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Abstract: We describe a novel method of tracking the rotational motion

of clusters of colloidal particles. Our method utilizes rigid body transfor-

mations to determine the rotations of a cluster and extends conventional

proven particle tracking techniques in a simple way, thus facilitating

the study of rotational dynamics in systems containing or composed of

colloidal clusters. We test our method by measuring dynamical properties

of simulated Brownian clusters under conditions relevant to microscopy

experiments. We then use the technique to track and describe the motions

of a real colloidal cluster imaged with confocal microscopy.
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1. Introduction

Suspensions of spherical colloidal particles have proven a valuable model system for under-

standing many complex phenomena. Perhaps most notably, the model has provided insight into

dynamical processes within different phases of matter [1–8], as well as various mechanisms

involved during phase transitions [9–14]. A combination of digital video microscopy and com-
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puterized particle tracking algorithms [15, 16] has allowed for the direct visualization of such

colloidal systems and measurement of static and dynamical properties under many experimen-

tal conditions [17–21]. Given the spherical symmetry of the particles, most previous studies

have understandably focused only on understanding translational dynamics, though there have

been a few studies on rotational dynamics in dilute systems of spheres [22, 23], and on the

translational and rotational dynamics of anisotropic colloidal particles [24–27].

Within the past decade, researchers have developed a variety of techniques for synthesizing

clusters of colloidal particles with a wide range of reproducible morphologies [28, 29], several

of which are shown in Fig. 1. Colloidal clusters have the potential to extend the colloidal model

past one of simple spherical particles and into a realm where the collective dynamics of particles

with complex shapes, more representative of molecules, can be studied [30–32].

Fig. 1. Top: Volumetric images of colloidal clusters with n = 4, 5, and 6 from 3D confocal

micrographs. Images have been filtered and enhanced to allow easy visualization of the

3-dimensional structures. Individual particles are approximately 2 µm in diameter. Bot-

tom: Ball-and-stick models of the clusters above. The cases n = 4 and n = 5 are accurate

representations of the simulated tetrahedra and pentahedra discussed in the text.

Conventional particle tracking methods [15, 16] are designed to follow the translational mo-

tions of individual particles, and so are immediately applicable to colloidal clusters, provided

the particles can be reliably distinguished. However, a description of dynamics within systems

composed of or including clusters is incomplete without knowledge of how rotational degrees

of freedom are explored. Such an understanding could provide further insight into fundamental

behaviors of systems with orientational order, such as liquid crystals, or systems subjected to

external fields and anisotropic flows [27]. To our knowledge, there has been only one study that

combined video microscopy with particle tracking to measure the rotational motion of colloidal

clusters [33], using different methods than those described in this work. That study focused on

dilute systems of planar clusters undergoing two-dimensional diffusion near a boundary, and

revealed a decoupling of translational and rotational diffusion due to hydrodynamic effects.
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We present here a simple and generalized method to track and calculate the two- or three-

dimensional rotational motions of clusters of colloidal particles. Our method uses existing par-

ticle tracking routines and rigid body transformations to measure the changes in orientation of a

cluster over time. To demonstrate the effectiveness and accuracy of the method, we simulate the

motion of colloidal clusters under conditions that are relevant to microscopy experiments. We

then use our method to measure the rotational diffusion coefficient of a real colloidal cluster.

2. Calculating rotations

Our procedure for calculating rotational displacements of clusters is based on a method by

Challis for determining rigid body transformations between reference frames [34]. Challis’

procedure was originally intended for comparing osteometric measurements in biomechanical

analyses. As we will show, the method can be intuitively adapted to measure rotational dynam-

ics. First, we give a brief reprise of Challis’ method, and then describe how it is used to study

the systems mentioned here.

2.1. Challis’ procedure for coordinate transformations

Given a set of points which have coordinates {xi} measured in one reference frame and coor-

dinates {yi} measured in a second frame, there exists a transformation

yi = sRxi +v, (1)

where subscript i refers to the i-th point in the set, s is a scale factor, R is a 3×3 rotation matrix,

and v is the vector separation of the two reference frames. For our purposes, we may set the

scale factor to unity and assume that both coordinate frames share a common origin, thereby

setting all elements of v to zero.

