
Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 1

Intelligent Data Analysis 00 (2012) 1–23 1
DOI 10.3233/IDA-2012-0552
IOS Press

Tracking recurrent concepts using context

João Bártolo Gomesa,∗, Pedro A.C. Sousab and Ernestina Menasalvasa,1
aFacultad de Informática, Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid,

Spain
bFaculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Abstract. The problem of recurring concepts in data stream classification is a special case of concept drift where concepts
may reappear. Although several existing methods are able to learn in the presence of concept drift, few consider contextual
information when tracking recurring concepts. Nevertheless, in many real-world scenarios context information is available and
can be exploited to improve existing approaches in the detection or even anticipation of recurring concepts.

In this work, we propose the extension of existing approaches to deal with the problem of recurring concepts by reusing
previously learned decision models in situations where concepts reappear. The different underlying concepts are identified using
an existing drift detection method, based on the error-rate of the learning process. A method to associate context information
and learned decision models is proposed to improve the adaptation to recurring concepts. The method also addresses the
challenge of retrieving the most appropriate concept for a particular context. Finally, to deal with situations of memory scarcity,
an intelligent strategy to discard models is proposed. The experiments conducted so far, using synthetic and real datasets, show
promising results and make it possible to analyze the trade-off between the accuracy gains and the learned models storage cost.

Keywords: Data stream mining, concept drift, recurring concepts, context-awareness, ubiquitous knowledge discovery

1. Introduction and motivation

In real-world applications where data is continuously being generated, it is common to observe sig-
nificant changes in the underlying data distribution over time. This has a strong impact when apply-
ing data mining to data streams, as predictive models become invalid when the underlying concept
changes [13,25]. The problem of learning from time-changing data streams is generally known in the
literature as concept drift [9,13,24,25,29]. An effective data stream mining system must recognize and
adapt to changes by continuously learning the different time-changing concepts [9,25]. Therefore, learn-
ing systems should be able to detect and adapt to concept changes without explicitly being informed
about such changes. For example, using the available contextual features [11,28] or the performance of
the base learner [9] as a technique to recognize changes in the underlying concept.

A particular case of concept drift is when previously seen concepts reappear [8,15,29,31]. Although
concept recurrence is observed in many real-world problems [29], few approaches explore this possi-
bility. When concepts are associated to context, this means that they may reappear when such context
reoccurs. For example, a weather prediction model usually changes according to the seasons. The same
happens with product recommendation or text filtering models where user interest and behaviour might

∗Corresponding author: João Bártolo Gomes, Facultad de Informática, Universidad Politécnica de Madrid, Campus de Mon-
tegancedo, s/n 28660 Boadilla del Monte, Madrid, Spain. E-mail: joao.bartolo.gomes@alumnos.upm.es.

1The research is partially Lnanced by project TIN2008-05924 of Spanish Ministry of Science and Innovation.

1088-467X/12/$27.50 c© 2012 – IOS Press and the authors. All rights reserved

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 2

2 J.B. Gomes et al. / Tracking recurrent concepts using context

change over time due to fashion, economy, spatio-temporal situation or any other context [11,25,29].
This has motivated some works [11,28] to analyze how to use context to track concept changes.

The usual approach to deal with concept drift is to use some forgetting mechanism and train a new
model [9,24]. In scenarios with recurrence, this implies to relearn a previously observed concept. How-
ever, a more sophisticated technique to exploit recurrence is to store learned models (that represent past
concepts) [8,15,31], reusing these when appropriate. This avoids the effort and need to relearn a known
concept when a similar one reappears.

Another interesting idea, in combination with storing past concepts, is to explore the history of concept
changes over time. Such has been used in [8,11,32], where the concept history representation is built
from the changes observed between concepts in the data stream. This means that if the history repeats
itself when concepts recur, it is possible to anticipate the adaptation to change by using a stored model
that represents the recurring concept. Therefore, associating context and concepts can improve existing
methods, allowing to estimate which concept is likely to recur given the occurring context.

In this paper, we present a data stream learning algorithm to deal with recurring concepts. The ap-
proach combines on the one hand the performance of stored models representing previously learned
concepts and on the other hand exploits learned relations between context and stored models. The differ-
ent underlying concepts are identified using an existing drift detection method, based on the error-rate
of the learning process [9]. The paper presents solutions to the main challenges that arise from the
integration of context in the learning process. Such challenges are:

i) How to represent context information, the context history and its integration with learned con-
cepts.

ii) Preserve information from learned concepts in a compact representation (i.e., models).
iii) Compare context and learned models to recognize recurrent concepts.
iv) Anticipate recurring concepts and adapt to concept drift.
Furthermore, the approach adapts itself to the underlying resource constraints in terms of memory

consumption and reduces the number of processed records, in order to optimize the trade-off between
accuracy and efficiency. In situations of memory scarcity, an intelligent strategy is executed to discard
models that are considered less promising to reuse in a recurrence situation (according to several pro-
posed criteria).

We show experiments in which the proposed approach is able to improve adaptation to concept drift,
and thus the overall accuracy and efficiency of the learning process in the presence of recurring concepts.
Moreover, the memory costs associated with the approach are analyzed and the proposed memory-aware
strategy is tested, showing that despite the memory consumption cost the learning process accuracy
increases, even while adapting to the memory constraints.

This paper is organized as follows: In Section 2 the related work is reviewed and compared with the
approach presented in this paper, followed by Section 3 where the preliminaries and problem definition
are presented. The main challenges of the proposed approach are discussed in Section 4, where the
method to store and retrieve models, the drift adaptation strategy and the learning process are explained
in detail. An intelligent strategy to deal with situations of memory scarcity is proposed in Section 4.6. In
Section 5 the experimental setup and the results are presented and discussed. Finally, we provide some
concluding remarks and outline future research work in Section 6.

2. Related work

The proposed approach deals with learning recurring concepts from a data stream using context. Con-
sequently, we review firstly methods that address the problem of concept drift and recurring concepts,

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 3

J.B. Gomes et al. / Tracking recurrent concepts using context 3

then we focus our review on context and context-aware approaches.

2.1. Concept drift and recurring concepts

A general review of the literature related to the problem of concept drift can be found in [25]. The
different existing approaches can be structured by the technique used to address the problem:

1. Using a window of records or a decay function, where old records are forgotten and the decision
model is updated with the most recent data as it appears in the window [16,17,21,29].

2. Building an ensemble using classification models learned from fixed-size sequential chunks of the
data stream training records [18,24,27] and adapt the weights of the classifiers according to the
underlying concept.

3. Using a drift detection method [1,9,28,32], which is able to signal when drift occurs.

We will now review each of the above approaches in the following subsections.

2.1.1. Time window

This is a simple and efficient approach, however, its main drawback lies in determining the size of
the window. Schlimmer and Granger proposed the STAGGER system [21] that was amongst the first
to explicitly address the problem of concept drift. STAGGER keeps a set of concept descriptions based
on a set of weighted elements, where each element is a Boolean function of attribute-value pairs that
is represented by a disjunction of conjunctions. To adapt to concept drift it incrementally updates the
concept description weights and functions over a fixed time window. The FLORA learning system pro-
posed by Widmer and Kubat [29] adjusts its window size dynamically using a heuristic based on the
prediction accuracy and concept descriptions. It also handles recurrence by storing concept descriptions.
Klinkenberg and Joachims [17] monitor the value of several performance indicators, accuracy, recall and
precision over time. The key idea is to automatically determine and adjust the window size so that the
estimated generalization error on new examples is minimized. Klinkenberg [16] proposed an automati-
cally adaptive approach to the time window, instance selection and weighting of training records, which
also aims to minimize the estimated generalization error.

