;:‘ Machine Learning, 32, 127-150 (1998)
‘ © 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Tracking the Best Disjunction®

PETER AUER pauer@igi.tu-graz.ac.at
Institute for Theoretical Computer Science, University of Technology Graz, Klosterwiesgasse 32/2, A-8010 Graz,
Austria

MANFRED K. WARMUTH manfred@cse.ucsc.edu

Department of Computer Science, University of California at Santa Cruz, Applied Sciences Building, Santa Cruz,
CA 95064

Editors: Gerhard Widmer and Miroslav Kubat

Abstract. Littlestone developed a simple deterministic on-line learning algorithm for leafsiitgral disjunc-
tions. This algorithm (calledVinnow) keeps one weight for each of thevariables and does multiplicative
updates to its weights. We develop a randomized versioWofNnow and prove bounds for an adaptation of
the algorithm for the case when the disjunction may change over time. In this case a possibligangetion
scheduleZ is a sequence of disjunctions (one per trial) andshiét sizeis the total number of literals that are
added/removed from the disjunctions as one progresses through the sequence.

We develop an algorithm that predicts nearly as well as the best disjunction schedule for an arbitrary sequence of
examples. This algorithm that allows us to track the predictions of the best disjunction is hardly more complex than
the original version. However, the amortized analysis needed for obtaining worst-case mistake bounds requires
new technigues. In some cases our lower bounds show that the upper bounds of our algorithm have the right
constant in front of the leading term in the mistake bound and almost the right constant in front of the second
leading term. Computer experiments support our theoretical findings.

Keywords: on-line learning, prediction, concept driftyinnow, computational learning theory, amortized
analysis

1. Introduction

One of the most significant successes of the Computational Learning Theory community
has been Littlestone’s formalization of an on-line model of learning and the development
of his algorithmWinnow for learning disjunctions (Littlestone, 1989, 1988). The key
feature of WinNow is that when learning disjunctions of constant size, the number of
mistakes of the algorithm grows only logarithmically with the input dimension. For many
other standard algorithms such as the Perceptron Algorithm (Rosenblatt, 1958), the number
of mistakes can grow linearly in the dimension (Kivinen, Warmuth, & Auer, 1997). In the
meantime, a number of algorithms similandinNow have been developed that also show
the logarithmic growth of the loss bounds in the dimension (Littlestone & Warmuth, 1994;
Vovk, 1990; Cesa-Bianchi et al., 1997; Haussler, Kivinen, & Warmuth, 1994).

In this paper we give a refined analysis\éfinnow, develop a randomized version of
the algorithm, give lower bounds that show that both the deterministic and the randomized
version are close to optimal, and adapt both versions so that they can be used to track the
predictions of the best disjunction.

* An extended abstract appeared in (Auer & Warmuth, 1995).

128 P. AUER AND M. K. WARMUTH

Consider the following by now standard on-line learning model (Littlestone, 1989, 1988;
Vovk, 1990; Cesa-Bianchi et al., 1997). Learning proceeds in trials. In¢trall the
algorithm is presented with an instancg(in our case am-dimensional binary vector) that
is used to produce a binary predictign The algorithm then receives a binary classification
y; of the instance and incurs a mistakejif# y;. The goal is to minimize the number of
mistakes of the algorithm for an arbitrary sequence of exanifsesy:)). Thisis of course
a hopeless scenario: for any deterministic algorithm an adversary can always choose the
sequence so that the algorithm makes a mistake in each trial. A more reasonable goal is to
minimize the number of mistakes of the algorithm compared to the minimum number of
mistakes made by any concept from a comparison class.

1.1. The (non-shifting) basic setup

In this paper we use monotohé-literal disjunctions as the comparison class. If the
dimension (number of Boolean attributes/literalsyithen such disjunctions are Boolean
formulas of the forme;, V z;, V...V z;,, where the (distinct) indices lie in {1,...,n}.

The number of classification errors of such a disjunction with respect to a sequence of
examples is simply the total number of misclassifications that this disjunction produces on
the sequence. The goal is to develop algorithms whose number of mistakes is not much
larger than the number of classification errors of the best disjunction, for any sequence of
examples.

In this paper we consider the case where the mistakes of the best (“target”) disjunction are
caused by attribute errors. The number of attribute errors of an exdsple € {0, 1}™ x
{0, 1} with respect to a target disjunctianis the minimum number of attributes/bits »f
that have to be changed so that for the resultihgu(x’) = y. The number of attribute
errors for a sequence of examples with respect to a target concept is simply the total number
of such errors for all examples of the sequence. Note, that if the tariges k-literal
monotone disjunction then the number of attribute errors is at fntstes the number of
classification errors with respect to(i.e., k& times the number of examplé¢s, y) in the
sequence for whicl(x) # y).

WINNOwW can be tuned as a function bfso that it makes at mog?(A + kIn(n/k))
mistakes on any sequence of examples where the best disjunction incurs &t atiitute
errors (Littlestone, 1988). We give a randomized versiolafknow and give improved
tunings of the original algorithm. The new algorithm can be tuned basédad A so that
its expected mistake bound is at mdst (2+-o(1))/ Ak In(n/k) (for A > kIn(n/k)) on
any sequence of examples for which there is a monatseliteral disjunction with at most
A attribute errors. We also show how the original deterministic algorithm can be tuned so
that its number of mistakes is at mast + (2v/2 + o(1))+/Ak In(n/k) for the same set
of sequences.

Our lower bounds show that these bounds are very close to optimal. We show that for any
algorithm the expected number of mistakes must be at léastl — o(1))+/ Ak In(n/k).
So our upper bound has the correct constant on the leading term and almost the optimal
constant on the second term. For deterministic algorithms our lower bounds show that the
constant on the leading term is optimal.

TRACKING THE BEST DISJUNCTION 129

Our lower bounds for both the deterministic and the randomized case cannot be improved
significantly because there are essentially matching upper bounds achieved by non-efficient
algorithms with the correct factors on the fiemd the second term. These algorithms
use (2) experts (Cesa-Bianchi et al., 1997): each expert simply computes the value of a
particulark-literal disjunction and one weight is kept per expert. This amounts to expanding
the n-dimensional Boolean inputs intd) Boolean inputs and then using single literals
(=experts) (Littlestone & Warmuth, 1994; Vovk, 1990; Cesa-Bianchi et al., 1997) as the
comparison class instead lliteral disjunctions. The expected number of mistakes of the
randomized algorithm is at mo&+ /Qk In(n/k) + klog,(n/k)/2 whereQ is a bound
on the number of classification errors of the biediteral disjunction. The mistake bound
of the deterministic algorithm is exactly twice as high. Observe that these algorithms have
to use about* weights, and that they need that much time in each trial to calculate their
prediction and update the weights. Thus, their run time is exponential in

In contrast, our algorithm uses onkyweights. On the other hand, the noise in the upper
bounds of our efficient algorithm is measured in attribute errors rather than classification
errors. Thisarises since we are using just one weight per attribute. Recallthat a classification
error with respect to &-literal disjunction can equate to upAattribute errors. To capture
errors that affect up t& attributes efficiently the expansion ((Z) experts seems to be
unavoidable. Nevertheless, it is surprising that our versioRVofiNow is able to get
the right factor before the number of attribute errdrsand for the randomized version
almost the right factor before the square root term. In some s&iseyow compresses
(%) weights to onlyn weights. At this point we don't have a combinatorial interpretation
of our weights. Such an interpretation was only found for the single literal (expert) case
(Cesa-Bianchi, Freund, Helmbold, & Warmuth, 1996).

