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Abstract

We propose a method that relies on markerless visual ob-

servations to track the full articulation of two hands that in-

teract with each-other in a complex, unconstrained manner.

We formulate this as an optimization problem whose 54-

dimensional parameter space represents all possible con-

figurations of two hands, each represented as a kinematic

structure with 26 Degrees of Freedom (DoFs). To solve this

problem, we employ Particle Swarm Optimization (PSO),

an evolutionary, stochastic optimization method with the

objective of finding the two-hands configuration that best

explains observations provided by an RGB-D sensor. To

the best of our knowledge, the proposed method is the first

to attempt and achieve the articulated motion tracking of

two strongly interacting hands. Extensive quantitative and

qualitative experiments with simulated and real world im-

age sequences demonstrate that an accurate and efficient

solution of this problem is indeed feasible.

1. Introduction

The problem of tracking the articulation of the human

body from markerless visual observations is of both theo-

retical interest and practical importance. From a theoretical

point of view, the problem is intriguing since humans solve

it effortlessly and effectively. From an application-oriented

perspective, a solution to this problem facilitates non-

intrusive human motion capture and constitutes a funda-

mental building block towards human activity recognition,

human-computer interaction, robot learning by demonstra-

tion, etc.

Despite the significant progress in the last years, the

problem remains unsolved in its full extent [12]. Difficul-

ties stem from the high dimensionality of the configuration

space of the human body, the varying appearance of humans

and the self-occlusions of human parts.

In this work we are particularly interested in the problem

of tracking hand articulations. A point in a 26-dimensional

configuration space defines the global position and orien-

tation of the hand plus the 20 joint angles between various

Figure 1. Left: A view of two interacting hands. Right: The con-

figuration of the two hands as estimated by the proposed method,

superimposed on the left frame (cropped 320 × 240 regions from

the original 640× 480 images).

hand parts. Because of its flexibility that generally induces a

concave shape, a performing hand is severely self occluded

even when observed from purposefully selected viewpoints.

Thus, the markerless tracking of a hand constitutes a high

dimensional search problem that needs to be solved based

on incomplete and possibly ambiguous observations.

Tracking two hands in interaction with each other is an

even more interesting problem. The interest stems from the

fact that a plethora of human activities (object grasping and

manipulation, sign language, social interaction) involve col-

laborative use and strong interaction of both hands. Con-

sider, as an example, the situation shown in Fig. 1. For a

human observer, the interpretation of the joint configuration

of the two hands is immediate. Even more interestingly, this

interpretation is associated to the joint hand configuration

rather than to each individual hand. Thus, the availability

of computational techniques that are able to jointly infer the

full articulation of the hands in such scenarios, opens new

avenues in the interpretation of human activities.

Compared to the already difficult problem of tracking the

articulation of a single hand, the problem of tracking two

hands is even more challenging. If the two hands are clearly

separated in the field of view of the observer, it would

suffice to solve two instances of the single-hand tracking

problem. However, if hands interact with each other, the

situation becomes much more complicated. Besides the

self-occlusions of each individual hand, further occlusions

are introduced because of the complex inter-relations of

the two hands, each hiding important observations of the
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other. Even further, the available, fewer observations be-

come more ambiguous since the existence of parts from two

hands increase the number of potential interpretations. Es-

sentially, each hand acts as a distractor to the interpretation

of the other.

The direct implication of the above observations is that

it is very difficult for any tracker of a single hand to cope

effectively with the problem of tracking two interacting

hands. The configuration of each hand can only be inferred

in the context of its interaction with the other. This calls for

a holistic approach, in which a joint model of the two in-

teracting hands is considered. In such a framework, the de-

sired outcome is the two-hands configuration that not only

best explains all available observations, but also explains

the ones that are missing due to the hands interaction.

In this paper we follow this approach. We consider a

model of two hands, potentially in strong interaction, and

we formulate an optimization problem whose solution is the

position, pose and full articulation of two hands that best

explain the set of all available visual observations. We also

demonstrate that despite its large dimensionality, this prob-

lem can be solved both effectively and efficiently.

1.1. Related work

To the best of our knowledge, there is no existing work

that addresses the problem of tracking the full articulation of

two interacting hands from markerless visual observations.

We therefore provide an overview of works on single-hand

articulation tracking and discuss their potential extensibility

to the problem of tracking two interacting hands.

Hand pose estimation and tracking methods can be

categorized into appearance- and model-based ones [6].