2.1.2. Ensemble of classifiers

In this approach, the main challenges are on how to determine which classifiers to use, their weights
and the chunks size.

Street and Kim [24] build separate classifiers on sequential chunks of training records and combine
these into a fixed-size ensemble. Wang et al. [27] propose a similar approach but the weights are cal-
culated based on the classifiers accuracy on recent data. The DWM algorithm, proposed by Kolter and
Maloof [18], dynamically builds and deletes weighted classifiers in response to changes in performance.
Scholz and Klinkenberg [23] propose a boosting-like method for data streams that adapts to concept
drift. For each iteration, the classifiers are induced and re-weighted according to the most recent records.

However, the previous ensemble approaches do not explicitly address the problem of recurring con-
cepts and they may have to relearn concepts as if they have never seen them before. Ramamurthy and
Bhatnagar [20] presented an ensemble approach that exploits recurring concepts, using a global set of
classifiers learned from sequential data chunks. If no classifier in the ensemble performs better than
the error threshold, a new classifier to represent the current concept is learned and stored. The classi-
fiers with better performance on the most recent data are part of the ensemble for labeling new records.
Similarly, in [15] an ensemble is used but incremental clustering was exploited to maintain information

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 4

4 J.B. Gomes et al. / Tracking recurrent concepts using context

about historical concepts. The proposed framework captures batches of examples from the stream into
conceptual vectors. Conceptual vectors are clustered incrementally by their distance and for each cluster
a new classifier is learned. Classifiers in the ensemble are learned using the clusters.

2.1.3. Drift detection

In this type of approach it is assumed that periods of stable concepts are followed by change into
another stable concept period. Gama et al. [9] and Yang et al. [32] approaches monitor the error-rate of
the learning algorithm to find drift events. In [9], when the learning process error-rate increases above
certain pre-defined levels, the method signals that the underlying concept has changed. Alternatively
Baena et al. [1], uses the distribution of the distances between classification errors to signal drift. If the
distance, which results from more consecutive errors, is above a pre-defined threshold, the underlying
concept must be changing and a change event is triggered. The basic adaptation strategy after drift is
detected is to discard the old model and learn a new one to represent the new underlying concept [1,9].

Most of these approaches discard old information and the possibility to exploit concept recurrence is
not even considered. However, more sophisticated approaches that exploit this possibility, such as [8,
31], store learned models and reuse them when a similar concept reappears in the stream, thus avoiding
the effort to relearn a previously observed concept. The method proposed by Yang et al. [31] uses a
proactive approach to recurring concepts, which means to reuse a concept from the history of concepts.
This history of concepts is represented as a Markov chain and allows selecting the most likely concept
according to a given transition matrix. The approach proposed by Gama and Kosina [8] uses the drift
detection method presented in [9] to identify stable concepts and memorizes learned classifiers that
represent these concepts. After change is detected in situations of recurrence, referees are used to choose
the most appropriate classifier to reuse (i.e., the referee prediction about the applicability of the classifier
is greater than a given threshold).

From the reviewed approaches the ones more similar to our proposal are [8,31], as both use drift
detection and store past models as a means to adapt to concept drift and recurring concepts. However,
none explores the usage of context information, and use different techniques to select stored models in
situations of recurrence, while the approach we propose in this paper uses learned relations between
concepts and context to improve the adaptation to drift in such situations.

2.2. Context and context-aware approaches

Context representation in information systems is a problem studied by many researchers as they at-
tempt to formally define the notion of context. Schmidt et al. [22] defined context as the knowledge about
the users and device state. Moreover, Dey [3] defines context as ‘Context is any information that can be
used to characterize the situation of an entity’. In contrast, Brezillon and Pomerol [2] argue that there is
no particular knowledge that can be objectively called context, as context is in the eye of the beholder.
They state that ‘knowledge that can be qualified as ‘contextual’ depends on the context!’. In addition,
Padovitz et al. [19] proposed a general approach that models context using geometrical spaces called
Context Spaces, which allows the inference of situations in context-aware environments. The context
spaces representation is used as the basis for the context representation in the approach proposed in this
paper.

Context dependence has been recognized as a problem in several real world domains [11,26,28]. Tur-
ney [26] was among the first ones to introduce the problem of context in machine learning, where he
presented a formal definition in which the notions of primary, contextual and context-sensitive features
were introduced. Such notions are based on a probability distribution for the observed classes given the

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 5

J.B. Gomes et al. / Tracking recurrent concepts using context 5

features. However, when the probability distribution is unknown it is often possible to use background
knowledge to distinguish between features. In the proposed learning system the same approach is fol-
lowed, as the system processes what experts define as contextual features in a meta-learning level and
primary features in the base learning level.

Widmer [28] exploits what is referred as contextual clues (based on the Turney [26] definition of
primary/contextual features) and proposes a meta-learning method to identify such clues. Contextual
clues are context-defining attributes or combinations of attributes whose values are characteristic of
the underlying concept. When more or less systematic changes in their values are observed this might
indicate a change in the target concept. The method automatically detects contextual clues on-line, and
when a potential context change is signalled, the knowledge about the recognized context clues is used
to adapt the learning process in some appropriate way. However, if the hidden context is not represented
in the contextual clues it is not possible to detect and adapt to change.

The approach of conceptual clustering proposed by Harries [11], identifies stable hidden contexts from
a training set by clustering the instances assuming that similarity of context is reflected by the degree
to which instances are well classified by the same concept. A set of models is constructed based on the
identified clusters. This idea proved to work very well with recurring concepts and real world problems.
However, its main drawback is the off-line training required to obtain the conceptual clusters, as these
could lead to inaccuracy with concepts or patterns that were not seen during training.

In the approach proposed in this paper context integration shares the motivation with the approach
presented in [11] where the method infers periods when the context is stable (from available context
features), that are described as contextual clusters. However, we propose an on-line method that learns
context-concept relations from the concept history. Moreover, the proposed method does not require the
partition of the dataset into small batches as the concept representations are learned from an arbitrary
number of records, as determined by the drift detection method.

3. Preliminaries

Online supervised learning [4,5], aims to learn a classification model from a stream of training records
(possibly infinite) and apply this model to predict the class of unlabeled records with high accuracy. Data
stream mining algorithms cannot keep a large number of records in memory and should process each
record only once to deal with the massive volumes of data that are typically processed in data stream
learning systems [4,5]. Consequently, the classification model is learned incrementally and after the first
training records it is possible to use it to predict the class of incoming unlabeled records [4]. An anytime
classification scenario [4,33] is assumed and the classification model accuracy is expected to increase as
the number of training records grows. However, this will not happen if the underlying data distribution
changes, as the classification performance will decrease. An explicit adaptation strategy to drift must
be performed, for instance by simply forgetting old patterns in favour of new ones [25]. Therefore, it is
important that data stream mining algorithms not only learn incrementally but also detect and adapt to
changes in the underlying data distribution.

A particular type of concept change is that of reappearing concepts [8,15,29,31]. In such cases recog-
nizing an already learned concept might improve the adaptation by avoiding to relearn it.

3.1. Definitions

LetX be the space of attributes and its possible values and Y the set of possible (discrete) class labels.
Let the data stream training records Xi = (�xi, yi) with xi ∈ X and yi ∈ Y , that arrive sequentially,

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 6

6 J.B. Gomes et al. / Tracking recurrent concepts using context

where �xi is a vector of attribute values and yi is the class label for the ith record in the stream. These
records are processed by a base learner to incrementally train a model m that returns the class label of a
record �x ∈ X, such that m(�x) = y ∈ Y . A stable concept can be learned when the records of a given
period (or set) k (with an arbitrary number of records) are independently identically distributed according
to a distribution Prk(x, y). In situations of concept change, Prk(x, y) �= Prk+1(x, y). The case of a
recurring concept is that when the records from a period k are generated from the same distribution as
a previously observed period Prk(x, y) = Prk−j(x, y). The goal is that the trained model m minimizes
the number of prediction errors. Furthermore, a model mk learned from a certain period k can be saved
and then reused in situations where the underlying concept represented by mk reappears in the stream.
This would improve the on-line learning process because it does not require to learn from scratch a
previously known concept when the underlying concept changes. Furthermore, it reduces the number of
training records that need to be processed compared with approaches that do not take recurrence into
account (i.e., forget old models).