As Littlestone (1991) we use an amortized analysis with an entropic potential function to
obtain our worst-case loss bounds. However, besides the more careful tuning of the bounds
we take the amortized analysis method a significant step further by proving mistake bounds
of our algorithm as compared to the bsktftingdisjunction.

1.2. Shifting disjunctions

Assume that a disjunction is specified by am-dimensional binary vector, where the
components with valué correspond to the monotone literals of the disjunction. For two
disjunctionsu andu’ the Hamming distancgu — u’||; measures how many literals have
to be “shifted” to obtaina’ from u. A disjunction schedulé for a sequence of examples
of lengthT is simply a sequence @f disjunctionsu;. The (shift) sizeof the schedul&”
is ZtT:l [luz—1 — u¢||1 (up is the all zero vector). In the original non-shifting casewll
(t > 1) are equal to somk-literal disjunctionu, and according to the above definition the
“shift size” is k.

At trial ¢ the scheduld@™ predicts with disjunction;. We define the number of attribute
errors of an example sequenge;, y;)) with respect to a schedulE as the total number
of attributes that have to be changed in the sequence of examples to make it consistent with
the scheduld, i.e., for which the changed instancéssatisfyu; (x}) = y;.

Note, that the loss bounds for the non-shifting case can be writtef) (v AB + B),
whereB = log, (7) is the number of bits it takes to describe a disjunction wifterals, and

130 P. AUER AND M. K. WARMUTH

wherec = 1 for the randomized and= 2 for the deterministic algorithm. Surprisingly, we
were able to prove bounds of the same form for the shifting disjunction éasenow the
number of bits it takes to describe the best schedidad A is the number of attribute errors
of this schedule. IZ is the shift size of schedulg then it takedog, (AJZ“Z) + Zlogy N
bits to describe a scheduféin respect to a given sequence of examples.

Our worst-case mistake bounds are similar to bounds obtained for “competitive algo-
rithms” in that we compare the number of mistakes of our algorithm against the number
of attribute errors of the best off-line algorithm that is given the whole sequence ahead of
time. The off-line algorithm still incurs! attribute errors and here we bound the additional
loss of the on-line algorithm over the number of attribute errors of the best schedule (as
opposed to the coarser method of bounding the ratio of on-line over off-line).

WinNow does multiplicative updates to its weights. Whenever the algorithm makes a
mistake then the weights of all the literals for which the corresponding bit in the current
input instance is one are multiplied by a factor. In the cas&/ofinow?2, the version of
WinNow this paper is based on (Littlestone, 1988), this factor is either 1/«, where
a > 1is a parameter of the algorithm. The multiplicative weight updates might cause the
weights of the algorithm to decay rather rapidly. Since any literal might become part of
the disjunction schedule even when it was misleading during the early part of the sequence
of examples, any algorithm that is to predict well as compared to the best disjunction
schedule must be able to recover weights quickly. Our extensiGNofNow2 simply
adds a step to the original algorithm that resets a weigflt/iowhenever it drops below
this boundary. Similar methods for lower bounding the weights were used in the algorithm
WwL of (Littlestone & Warmuth, 1994) which was designed for predicting as well as the
best shifting single literal (which is called expert in (Cesa-Bianchi et al., 1997)). In addition
to generalizing the work of (Littlestone & Warmuth, 1994) to arbitrary size disjunctions we
were able to optimize the constant in the leading term of the mistake boudrafow
and develop a randomized version of the algorithm.

In (Herbster & Warmuth, 1998) the work of (Littlestone & Warmuth, 1994) was general-
ized in a different direction. The focus there is to predict as well as the best shifting expert,
where “well” is measured in terms of other loss functions than the discrete loss (counting
mistakes) which is the loss function used in this paper. Again, the basic building block is
a simple on-line algorithm that uses multiplicative weight updates (Vovk, 1990; Haussler
et al., 1994) but now the predictions and the feedback in each trial are real-valued and lie
in the interval[0, 1]. The class of loss functions includes the natural loss functions of log
loss, square loss and Hellinger loss. Now the loss does not occur in “large” discrete units.
Instead the loss in a trial may be arbitrarily small and thus more sophisticated methods
are needed for recovering small weights quickly (Herbster & Warmuth, 1998) than simply
lower bounding the weights.

Why are disjunctions so important? Whenever a richer class is built by (small) unions
of a large number of simple basic concepts, our methods can be applied. Simply expand
the original input into as many inputs as there are basic concepts. Since our mistake
bounds only depend logarithmically on the number of basic concepts, we can even allow
exponentially many basic concepts and still have polynomial mistake bounds. This method
was previously used for developing noise robust algorithms for predicting nearly as well
as the best discretizettdimensional axis-parallel box (Maass & Warmuth, 1998; Auer,

TRACKING THE BEST DISJUNCTION 131

1993) or as well as the best pruning of a decision tree (Helmbold & Schapire, 1997). In
these cases a multiplicative algorithm maintains one weight for each of the exponentially
many basic concepts. However, for the above examples, the multiplicative algorithms with
the exponentially many weights can still be simulated efficiently. Now, for example, the
methods of this paper immediately lead to an efficient algorithm for predicting as well as the
best shiftingi-dimensional box. Thus, by combining our methods with existing algorithms,
we can design efficient learning algorithms with provably good worst-case loss bounds for
more general shifting concepts than disjunctions.

Besides doing experiments on practical data that exemplify the merits of our worst-
case mistake bounds, this research also leaves a number of theoretical open problems.
WIiNNOwW is an algorithm for learning arbitrary linear threshold functions and our methods
for tracking the best disjunction still need to be generalized to learning this more general
class of concepts.

We believe that the techniques developed here for learning how to predict as well as the
best shifting disjunction will be useful in other settings such as developing algorithms that
predict nearly as well as the best shifting linear combination. Now the discrete loss has to
be replaced by a continuous loss function such as the square loss, which makes this problem
more challenging.

1.3. Related work

There is a natural competitor ¥W1N~NoOw which is the well known Perceptron algorithm
(Rosenblatt, 1958) for learning linear threshold functions. This algorithm does additive
instead of multiplicative updates. The classical Perceptron Convergence Theorem gives a
mistake bound for this algorithm (Duda & Hart, 1973; Haykin, 1994), but this bouimeesr

in the number of attributes (Kivinen et al., 1997) whereas the bounds fonthevow-

like algorithms ardogarithmicin the number of attributes. The proof of the Perceptron
Convergence Theorem can also be seen as an amortized analysis. However, the potential
function needed for the perceptron algorithm is quite different from the potential function
used forthe analysis &/ 1nNow. If wy isthe weight vector of the algorithmin trighndu is

atarget weight vector, then for the perceptron algorithm- w || is the potential function
where]|.||2 is the Euclidean length of a vector. In contrast the potential function used for the
analysis ofWinNow (Littlestone, 1988, 1989) thatis also used in this paper is the following
generalizatiot of relative entropy (Cover, 1965) ;" [w; — u; + u; In(u; /w;)].