We are therefore left with

yi = Rxi, (2)

and only the rotation matrix to describe the transformation between coordinate frames. The

rotation matrix is an orthonormal matrix with the properties

RR−1 = RRT = RTR = E, (3)

det(R) = +1, (4)

where E is the identity matrix and det() denotes the determinant.

For a set of n points, R can be calculated using a least squares approach. This method mini-

mizes the quantity
1

n

n

∑
i=1

[yi −Rxi]
T [yi −Rxi] . (5)

Ignoring the factor of 1/n, expansion of Eq. (5) yields

n

∑
i=1

(yi)
Tyi +(xi)

Txi −2(yi)
TRxi. (6)

Given that all xi and yi are fixed, minimizing Eq. (6) is therefore equivalent to maximizing

n

∑
i=1

(yi)
TRxi = Tr

(

RT
n

∑
i=1

yi(xi)
T

)

= Tr(RTC), (7)
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where C is the cross-dispersion matrix calculated from the sum of the outer products of yi and

xT
i

C =
n

∑
i=1

yi(xi)
T. (8)

At this point, a singular value decomposition (SVD) is performed on C such that

C = UWVT, (9)

where W is a diagonal matrix containing the singular values of C, and U and V are orthogonal

matrices. As was shown in [34], upon maximizing Eq. (7), R is given by

R = U





1 0 0

0 1 0

0 0 det(UVT)



VT. (10)

This procedure is applicable to all non-colinear sets of points with n ≥ 3.

2.2. Application to colloidal clusters

Particle tracking [15, 16] yields vector coordinates x′i for every particle i over a distinct set of

times. Hence, the first step in tracking rotational motion of a cluster is to track the translational

motion of each particle within the cluster. For each cluster, we first determine the center of mass

xCM at a given time and subtract this quantity from the coordinates of particles belonging to the

cluster, thereby removing any translational motion. We are left with new coordinates xi in the

center of mass frame,

xi = x′i −xCM. (11)

This step is equivalent to setting the elements of v to zero in Eq. (1). With translational motion

removed, we may apply Eq. (2) with a slightly different interpretation. Rather than representing

a transformation between coordinate frames, we may understand R as describing the rotational

trajectory of a particle with inital position x0
i to a final position xi such that

xi = Rx0
i . (12)

Therefore, given the coordinates from a particle tracking experiment, we may use Challis’

procedure, starting from Eq. (8), to calculate a cross dispersion matrix C and subsequently

perform a singular value decomposition to calculate a rotation matrix for each pair of successive

times [t, t +∆t]. With the complete set of rotation matrices, {Rk}, we may reconstruct the entire

trajectory of a particle about the cluster center of mass by computing the product of successive

rotations. Given x0
i , the position of a particle at some later time t can be calculated as

xi(t) = Rt−∆tRt−2∆t ... R0x0
i = ∏

k

Rkx0
i , (13)

where the index k enumerates the rotation between successive times.

The advantage of calculating {Rk} is that it describes the collective behaviors of particles

within a cluster, rather than a property of any individual particle. For example, knowledge of

{Rk} for a cluster allows for immediate calculation of the motions of any particular particle

about the center of mass, or the motion of the cluster about any arbitrary axis of rotation.

Diffusive anisotropic clusters with large aspect ratios rotate more freely about a long axis than

about a short axis. Given {Rk}, however, one needs only the initial orientation of these axes to

compute and compare the motions around them. An additional advantage of this procedure is

that it is computationally fast, and the necessary linear algebra routines are standardly included

in most mathematical software suites.
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3. Tests of the prescribed method

For simplicity and to better reproduce the data collection process in typical microscopy experi-

ments, we adopt a length scale of microns and a time scale measured in timesteps (ts), which is

equivalent in microscopy to video frames or image stacks.

In conventional particle tracking experiments, it is important to minimize and understand

the uncertainty, i.e. the noise, inherent in locating a particle. Typical microscopy experiments

combine high magnification optics with CCD cameras to record raw digital images. In the

absence of other sources of noise, the uncertainty in particle position, i.e. the minimum noise

level, depends on the optical resolution [pixels/distance] of the instrumentation and the size

[pixels] of the object being tracked. Standard image processing and particle tracking techniques

can locate the centers of particles to within ≈ 1/N of a pixel, where N is the width of the object

in pixels. Camera resolution varies between experimental set-ups but is typically in the range

of 0.2 µm/pixel. The minimum uncertainty in particle position is the product of these factors.