3.2. Context integration

In situations where contextual information is related to the underlying concepts, such knowledge could
be exploited to detect and adapt to recurring concepts. Nevertheless, these relations are not known apri-
ori, and it is even possible that given the available context information it is not possible to find such
relations. Still, in many real-world problems we find examples where the available context information
does not explain all global concept changes, but partially explains some of these. For example, user
preferences often change with time or location. Imagine a user that has different interests during the
weekends, weekdays, when at home or at work. In general, different concepts can recur due to periodic
context (e.g., seasons, locations, week days) or non-periodic context (e.g., rare events, fashion, economic
trends).

The available context information is represented as a vector of contextual attributes. Finding associ-
ations between context and concepts is not trivial, as their relations are not known in advance. Further-
more, when exploiting such relations to improve adaptation to recurring concepts, one could argue that
context information should be simply added as additional attributes in the base learner. However, that
would increase the problem dimensional complexity and introduce noise to the learning process, since
concepts may change due to factors that may not be expressed as context attributes. Therefore, we be-
lieve that such context information should be integrated carefully in a meta-learning level (as discussed
in [11,26,28]).

4. Context-aware learning system

In this section an overview of the proposed learning system is introduced, which is followed by a
complete description of its components in the corresponding sections.

Data stream learning algorithms have to deal with detection and adaptation to change. In situations of
concept recurrence, anticipating to the reappearing concept can improve the learning process efficiency.
Consequently, we propose to continuously store learned models from the data stream learning process
and associate context information with these models. This context information will be used later when
a similar concept reappears, in the selection of an appropriate model, which is able to represent the
reappearing concept.

The proposed learning system is based on a two-level framework:

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 7

J.B. Gomes et al. / Tracking recurrent concepts using context 7

Fig. 1. Context-aware data stream learning system. (Colours are visible in the online version of the article; http://dx.doi.org/
10.3233/IDA-2012-0552)

a) base learner level where an incremental algorithm learns the underlying concept, building a classi-
fication model.

b) meta-learning level where: i) detection and adaptation to concept drift is performed; ii) the context-
concept relations are learned and used to deal with the recurring concepts.

One of the main assumptions behind the proposed approach is that concepts reappear. We take this
as the basis of our approach to improve the learning process. The main advantage is avoiding to relearn
previously observed concepts, which translates into faster adaptation to concept changes, accuracy gains
and efficiency of the learning process (i.e., less processing time, due to less training records processed).
The drawback associated with it, is the additional memory consumption, as models have to be stored so
they can be reused when the concept they represent reappears. Therefore, there is an accuracy-efficiency
trade-off in storing more decision models. Consequently, as part of the approach we propose a memory-
aware strategy to discard models to deal with situations of memory scarcity (see Section 4.6). Moreover,
there is the possibility of conflicts with recurring concepts in the presence of different context. The
approach is sensitive to these situations because the context-concept relation history is constantly being
updated, and context is not the only factor when selecting a model to reuse.

Figure 1 illustrates the learning process and its components. This continuous learning process consists
of the following steps:

1. Process the incoming records from the data stream using an incremental learning algorithm (base
learner) to obtain a decision model m capable of representing the underlying concept, and classify
unlabeled records.

2. Context records are associated with the current model m. The history of context-concepts relations
will be referred to as context-concepts relations history.

3. A drift detection method that monitors the error-rate of the learning algorithm. When error-rate
goes above pre-defined levels the drift detection method signals a warning (possible drift) or drift.

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 8

8 J.B. Gomes et al. / Tracking recurrent concepts using context

4. When change is detected two situations are possible: i) the underlying concept is new (i.e., no
equivalent concept is represented in the classifiers repository) and the base learner will learn the
new underlying concept by processing the current incoming labeled records. The incremental clas-
sifier that is being learned will also classify the incoming unlabeled records as anytime classifica-
tion is assumed; ii) the underlying concept is recurrent (i.e., has been learned previously). In this
situation a classifier from the repository that represents the underlying concept is used to classify
incoming unlabeled records. Further description of this process and the utility function used to
select the retrieved model is described in Section 4.3.4.

The major issues to deal with when integrating contextual information to improve the adaptation to
recurring concepts in the on-line learning process are:

– Representing the data stream underlying concepts in a compact form that is adequate for storage.
Compare the similarity between learned concept representations.

– Representing and comparing dynamic context information.
– Detecting and adapting to recurring concept changes.
– Deciding which information to store about past concepts and related context.
– Deciding how to retrieve past concepts in situations of recurrence.
– Dealing with the accuracy-efficiency trade-off of the learning system under situations with memory

constraints.

Context representation and similarity are presented in Section 4.1. The base learner algorithm is de-
scribed in Section 4.2. Concept representation, context-concepts relations history and the measure of
similarity between models, used to check if different models represent the same concept, are discussed
in Section 4.3. Also in the same section, the model storage and retrieval procedures are presented. To
detect when drift occurs the Drift detection method, proposed by Gama et al. [9] is used. This method
is briefly summarized in Section 4.4, where the adaptation strategy to drift is proposed and discussed.
Finally, in Section 4.5 the pseudo-code of the learning process is presented. In addition, to address the
problem of memory scarcity, Section 4.6 discusses model utility criteria and presents an intelligent strat-
egy to forget models based on such criteria.

4.1. Context representation

The context representation and similarity we propose to integrate in our approach is inspired on the
Context Spaces model [19], where a context state is represented as an object in a multidimensional
Euclidean space. A context state ci is defined as a tuple of N context attribute-values,

ci = (ai1, . . . , a
i
n)

where ain represents the value of context attribute an for the ith context state ci.
The available context information depends on the learning environment and data mining problem.

Context information can represent simple sensors (e.g., temperature, humidity) or a more complex con-
text (e.g., season, location, gait) defined by domain experts or inferred by other means beyond the scope
of the problem discussed in this work.

4.1.1. Context similarity

Context similarity is not a trivial problem [19], because while it could be more immediate to measure
the (dis)similarity between two values in a continuous attribute, the same is not that easy when we

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 9

J.B. Gomes et al. / Tracking recurrent concepts using context 9

consider categorical ones and to a greater extent when integrating the heterogeneous attributes similarity
into a (dis)similarity measure between context records/states. For the purposes of this work the degree
of similarity between context states ci and cj , using the Euclidean distance is defined as:

|ci − cj | =

√

√

√

√

N
∑

K=1

dist(aik − ajk)

where aik represents the kth attribute-value in context state ci. For numerical attributes distance is defined
as:

dist(aik, a
j
k) =

(aik − ajk)
2

s2

where s is the estimated standard deviation for ak. For nominal attributes distance is defined as:

dist(aik, a
j
k) =

{

0 if aik = ajk
1 otherwise

We considered two context states ci, cj to be similar if the distance between them is below a predefined
threshold ǫ:

similar (ci, cj) =

{

true if |ci − cj | � ǫ
false if |ci − cj | > ǫ

The definition of ǫ depends on the context space being represented and must be specified according to
the problem domain knowledge.