In the case of linear regression, a framework was developed (Kivinen & Warmuth, 1997)
for deriving updates from the potential function used in the amortized analysis. The same
framework can be adapted to derive both the Perceptron algorithramdiow. The
different potential functions for the algorithms lead to the additive and multiplicative algo-
rithms, respectively. The Perceptron algorithm is seeking a weight vector that is consistent
with the examples but otherwise minimizes some Euclidean lengihnyow instead,
minimizes a relative entropy and is thus rooted in the Minimum Relative Entropy Principle
of Kullback (Kapur & Kesavan, 1992; Jumarie, 1990).

132 P. AUER AND M. K. WARMUTH

1.4. Organization of the paper

In the next section we formally define the notation we will use throughout the paper. Most
of it has already been discussed in the introduction. Section 3 presents our algorithm and
Section 4 gives the theoretical results for this algorithm. In Section 5 we consider some more
practical aspects, namely how the parameters of the algorithm can be tuned to achieve good
performance. Section 6 reports some experimental results. The analysis of our algorithm
and the proofs for Section 4 are given in Section 7. Lower bounds on the number of mistakes
made by any algorithm are shown in Section 8 and we conclude in Section 9.

2. Notation

A target schedul& = (uy,...,ur) is a sequence of disjunctions representechiary

bit vectorsu; = (ut1,...,un) € {0,1}". The size of the shift from disjunction;_,

to disjunctionu; is z; = [Jui—1 — wl|1 = Y., lue—1,; — ue4|. The total shift size of
scheduleT is Z = 3"}, z where we assume thaty = (0,...,0). If u; = --- = ur

thenZ = k = [lup — wi||s = Y., u1,;. To get more precise bounds for the case when
there are shifts in the target schedule we will distinguish between shifts where a literal is
added to the disjunction and shifts where a literal is removed from the disjunction. Thus,
we definezj ={l<i<n:w_i;,=0andu,; =1}, 2z =1 <i<n:w_1,;=
1 andu;; = 0}/, and thenZ* = Zthl 2 as the number of times a literal is switched on,
andZ~- = Zle z; asthe number of times a literal is switched off. Cleagly+ 2, = z;
andZ*t + 7~ =Z.

A sequence of exampleS = ((x1,v1),...,(x7,yr)) consists of attribute vectors
x; = (T41,--.,%n) € {0,1}" and classificationg, € {0,1}. The prediction of dis-
junction u, for attribute vectorx, is u;(x;) = 1if u; - x, = > 1 w2, > 1 and
u(x¢) = 0if us - x, = 0. The number of attribute errors at trial ¢ with respect to a
target scheduld@ is the minimal number of attributes that have to be changed, resulting in
X}, such thatu (x;) = y;. Thatisa; = mine o1}~ {|[x} — x¢[|1 : ws(x}) = y¢}. The
total number of attribute errors of sequerttith respect to schedulEis A = 3"/ a;.
We denote byS(Z, A, n) the class of example sequencgsvith n attributes which are
consistent with some target scheddlewith shift size Z and with at mostAd attribute
errors. If we wish to distinguish between positive and negative shifts we denote the corre-
sponding class by (Z*,Z~, A,n) whereZ" andZ~ are the numbers of literals added
and removed, respectively, in the target schedule. SB¥, A, n) we denote the class of
example sequencées with n attributes which are consistent with some non-shifting tar-
get schedulg = (u,...,u) of sizek (i.e., > ; u; = k) and with at most4 attribute
errors. For the case that only upper boundsfnZ*, Z—, or k are known we de-
note the corresponding classes®¥(Z, A,n) = .., S(z, A,n),SS(ZT,Z~, A, n) =
Ust <zt o<z SzF, 27, An), andS; (k, A,n) = U<k So(k, A, n), respectively.

The loss of a learning algorithth on an example sequenéeis the number of misclas-
sifications

TRACKING THE BEST DISJUNCTION 133

Table 1.Algorithm Swin.

Parameters:

The algorithm uses parameters> 1, 8 > 0, wo > 0, and a functiorp : R — [0, 1].
Initialization:

Set the weights to initial valuesy 1 = - - - = wo,n = wo.
Prediction:

In each trialt > 1 setr; = w:_1 - x; and predict

.| 1 with probabilityp(r:)
Y=\ 0 with probability1 — p(r;)

Receive the binary classificatigp.
If y¢ = p(r¢) then setw; = w;_1, else

Update:

If y: # p(re) thenforalli = 1,...,n set
1 wi; =wi safti(Gye—1)

2. w; = max {wi,i, g}

T
M(L,S) =" i — wl
t=1
whereg; € {0, 1} is the binary prediction of the learning algorithinin trial ¢.

3. The Algorithm

We present algorithrBwin (“Shifting Winnow”), see Table 1, an extension of Little-
stone’sWinNow?2 algorithm (Littlestone, 1991). Our extension incorporates a randomiza-
tion of the algorithm, and it guarantees a lower bound on the weights used by the algorithm.
The algorithm maintains a vectorefveights for the: attributes. Byw; = (w1, .., wen)
we denote the weights at the end of tdiahndw, denotes the initial value of the weight
vector. In trialt the algorithm predicts using the weight vectoy_;. The prediction of the
algorithm depends on, = wy_1 - x; = Y., wi—1,2¢,, and a functiorp : R — [0, 1].

The algorithm predicts 1 with probabilip(r;), and it predicts 0 with probability — p(r;).
(To obtain a deterministic algorithm one has to choose a fungtioR — {0, 1}.) After
predicting the algorithm receives the classificatign|f y; = p(r;) thenw, = w;_1, i.e.
the weight vector is not modified. Singe € {0,1} andp(r;) € [0, 1] this can only occur
when the prediction was deterministic, i.e(r:) € {0, 1}, and correct. An update occurs
in all other cases when the prediction was wrong(@t) € (0,1).

The updates of the weights are performed in two steps. The first step is the original
WiNNOw update, and the second step guarantees that no weight is smallérftbmome
parameter3 (a similar approach was taken in (Littlestone & Warmuth, 1994)). Observe
that the weights are changed only if the probability of making a mistake was non-zero. For

134 P. AUER AND M. K. WARMUTH

the deterministic algorithm this means that the weights are changed only if the algorithm
made a mistake. Furthermore, thth weight is modified only itz; ; = 1. The weight is
increased (multiplied by) if y» = 1, and it is decreased (divided) if y» = 0. The
parameters, 3, wo, and the function(-), have to be set appropriately. A good choice for
functionp(-) is the following: for a randomized prediction let

. In a+2[3
0 if r <=5

p(r) = (a— 1)((1;(2+(1(1 1113(5) 28) if lng:fﬁ <r< lna (RAND)

1 if > lne
= a—1

and for a deterministic version of the algorithm let

0 if < alna—i—(al 1)
r)= o DET
p() { 1if r> aln(){;—iz-(ozl 1)[3 ()

For the randomized version one has to chose - Ina Observe that (DET) is obtained

from (RAND) by choosing the threshold = w such thatp(®©) = 1/2in
(RAND). This corresponds to the straightforward converS|on from a randomized prediction
algorithm into a deterministic prediction algorithm.