For example, observing a 10 pixel wide object with a resolution of 0.2 µm/pixel leads to a

lower limit of ≈ 20 nm uncertainty in particle position. Other sources of noise, such as stray

light entering the microscope, noise within the CCD camera itself, etc., slightly increase the

uncertainty in particle position and further limit particle tracking resolution.

To test our method, we simulate the rotational Brownian motion of tetra- and pentahedral

clusters with different rotational diffusion coefficients, DR, and different levels of noise, σx. We

first generate noise-free cluster trajectories. For tetrehedra, we place particles at initial coordi-

nates

(R/
√

3) · (1,±1,±1),

(R/
√

3) · (−1,±1,∓1),
(14)

where R is the distance from a particle center to the cluster center of mass. In this work, we

study a range of R ∈ [
√

2,
√

10] µm. For pentahedra, we use initial coordinates

R · (1,0,0),

(R/2) · (−1,±
√

3,0),
R · (0,0,±1).

(15)

Once initialized, we evolve each simulation for 104 time steps.

At each time step, we select three random angles, α ,β ,γ, from a Gaussian distribution with

a standard deviation of
√

2DR. This distribution ensures that the simulated dynamics will be

in agreement with the Stokes-Einstein-Debye relation discussed later [Eq. (20)]. Each particle

in a tetrahedron is rotated by an angle γ about the z-axis, then by an angle β about the y-axis,

and finally by angle α about the x-axis to produce the tetrahedron at the subsequent time. The

rotation matrices used are

Rx(α ) =





1 0 0

0 cosα −sinα
0 sinα cosα



 , Ry(β) =





cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ



 ,

Rz(γ) =





cosγ −sinγ 0

sinγ cosγ 0

0 0 1



 . (16)

Thus, given an initial position vector x0, the subsequent position vector is x = RxRyRzx0.
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This method of generating rotational Brownian motion is not strictly correct for the given

pentahedral geometry as its motions cannot be generally characterized by a single DR. How-

ever, using the publicly available package HYDRO++ [35], we calculate the difference in DR

between long and short axes to be ≈ 2%. Given this small variation, the use of a single DR to

describe a pentahedron is a more than sufficient approximation for the purpose of testing our

algorithm, which after all does not require that the motions agree with the laws of diffusion.

Trajectories generated in this way are noise-free in the sense that they are absent of un-

certainty in particle position to within machine precision. To mimic the type of experimental

noise previously mentioned, we post-process the trajectories by adding Gaussian random num-

bers, with standard deviation σx, to the particle coordinates. The levels of noise presented here

correspond to uncertainties of σx ∈ {10, 30, 50, 70, 100} nm in the x-, y-, and z-directions.

Experimental uncertainties are typically within the range of 20-60 nm, and so the levels studied

here are relevant to microscopy experiments. After the noise is added, we apply our method of

measuring rotational motion in order to gauge the effect of experimental noise on results.

4. Analysis of rotational motion

In this section, we calculate the rotational motions of simulated colloidal clusters using the ma-

trix methods described above. We focus on a method that uses the rotation matrices to determine

the motion of a fictional orientation vector attached to the cluster. The rotational displacements

of one or more such vectors about the center of mass can be used to compare and contrast mo-

tions about different axes, which is especially useful when the objects studied are anisotropic

and motions about axes are expected to differ [36, 37].

We note that a second method exists to calculate rotational displacements using solely the

rotation matrix. This method determines the rotational axis from R and can then be used to

calculate the magnitude of an angular displacement. While a mathematically direct and general

approach, it describes only the average cluster dynamics and can provide no insight into how

motions about different axes vary. Given these limitations, we relegate a description of this

method to the appendix.