4.2. Base learner

The base learner is used to learn a model that represents the data stream underlying concept. Any
classification algorithm able to learn incrementally can be used for this task, and such decision can
be made according to the nature of data, choosing the algorithm that best suits it (e.g., high accuracy,
handles noise, memory consumed, fast execution). For this task we propose to use the NaiveBayes
algorithm, because it represents the concepts in a compact form (i.e., results in memory efficiency),
is incremental, handles nominal as well as continuous attributes and has shown good results as a base
learner [8,15,28].

In this section the NaiveBayes algorithm is briefly described. For further information the reader should
refer to [30].

The Naive Bayes classifier provides a simple, incremental and efficient approach to learn probabilistic
knowledge. From the Bayes theorem, the probability that an record �x ∈ X belongs in class y ∈ Y

Pr(Y = y|X = �x) =
Pr(Y = y) Pr(X = �x|Y = y)

Pr(X = �x)

It is straight forward to estimate Pr(Y = y) by counting the number of records that belong to class y,
which will be referred asPy , and the numberN of records processed. Still, estimatingPr(X = �x|Y = y)

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 10

10 J.B. Gomes et al. / Tracking recurrent concepts using context

in not feasible. Using the NaiveBayes assumption (i.e., that all attributes in X are independent given the
class in Y) it is possible to obtain,

Pr(X = �x|Y = y) =

|X|
∏

xi∈�x

Pr(X = xi|Y = y)

that can be estimated by counting the number of records belonging to class y with xi, which will be
referred as Pxi,y. Finally, it is not required to estimate Pr(X = �x) because it is a constant. The method
presented by John and Langley [14], is used to handle numeric type attributes. The method assumes that
the value of each attribute is normally distributed within each class y. Then it is possible to use,

Pr(X = xi|Y = y) =
1√
2πσ2

exp

(

−(xi − µ)2

2σ2

)

for each numeric attribute xi in X. It is possible to estimate µ and σ2 by storing the sum and squared
sum of the values of xi.

The NaiveBayes classifier m outputs the class label y for a record �x,

m(�x) = y = argmax
y

⎛

⎝Pr(Y = y)

|X|
∏

xi∈�x

Pr(X = xi|Y = y)

⎞

⎠

4.3. Concept history

For the purpose of our approach it is important to have a memory efficient representation of concepts.
NaiveBayes as a base learner achieves this, because given a model m it only requires to store the esti-
mation of the class Py and the estimation of each attribute given the class Pxi,y, we will refer to these as
conceptual vectors,

cv = {Py, Pxi,y}

4.3.1. Model storage

Learned models are kept stored so they can be reused in situations of recurrence. In such situations the
repository is searched for an adequate model, which means, finding a model that represents the current
underlying concept. If a match is found, it is expected a reduction in the computational cost that comes
associated with learning a new model and also improved adaptation to concept drift (i.e., better learning
curve in terms of accuracy). For each classification model m in the model repository we store:

– The concept representation: as the Naive Bayes algorithm is used, this means to store the conceptual
vectors of model m, that is represented as cv.

– Acc(m) is an estimate of the accuracy of m obtained during the period m was used. Let
numCRecordsm be the number of correctly classified records by m and numRecordsm be the
total number of records classified by m. The accuracy Acc(m) is defined as:

Acc(m) =
numCRecordsm

numRecordsm

– The timestamp t that records the period when a model m was used.

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 11

J.B. Gomes et al. / Tracking recurrent concepts using context 11

Consequently each decision model m stored in the model repository is defined as the tuple:

m = {cv(Py , Pxi,y),numCRecords (m),numRecords (m), t}

Most of the information that is kept, together with the context-concepts history is used in the selection
of past models to represent the latest underlying concept and also in the selection of models to delete
in situations of memory scarcity. The memory consumption of the proposed approach is a function of
the size used by the conceptual vectors cv, and as described previously, this depends on the number of
attributes and classes that are considered, as more estimators need to be kept.

4.3.2. Context-concepts relation history

The main assumption under our approach is that when a concept reappears normally the context pre-
viously associated with it also reappears. We take advantage of this fact to anticipate the adaptation
to recurring concepts. Here a description of how to create and represent the context-concepts relations
history is presented.

Let mj be the model learned or used in a certain period j (i.e., that represents the underlying concept
during that period j) and Cj = {c1, c2, . . . , cn} a sequence of n context records observed during this
period j. The context-concepts history representation uses the Naive Bayes algorithm to associate con-
text with concepts. It is incrementally learned from the sequence of context records Cj , where the model
mj identifier is used as the class label. This allow us to estimate the probability that a certain model
mk represents the current underlying concept given a certain context state ci, we denote this estimation
of probability as h(mk|ci), similarly as has been previously explained for the base learner prediction
of the class label given �x. As a consequence, we can keep an approximate and compact representation
of the context-concepts relation history, without keeping the context records, which would be impos-
sible due to the memory required. The maximum number of models (i.e., the number of classes in the
context-concepts history) that we can store is determined by the mlimit .

It is possible to aggregate the different context records of Cj into one context record that we call
frequent context freqC , where each attribute value of freqC is the most frequent value that attribute
takes in these records. This can be used to have more control over the creation of the context-concepts
history. For example balance possible bias that can occur when the period length (in terms of records)
of different concepts is not similar.

The Context-Concepts relation history also allows knowing the most frequent context for a given
model. This is used when we need to compare the distance between the most frequent contexts that are
associated with certain stored models. The proposed strategy to deal with memory scarcity uses this
context distance as a criterion.

4.3.3. Concept similarity

To determine whether a certain model represents a new concept or a reappearing one a similarity
measure is required. The Conceptual equivalence measure, that is based on the one proposed by Yang
et al. [32] is used for this purpose. The measure is independent of the concept representation. Given
two classification models m1,m2 and a sample dataset Dn of n records, it calculates for each instance
Xi = (�xi, yi) a score,

score(Xi) =

{

+1 if m1(�x) = m2(�xi)
−1 if m1(�x) �= m2(�xi)

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 12

12 J.B. Gomes et al. / Tracking recurrent concepts using context

that is used to represent the degree of equivalence between m1 and m2, that is an average continous
value score with range [−1, 1], defined as,

ce =

∑

Xi∈Dn
score(Xi)

N

The larger the output value, the higher the degree of conceptual equivalence. For the records in Dn

it compares how m1 and m2 classify the records. The authors [32] argue that the accuracy and the
conceptual equivalence degree are not necessarily positively correlated. The reasoning is that, despite
m1 and m2 might classify Dn with low accuracy, their equivalence degree can be very high if their
classifications match, even when both misclassify. Moreover, accuracy does not represent conceptual
equivalence as models can still achieve the same accuracy and misclassify different parts of the attribute
space.

We consider that if the obtained ce value is above a pre-defined threshold, the models are similar and
thus represent the same underlying concept.

4.3.4. Model retrieval

The main objective of model retrieval procedure is to find from the stored models the one which better
represents the current underlying concept.

The proposed model retrieval procedure, combines an accuracy approach similar to the proposed
in [27] and the information learned from the context-concepts history described in Section 4.3.2. The
model mi accuracy is estimated using the Mean Square Error. This measure estimates the error of the
classifier for a window of records Wn. The Mean Square Error MSIi for model mi, using the window
Wn of n records in the form of (�x, y), where y is the true class label for that record, can be expressed as:

MSEi =
1

|Wn|
∑

(�x,y)∈Wn

(1−my
i (�x))

2

where the error of mi on record (�x, y) is 1−my
i (�x), and my

i (�x) is the probability given by mi that �x is
an instance of class y.