Theoretically good choices of the parameters?, andwg are given in the next section
and practical issues for tuning the parameters are discussed in Section 5.

4. Results

In this section we give rigorous bounds on the (expected) number of mistalbsisf

first in general and then for specific choicesagf, andwy, all with p(-) chosen from
(RAND) or (DET). These bounds can be shown to be close to optimal for adversarial
example sequences; for details see Section 8.

THEOREM 1 (RANDOMIZED VERSION) Leta>1,0< < (1;1_‘1 , Wo = % andp(-) as
in (RAND). ThenforallS € S(Z+,Z~, A, n)

Alna+Z+ln()JrZ In(ear) + 3

M(SWIN, S) <« Ina—(a—1)8

If 3 < 2 then the bound holds for alf € S<(Z*,Z~, A, n).

THEOREM 2 (DETERMINISTIC VERSION) Leta >1,0< 3 < % wg =
asin (DET). Thenforalk € S(Z*,Z~, A, n)

andp(-)

71’

Alna+Z+ln()JrZ In(ear) + 3

M(SwiN, S) < (a+1) Ina—(a—1)8

If 3 < 2 then the bound holds for alf € S<(Z+,Z~, A, n).

TRACKING THE BEST DISJUNCTION 135

THEOREM 3 (NON-SHIFTING CASE) Leta > 1, 5 = 0 andwy > 0. Then for all
S e Sy(k,A,n)

kln ei} + Alna + nwy
EM(SWIN,S) < « 0

In o

if SWIN uses the functiop(-) given by (RAND), and

kln e; + Aln o + nwg
M(SwWIN, S) < (a+1) 0

Ina

if SwIN uses the functiop(-) given by (DET).
If wy < L then the bounds hold for aff € S;°(k, A, n).

Remark. The usual conversion of a boudd for the randomized algorithm into a bound
for the deterministic algorithm would giv&\M as the deterministic bouridBut observe
that our deterministic bound is just 1/« times the randomized bound.

Since at any time a disjunction cannot contain more théiterals we haveZ+ — 7~ <
min{n, Z} which gives the following corollary.

COROLLARY 1 Leta > 1,0 < 3 < min{%, La} andw, = 2. If p(-) as in (RAND)
then for all.S € S=(Z, A,n)

Alna+ ZIn (%)/2+min{n,2} ‘I (;Tﬁ)/2+ﬂ

<
EM(SwIN,S) < a Ina —(a—1)8

If p(-) as in (DET) then for alls € S=(Z, A, n)

Ama+Zm (%) /24 min{n, 2} n (#5) [2+ 8

M(SWIN, S) < (a+1) Ina—(a—1)3

At first we give results on the number of mistakessefin, if no information besides,
the total number of attributes, is given.

THEOREM 4 Leta = 1.44, 3 = 0.125, wg = g andp(-) be as in (RAND). Then for all
Se€85(Z,A,n)

EM(SwWIN,S) < 1.7-A+233-Z-(Inn+2.44)
+2.33 - min{n, Z} - Inn + 0.581.

Leta = 1.32, 3 = 0.0269, wy = 2, andp(-) be asin (DET). Then foral € S<(Z, A, n)

M(SWIN,S) < 24-A+4.32-Z - (Inn + 3.89)
+4.32 - min{n, Z} - (Inn + 1.34) + 0.232.

Leta = 1.44, 8 = 0,wo = +, andp(-) be as in (RAND). Then for ai € Sy(k, A, n)

136 P. AUER AND M. K. WARMUTH

EM(SWIN,S) < 1.44- A+3.95- k- (Inn — 1) + 3.95.

If n > 3 then the above bound holds for &l € SOS(k,A, n). Forn < 2 we have
EM(SWIN, S) < 1.44- A+ 3.95forall S € S5 (n, A,n).
Leta = 1.75, 8 = 0, wo = %, andp(-) be as in (DET). Then for alf € Sy(k, A, n)

M(SWIN,S) <2.75-A+4.92 - k- (Inn— 1)+ 4.92.

If n > 3 then the above bound holds for &l ¢ Sog(k,A, n). Forn < 2 we have
M(SWIN, S) < 2.75- A+ 4.92forall S € S5 (n, A, n).

In Section 8 we will show that these bounds are optimal up to constantd.aifd Z
are known in advance then the parameters of the algorithm can be tuned to obtain even

better results. If for example in the non-shifting case the nurhloéattributes in the target
concept is known we get

THEOREM 5 Leta = 1.44, 8 = 0, wy = £, andp(-) be as in (RAND). Then for all
S e S()(k,A,TL)
EM(SWIN, S) < 1.44- A +3.95 - k 1n%

If £ < 2 then the above bound holds for &llc Sog(k,A, n). Fork > % we setwy =
and getEM (SWIN, S) < 1.44- A +3.95- 2 forall S € S5 (n, A, n).
Leta = 1.75, 3 = 0, wy = £, andp(-) be as in (DET). Then for alf € Sy(k, A,n)

=

M(SWIN,S) <2.75- A+4.92-k-In %

If £ < Z then the above bound holds for &llc Sog(k,A, n). Fork > % we setwy =
and getM (SwiN, §) < 2.75- A+ 4.92- 2 for all S € S5 (k, A, n).

Of particular interest is the case whéris the dominant term, i.e4 >> kln 7.

THEOREM 6 LetA > klnZ%, o =14 /EIn%, 8 =0, wy = £, andp(-) be as in
(RAND). Then for allS € Sy(k, A, n)

EM(SwIN, S) < A + 2, /Akln% + 3k‘ln%.

If & < % then the above bound holds for &l ¢ Sog(k,A,n). Fork>2,A>% a=
1+ 4 wo = é,we haveE M (SWIN, S) < A+2,/An/e+3% forall S € Sog(n,A,n).

IfA>2kln2 a=1+/2%m2% =0, w = £, andp() be as in (DET), then for
all S € So(k, A, n)

M(SWIN, S) < 24 + 2,/2Ak m% +4k1In %

TRACKING THE BEST DISJUNCTION 137

If & < 2 then the above bound holds for &l € Sog(k:,A, n). Fork > %, A > 2%,
o =1+ /2% wy = 1, we haveM (SwWIN, S) < 24 + 2/2An/e + 42 for all S €
SOS(TL,A,’H,).

In the shifting case we get for dominaat> Z1lnn

THEOREM 7 Lete = \/%A{"Z} In 42, and A and Zsuch thate < . Then for

a=1+¢ =55, w =2, andp(-) asin (RAND), and for al € S=(Z, A, n),

An 2 3e
< i A 5
EM(SWIN, S) < A+ \/2A(Z+mm{n,Z})ln ~ <1+ e 2)

If e = \/%{’“Z}ln% < da=1+¢ 8=, w =2, andp(-) asin (DET),
then forallS € S<(Z, A, n),

M(SwiN, S) < 24 + 2\/A(Z + min{n, Z}) In % (1 + 1% + e> .
ne

In Section 8 we will show that in Theorems 6 and 7 the constantd @ame optimal.
Furthermore, we can show for the randomized algorithm that also the magnitude of the
second order term in Theorem 6 is optimal.