To analyze the rotations of a cluster, we consider the motions of an initial orientational unit

vector p̂0 fixed to the cluster. We determine its orientation at a later time t by applying the set

of rotations such that

p̂(t) = ∏
k

Rkp̂0, (17)

in a similar way as in Eq. (13). Although there are no constraints on what one may select p̂0 to

be, some choices may be more enlightening than others. For example, the cluster n = 5 shown

in Fig. 1 has distinct long and short axes, and so one expects slower diffusion about the short

axis. To quantify how rotational dynamics about these axes differ, one could choose two p̂0 to

study separately: one choice of p̂0 perpendicular to the long axis; a second perpendicular to the

short. Such a procedure would yield information relating to motions about the long and short

axes, respectively.

In line with [36–38], we define a vector rotational displacement

~ϕ(t) =

∫ t

0

~ω(t ′)dt ′ (18)

in the time interval [0, t]. The vector ~ω(t ′)dt ′ has a direction given by p̂(t ′)× p̂(t ′ + dt ′) and

magnitude |~ω(t ′)dt ′| = cos−1 [p̂(t ′) · p̂(t ′ +dt ′)], which is the angle subtended by p̂ during this

time interval.

To illustrate the meaning of ~ϕ(t), consider an object with constant angular velocity ~ω = ωẑ.

Over a time ∆t, the rotational vector displacement is given by ~ϕ(∆t) = ~ω∆t = (0,0,ω∆t).
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(a) (b)

Fig. 2. (a) Trajectories of particles within a simulated Brownian tetrahedral cluster pro-

jected onto the surface of a unit sphere. Colors represent different particles, i.e. different

choices for p̂0. (b) 2d projection of two trajectories through rotation space (ϕx,ϕy). Colors

correspond to the same particles in (a). Both trajectories in (b) begin at (0,0) and end at

open circles.

Therefore in general, ~ϕ(t) has components in each of the Cartesian axes, (ϕx,ϕy,ϕz), corre-

sponding to cumulative rotations about those axes.

In Fig. 2(a), we show the orientational trajectories of particles within a simulated tetrahedron

projected onto the surface of a unit sphere. Fig. 2(b) shows 2D projections of trajectories for

two p̂0 through the rotation space described above. As shown in Fig. 2, even though the cluster

is a solid body, trajectories of individual particles differ due to rotations of the cluster about

random axes.

Given the definition of ~ϕ(t) in Eq. (18), we may define an unbounded mean square angular

displacement (MSAD), akin to a translational mean square displacement, as

〈∆~ϕ2(∆t)〉 = 〈[~ϕ(t +∆t)−~ϕ(t)]2〉, (19)

where the angle brackets indicate an average over all equivalent lag times ∆t. In three dimen-

sions the Stokes-Einstein-Debye relation states that the MSAD grows as

〈∆~ϕ2(∆t)〉 = 4DR∆t, (20)

where DR is the rotational diffusion coefficient. In this paper, we focus on measuring the

MSADs of clusters, but we point out that other techniques exist to quantify rotational dynamics.

For example, by observing the decay of an orientational correlation function 〈p̂(t +∆t) · p̂(t)〉
one can measure DR [39, 40]. Our method can be applied, in this case, to compute p̂(t) as in

Eq. (17).

In Fig. 3(a) & (b), we show the MSAD of two simulated tetrahedral clusters with diffusion

constants 10−4 rad2/ts and 10−3 rad2/ts respectively and different levels of noise. The influence

of noise is apparent in Fig. 3 as deviations from linearity at small ∆t. Eventually, the MSAD

recovers the true diffusive behavior because the cluster has made rotations large enough to

distinguish from the noise.

With no experimental noise, a log-log plot of MSAD as a function of ∆t will be a straight

line with a slope of unity, as indicated by the open circles in Figs. 3(a) & (b). However, in the

presence of noise in particle positions, rotations cannot be accurately resolved below a certain
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Fig. 3. Mean square angular displacements of simulated tetrahedral clusters (R =
√

3 µm)

for different noise levels σx and diffusion coefficients of (a) 10−4 rad2/ts and (b)

10−3 rad2/ts. Open circles are the theoretical MSAD based on Eq. (20). Deviations from

linearity at small ∆t demonstrate the effect of noise when resolving small rotations. Devia-

tions at large ∆t, however, are the result of low statistics at these lag times.

threshold, Φ. For example, a stationary cluster will appear to make small, but fictional, rotations

as a result of this noise, and measurements of the MSAD will yield

〈∆~ϕ2(∆t)〉 = Φ2, (21)

where Φ2 is independent of ∆t due of the lack of correlations in noise.