Appearance-based methods employ an offline training pro-

cess for establishing a mapping from a set of image features

to a finite set of hand model configurations [3, 18–20, 23].

The discriminative power of these methods depends on the

invariance properties of the employed features, the number

and the diversity of the training postures and the method

used to derive the mapping. Appearance-based methods are

appropriate for recognizing a small set of known and di-

verse target hand configurations and less suitable in situa-

tions where accurate pose estimation of a freely perform-

ing hand is required. Scenarios involving two hands seem

challenging for such methods. This is because the offline

training process should consider the combinatorial space of

the configurations of the two hands as well as the change in

appearance of these configurations because of the different

viewpoints of observation.

Model-based approaches [5,7,13–15,17,21,22] generate

hand model hypotheses and evaluate them on the available

visual observations. An optimization problem is formu-

lated, whose objective function measures the discrepancy

between observed and synthesized visual cues that are gen-

erated based on a specific hand posture hypotheses. The

employed optimization method should be able to evaluate

the objective function at arbitrary points in the multidimen-

sional model parameters space. Thus, unlike appearance-

based methods, most of the computations need to be per-

formed online. On the positive side, such methods avoid the

time and effort consuming task of training and they provide

continuous solutions to the problem of hand pose recovery.

Another categorization is based on how partial evidence

regarding the individual rigid parts of the articulated ob-

ject contributes to the final solution [14]. Disjoint evidence

methods [7, 17, 20, 22] consider individual parts in isolation

prior to evaluating them against observations. Joint evi-

dence methods [3, 5, 13–15, 18, 19, 21, 23] consider all parts

in the context of complete articulated object hypotheses. By

construction, joint-evidence methods treat part interactions

effortlessly, but their computational requirements are rather

high. Disjoint evidence methods usually have lower compu-

tational requirements than joint-evidence ones, but need to

explicitly handle part interactions such as collisions and oc-

clusions. Since such issues are pronounced in the problem

of two hands tracking, joint evidence methods are appar-

ently more suitable than disjoint evidence methods.

1.2. Contribution

In terms of the previously described classifications, this

paper presents a model-based, joint-evidence method for

tracking the full articulation of two interacting hands.

Observations come from an off-the-shelf RGB-D sensor

(Kinect [11]). Two-hands tracking is formulated as an opti-

mization problem. The objective function to be minimized

quantifies the discrepancy between the 3D structure and ap-

pearance of hypothesized configurations of two hands and

the corresponding visual observations. Optimization is per-

formed through a variant of an evolutionary optimization

method (Particle Swarm Optimization - PSO) tailored to the

needs of the specific problem.

From a methodological point of view, the proposed ap-

proach combines the merits of two recently proposed meth-

ods for tracking hand articulations [14, 15]. More specif-

ically, in [14], we proposed a joint-evidence method for

tracking the full articulation of a single, isolated hand based

on data provided by a Kinect. We extend this approach so

that it can track two strongly interacting hands.

Our method is also related to the one presented in [15]

that tracks a hand interacting with a known rigid object. The

fundamental idea behind that work is to model hand-object

relations and to treat occlusions as a source of information

rather than as a complicating factor. We extend this idea by

demonstrating that it can be exploited effectively in solv-

ing the much more complex problem of tracking two articu-

lated objects (two hands). Additionally, this more complex

problem is solved based on input provided by a compact



Kinect sensor, as opposed to the multicamera calibrated sys-

tem employed in [15].

Experimental results demonstrate that the accuracy

achieved in two hands tracking is in the order of 6mm, in

scenarios involving very complex interaction between two

hands. Interestingly, despite the large increase in the di-

mensionality of the problem compared to [14] (from 27 to

54 problem dimensions), the computational budget required

for achieving this accuracy is only slightly increased.

The major contributions of this work can be summarized

as follows: (a) We present the first method for accurate,

robust and efficient tracking of the articulated motion of

two hands in strong interaction, a problem that has never

been addressed before. (b) We demonstrate that the core

method presented in [14] can be naturally extended to han-

dle the problem of tracking the articulation of two inter-

acting hands. (c) We demonstrate that the idea of model-

ing context and occlusions as presented in [15] can be ex-

ploited towards tracking the articulation of two interacting

hands. (d) We demonstrate that despite the doubling of the

dimensionality of the problem compared to [14], the pro-

posed approach achieves comparable accuracy with a com-

parable computational budget.