5. Practical Tuning of the Algorithm

In this section we give some thoughts on how the parameatefsandw, of SwWiN should

be chosen for particular target schedules and sequences of examples. Our recommendations
are based on our mistake bounds which holddfioy target schedule and fany sequence

of examples with appropriate bounds on the number of shifts and attribute errors. Thus,

it has to be mentioned that, since many target schedules and many example sequences are
not worst case, our bounds usually overestimate the number of mistakes madany
Therefore, parameter settings different from our recommendations might result in a smaller
number of errors for a specific target schedule and example sequence. On the other hand,
SWIN is quite insensitive to small changes in the parameters (see Section 6) and the effect
of such changes should be benign.

If little is known about the target schedule or the example sequence, then the parameter
settings of Theorems 4 or 5 are advisable since they balance well between the effect of
target shifts and attribute errors. If good estimates for the number of target shifts and the
number of attribute errors are known then good parameters can be calculated by numerically
minimizing the bounds in Theorems 1, 2, 3 or Corollary 1, respectively.

If the average rate of target shifts and attribute errors is known suctythat ;7" and
A=rpTwithrz > 0,74 > 0, then for largel” the error rate:r = M (SwiN, S)/T is by
Corollary 1 approximately upper bounded by

138 P. AUER AND M. K. WARMUTH

ralna+rzIn (%)/2
rr R«
Ina—(a—1)8

for randomized predictions and by

ralna+rzln (%")/2
Ina—(a—1)8

rp < (a+1)

for deterministic predictions. Again, optimal choices ferand 8 can be obtained by
numerical minimization.

6. Experimental Results

The experiment reported in this section is not meant to give a rigorous empirical evaluation
of algorithmSwin. Instead, itis intended as an illustration of the typical behaviGvoin,
compared with the theoretical bound and also with a versioWafNow which was not
modified to adapt to shifts in the target schedule.

In our experiment we used = 100 boolean attributes and a target schedilef length

N

wW
T

number of active literals
N
T

[y
T

Il Il Il Il Il Il Il Il J
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
number of trials

Figure 1. Shifts in the target schedule used in the experiment.

T = 9,000 which starts with 4 active literals. After 1,000 trials one of the literals is
switched off and after another 1,000 trials another literal is switched on. This switching on
and switching off of literals continues as depicted in Figure 1. Thus= 4 andZ+ = 8
(since there are initially 4 active literals).

The example sequencex,, y;)) was chosen such that for half of the examples= 1
and for the other half; = 0. The values of attributes not appearing in the target schedule
were chosen at random such that = 1 with probability 1/2. For examples witly = 1
exactly one of the active attributes (chosen at random) was set to 1. For examples with
attribute errors all relevant attributes were either set to 1 (for the gase 0 where

TRACKING THE BEST DISJUNCTION 139

ay =Y, uy;)orsetto O (for the casg = 1 wherea, = 1). Attribute errors occurred
at trialst = 1500, 2250, 3500, 4250, 5500, 6250, 7500, 8250 with y, = 1 anda; = 1 and
at trialst = 2500, 4500, 6500, 8500 with y; = 0 anda; = 4.

Figure 2 shows the performanceS®# 1N compared with the theoretical bound where the
parameters were set by numerically minimizing the bound of Corollary 1 as described in
the previous section, which yielded= 2, 8 = 0.067, wo = 3/n. The theoretical bound

140+
a=4
120+ z* a
2 100k) theoretical bound
X a
] + z
B 274 —
g 80r
kS },_.—17
g 60 performance of SWIN
IS
2 40
20
0 1 1 1 1 1 J
0 500 1000 1500 2000 2500 3000

number of trials

Figure 2. Comparison ofSwin with the theoretical bound for a particular target schedule and sequence of
examples. Shifts and attribute errors are indicated byz—, anda.

at trial ¢ is calculated from the actual number of shifts and attribute errors up to this trial.
Thus, an increase of the bound is due to a shift in the target schedule or an attribute error
at this trial. In Figure 2 the reasons for these increases are indicated fyr a literal
switched onz~ for a literal switched off, and for attribute errors.

Figure 2 shows that the theoretical bound very accurately depicts the behaSiomnof
although it overestimates the actual number of mistakes by some amount. It can be seen
that switching off a literal causes far less mistakes than switching on a literal, as predicted
by the bound. Also, the relation between attribute errors and mistakes can be seen.

The performance ddwin for the whole sequence of examples is shown in Figure 3 and
it is compared with the performance of a versiorVéfnnow which was not modified for
target shifts. As can be se8mviN adapts very quickly to shifts in the target schedule. On
the other hand, the unmodified version\WwWiinNnow makes more and more mistakes for
each shift.

The unmodified version diViNNOw we used is justwin with 3 = 0. Thus, the weights
are not lower bounded and can become arbitrarily small which causes a large number of
mistakes if the corresponding literal becomes active. We used thesstomigne unmodified
version but we setvy = 4/n which is optimal for the initial part of the target schedule.
Therefore, the unmodifie@Vinnow adapts very quickly to this initial part, but then it

140 P. AUER AND M. K. WARMUTH

600
performance of Winnow .~
500 R
(] /I
e P
S 400 [~ ’/ - =
Q b4
E ’
5 300 .7
5 P theoretical bound
o +, REUR
E 200 e Zl e N
c N z Al z
. Z e Vs
100rz = - - performance of SWIN
0 - - _\' - \, 1 1 1 1 1 1 J
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

number of trials

Figure 3. A version of Winnow which does not lower bound the weights makes many more mistakeS tan

makes an increasing number of mistakes for each shift in the target schedule. For each shift
the number of mistakes made approximately doubles.

In the last plot, Figure 4, we compare the performancewfN with tuned parameters to
the performance dwin with the generic parameter setting given by Theorem 4. Although

250 theoretical bound
«» 200+ T
$ o
[a=1.44 (=0.125
@aeql -—
2 150 U
50 o
5 o 7
£ 100 === performance of SWIN
e ’

50
O 1 1 1 1 1 1 1 1 J
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

number of trials

Figure 4. Tuned parameters &fwin versus the generic parameters= 1.44, 5 = 0.125.

the tuned parameters do perform better the difference is relatively small.
The overall conclusion of our experiment is that, first, the theoretical bounds capture the
actual performance of the algorithm quite well, second, that some mechanism of lower

TRACKING THE BEST DISJUNCTION 141

bounding the weights ofVinnow is necessary to make the algorithm adaptive to target
shifts, and third, that moderate changes in the parameters do not change the qualitative
behavior of the algorithm.

7. Amortized Analysis

In this section we first prove the general bounds given in Theorems 1 and 2 for the random-
ized and for the deterministic version ®fvin. Then, from these bounds we calculate the
bounds given in Theorems 4-7 for specific choices of the parameters.

The analysis of the algorithm proceeds by showing that the distance between the weight
vector of the algorithnw,, and vecton, representing the disjunction at trigldecreases,
if the algorithm makes a mistake. The potential/distance function used for the previous
analysis ofWinnow (Littlestone, 1988, 1989, 1991) is the following generalization of
relative entropy to arbitrary non-negative weight vectors:

D(u,w) :Z [wi—ui—i—uiln&

W
i=1 v

(This distance function was also used for the analysis offtbe regression algorithm
(Kivinen & Warmuth, 1997), which shows th&¥ inNow is related to thdicu algorithm.)