In the case of translational diffusion, one expects that the noise in each direction will con-

tribute an error of 2σ2
x to the mean-square displacement [15]. In terms of an angular uncertainty,

this contribution is diminished by a factor of R2, where R is the average distance from a particle

to the cluster center of mass. Our matrix method reduces this uncertainty further by a factor of

n. Thus, when only static noise is present, one expects for a diffusing cluster

〈∆~ϕ2(∆t)〉 = 4DR∆t +Φ2, (22)

where

Φ2 = 6σ2
x /nR2. (23)

To test this assertion, we add noise to simulations of stationary (DR = 0) tetrahedral clusters

and calculate the MSADs. As in Eq. (21), the MSADs are constant over time. We take Φ2 to

be the value of the MSAD as ∆t → 0. Shown in Fig. 4(a), Eq. (23) accurately describes the

static angular uncertainty for a wide range of tetra- and pentahedral cluster sizes, R, and noise
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Fig. 4. (a) Measured values of Φ2 for non-diffusing tetrahedral (solid symbols) and pen-

tahedral (open symbols) clusters. Colors indicate noise levels and symbols indicate cluster

size. Solid lines are the prediction Φ2 = 6σ2
x /nR2. (b) Same data in Fig. 3 with the appro-

priate Φ2 for each noise level subtracted.

levels. Fig. 4(b) shows all of the previously measured MSADs in Fig. 3 plotted with the noise

subtracted. This precisely collapses the MSADs to the true values in each case.

Knowing how uncertainty in particle positions affects measurements of dynamics quantities,

such as the MSAD, is clearly important. However, one is typically unable to define the noise

level so precisely in experiments. As stated earlier, particle tracking resolution depends on

various experimental factors including particle size, optics, and the type of camera used to

record images. As shown in Fig. 3(a), for slowly diffusing clusters and moderate-to-high noise

levels, the measurements of the MSAD may not be representative of the true dynamics until

fairly large lag times.

In microscopy experiments, one can effectively increase the rotational signal-to-noise ratio

between each time step by imaging less frequently. Determining the appropriate sampling rates

in experiments can be done by estimating the noise level σx, the diffusion constant DR and cal-

culating an approximate Φ2. Diffusive motion will begin exceeding noise when Φ2 ≈ 4DR∆t.
Solving for ∆t then yields a reasonable sampling lag time. It is also important to avoid under-

sampling, that is, too long a lag time. Doing so will make diffusive motion between images

appear erroneously slow. We find that a good rule of thumb for the upper limit on sampling

time should be the time when the cluster has diffused ≈1 radian2. Thus, an estimate for the

upper limit is ≈ 1/4DR. However, as in all particle tracking experiments, the time between im-

ages must be small enough that individual particles can be confidently identified. This typically

means that particles must be imaged before moving a distance of one interparticle spacing [15].

5. Experimental application

Measurements of rotational motion of diffusive tetrahedral clusters have been performed using

the described method [29]. Real fluorescent tetrahedral clusters are synthesized as in [29]. A

cluster is composed of individual poly(methyl methacrylate) (PMMA) spheres, each with a

diameter 2.45 µm as measured by static light scattering (SLS). The particles within a cluster are

irreversibly bound together, but are sterically stabilized to prevent the possibility of aggregation

to other clusters. Dilute suspensions of clusters are prepared in a mixture of cyclohexyl bromide

(CXB) and cis-decalin (DCL) at a ratio of 85/15 (w/w) that closely matches both the density

and index of refraction of the particles. Clusters are imaged in 3D over time with a Leica TCS
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Fig. 5. Calculated MSD (blue squares) and MSAD (red circles) of a diffusing experimental

tetrahedral cluster. Solid lines are best fit lines over range of data used to determine the

respective diffusion coefficients.