Let wm and wc be the weights assigned to the MSEi calculated using dataset Wn and to the context-
concepts history h(mi|co), representing the probability estimation that the current underlying concept is
represented by mi given the occurring context co (i.e., the most frequent context observed for the records
in Wn):

u(MSEi, h(mi|co)) = wm ∗ 1

1 +MSEi
+ wc ∗ h(mi|co)

The utility function is calculated for all the models in the repository or if processing time is limited just
the models associated to a certain context co. The model that has the highest utility value is selected. If
its utility value is bellow a given threshold, it is not reused and we proceed as in a situation where the
underlying concept is new.

Note that here instead of the accuracy we could have used the degree of conceptual equivalence (dis-
cussed in Section 4.3.3). However, the conceptual equivalence degree and the model accuracy are not
necessarily correlated, and the accuracy based approach is less restrictive as it is more flexible to changes.

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 13

J.B. Gomes et al. / Tracking recurrent concepts using context 13

4.4. Drift detection and adaptation

The proposed learning system requires to identify when drift occurs, and for this purpose it uses the
method proposed by Gama et al. [9], that is based on the error-rate of the learning process. We present a
summary of the drift detection method but for further details we refer the reader to [9].

The mentioned drift detection method (DDM) [9] assumes that periods of stable (i.e., the data dis-
tribution is stationary) concepts are observed followed by changes leading to a new period of stability
with a different underlying concept. It considers the error-rate (i.e., false predictions) of the learning
algorithm to be a random variable from a sequence of Bernoulli trials. The binomial distribution gives
the general form of the probability of observing an error. For each record i in the sequence being sam-
pled and error i the number of misclassifications at i, the error-rate is the probability of misclassifying
pi = (error i/i), with standard deviation given by si =

√

pi(1− pi)/i. It is assumed that pi will de-
crease while i increases if the distribution of the examples is stationary. A significant increase in pi,
indicates that the class distribution is changing. The values of pi and si are calculated incrementally and
their minimum values (pmin, smin) are recorded when pi + si reaches its minimum value. A warning
level and a drift level, which represent confidence levels, are defined using pi, si, pmin, smin. The levels
and the adaptation strategies for each one are defined as follows:

– pi + si � pmin + 2 ∗ smin for the warning level (95% confidence). Beyond this level, the incoming
records are stored in anticipation for a possible change in concept.

– pi + si � pmin+3 ∗ smin for the drift level (99% confidence). Beyond this level the concept drift is
considered to be true, the adaptation strategy consists in resetting the model induced by the learning
method and use the records stored during the warning period to learn a new model that reflects the
current target concept. The values for pmin and smin are also reset.

It should be noted that other methods for change detection can be used instead, without need to change
the proposed learning process.

4.4.1. Adaptation strategy to concept drift using context

One of the main contributions of the proposed approach is how contextual information is exploited
when a concept change is detected. Consequently, the drift detection method adaptation strategy is ex-
tended to integrate the context information. The method puts the learning process in one of the levels,
stable , warning , or drift . The main contribution is made in the warning and drift levels. The adaptation
strategy to any of these levels is executed in the meta-learning level of the proposed approach through
the following actions:

– stable , means that the error-rate is less than the pre-definedwarning or drift levels. In this situation
no adaptation is needed independently of the changes in context, because the performance is stable
or increasing.

– warning , could represent a potential false alarm (i.e., the change level is not reached and the error-
rate decreases to normal level). In this situation we:

∗ prepare a new instantiation of the base learner mnew to represent the new underlying concept in
case the error-rate continues to increase and drift is detected in a near future.

∗ if the statistics collected from context-concepts history are sufficient (i.e., after some pre-defined
period considered for initial training) and h(mk|co)) for a certain keptmk is above a given thresh-
old, we anticipate to the recurring concept using mk to classify unlabeled records. Two situations
can happen:

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 14

14 J.B. Gomes et al. / Tracking recurrent concepts using context

– i) the model mk that we use to anticipate represents the current underlying concept and the
error-rate decreases (i.e., the underlying concept is recurrent)

– ii) the warning level continues, in this situation the process waits for n records to execute the
same adaptation strategy as in drift level.

– drift , in this case the current decision model is replaced with mnew from the new base learner and
waits until it processes n records. If mnew represents a new concept (i.e., no similar model is stored
in the model repository), it continues to be incrementally updated and is added to the repository.
Otherwise the model retrieval procedure is used to obtain from the repository the model that best
represents the recurring concept, which is used to classify unlabeled records.

4.5. Learning process

The on-line learning process of the proposed learning system is detailed in Algorithm 1. The process
proceeds as follows:

– It continuously processes the records Xi = {�x, y} as they appear in the Data Stream.
– In line 3, currentClassifier represents the classifier that is currently being used to classify unlabeled

records. Its performance (i.e., right or wrong) on the prediction of Xi is passed to the drift detection
algorithm that identifies the current state of the learning process.

– If the process is in the normal level, the record that represents the occurring context is associated
with the current model in the context-concepts relation history, and if the currentClassifier is new
(i.e., not recurrent) it gets updated with the new training record.

– In the case of warning level (line 11), if the repository does not have the currentClassifier, it is
stored. In addition (line 15), if the context-concepts relation history suggests a certain model with
high probability, this model is reused and becomes the currentClassifier. This is a way to anticipate
the adaptation that takes place in the drift level, but without requiring the collection of training
records, it simply tries to predict what model would best represent the underlying concept given the
current context. Still in this level (in lines 18 and 19), a newLearner is updated with the training
record and it is added to a warningWindow. This window contains the latest records (that should
belong to the most recent concept), and will be used to calculate the conceptual equivalence and
estimate the accuracy of stored models with the current concept.

– When drift is signaled (line 20), the currentClassifier is replaced by one from the model repos-
itory according to the model retrieval procedure described in Section 4.3.4, if none represents
the current concept the newLearner is used. During a pre-defined stability period (line 25), the
newLearner is updated and when it finishes (line 28) it is compared with repository models in
terms of conceptual equivalence. If the current underlying concept is recurrent a stored model is
reused to replace the currentClassifier, otherwise the newLearner is used.

– A false alarm (line 22) is when a warning is signaled and then returns back to normal without
reaching drift, in this case the warningWindow and the newLearner are cleared.

4.6. Resource-awareness

The proposed approach may lead to higher accuracy and a reduction in the number of processed
records when comparing it with approaches that relearn a recurrent concept from scratch. However,
there is a memory cost associated with model storage that must be taken into account. Consequently, the
proposed learning system is aware of the space consumed by the models in the repository and ensures

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 15

J.B. Gomes et al. / Tracking recurrent concepts using context 15

Algorithm 1 Data Stream Learning Process
Require: Data stream DS, ModelRepository MR
1: repeat
2: Get next record DSi from DS;
3: prediction = currentClassifier .classify(DSi);
4: DriftDetection.update(prediction);
5: switch DriftDetection.level
6: case Normal
7: history .train(co , currentClassifier .ID);
8: if ¬recurrent then
9: currentClassifier .train(DSi);

10: end if
11: case Warning
12: if ¬MR.contains(currentClassifier) then
13: MR.store(currentClassifier);
14: end if
15: if history(co) > ρ then
16: currentClassifier = MR.getModelID(history(co))
17: end if

18: WarningWindow .add(DSi);
19: newLearner .train(DSi);
20: case Drift
21: currentClassifier = MR.getModel(co);
22: case FalseAlarm
23: WarningWindow .clear();
24: newLearner .delete();
25: case Stability Period
26: WarningWindow .add(DSi);
27: newLearner .train(DSi);
28: if WarningWindow.size > τ then
29: if ¬MR.containsEquivalent(newLearner) then
30: currentClassifier = newLearner ;
31: else
32: currentClassifier = MR.getModel(co);
33: end if
34: end if
35: end switch
36: until END OF STREAM

that this value is kept within a the predefined memory limit mlimit . Using the proposed concept repre-
sentation (see Section 4.2), the maximum number of models that can be kept is a function of the number
of attributes in the dataset, the number of classes and of the available memory. In situations where its
not possible to add a new model to the repository without exceeding the memory limits, an intelligent
strategy is used to discard the classifier that is considered to have the lowest utility. This strategy is based
on the following criteria:

1. Equivalent classifiers (i.e., have the highest ce value)
2. Classifiers that are associated with similar contexts (i.e., associated context has lowest distance)
3. Accuracy, Acc(m) that is stored with the model.
4. Timestamp, in the rare case a tie results from using the other criteria.