2. Tracking two interacting hands

The proposed method achieves tracking of two interact-

ing hands by directly attributing sensory information to the

joint articulation of two synthetic and symmetric 3D hand

models, of known size and kinematics (see Fig. 2). For

given articulations of two hands we are able to predict what

the RGB-D sensor would perceive, by simulating the acqui-

sition process, i.e. producing synthetic depth maps for spe-

cific camera-scene calibrations. Having established a para-

metric process that produces comparable data to the actual

input, we perform tracking by searching for the parameters

that produce depth maps which are most similar to the ac-

tual input.

Tracking is performed in an online fashion, where at

each step and for every new input an optimization problem

is solved. A variant of the PSO search heuristic is used to

minimize the discrepancy between the actual RGB-D input

and simulated depth maps, generated from hypothesized ar-

ticulations. The best scoring hypothesis constitutes the so-

lution for the current input. The discrepancy measure is

carefully formulated so that robustness is achieved. To-

wards computational efficiency, temporal continuity is ex-

ploited at each optimization step.

2.1. Input/preprocessing

The input from the RGB-D sensor [16] consists of an

RGB image I and a corresponding depth map D, i.e. a

depth value for every pixel in I . The dimensions of both

arrays are 640×480. A skin color map os is produced from

I , by means of [2]. From os and D a new depth map od is

computed, where only depth values of D that correspond to

skin colored pixels in os are kept.

2.2. Model/search space

We define a parametric model of the joint kinematics of

two hands. As already discussed, it is of vital importance

to consider both hands cojointly, so that we can effectively

perform inference over their potentially strong interaction.

The parametric model of the two hands coincides with the

search space of each optimization step. Each of the hands

has 27 parameters, that represent the hand’s pose (3-D posi-

tion and 4-D quaternion-encoded orientation) and 4-D ar-

ticulations of each of the 5 fingers (a 2-D revolute joint

that connects the palm with the finger and two 1-D revolute

joints that connect adjacent phallanges). The ranges of pa-

rameter values are linearly bounded, according to anatom-

ical studies [1]. For two hands the dimensionality of the

search space amounts to twice the dimensionality for one

hand (i.e. 54), as we do not consider any additional con-

straints over their joint motion.

2.3. Simulation/comparable features

For each point h in the search space (see Sec. 2.2) a

mapping to the feature space of the actual observations is

required. We simulate the acquisition process of the depth

sensor by means of rendering. Each point h defines two

3D skeletons by applying forward kinematics over the pa-

rameters detailed in Sec. 2.2. These skeletons are skinned

with appropriately transformed instances of 3D spheres and

cylinders. The usage of only two primitives proves to be

computationally efficient (see Sec. 2.7). Given the calibra-

tion information C for the RGB-D camera, we rasterize

a depth map rd(h,C) from the implicit 3D structure de-

scribed so far. The resulting model is very similar to the

one we used in [14]. The rendered 3D structure is depicted

in Fig. 2(d).

2.4. Discrepancy/objective function

The objective function to be optimized is essentially a

penalty function to be minimized. This penalty is defined

with respect to a tracking frame’s observation O and a ren-

dered depth map rd(h,C) that is generated from a hypoth-

esis h. The penalty function E(·) consists of two terms, a

prior term P (·) and a data term D(·):

E(O, h,C) = P (h) + λk ·D(O, h,C), (1)

where λk = 2 is a regularization parameter.

The box bounds of the search space are not expressive

enough to tightly define the region of valid hand articula-

tions. Within these bounds, P (·) penalizes invalid articu-

lation hypotheses. In this work we invalidate articulations



Figure 2. By masking the depth information (b), with a skin color detection performed upon RGB data (a), a depth map (c) of image

regions corresponding to hands is extracted, from Kinect input. The proposed method fits the 54-D joint model of two hands (d) onto these

observations, thus recovering the hand articulation that best explains the observations (e).

where adjacent fingers inter-penetrate. Thus,

P (h) =
∑

p∈Q

−min(φ(p, h), 0), (2)

where Q amounts to the pairs of adjacent fingers, and φ is

the abduction-adduction difference (in rads) of adjacent fin-

gers, excluding the thumb. We have indeed tried elaborate

and more computationally expensive collision models to pe-

nalize inter-penetration but we have found simple angle dif-

ferences to efficiently resolve challenging tracking scenar-

ios.