SP5 confocal microscope. We track locations of the individual particles within a tetrahedron

using standard particle tracking routines [15,16]. The uncertainties in particle position for these

experiments are ≈ 30 nm in the x- and y-directions, and ≈ 40 nm in the z-direction. Given these

tracking resolutions and assuming a maximally packed tetrahedron, from Eq. (23) we estimate

the angular resolution in this experiment as Φ≈ 0.028 radians (1.6◦).

Once tracked, we calculate the translational MSD and the MSAD and determine the trans-

lational and rotational diffusion coefficients, DT and DR, respectively. In three dimensions, the

translational MSD is described by the Stokes-Einstein-Sutherland equation

〈∆r2〉 = 6DT ∆t, (24)

while the MSAD is described by Eq. (20).

Hydrodynamically, tetrahedral clusters can be accurately modeled as spheres [41] given the

relation

dtetra = 1.844×dsphere, (25)

where dtetra is the effective hydrodynamic diameter of the cluster, and dsphere is the diameter of

the particles within the cluster. Theoretical translational and rotational diffusion coefficients,

DT and DR respectively, can be calculated using

DT =
kBT

3πηdtetra
(26)

DR =
kBT

πηd3
tetra

, (27)

where kB is Boltzmann’s constant, T is the temperature, and η is the viscosity of the suspending

solvent. The viscosity of the CXB/DCL mixture was measured at η = 2.18 mPas and experi-

ments were performed at T = 295 K.

In Fig. 5, we show the MSD and MSAD of a diffusing tetradedral cluster. The MSD corre-

sponds to motions of the center of mass of the cluster, and the MSAD is an average over the
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individual particle MSADs (i.e., using the initial orientations of the particles as four separate

p̂0). Solid lines are fits to the data over the indicated range 3 s ≤ ∆t ≤ 22 s . As can be seen,

both the MSD and MSAD are approximately linear only at small lag times. This is because the

data set used to make these measurements consists of only a single cluster for less than 300

timesteps (≈ 220 s). Diffusion coefficients are measured by performing linear fits to the MSD

and MSAD shown in Fig. 5 over the indicated range and extracting the slopes of the lines.

Table 1. Measurements from Tracking Tetrahedral Cluster

Diffusion Coefficient dtetra (µm) dsphere (µm)

Trans. (3.85±0.49)×10−2 µm2/s 5.12±0.67 2.78±0.36

Rot. (4.93±0.49)×10−3 rad2/s 4.94±0.16 2.68±0.09

Shown in Table 1 are the measured translational and rotational diffusion coefficients. Values

of dtetra are calculated from Eqs. (26) & (27) using known experimental conditions, and values

for dsphere then follow trivially using Eq. (25). Ideally, the sizes calculated from translational

motions would be identical to those calculated from rotational motions. As shown, these values

agree to within 4%. Such good agreement between these two measurements demonstrates our

ability to track translational and rotational motions of clusters simultaneously.

Previous work using standard particle tracking and our matrix method reported particle di-

ameters ≈ 14% larger than the 2.45 µm measured by SLS [29] . A reanalysis of the data with

improved particle tracking, presented above, increases the accuracy of the particle diameter

measured using our matrix method to within ≈ 9%. The remaining disagreement is likely due

to multiple factors, including the fitting routines used in SLS and swelling of particles when

in a solvent of CXB/DCL. SLS measurements were performed with suspensions in pure DCL,

which is not known to swell particles.

6. Conclusion

We have presented a simple method of tracking the rotational motions of colloidal clusters.

Our method implements conventional particle tracking routines to determine the locations of

individual particles within a cluster and uses this information to compute rigid body transfor-

mations that describe changes in a cluster’s orientation over time. The set of matrix transforma-

tions constitutes a global description of a cluster’s motion during the course of an experiment or

simulation and allows one to calculate rotational dynamics about any arbitrary axis. The least

squares minimization used in this method considers the motions of each individual particle

in calculating the rotation matrix, and therefore measurements of rotational displacements are

less sensitive to tracking noise. Additionally, precision in determining angular displacements

increases with cluster size R. When combined, the resolution of measuring angular displace-

ments scales with 1/nR2.

