPI
ðjÞ
i;t þ ui;t;

Fig 4. Mobility around introduction of lockdowns.Mobility index (constructed from Google’s “COVID-19
Community Mobility Reports” [24]) one week before and three weeks after a lockdown is introduced in a country. See
S1 Appendix (Section A.8) for details on the construction of the mobility index. The original sample consists of 14
European countries studied by Flaxman et al [25]. Heteroskedasticity-robust confidence bounds are shown by the
shaded areas.

https://doi.org/10.1371/journal.pone.0244474.g004
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where ui,t denotes the stochastic error term of the regression. TheNPI
ðjÞ
i;t is an indicator variable

that equals 1 after the j-th NPI is introduced, and zero before its introduction. The index i

denotes countries, and t stands for the number of days since the outbreak of the epidemic.

Column (1) of Table 2 provides estimated effects of NPIs when only country fixed effects

are included. We observe a strong negative effect of lockdowns, social distancing, and mea-

sures of self isolation. Taken at face value, the estimates suggest that lockdowns reduceRt by

65%. School closures are not statistically significant in this specification. These regressions as

well the point estimates are similar to the statistical analysis performed by Flaxman et al [25].

The regression with country fixed effects only, however, is likely misspecified. Implicitly,

such a specification assumes that the only reasonRt can fall is because of introduction of

NPIs. However,Rt would likely trend downwards even in the absence of any public policy

interventions. First,Rt tends to fall during an epidemic as the number of susceptibles is

depleted. Second, people may adjust their behavior even in the absence of any policy measures.

Failing to control for the dynamics ofRt in the absence of NPIs therefore likely leads to an

over-estimation of the effects of NPIs.

We acknowledge that obtaining credible counterfactuals in the present empirical context is

extremely challenging. However, we can exploit the panel structure of the dataset to reduce the

potential issues in the previous specification. We do so by including days-since-outbreak fixed

Table 2. Effective reproduction number after introduction of NPIs.

Dependent Variable: log(Rt)

(1) (2) (3) (4)

Lockdown -0.65��� -0.13�� -0.1�� -0.04

(0.04) (0.05) (0.05) (0.06)

Public Events -0.09� 0.22��� 0.21��� 0.36���

(0.04) (0.04) (0.04) (0.08)

School Closure -0.02 -0.19��� -0.18��� -0.1

(0.06) (0.05) (0.06) (0.08)

Self Isolation -0.13�� -0.09�� -0.04 0.01

(0.06) (0.05) (0.05) (0.08)

Social Distancing -0.15�� -0.08 -0.11� -0.14�

(0.06) (0.06) (0.06) (0.08)

N 855 855 848 488

R2 0.53 0.87 0.88 0.91

Country FE ✔ ✔ ✔ ✔
Days-Since-Outbreak FE ✔ ✔ ✔
Mobility Controls ✔ ✔
Testing Controls ✔

� p <0.1;
�� p <0.05;
��� p<0.01

Results of panel-data regressions of the (log of) effective reproduction number (Rt) on indicator variables that are equal to 1 after the introduction of a non-

pharmaceutical intervention (NPI) and 0 before the introduction. The sample consists of 14 European countries studied by Flaxman et al [25]. Regressions always

include country fixed effects; regressions in columns (2)–(4) also include days-since-outbreak fixed effects. Outbreak is defined as the date on which 100 cases of

COVID-19 are reached. The regression with mobility controls in (3) includes the one- and two-week lags of the mobility index; see S1 Appendix (Section A.8) for

details. The regression with testing controls in (4) controls for the change in the number of daily tests per capita conducted in the country. To allow for reasonably

precise estimation of days-since-outbreak fixed effects, we only consider days after the outbreak for which we have data for at least 5 countries. Heteroskedasticity-

robust standard errors in parentheses.

https://doi.org/10.1371/journal.pone.0244474.t002
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effects. Intuitively, with such fixed effects we are comparingRt’s in two countries (e.g., country

A and country B) that are both five days from the outbreak (say), with a school closure in

country A but not in country B.

The results from the regression with days-since-outbreak fixed effects are shown in column

(2). The coefficient for lockdowns becomes substantially smaller in absolute value and less sta-

tistically significant. The coefficients for self-isolation and social-distancing measures are also

reduced and lose some of their statistical significance. The coefficient for public events is

highly statistically significant but positive rather than negative. A naïve interpretation would

suggest that banning public events has a positive effect onRt. More likely, however, is that the

positive coefficient is due to countries whereRt is declining more slowly being faster to ban

public events. In S1 Appendix (Section A.14), we show that the results remain similar when

the NPIs are included separately, reducing concerns about potential multicollinearity prob-

lems between the different NPI variables.

In column (3), we also include lagged mobility variables as additional controls. With mobil-

ity controls, the coefficient on lockdowns is further reduced. School closures and social-dis-

tancing measures are estimated to have a statistically-significant negative effect onRt , with

reducingRt by 18% and 11%, respectively.

A potential concern is that countries may introduce NPIs and simultaneously increase the

number of tests for COVID-19 that they perform. To help alleviate this concern, in column (4)

we add the change in the daily number of tests per capita as an additional explanatory variable.