The criteria we propose tries to promote heterogeneity in the repository, and thus the overall accuracy-
efficiency of the learning system.

In situations of memory scarcity (i.e., when the system tries to store a model and mlimit is reached),
the system executes a function that deletes the model with the lowest utility (using the proposed criteria)

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 16

16 J.B. Gomes et al. / Tracking recurrent concepts using context

from the model repository. This function searches the model repository for the lowest accuracy models
that share high concept equivalence, with the lower context distance, in order to maximize the concept
and context heterogeneity in the repository. From this subset the one with lowest accuracy is deleted. If
more than one model is the candidate after this step, the model with lowest timestamp is the one to be
deleted.

There is a trade-off between the number of models that can be stored simultaneously and the possibility
that this model can be reused in the future. In a worst case scenario where only one model fits the memory
available for the model repository, the learning process will behave like the standard drift detection
method, that exploits only a single classifier representing the latest concept, and thus it will not take
advantage of concept recurrence. In the experimental results different memory configurations are tested,
which allow us to analyze how the learning process efficiency changes with the possibility to keep a
reduced number of models.

5. Experiments

This section, presents the experiments to test the proposed approach in terms of accuracy and effi-
ciency to situations with strong memory limitations. The implementation of the proposed learning sys-
tem was developed in Java, using the MOA [12] environment as a test-bed. MOA [12] stands for Massive
Online Analysis and is an open-source framework for data stream mining written in Java. Related to the
WEKA project [30], it includes a collection of machine learning algorithms and evaluation tools par-
ticular to data stream learning problems. The MOA evaluation features (i.e., prequential-error [6]), the
incremental NaiveBayes class as base learner and the SingleClassifierDrift class were used, and provided
a starting point to implement the specific components of our approach. The SingleClassifierDrift class
implements the drift detection method proposed in [9] and adapts to it by learning a new classifier (i.e.,
discards previous concept representations).

The approach was tested with synthetic and real world datasets, in all but in one dataset (Elec2), the
concept changes and contextual attributes are generated artificially in order to control how the system is
able to learn existing relations recurring concepts and context.

5.1. Datasets

5.1.1. Synthetic dataset

SEA Concepts [24] using MOA [12] as the stream generator. SEA Concepts is a benchmark data stream
that uses different functions to simulate concept drift, allowing control over the target concepts and its
recurrence in our experiment. The SEA Concepts dataset has two classes {class0, class1} and three
features with values between 0 and 10 but only the first two features are relevant. The target concept
function classifies a record as class1 if f1 + f2 � θ and otherwise as class0, f1 and f2 are the two
relevant features and θ is the threshold value between the two classes. Four target concept functions as
in proposed in [24] are used, threshold values 8, 9, 7 and 9.5 are set to define these functions.

5.1.2. Real world datasets

As real world dataset, the Electricity Market Dataset(Elec2) [10] is used. The data was collected
from the Australian New South Wales Electricity Market, where the electricity prices are not stationary
and are affected by the market supply and demand. The market demand is influenced by context such
as season, weather, time of the day and central business district population density. In addition, the

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 17

J.B. Gomes et al. / Tracking recurrent concepts using context 17

supply is influenced primarily by the number of on-line generators, an influencing factor for the price
evolution of the electricity market is time. During the time period described in the dataset the electricity
market was expanded with the inclusion of adjacent areas (Victoria state), which lead to more elaborated
management of the supply as oversupply in one area could be sold interstate. The Elec2 dataset contains
45.312 records obtained from 7 May 1996 to 5 December 1998, with one record for each half hour (i.e.,
there are 48 instances for each time period of one day). Each record has 5 attributes, the day of week,
the time period, the NSW demand, the Victoria demand, the scheduled electricity transfer between states
and the class label. The class label identifies the change of the price related to a moving average of the
last 24 hours. The class level only reflects deviations of the price on a one day average and removes the
impact of longer term price trends. As shown in [10] the dataset exhibits substantial seasonality and is
influenced by changes in context. This motivates its use as a real world dataset in our experiments.

The real world emailing list (Elist) dataset [15] is a stream of email messages from different topics that
are labelled by a user as interesting or junk according to his preferences. The original dataset is a stream
of 1.500 records. We processed the dataset two times in a resulting data stream with 3.000 records.

5.2. Context and recurrence settings

As context for the SEA dataset we used a numerical context feature space with two features a1 and
a2 with values between 1 and 4. It was generated independently as a context stream where the context
attribute a1 is equal to the target concept function number, and a2 value is a random value, which intro-
duces noise in the context stream. We generated 250.000 records and changed the underlying concept
every 15.000 records. We tested a recurrence situation, where the order of concepts is repeated peri-
odically (i.e. 1,2,3,4). The test was executed with a 10% noise value as in the original paper [24], this
means the class value of the training record is wrong in 10% of the records, testing how sensitive the
base learner is to noise.

For the Electricity Market (Elec2) dataset we have considered the classification problem to predict
the changes in prices relative to the next half hour, using as predictive attributes, the time period, the
NSW demand, the Victoria demand and the scheduled electricity transfer. As context we used the day
of week attribute, as in [10] experiments using it lead to 10 different contextual clusters. We expect that
the association of this context with the stored models achieves good accuracy results, when compared
with the original paper results, that uses the SPLICE-2 algorithm [11]. However, one drawback of a real
world dataset is that we do not know for sure what the actual hidden context is and when such changes
occur, which makes more difficult to evaluate the obtained results. Anyway, this represents the learning
scenario that motivates our approach, which is common in real-world problems. This dataset was also
used in [9] to test the drift detection method in real world problems, achieving good performance results.

The Email List (Elist) dataset contains 2 recurrent concepts that change every 300 records. The first
concept represents messages where user is only interested in medicine and in the second concept the
interest changes to space and baseball. A contextual attribute location that is correlated with the target
concept was used as context.

5.3. Experimental setup

Two different experiments were performed, one to test the accuracy of the learning process over time,
and other also tests the accuracy of the learning process but in situations where the memory available is
limited.

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 18

18 J.B. Gomes et al. / Tracking recurrent concepts using context

Fig. 2. Accuracy of the Proposed approach(Context) vs SingleClassifierDrift(Single) using the Elist dataset where con-
cept recurrence follows periodicity. Black lines show when drift. (Colours are visible in the online version of the article;
http://dx.doi.org/10.3233/IDA-2012-0552)

5.3.1. Accuracy test experiments

For both datasets the approach proposed in this paper is compared in terms of accuracy with the Sin-

gleClassifierDrift implemented in MOA [12]. For this purpose we monitored the records where change
occurs and observed if the adaptation to change is as expected and the approach is able to learn the
relations between concepts and context. In the case with the synthetic dataset we monitored if the mech-
anism is able to predict the underlying concept after change is detected by recording its accuracy. The
SingleClassifierDrift approach also uses the incremental Naive Bayes algorithm and detects drift using
the drift detection method [9], that does not consider recurrence. In the real world dataset we also com-
pare results with an incremental Naive Bayes algorithm [7] (without any mechanism to adapt to drift),
again to be used as reference.