By taking derivatives it is easy to see that the distance is minimal and equal to 0 if and only
if w; = u;. With the convention thatIn 0 = 0 and the assumption thate {0,1}" the
distance function simplifies to

n

D(u,w) = Z [w; — u; —u; Inw;] .

=1

We start with the analysis of the randomized algorithm with shifting target disjunctions.
The other cases will be derived easily from this analysis. At first we calculate how much
the distance (u;, w;) changes between trials:

D(wi—1,wi—1) — D(uy, wy)

= D(u¢—1,wWi—1) — D(u¢, wi1) 1)
+D(uy, wi_1) — D(ug, wy))
+D(ug, w}) — D(ug, wy). 3)

Observe that term (1) might be non-zero in any trial, but that terms (2) and (3) are non-zero
only if the weights are updated in trial For any~, § with

y<1l+4+lhw, ;<6

foralll1 <i <mnand0 <t <T-—1we can lower bound term (1) by

n

D(ui—1,wi—1) — D(ug, wi—1) = Z(Um ——1,i) (1 +1Inwy_14)
i=1
> vzt =62

142 P. AUER AND M. K. WARMUTH

If the weights are updated in triglterm (2) is bounded by

D(uy, wi_1) — D(ug, wy)

n

/

Wi,

/ t,i
= E {wtl’i—wt’i—i—utyiln :]
Wt—1,i

i=1

= Zwt,u(l —a@ti@u=by ZUt,il’t,i(Qyt —1l)lna

i=1 i=1

n

2y, —1

= E Wy, (1 — ¥ 77)
i=1

n

+ Z g i(wei — oy)2y — 1) Ina + Z u iy ;(2y; — 1) Ina

i=1 i=1

> r(1— azyt*l) —ailna+ 42y — 1) Ina.

The third equality holds since eaah; € {0,1}. Remember that; is obtained fromx;
by removing the attribute errors fromy. The last inequality follows from the fact that
Z?:l umxgz >1lify, =1 andZ?’:l um-:c;’i =0ify, =0.

At last observe thatv; ; # w;,; only if y; = 0 andw;; < %. In this casew; ; =
w—1 07" > 2 and we get for term (3)

D(ug, w}) — D(ug, wy) = Z wy ; — Wi + Uy In

i=1

Wt,5

>—p(1—a™h).

/
Wy 4

Summing over all trials we have to consider the trials where the weights are updated and
we have to distinguish between trials with= 0 and trials withy; = 1. Let

My = {1 <t<T:y =0,p(ry) >0},

My = {1<t<T:y=1,p(ry) <1},

denote these trials. Then, by the above bounds on terms (1), (2), and (3) we have

T
Z D(utfh Wtfl) - D(llu Wt)

t=1

T
> Z [v2 — 02z, —a;Ina
+ Z [Tt(l —a =B - 04_1)] + Z [r:(1 —a)+1Inqa].
teMpy teMy

Now we want to lower bound the sum ou&t, and M by the expected (or total) number
of mistakes of the algorithm. We can do this by choosing an appropriate funcgtiom;).
We denote by, the probability that the algorithm makes a mistake in ttialThen, the
expected number of mistakesEthlpt. Observe thap, = 0 for anyt ¢ My U My,

TRACKING THE BEST DISJUNCTION 143

since in this casg; = p(r:). Furthermorep; = p(r;) if t € My andp; = 1 — p(ry) if
t € M. Thus, itis sufficient to find a functiop(-) and a constar®' with

Vrip(r) >0:r(l—a™) = (1 —a™t) = Cp(r) (4)
and

Vrop(r) <1:7(1—a)+Ina>C(1 - pr)). (5)
For such a functiop(-) satisfying (4) and (5) we get

T
ZD(ut,hwt,l) — D(uy,wy) >yZT =627 — Alna+ C - EM(SWIN, 9),

t=1
assuming that € S(Z*,Z~, A,n). Since

T
Z (D(ui—1,wi—1) — D(ug, wy)) = D(ug, wo) — D(ur, wr) < nwg

t=1
we can upper bound the expected number of mistakes by

87~ —~vZt 4+ Alna + nwy

<
EM(SwIN, S) < c

Hence, we want to choog&-) andC such thaC' is as big as possible. For that fix-) and
letr* be a value wherg(r*) becomes 2.Since the left hand sides of equations (4) and (5)
are continuous we gét* — 5)(1 — 1/«) > C andr*(1 —) + Ina > 0, and combining
these two we have

na—(a—1)8
—

¢ <

This can be achieved by choosip§) as in (RAND) which satisfies (4) and (5) féf =
(Ina — (o — 1)3) /. Of course we have to chooge< 2. Putting everything together
we have the following lemma.

LEmMMA 1 Letj3 < 122 and assume that

a—1

y<l4+hw, <6

forall 1 <i<nand0 <t <T —1wherew,, are the weights used by algorithBwIn.
ThenforallS € S(Z*,Z~,A,n)

02~ —~Zt + Alna + nwyg
Ina—(a—1)8

EM(SWIN,S) < «

if SwIN uses the functiop(-) given by (RAND).

144 P. AUER AND M. K. WARMUTH

For the deterministic variant of our algorithm the functjgr) has to take values ifD, 1}.
Thus, we get from (4) and (5) that — 3)(1 — 1/«a) > C andr(1 — @) + Ina > C which
yields

na—(a—1)8
a+1 '

C<

This we get by choosing(-) as in (DET) which satisfies (4) and (5) féf= (lna — (o —
1)B)/(e +1).

LEMMA 2 Letj < 122 and assume that
vy<l+nw,; <9

forall 1 <i<mnand0 <¢<T —1wherew,; are the weights used by algorithBwIn.
ThenforallS € S(Z*+,Z~,A,n)

872~ —~Zt + Alna + nwg
Ina—(a—1)8

M(SwIN, Z, A) < (e + 1)

if SWIN uses the functiop(-) given by (DET).

Now we are going to calculate bounglsi on1 + Inw; ;. We get these bounds by lower
and upper bounding ;. Obviouslyw, ; > § for all £ and:. The upper bound ony ; is
derived from the observation that, ; > w;_1,; only if y, = 1, p(r;) < 1, andz,; = 1.
Sincep(r) = 1 for r > 1 with thep(-) as in (RAND) or (DET), and, > w;_1 ;x;; we
find thatw; ; < a. Thusln % <14 Inw; <lIn(ea).

LemMa 3 If 2 <wy < athenforallt =0,...,7 andi = 1,...,n the weightsu, ; of
algorithm Swin with functionp(-) as in (RAND) or (DET) satisfy

é <w S«

n
and

In % <14 lnw; <ln(eq).