The term D(·) quantifies the incompatibility of input O
to an articulation hypothesis h. Essentially, it is the result

of the comparison of two parts. The first part O = {os, od}
consists of the input depth map od and the skin map os. The

other part, referring to a hypothesis h, consists of a sim-

ulated depth map rd(h,C) and an implicitly defined skin

map rs(h,C), that is set at points where rd(h,C) is occu-

pied. The main purpose of D(·) is to penalize depth dis-

crepancies. However, to make it robust, a few more points

need to be addressed.

Unless depth differences are clamped within a predeter-

mined range dM , large differences, that can be due to noise,

dominate and produce a false high penalty. By clamping

we makeD(·) smoother and, thus, add noise tolerance in its

optimization. Moreover, we also consult the overlap of the

actual and simulated skin maps. More specifically, hypothe-

ses resulting in significant overlap with actual skin maps are

preferred even if they result in slightly greater depth dis-

crepancies. Empirical evaluation has proven that this ap-

proach eliminates strong local minima around the global

minimum and therefore facilitates the convergence of the

optimization process to its true optimum.
The aforementioned are encoded in the following

penalty function:

D(O, h,C) = λ

∑

min(|od − rd|, dM )
∑

(os ∨ rs) + ǫ
+

(

1−
2
∑

(os ∧ rs)
∑

(os ∧ rs) +
∑

(os ∨ rs)

)

, (3)

where λ = 0.05 acts as a regularization parameter, dM
is set to 4cm and ǫ = 10−6 is added to denominators in

order to avoid possible divisions by zero. Differences are

normalized over their effective areas.

2.5. Search/optimization

The challenging task of optimization at each tracking

frame is delegated to the powerful Particle Swarm Opti-

mization (PSO) search heuristic [8,9]. PSO is an evolution-

ary optimization algorithm that receives an objective func-

tion F (·) and a search space S and outputs an approxima-

tion of the optimum of F (·) in S, while treating it as a black

box. Being evolutionary, it is parameterized with respect

to a population of particles. These parameters amount to

the particle count N and the generation count G. Three

additional parameters, namely w (constriction factor [4]),

c1 (cognitive component) and c2 (social component), adjust

the behavior of the algorithm.

For each generation k and particle i PSO maintains a

state that consists of a global optimum position Gk, a local

optimum Pk,i, the current position xk,i and the current ve-

locity vk,i. Initially, particles are sampled uniformly in S.

At each generation, the velocity of each particle is updated

according to

vk+1,i = w(vk,i+c1r1(Pk,i−xk,i)+c2r2(Gk−xk,i)) (4)

and the current position of each particle is updated accord-

ing to:

xk+1,i = xk,i + vk+1,i. (5)

Pk+1,i is set to

Pk+1,i =

{

xk+1,i, F (xk+1,i) < F (Pk+1,i)
Pk,i, otherwise

(6)

Gk is set to the best scoring particle’s Pk,i:

Gk+1 = Pk+1,l, with l = argmin
m

(F (Pk+1,m)) . (7)

Variables r1, r2 represent uniformly distributed random

numbers in the range [0, 1].
As suggested in [4], we fix the behavioral parameters to

c1 = 2.8, c2 = 1.3 and

w = 2/
∣

∣

∣
2− ψ −

√

ψ2 − 4ψ
∣

∣

∣
(8)



with ψ = c1 + c2. We have experimentally confirmed that

for the w as defined in Eq.(8), any combination that satis-

fies c1 + c2 = 4.1 achieves essentially the same optimiza-

tion performance.

There are traits that make PSO attractive to use in a track-

ing method. It is derivative-agnostic, which makes it easy to

try and optimize arbitrary objective functions, with no limi-

tations over convexity, continuity etc. Moreover, its perfor-

mance depends on essentially two parameters, namely N
and G.

In the proposed method a variant of PSO is considered

that better suits our tracking requirements. As already stated

in [14], the original PSO algorithm has been effective in ac-

curately recovering the pose of the hand’s palm (6 DoFs).

However, less accuracy has been observed for the fingers

(the rest of the 20 DoFs). This occurs due to premature

“collapsing” [9] of the population. In order to alleviate this,

we employ additional randomization over these remaining

parameters, so that their range is better explored [24]. This

process is applied to the joint parameter space of both hands

(54 DoFs) and for the 40 parameters that regard the 10 fin-

gers.

Additionally, we exploit the parallel nature of PSO by

delegating evaluations of individual particles to distinct

computational cores of a parallel platform. Each generation

is evaluated in parallel, given that the score of each parti-

cle is independent to any other. This introduces significant

benefits with respect to execution times.