The parameter values presented were set according to the different datasets (size of the windows)
so an adequate value could be defined. For the experiments, the number records used in sample Dn to
compare the models (i.e. the number of records we consider the learned concept stable) was 20 for Elist

and 100 for the SEA and Elec2 dataset. The weights assigned to the utility function where 0.5 to each
factor after the training period, while in this period the MSE factor was given all the weight. We used a
training period for the context-concepts history of 60.000 records for the SEA dataset, 10.000 for Elec2

dataset and 900 for the Elist dataset.

5.3.2. Memory-awareness experiments

We compared the memory-aware strategy in situations with memory constraints, using 7 KBytes,
5 KBytes and 3 KBbytes of available memory running the SEA and Elec2 dataset. These values were
chosen because they represent scenarios. On the one hand, scenarios where it is possible to store enough
models and represent the different target functions, on the other hand scenarios where due to the strong
memory constraints only a reduced number of models can be stored. Note that in the SEA of concepts
dataset, this means being forced to store fewer models than existing target functions. Such constraint
enables us to observe and measure how the accuracy declines as the memory available is reduced and
fewer models can be kept. Also, it is important to understand the impact of discarding models and the
utility of the stored models in the adaptation to recurrence in such memory constrained scenarios.

5.4. Results

5.4.1. Email list dataset

Figure 2 shows the results from the accuracy experiment using the Elist dataset. In the figure one
can observe that the context-aware approach leads to better overall accuracy than SingleClassifierDrift.
Moreover, the proposed approach in general adapted faster to drift and the models retrieved using context

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 19

J.B. Gomes et al. / Tracking recurrent concepts using context 19

(a) normal

(b) memory-limited

Fig. 3. Elec2 dataset experiment, testing the accuracy of the Proposed approach(Context) vs SingleClassifierDrift(Single) vs
NaiveBayes (a) – Memory-awareness (b) comparing Proposed approach in scenarios with different memory limits. (Colours
are visible in the online version of the article; http://dx.doi.org/10.3233/IDA-2012-0552)

integration were able to represent the underlying concept. This is not observed in the SingleClassifier-

Drift approach that always has to relearn the underlying concept from scratch after drift is detected.
Furthermore, it is also noticeable that the proposed approach achieves a more stable accuracy over time,
as it recovers much faster from drift than the approach without stored models. We can clearly see the
improved adaptation after record 1.500 where the accuracy loss after a drift event is much softer than
the SingleClassifierDrift approach. The proposed approach obtained 75.5% accuracy vs 72.4% single
classifier approach and required to process 2.361 less records, as the system was able to recognize and
exploit the concept recurrence. The integration of context enabled the system to exploit the associations
between recurrent concepts and context as a way to track concept recurrence and in situations where this
association occurs, it was possible to achieve better results.

5.4.2. Electricity market dataset

As it can be seen in Fig. 3(a) the proposed approach obtained better overall accuracy results (i.e.,
72%) when compared with SingleClassifierDrift (i.e., 69%) and incremental NaiveBayes (i.e., 62%)
respectively. It is also possible to observe that the proposed approach achieves a more stable accuracy
and recovers faster from changes. This can be seen more clearly around record 35.000. Despite the
promising results, it is not possible to determine exact borders between concepts in this dataset and its
relations with the context represented by the day of week. This limits the extent in which is possible to
evaluate the results. However, such drawbacks are a consequence of learning from real world data.

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 20

20 J.B. Gomes et al. / Tracking recurrent concepts using context

Fig. 4. Accuracy of the proposed approach (context) vs SingleClassifierDrift (Single) using the SEA concepts dataset.
Black lines indicate when drift occurs. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/
IDA-2012-0552)

In relation to the experiments with memory constraints the results in Fig. 3(b) show that the overall
accuracy is similar between the experiments, in the order of 72% correctly classifier records. For the
different tested scenarios the proposed approach still obtains better or equal overall accuracy than the
memoryless approach (i.e., SingleClassifierDrift). However, the accuracy over specific periods depends
on the model that is reused and which ones that were previously discarded in situations of memory
scarcity, which is a direct consequence of the proposed model utility criteria. Such difference can be
seen around record 35.000, where the test that kept the adequate models (i.e., 7Kb) are still able to show
improved adaptation. In contrast, the accuracy loss in the tests with 5Kb and 3Kb is more evident, but
results in less number of processed records, 9032 and 8731 less records respectively than 37345 that
were processed in the 7Kb test.

5.4.3. SEA concepts dataset

As can be observed in Fig. 4, in the SEA concepts dataset the proposed approach leads to better re-
sults than SingleClassifierDrift when recovering from concept drift. In general, the proposed approach
adapted to drift faster and the models selected by the context-aware mechanism were able to represent
the target concepts as can be seen by the accuracy obtained. The SingleClassifierDrift approach always
has to relearn the underlying concept from scratch after drift is detected. However, in some situations
for example at record 17.500 and 100.500, where selected model does not seems to represent the target
concept at first and the SingleClassifierDrift approach is able to achieve better results. In this case, the
fast adaptation of our greedy approach leads to the selection of a worse model. A more conservative
approach could be used instead by increasing the number of records in the warningWindow or the se-
lection threshold. It is also noticeable that the proposed approach achieves a more stable accuracy over
time, because it recovers much faster from drift than the approach without stored models. This is signifi-
cant where the proposed approach obtained 2.526 more correct predictions and required to process only
98.431 of the 250.000 records. The usage of context as part of our mechanism enables us to exploit the
associations between recurrent concepts and context as a way to track concept recurrence and achieve
better results in situations where this association exists.

In Fig. 5, the memory-aware approach is compared in scenarios with different available memory
values. As expected, when the available memory is reduced, the accuracy decreases. In the test scenario
with 7 Kbytes Fig. 5(a) it is possible to store 7 models, which allow us to keep more than one model for
each concept. As a result the performance was almost the same (with only 11 more misclassified records)
to the scenario without memory constraints where 10 models are stored. In the scenario with 5 Kbytes
Fig. 5(b), the reduction in accuracy is more significant, with 4.318 more misclassified records and the
accuracy curve starts to resemble the SingleClassifierDrift seen in 4 especially around records 120.000

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 21

J.B. Gomes et al. / Tracking recurrent concepts using context 21

(a) 7KB

(b) 5KB

(c) 3KB

Fig. 5. Accuracy of the Proposed approach (Context) using the SEA concepts dataset in memory limited scenarios. Black lines
show when drift occurs. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/IDA-2012-0552)

and 165.000 (where the concept with θ = 8 is the target concept). Finally in the scenario with 3 Kbytes
Fig. 5(c) only 3 models can be kept in memory and as a result the performance is further reduced, with
more 4.918 misclassified records. In terms of the number of records processed the numbers for the 7 Kb,
5 Kb and 3 Kb where 98.474, 68.098 and 119.352 respectively. The increase in the number of processing
records in the approach more constrained is because it has to relearn from scratch some concepts as the
models that it can store do not represent the underlying concept, as it was forced to delete it previously
due to the severe memory limit.

From the results we observe that the proposed approach achieves better overall accuracy, adapts faster
to change and in situations of recurrent concepts is able to improve the accuracy between changes. Also,
it reduces the number of processed records (i.e., training records processed by the base learner).

6. Conclusions and future work

In this work, we have proposed a context-aware data stream learning system, which improves the
learning process accuracy when concepts reappear by integrating context information with learned con-
cepts. The system exploits this context information to improve existing approaches to handle concept

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 22

22 J.B. Gomes et al. / Tracking recurrent concepts using context

drift and recurring concepts. We have also analyzed the main challenges associated with the integration
of context, such as concept and context representation, storage, similarity and adaptation to reappearing
concepts. The challenges are addressed through the definition of formal concept and context representa-
tions, similarity functions between these and an adaptation strategy to recurring concepts.