The data on daily tests per capita comes from OurWorld in Data [23]. With testing controls,

most coefficients are no longer statistically significant. Note, however, that the sample size is

reduced significantly as we do not have testing data for all countries in the sample.

We caution readers against over-interpreting the results of this section. Obtaining unbiased

estimates of the true causal impact of NPIs is exceptionally challenging. As a result, even our

best estimates might still suffer from statistical issues such as unobservable confounding vari-

ables or simultaneity bias. In particular, the timing of NPIs is not random. Countries that

introduced NPIs earlier likely did so because they had previously observed a stubbornly high

Rt . In that case, the dependent and independent variables would be simultaneously deter-

mined, yielding biased estimates. Moreover, since we cannot directly observe peoples’ attitudes

towards COVID-19 or government policies, we cannot control for other variables affecting

human behavior. These potential issues notwithstanding, we find that people adjusted their

mobility patterns before the introduction of lockdowns. We believe that these findings bolster

the importance of accounting for changes in human behavior when evaluating the effects of

NPIs.

Conclusion

In this paper we develop a new way to estimate the effective reproduction number of an infec-

tious disease (R). Our estimation method exploits a structural mapping betweenR and the

growth rate of the number of infected individuals derived from the basic SIR model. The new

methodology is straightforward to apply in practice, and according to our simulation checks, it

yields accurate estimates. We use the new method to trackR of COVID-19 around the world,

and assess the effectiveness of public policy interventions in a sample of European countries.

The current paper faces several limitations. First, a local-level specification for the growth

rate implicitly assumes that the growth rate of the number of infected individuals remains

forever in flux. However, in the long-run, this growth rate must converge to zero. Since our

model does not capture this feature, it seems likely that our estimated confidence bounds are

overly conservative in the late stages of an epidemic. Second, when applying the model to
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cross-country data, one may achieve important gains in statistical efficiency if the model is

estimated jointly for all countries (for example, by estimating a multivariate local-level model).

Finally, for assessing the effects of NPIs more accurately, it would be desirable to collect data

for a larger sample of countries.

Our estimates ofR for COVID-19 are based on a structural relationship derived from the

SIR model. By using the SIR model, we omit some features of the disease that are likely impor-

tant when modeling its spread. In particular, the SIR model abstracts away from incubation

periods as well as transmission during the incubation period. Nevertheless, we prefer the SIR

specification, for two reasons. First, in simulations, we find that our estimator produces accu-

rate estimates even when the true model is SEIR rather than SIR, as we show in S1 Appendix

(Section A.5). Second, we believe that the SIR model is likely to produce more reliable esti-

mates in practice. To use the SEIR model, we would have to estimate the number of currently

exposed individuals. Doing so would triple the number of model parameters. In particular, we

would have to calibrate the (i) average duration of the incubation period (κ−1); and (ii) relative

infectiousness of exposed and infectious individuals (�); see S1 Appendix (Section A.5) for

details. While κ is arguably constant across countries, � is unlikely to be fixed over countries

and over time. For example, greater mask usage is likely to reduce � by differentially affecting

transmission by symptomatic and pre- or asymptomatic individuals. Allowing for such time

variation in �, in addition to time-varying transmission rates (βt), is challenging. That said, it
is possible to extend this paper’s ideas to models that are richer than the SIR model. Doing so

may be an exciting avenue for future research.

Relative to existing methods for estimatingR, we combine basic epidemiological theory

with standard time-series filtering techniques, particularly Kalman filtering. This approach

leads to a transparent closed-form estimator. The simplicity of the estimator allows us to

study some of its properties analytically (e.g., the effects of potential data problems). Differ-

ently from most existing approaches, our method can be applied using both Bayesian and

frequentist techniques, and it does not require any tuning parameters beyond specifying the

average serial interval. On the other hand, relative to less structural approaches such as that

of Cori et al [3], our estimator may be more sensitive to potential model misspecification.

Empirically, we find that our estimates and estimates obtained by the Cori et al method

are highly positively correlated (average correlation: 0.80). However, the correlations are

not perfect, suggesting that there is value in combining both estimators when tracking infec-

tious diseases. Hence, our methodology brings an additional instrument to the researcher’s

toolbox.

In our empirical application, we find that lockdowns, measures of self-isolation, and

social distancing all have statistically significant effects on reducingR of COVID-19. How-

ever, we also demonstrate the importance of accounting for voluntary changes in behavior.

In particular, most of the decline in mobility in our sample took place before lockdowns

were introduced. This finding suggests that people respond to the risk of contracting the

virus by changing their mobility patterns and reducing social interactions. Failing to account

for such voluntary changes in behavior yields estimated effects of NPIs that are arguably too

large.

Given that even our best estimates may still be biased, it is important to interpret these

results cautiously. However, from an economic perspective, these findings point to large pri-

vate incentives to avoid infection. These incentives can induce a contraction in economic

activity as people voluntarily choose to self-isolate [48–50]. As a result, even if countries lift the

NPIs that are currently in place, it is not clear whether people would voluntarily return to their

pre-pandemic mobility and consumption patterns. Our real-time estimator may be used to

track the dynamics of COVID-19 as the current restrictions are relaxed.
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