2.6. Tracking loop

In order to perform tracking across time we iterate over

instances of the same optimization problem. Each iteration

is performed on new input provided from the sensor and

yields a new pose estimate. In order to provide such an es-

timate, E(·) is minimized by PSO. What differs from frame

to frame is the input and the effective search area that is

provided to PSO.

For every new frame, the newly acquired input is prepro-

cessed and mapped into the feature space of skin and depth

measurements, as variableO. All subsequent evaluations of

E(·) are performed based on this input. Every hypothesis

h that is generated by PSO is rendered and thus mapped to

the same feature space. PSO drives an exploratory course

in which multiple invocations (N × G) of E(O, h,C) are

made. The optimal hypothesis

hmax = argmin
h

E(O, h,C) (9)

is output as the inferred articulation for the current tracking

frame.

Although the original PSO requires a uniform initializa-

tion of its population in S, we exploit temporal continuity

and constrain the effective search area. To do so, for ev-

ery next tracking frame we initialize the population to be in

Figure 3. Feature mapping of an entire generation of model hy-

potheses that can be generated and evaluated in sub-millisecond

time scale on a GPU.

the vicinity of hmax of the previous frame. The optimum

hmax of the previous frame is copied to the new popula-

tion. The rest of the population consists of random pertur-

bations of hmax. This strategy makes our proposed method

suitable for tracking but has the disadvantage that the hand

poses must be initialized for the first observed frame of a

sequence.

2.7. Parallel implementation

The execution time of the presented tracking loop is

dominated by the evaluation of the data term D(·) of the

penalty function E(·) (see Eq. (1)). 3D rendering and oper-

ations over entire maps induce costs that are prohibitive for

mainstream CPUs but can be efficiently handled by con-

temporary GPUs. We exploit parallelism by considering

renderings of multiple hypotheses, simultaneously, in big

tiled renderings. Essentially, an entire generation is feature-

mapped upon a single 2D array, as shown in Fig.3. Per

pixel computations are implemented using shaders and the

required summations are performed by means of mip (mul-

tum in parvo) mapping with the addition operator. Follow-

ing the guidelines of [10], we employ hardware instancing

and multi-viewport clipping in order to efficiently cope with

many model hypotheses that consist of homogeneous trans-

formations of just a sphere and a cylinder.

3. Experimental evaluation

Synthetic data as well as real-world sequences obtained

by a Kinect sensor [11] were used to experimentally evalu-

ate the proposed method. Experiments were performed on

a computer equipped with a quad-core Intel i7 950 CPU, 6
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Figure 4. Quantitative evaluation of the performance of the method

with respect to the PSO parameters. Each line of the graph corre-

sponds to a different number of particles as shown in the legend.

GB RAM and an Nvidia GTX 580 GPU with 1581GFlops
processing power and 1.5 GB of memory.

3.1. Experiments on synthetic data

The quantitative evaluation of the proposed method has

been performed using synthetic data. This approach is of-

ten encountered in the relevant literature [7,13–15] because

ground truth data for real-world image sequences is hard to

obtain. The employed synthetic sequence consists of 300
poses that encode typical interactions of two hands. Ren-

dering was used to synthesize the required input O. To

quantify the accuracy in hand pose estimation, we adopt

the metric used in [7]. More specifically, the distance be-

tween corresponding phalanx endpoints in the ground truth

and in the estimated hand poses is measured. The average

of all these distances, for both hands, over all the frames of

the sequence constitutes the resulting error estimate ∆. It

is worth noting that these distances include estimations for

hand points that, because of occlusions, are not observable.

The influence of several factors to the performance of the

method was assessed in respective experiments. Figure 4

illustrates the behavior of the method with respect to the

PSO parameters (number of generations and particles per

generation). The product of these parameters determines

the computational budget of the proposed methodology, i.e.

the number of objective function evaluations for each each

tracking frame. The horizontal axis of the plot denotes the

number of PSO generations. Each plot of the graph cor-

responds to a different number of particles per generation.