Experimental results to test the effectiveness and efficiency of the proposed learning system have been
performed, using the SEA concepts, Electricity Market and Email List datasets. In what concerns the
accuracy over time, the results show that the proposed approach adapts faster when compared to a single
classifier approach that detects concept drift but does not exploit recurrence. Besides, in these recurring
concept situations we observe an overall improvement on the accuracy and a reduction in the number
of processed records. Based on these results the proposed technique could be used in several real world
applications where recurring concepts are associated with context, for instance news recommender sys-
tems or spam filtering. Furthermore, the ability to process less records is of great interest for ubiquitous
computation, as processing fewer records may extend the battery life of the ubiquitous device.

The proposed learning system is also sensitive to memory scarcity, which is another important factor
to consider in ubiquitous devices. Experiments to analyze the performance of the learning system in
situations of memory scarcity have been conducted. The results show that whenever possible the system
keeps the more promising models in memory and forgets the ones that are considered less useful for
situations of recurrence, increasing its performance accordingly.

In future work, we plan to use an ensemble to represent recurring concepts instead of a single classifier.
Moreover, despite the promising results obtained so far, the context representation and similarity function
used are not robust to uncertainty and noise. Therefore, it would be interesting to explore the usage of
fuzzy functions, which may lead to a more robust and enhanced learning system. Furthermore, tuning the
system specially in what relates to setting the window sizes and some thresholds represents an additional
challenge for future work.

Acknowledgments

The work of J.P. Bártolo Gomes is supported by a PhD Grant of the Portuguese Foundation for Science
and Technology (FCT) and a mobility grant from Consejo Social of UPM that made possible his stay at
the University of Portsmouth. This research is partially financed by project TIN2008-05924 of Spanish
Ministry of Science and Innovation. We would also like to thank João Gama and Petr Kosina for their
comments and encouragement. Thanks to the FCT project KDUDS (PTDC/EIA-EIA/98355/2008).

References

[1] M. Baena-Garcıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavalda and R. Morales-Bueno, Early drift detection
method, In Fourth International Workshop on Knowledge Discovery from Data Streams, Citeseer (2006), 77–86.

[2] R. Brezillon and J.C. Pomerol, Contextual knowledge sharing and cooperation in intelligent assistant systems, Travail
Humain 62 (1999), 223–246.

[3] A.K. Dey, G.D. Abowd and D. Salber, A conceptual framework and a toolkit for supporting the rapid prototyping of
context-aware applications, Human-Computer Interaction 16(2) (2001), 97–166.

[4] P. Domingos and G. Hulten, Mining high-speed data streams, In Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM New York, NY, USA (2000), 71–80.

[5] P. Domingos and G. Hulten, Catching up with the data: Research issues in mining data streams, In Workshop on Research
Issues in Data Mining and Knowledge Discovery, Citeseer, 2001.

[6] J. Gama, Knowledge discovery from data streams (series: chapman & hall/crc data mining and knowledge discovery
series), 2010.

Galley Proof 10/08/2012; 9:59 File: ida552.tex; BOKCTP/xhs p. 23

J.B. Gomes et al. / Tracking recurrent concepts using context 23

[7] J. Gama and M.M. Gaber, Learning from data streams: Processing techniques in sensor networks, Springer-Verlag New
York Inc, 2007.

[8] J. Gama and P. Kosina, Tracking recurring concepts with meta-learners, In Progress in Artificial Intelligence: 14th
Portuguese Conference on Artificial Intelligence, Epia 2009, Aveiro, Portugal, Proceedings, Springer (October 12–15
2009), 423.

[9] J. Gama, P. Medas, G. Castillo and P. Rodrigues, Learning with drift detection, Lecture Notes in Computer Science
(2004), 286–295.

[10] M. Harries, Splice-2 comparative evaluation: Electricity pricing, Technical report, The University of South Wales, 1999.
[11] M.B. Harries, C. Sammut and K. Horn. Extracting hidden context, Machine Learning 32(2) (1998), 101–126.
[12] G. Holmes, R. Kirkby and B. Pfahringer, MOA: Massive online analysis, 2007 – http://sourceforge.net/projects/moa-

datastream/.
[13] G. Hulten, L. Spencer and P. Domingos, Mining time-changing data streams, In Proceedings of the Seventh ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM New York, NY, USA (2001), 97–
106.

[14] G.H. John and P. Langley, Estimating continuous distributions in Bayesian classifiers. In Proceedings of the Eleventh

Conference on Uncertainty in Artificial Intelligence, 1 (1995), 338–345.
[15] I. Katakis, G. Tsoumakas and I. Vlahavas, Tracking recurring contexts using ensemble classifiers: An application to

email filtering, Knowledge and Information Systems, 1–21.
[16] R. Klinkenberg, Learning drifting concepts: Example selection vs. example weighting, Intelligent Data Analysis 8(3)

(2004), 281–300.
[17] R. Klinkenberg and T. Joachims, Detecting concept drift with support vector machines, In Proceedings of the Seventeenth

International Conference on Machine Learning, Morgan Kaufmann Publishers Inc (2000), 494.
[18] J.Z. Kolter and M.A. Maloof, Dynamic weighted majority: An ensemble method for drifting concepts, The Journal of

Machine Learning Research 8 (2007), 2755–2790.
[19] A. Padovitz, S.W. Loke and A. Zaslavsky, Towards a theory of context spaces, In Pervasive Computing and Communi-

cations Workshops, Proceedings of the Second IEEE Annual Conference on (2004), 38–42.
[20] S. Ramamurthy and R. Bhatnagar, Tracking recurrent concept drift in streaming data using ensemble classifiers, In Proc

of the Sixth International Conference on Machine Learning and Applications (2007), 404–409.
[21] J.C. Schlimmer and R. Granger, Beyond incremental processing: Tracking concept drift, In Proceedings of the Fifth

National Conference on Artificial Intelligence 1 (1986), 502–507.
[22] A. Schmidt, M. Beigl and H.W. Gellersen, There is more to context than location, Computers & Graphics 23(6) (1999),

893–901.
[23] M. Scholz and R. Klinkenberg, Boosting classifiers for drifting concepts, Intelligent Data Analysis 11(1) (2007), 3–28.
[24] W.N. Street and Y.S. Kim, A streaming ensemble algorithm (SEA) for large-scale classification, In Proceedings of the

Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM New York, NY, USA
(2001), 377–382.

[25] A. Tsymbal, The problem of concept drift: Definitions and related work, Computer Science Department, Trinity College
Dublin, 2004.

[26] P.D. Turney, Exploiting context when learning to classify, In Proceedings of the European Conference on Machine
Learning (ECML-93) (1993), 402–407.

[27] H. Wang, W. Fan, P.S. Yu and J. Han, Mining concept-drifting data streams using ensemble classifiers, In Proceedings
of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM New York, NY,
USA (2003), 226–235.

[28] G. Widmer, Tracking context changes through meta-learning, Machine Learning 27(3) (1997), 259–286.
[29] G. Widmer and M. Kubat, Learning in the presence of concept drift and hidden contexts, Machine Learning 23(1)

(1996), 69–101.
[30] I.H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann Pub,

2005.
[31] Y. Yang, X. Wu and X. Zhu, Combining proactive and reactive predictions for data streams, In Proceedings of the

Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, ACM (2005), 715.
[32] Y. Yang, X. Wu and X. Zhu, Mining in anticipation for concept change: Proactive-reactive prediction in data streams,

Data Mining and Knowledge Discovery 13(3) (2006), 261–289.
[33] M.J. Zaki, Editorial: Online, interactive, and anytime data mining, SIGKDD Explorations 3(2), 2002.