" ;

Proof of Theorems 1 and 2.By Lemmas 1, 2, and 3. m|
Proof of Theorem 3 In the non-shifting case wheng;, = --- = uyr = uanduy =

(0,...,0) term (1) is O for allt > 2, and it is
D(UO,Wo) — D(ul,Wo) =k+ klnwo

for¢ = 1 wherek = >_", u; is the number of attributes in the target disjunctioriThus,
in the non-shifting case the terfif — — vZ* in the upper bounds of Lemmas 1 and 2 can
be replaced by In -, which gives the theorem.]

ewop

TRACKING THE BEST DISJUNCTION 145

7.1. Proofs for specific choices of the parameters

Proofs of Theorems 4 and 5By Theorem 3 and Corollary 1 and simple calculations.
Proof of Theorem 6. Fora = 1 + € andwy = k/n we get from Theorem 3 that

Eln 3 +Aln(l+¢) +k
In(1+¢)

M(SWIN, S) < (¢+¢€)

with ¢ = 1 and
klnZp +Aln(1 +¢€) + k

M(SWIN, S) < (c+¢€) (it

with ¢ = 2. Then
kln % + Aln(1+¢) + k
(c+e) In(1+¢)

kln
€—€2/2

< (c+e)A+(c+e)

1
< (c+e)A+(c+e) +Ekln%

— A+ (6A+gkln%) +(c+1+e)kln%.

In the second inequality we used that 1. Substituting the values farande gives the
statements of the theorem. |
Proof of Theorem7.Fora = 1+¢, 8 =
EM(SWIN, S) < (c+€)-
4)
.Aln(l +e)+ZIn (%)/2 + min{n, Z} - In (62?11;)6)/2 + e
In(1+¢€)—€e?/lnet

——, andwy = '6 we get from Corollary 1 that

lne

with ¢ = 1 and
M(SWIN, S) < (¢+¢€)-
Am(1+)+ ZIn (EE2m) [o 4 mingn, 7} n (B85) /24w
In(1+€) —€?/Ine?

with ¢ = 2. Then fore <1/10

Aln(l+€)+ ZIn (M)/2+min{n, Z}-In (e@h{je)e)/2+ =T

(C+€) ln(1+€)—62/lne_1
In(1 + €) (Z +min{n, Z})In (M)/Q
= e E)Aln(l +e€) —€/Ine? +lete In(l1+¢)—e2/Ilne !
< (Z +min{n, Z})In (%)/2

(c+e)A (1—&-1112%) +(c+e)

€

146 P. AUER AND M. K. WARMUTH

< cA+ (eA + i(Z + min{n, Z}) In (eﬁz))
e+ e

Ine-1

CA+6A<2+

+ (c+14€)(Z+ min{n, Z})In (n>/2

2
2(c+e) elc+1+e)
+
Ine-t c

IN

for

\/cZ+min{n,Z} lnﬂ
V2 A zZ"

This gives the bounds of the theorem.]

8. Lower Bounds

We start by proving a lower bound for the shifting case. We show that for any learning
algorithmL there are example sequené&®r which the learning algorithm makes “many”
mistakes. Although not expressed explicitly in the following theorems we will show that
these sequence$ can be generated by target scheddes= (uy,...,ur) where each
disjunctionu, consists of exactly one literal, i.aa, = e; for some;j wheree; is the jth
unit vector.

Ouir first lower bound shows that for any deterministic algorithm there is an adversarial
example sequence i§i(Z, A, n) such that the algorithm makes at least + Q(Z logn)
mistakes. Related upper bounds are given in Theorems 4 and 7.

THEOREM 8 For any deterministic learning algorithrh, anyn > 2, anyZ > 1, and any
A > 0, there is an example sequenges S(Z, A, n) such that

M(L,S) > 2A + {ZQHJ llog,] .

Proof. For notational convenience we assume that 2, v > 1, andZ = 2R — 1,
R > 1. We construct the example sequetscdepending on the predictions of the learning
algorithm such that the learning algorithm makes a mistake in each trial. We patrtition the
trials into R rounds. The firsR — 1 rounds have length, the last round has length+ 2 A.
Attribute errors will occur only within the la®tA + 1 trials. We choose the target schedule
such that during each round the target disjunction does not change and is equal tg some
Atthe beginning of each round there are- 2¥ disjunctions consistent with the examples
of this round. Afterl trials in this round there are sti¥—! consistent disjunctions: we
construct the attribute vector by setting half of the attributes which correspond to consistent
disjunctions to 1, and the other attributes to 0. Furthermore, wg setl — g; wherey, is
the prediction of the algorithm for this attribute vector. Obviously half of the disjunctions
are consistent with this example, and thus the number of consistent disjunctions is divided
by 2 in each trial. Thus, in each of the filBt— 1 rounds there is a disjunction consistent
with all v examples of this round.

TRACKING THE BEST DISJUNCTION 147

After v — 1 trials in the last round there are two disjunctions consistent with the examples
of this round. For the remainin®A + 1 trials we fix some attribute vector for which these
two disjunctions predict differently, and again we get= 1 — ¢,. Thus, one of these
disjunctions disagrees at masttimes with the classifications in the8d + 1 trials. This
disagreement can be seen as causedl&yribute errors, so that the disjunction is consistent
with all the examples in the last round upAaattribute errors. O

Remark. Observe that a lower bound for deterministic algorithms like
VL3S : M(L,S)>m

implies the following lower bound on randomized algorithms:
VL 35 : EM(L,S) > %

This follows from the fact that any randomized learning algorithm can be turned into
a deterministic learning algorithm which makes at most twice as many mistakes as the
randomized algorithm makes in the average. This means that Theorem 8 implies for any
randomized algorithnl. that there are sequencése S(Z, A,n) with EM(L,S) >

A+ |Z] |logyn].

Remark. As an open problem it remains to show lower bounds that have the same form
as the upper bounds of Theorem 7 with the square root term.

Now we turn to the non-shifting case. Hoek= 1 there are already lower bounds known.

LEMMA 4 (Littlestone & Warmuth, 1994For any deterministic learning algorithnd,
anyn > 2, and anyA > 0, there is an example sequenges Sy(1, A, n) such that

M(L,S) > 2A + log, n.

A slight modification of results in (Cesa-Bianchi et al., 1997) gives

LeEMmMA 5 (Cesa-Bianchi et al., 1997There are functiong(n) and A(n, n) such that for
anyn > 0, any randomized learning algorithth, anyn > n(n), and anyA > A(n,n),
there is an example sequenges Sy(1, A, n) such that

EM(L,S)>A+(1—n)VvAlnn.
We extend these results and obtain the following theorems. The corresponding upper
bounds are given in Theorems 5 and 6.

THEOREM 9 For any deterministic learning algorithmy, anyk > 1, anyn > 2k, and
any A > 0, there is an example sequenge= Sy(k, A, n) such that

M(L,S) > 24 + klog, L%J .