Each point in each plot is the median Md of the error ∆ for

20 repetitions of an experiment run with the specific param-

eters. A first observation is that Md decreases monotoni-

cally as the number of generations increase. Additionally,

as the particles per generation increase, the resulting error

decreases. Nevertheless, employing more that 45 genera-
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Figure 5. Quantitative evaluation of the performance of the method

with respect to the average distance from the sensor.

tions and more than 64 particles results in disproportionally

small improvement of the method’s accuracy. The gains are

at most 2mm or roughly 30%, for a 5-fold increase in com-

putational budget. For this reason, the configuration of 64
particles for 45 generations was retained in all further ex-

periments. In terms of computational performance, track-

ing is achieved at a framerate of 4Hz on the computational

infrastructure described in Sec.3.

In another experiment we assessed the effect of vary-

ing the distance of the hands from the hypothesized sensor.

By doing so, we explored the usefulness of the method in

different application scenarios that require observations of

a certain scene at different scales (e.g., close-up views of

hands versus distant views of a human and his/her broader

environment). To do this, we generated the same synthetic

sequences at different average depths. The results of this

experiment are presented in Fig. 5. At a distance of 50cm

the error is equal to 6mm. As the distance increases, the

error also increases; Interestingly though, it doesn’t exceed

8.5mm even at an average distance of 2.5m. The used syn-

thetic maps do not contain any kind of noise, in contrast to

what happens in practice: the amount of noise is related to

the distance from the sensor for data acquired with a Kinect.

The tolerance of the method to noisy observations was

also evaluated. Two types of noise were considered. Er-

rors in depth estimation were modeled as a Gaussian dis-

tribution centered around the actual depth value with the

variance controlling the amount of noise. Skin-color seg-

mentation errors were treated similarly to [18], by randomly

flipping the label (skin/non-skin) of a percentage of pixels

in the synthetic skin mask. Figure 6 plots the method’s er-

ror in hand pose estimation for different levels of depth and

skin segmentation error. As it can be verified, the hand pose

recovery error is bounded in the range [6mm..23mm], even

in data sets very heavily contaminated with noise.

The accuracy in hand pose estimation with respect to
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Figure 6. Quantitative evaluation of the performance of the method

with respect to synthesized depth and skin-color detection noise.
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Figure 7. Quantitative evaluation of the performance of the method

with respect to viewpoint variation.

viewpoint variations was also assessed. This was achieved

by placing the virtual camera at 8 positions dispersed on the

surface of a hemisphere around the hypothesized scene. The

data points of Fig. 7 demonstrate that viewpoint variations

do not significantly affect the performance of the method.

In a final experiment, we measured the performance of

our single hand tracker [14] on the synthetic data set of the

previous experiments. To do so, the system described in

that work was used to track one of the two visible hands.

The resulting error Md for this experiment was 145mm. In

practice, the single hand tracker is able to track accurately

one of the two hands while it is not in interaction with the

other. However, as soon as occlusions become extended due

to hands interaction (for example, when one hand passes in

front of the other), the track is often completely lost.

3.2. Experiments on real world sequences

Towards the qualitative evaluation of the proposed ap-

proach in real data, several long real-world image sequences

Figure 8. Snapshots from an experiment where two hands inter-

act with each other (cropped 320 × 240 regions from the original

640× 480 images).

were captured using the PrimeSense Sensor Module of

OpenNI [16]. The supplemental material accompanying

the paper provides a video with the results obtained from

one such sequence (1776 frames)1. Indicative snapshots are

shown in Fig. 8. Evidently, the estimated hand postures

are in very close agreement with the image data, despite

the complex articulation and strong interactions of the two

hands.

1Available online at http://youtu.be/e3G9soCdIbc



4. Discussion

We proposed a method for tracking the full articulation

of two strongly interacting hands, based on observations

acquired by an RGB-D sensor. The problem was formu-

lated as an optimization problem in a 54-dimensional pa-

rameter space spanning all possible configurations of two

hands. Optimization seeks for the joint hand configuration

that minimizes the discrepancy between rendered hand hy-

potheses and actual visual observations. Particle Swarm

Optimization proved to be competent in solving this high

dimensional optimization problem. More specifically, ex-

tensive experimental results demonstrated that accurate and

robust tracking of two interacting hands can be achieved

with an accuracy of 6mm at a framerate of 4Hz. Experimen-

tal results also demonstrated that in the presence of strong

hand interactions, the straightforward alternative of solving

two instances of a single hand tracking problem results in a

much lower accuracy.

The proposed approach is the first to achieve a solution to

this interesting and challenging problem. Hopefully, it will

constitute an important building block in a large spectrum

of application domains that critically depend on the accurate

markerless perception of bi-manual human activities.
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