Though constructed specifically for tracking colloidal clusters, we emphasize that our

method is not limited to these systems, but is applicable to following the rotational motion

of any body over time, providing that at least three distinct noncolinear points in the body can

be reliably distinguished. Because the accuracy of tracking a rotation depends on the number of

particles and the size of the body, the possibility exists that this method can be adapted to many-

body systems where each particle diffuses independently of the rest while the system itself also

undergoes bulk rotations. In this scenario, diffusive motions are random and can therefore be

treated as noise while calculating {Rk} for the system. The rotation matrices can be inverted

and, in a manner similar to Eq. (13), the bulk rotations can be removed, leaving only uncorre-

lated diffusive motion. Thus, this method is also applicable to determining particle motions in
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rotating coordinate frames.

Appendix

Given a rotation matrix R, one can calculate at each time the axis of rotation û and angular

displacement ∆ϕ. In this notation, a rotational displacement can be described by a vector ∆~ϕ =
∆ϕû, where û has components in each of the Cartesian axes.

A single rotation will, by definition, have no effect on the direction of û, therefore,

Rû = û. (28)

From Eq. (28), we see that the axis of rotation is an eigenvector of the matrix R with an eigen-

value of 1. For a set of rotational displacements {Rk}, one may determine the axes of rotation

by calculating the eigenvectors and eigenvalues of the rotation matrices, searching for the eigen-

values equal to 1, and taking the corresponding eigenvectors.

To determine the size of the displacement about the axis of rotation, one defines an arbitrary

vector ŵ perpendicular to û. For simplicity, we choose ŵ to be perpendicular to the x-axis

(denoted by î),

ŵ =
û× î

|û× î|
. (29)

and apply the rotation matrix,

Rŵ = ŵ′. (30)

The magnitude of the displacement is the angle between ŵ and ŵ′, and can be computed using

the cross product relation

sin(∆ϕ)û = ŵ× ŵ′. (31)

Calculating displacements relative to the axis of rotation always results in displacements

greater than or equal to those measured relative to an arbitrary p̂0. For example, measuring a

diffusion coefficient of a spherically symmetric body with this method will yield a value that is

a factor of 3/2 of the actual diffusion coefficient in Eq. (20).

To understand the origin of this difference, consider the rotational axis û = ẑ, a perpendicular

vector ŵ = x̂, and an arbitrary vector p̂0 located at Cartesian coordinates (sinθ,0,cosθ), where

θ is the spherical polar angle. If ŵ is rotated by an amount δϕu, the angle between ŵ and ŵ′ is

identically δϕu. However, the angle δϕ between p̂ and p̂′ can be shown to be

δϕ = cos−1
(

sin2 θ cosδϕu + cos2 θ
)

(32)

For small δϕu, we can approximate δϕ as

1−δϕ
2 ≈ sin2 θ

(

1−δϕ
2
u

)

+
(

1− sin2 θ
)

(33)

δϕ
2 ≈ sin2 θδϕ

2
u. (34)

If an average of Eq. (34) is taken over spherical coordinates, we are left with an expression

similar to an MSAD,

〈δϕ
2〉 = 〈sin2 θ〉〈δϕ

2
u〉 =

2

3
〈δϕ

2
u〉, (35)

The factor of 2/3 arises for the same reasons in Perrin’s original derivation of rotational

diffusion [42]. Fig. 6 shows the MSADs measured in this way for two simulated pentahe-

dral clusters, using a single diffusion constant for each. As stated, one can correct for the
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Fig. 6. The MSADs of simulated pentahedra (R =
√

3 µm) with diffusion coefficients DR =
10−4 rad2/ts and DR = 10−2 rad2/ts and σx = 50 nm. Dashed lines show the uncorrected

MSAD described below and solid lines are corrected data, obtained by multiplying the

dashed lines by 2/3. Open circles are the theoretical MSAD from Eq. (20). We note that we

have approximated diffusive motion by a single DR for each pentahedron, as described in

section 3.

overestimation of motion by simply multiplying the MSAD by 2/3. The average MSAD for

any body can be corrected in the same manner, however we stress that this method returns

only the average dynamics. While more direct than using an orientation vector, characterizing

anisotropic bodies in this way will convolute motions about separate axes, and so will require

some care when interpreting results.
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