148 P. AUER AND M. K. WARMUTH

THEOREM 10 There are functions(n) and A(n,n) such that for any; > 0, any ran-
domized learning algorithnii, anyk > 1, anyn > kn(n), and anyA > kA(n,n), there
is an example sequengec Sy(k, A, n) such that

EM(L,S) > A+ (1 —17),/AkIn [%J

Proof of Theorems 9 and 10. The proof is by a reduction to the cake= 1. Then
attributes are divided inté groupsG;, i« = 1,...,k, such that each group consists of
n; > | 2| attributes. Furthermore, we choose numbers> |4, i = 1,...,k, with
Zle a; = A. For each groujgs; we choose a sequeng € Sy(1, a;, n;), according to
Lemmas 4 and 5, respectively, such that for any learning algorithm

M(L,“ Sz) > 20,1‘ + 1Og2 Uz (6)
and

EM(LZ, Sz) 2 a; + (1 - ’I])\/ a; lnni. (7)

These sequence$ can be extended to sequencgswith n attributes by setting all the
attributes not in groupto 0. Concatenating the expanded sequerftjage get a sequence

S. Itis easy to see thaf € S(k, A,n). On the other hand, any learning algorithm for
sequences with attributes can be transformed into a learning algorithm for sequences
with a smaller number of attributes by setting the missing attributés tdhus on each
subsequenc#; of S learning algorithml makes at least as many mistakes as given in (6)
and (7), respectively. Hence

M(L,S) > 2A + klog, L%J

and

k
EM(L,S) > 2A+(1-n)Y_ {

1

=)

m{

—k

>3
| I

?

Vv
=3
| S—

[
—
=

—_—

EalES
|
—_

24+ (1—1n) Akln[

>3

> 2A+(1—2n)4/AkIn

,_
>3

|

if the function A(n,) is chosen appropriately. O

The last theorem shows that for randomized algorithms the constdnbefore A in
Theorem 6 is optimal and that the best constant before the square root terfh, i§.in

TRACKING THE BEST DISJUNCTION 149

9. Conclusion

We developed algorithn$win which is a variant ofWinnow for on-line learning of
disjunctions subject to target shift. We proved worst case mistake boungs/farwhich

hold for any sequence of examples and any kind of target drift (where the amount of
error in the examples and the amount of shifts is bounded). There is a deterministic and a
randomized version &(fwin where the analysis of the randomized version is more involved
and interesting in its own right. Lower bounds show that our worst case mistake bounds are
close to optimal in some cases. Computer experiments highlight that an explicit mechanism
is necessary to make the algorithm adaptive to target shifts.

Acknowledgments

We would like to thank Mark Herbster and Nick Littlestone for valuable discussions. We also
thank the anonymous referees for their helpful comments. M. K. Warmuth acknowledges
the support of the NSF grant CCR 9700201.

Notes

1. By expanding the dimension 8, learning non-monotone disjunctions reduces to the monotone case.

2. Essentially one has to describe when a shift occurs and which literal is shifted. Obviously there is no necessity
to shift if the current disjunction is correct on the current example. Thus only in some of the trials in which the
current disjunction would make a mistake the disjunction is shifted. Since the target schedule might make up
to A mistakes due to attribute errors and there are upsbifts, we get up tol + 7 trials which are candidates
for shifts. ChoosingZ of them and choosing one literal for each shift gi\(éé}z)nz possibilities.

3. For this potential function the weights must be positive. Negative weights are handled via a reduction (Little-
stone, 1988, 1989; Haussler et al., 1994).

4. In the worst case the randomized algorithm makes a mistake with probability 1/2 in each trial and the deter-
ministic algorithm always breaks the tie in the wrong way such that it makes a mistake in each trial. Thus the
number of mistakes of the deterministic algorithm is twice the expected number of mistakes of the randomized
algorithm.

5. Formally letr1, 72, ... — r* withp(r*) = 1andp(r;) < 1. Such asequendge;) exists ifp(-) is not equal
to 1 everywhere and if there is a valuavith p(r) = 1. For functionsp(-) not satisfying these conditions
algorithm Swin can be forced to make an unbounded number of mistakes even in the absence of attribute
errors.

References

Auer, P. (1993). On-line learning of rectangles in noisy environment®rdneedings of the Sixth Annual ACM
Conference on Computational Learning The@up. 253—261). New York, NYU: ACM Press.

Auer, P., & Warmuth, M. K. (1995). Tracking the best disjunctionPinceedings of the 36th Annual Symposium
on Foundations of Computer Scien@p. 312—-321). |IEEE Computer Society Press.

Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D. P., Schapire, R. E., & Warmuth, M. K. (1997). How to
use expert adviceJournal of the ACM (To appear)

Cesa-Bianchi, N., Freund, Y., Helmbold, D. P., & Warmuth, M. K. (1996). On-line prediction and conversion
strategies.Machine Learning25, 71-110. (An extended abstract appeareBurocolt ‘93

Cover, T. (1965). Behavior of sequential predictors of binary sequenc@sodeedings of the 4th Prague Confer-
ence on Information Theory, Statistical Decision Functions and Random Prog¢pgs@63—-272). Publishing
House of the Czechoslovak Academy of Sciences.

150 P. AUER AND M. K. WARMUTH

Duda, R. O., & Hart, P. E. (1973)attern classification and scene analyswiley.

Haussler, D., Kivinen, J., & Warmuth, M. K. (1994)ight worst-case loss bounds for predicting with expert advice
(Tech. Rep. No. UCSC-CRL-94-36). University of California, Santa Cruz, Computer Research Laboratory.
(An extended abstract appeared in Eurocolt 1995. To appéBEi& Transactions on Information Theoyy

Haykin, S. (1994).Neural networks: a comprehensive foundatiddew York, NY: Macmillan.

Helmbold, D. P., & Schapire, R. E. (1997). Predicting nearly as well as the best pruning of a decision tree.
Machine Learning27, 51-68.

Herbster, M., & Warmuth, M. (1998). Tracking the best expdvtachine Learning (Appears in this special
issue.)

Jumarie, G. (1990)Relative information.Springer-Verlag.

Kapur, J. N., & Kesavan, H. K. (1992Entropy optimization principles with applicationé.cademic Press, Inc.

Kivinen, J., & Warmuth, M. K. (1997). Additive versus exponentiated gradient updates for linear prediction.
Information and Computatiqgri32(1), 1-64.

Kivinen, J., Warmuth, M. K., & Auer, P. (1997). The perceptron algorithm vs. Winnow: linear vs. logarithmic
mistake bounds when few input variables are relevantificial Intelligence (To appear)

Littlestone, N. (1988). Learning when irrelevant attributes abound: A new linear-threshold algokithchine
Learning 2, 285-318.

Littlestone, N. (1989). Mistake bounds and logarithmic linear-threshold learning algorithmisnpublished
doctoral dissertation, Technical Report UCSC-CRL-89-11, University of California Santa Cruz.

Littlestone, N. (1991). Redundant noisy attributes, attribute errors, and linear threshold learning using Winnow.
In Proceedings of the 4th Annual Workshop on Computational Learning Ttippryl47-156). San Mateo,

CA: Morgan Kaufmann.

Littlestone, N., & Warmuth, M. K. (1994). The weighted majority algorithdmformation and Computatign
10§2), 212-261.

Maass, W., & Warmuth, M. K. (1998). Efficient learning with virtual threshold gatelsformation and
Computation (To appear)

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the
brain. Psych. Rey65, 386—407. (Reprinted iNeurocomputingMIT Press, 1988).)

Vovk, V. (1990). Aggregating strategies. Pmoceedings of the 3rd Annual Workshop on Computational Learning
Theory(pp. 371-383). Morgan Kaufmann.

Received September 16, 1997
Accepted December 12, 1997
Final Manuscript February 10, 1998

