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Abstract. Littlestone developed a simple deterministic on-line learning algorithm for learningk-literal disjunc-
tions. This algorithm (calledWinnow) keeps one weight for each of then variables and does multiplicative
updates to its weights. We develop a randomized version ofWinnow and prove bounds for an adaptation of
the algorithm for the case when the disjunction may change over time. In this case a possible targetdisjunction
scheduleT is a sequence of disjunctions (one per trial) and theshift sizeis the total number of literals that are
added/removed from the disjunctions as one progresses through the sequence.

We develop an algorithm that predicts nearly as well as the best disjunction schedule for an arbitrary sequence of
examples. This algorithm that allows us to track the predictions of the best disjunction is hardly more complex than
the original version. However, the amortized analysis needed for obtaining worst-case mistake bounds requires
new techniques. In some cases our lower bounds show that the upper bounds of our algorithm have the right
constant in front of the leading term in the mistake bound and almost the right constant in front of the second
leading term. Computer experiments support our theoretical findings.

Keywords: on-line learning, prediction, concept drift,Winnow, computational learning theory, amortized
analysis

1. Introduction

One of the most significant successes of the Computational Learning Theory community
has been Littlestone’s formalization of an on-line model of learning and the development
of his algorithmWinnow for learning disjunctions (Littlestone, 1989, 1988). The key
feature ofWinnow is that when learning disjunctions of constant size, the number of
mistakes of the algorithm grows only logarithmically with the input dimension. For many
other standard algorithms such as the Perceptron Algorithm (Rosenblatt, 1958), the number
of mistakes can grow linearly in the dimension (Kivinen, Warmuth, & Auer, 1997). In the
meantime, a number of algorithms similar toWinnow have been developed that also show
the logarithmic growth of the loss bounds in the dimension (Littlestone & Warmuth, 1994;
Vovk, 1990; Cesa-Bianchi et al., 1997; Haussler, Kivinen, & Warmuth, 1994).

In this paper we give a refined analysis ofWinnow, develop a randomized version of
the algorithm, give lower bounds that show that both the deterministic and the randomized
version are close to optimal, and adapt both versions so that they can be used to track the
predictions of the best disjunction.

* An extended abstract appeared in (Auer & Warmuth, 1995).
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Consider the following by now standard on-line learning model (Littlestone, 1989, 1988;
Vovk, 1990; Cesa-Bianchi et al., 1997). Learning proceeds in trials. In trialt ≥ 1 the
algorithm is presented with an instancext (in our case ann-dimensional binary vector) that
is used to produce a binary predictionŷt. The algorithm then receives a binary classification
yt of the instance and incurs a mistake ifŷt 6= yt. The goal is to minimize the number of
mistakes of the algorithm for an arbitrary sequence of examples〈(xt, yt)〉. This is of course
a hopeless scenario: for any deterministic algorithm an adversary can always choose the
sequence so that the algorithm makes a mistake in each trial. A more reasonable goal is to
minimize the number of mistakes of the algorithm compared to the minimum number of
mistakes made by any concept from a comparison class.

1.1. The (non-shifting) basic setup

In this paper we use monotone1 k-literal disjunctions as the comparison class. If the
dimension (number of Boolean attributes/literals) isn then such disjunctions are Boolean
formulas of the formxi1 ∨ xi2 ∨ . . .∨ xik , where the (distinct) indicesij lie in {1, . . . , n}.
The number of classification errors of such a disjunction with respect to a sequence of
examples is simply the total number of misclassifications that this disjunction produces on
the sequence. The goal is to develop algorithms whose number of mistakes is not much
larger than the number of classification errors of the best disjunction, for any sequence of
examples.

In this paper we consider the case where the mistakes of the best (“target”) disjunction are
caused by attribute errors. The number of attribute errors of an example(x, y) ∈ {0, 1}n×
{0, 1} with respect to a target disjunctionu is the minimum number of attributes/bits ofx
that have to be changed so that for the resultingx′, u(x′) = y. The number of attribute
errors for a sequence of examples with respect to a target concept is simply the total number
of such errors for all examples of the sequence. Note, that if the targetu is a k-literal
monotone disjunction then the number of attribute errors is at mostk times the number of
classification errors with respect tou (i.e., k times the number of examples(x, y) in the
sequence for whichu(x) 6= y).

Winnow can be tuned as a function ofk so that it makes at mostO(A + k ln(n/k))
mistakes on any sequence of examples where the best disjunction incurs at mostA attribute
errors (Littlestone, 1988). We give a randomized version ofWinnow and give improved
tunings of the original algorithm. The new algorithm can be tuned based onk andA so that
its expected mistake bound is at mostA+(2+o(1))

√
Ak ln(n/k) (forAÀ k ln(n/k)) on

any sequence of examples for which there is a monotonek-literal disjunction with at most
A attribute errors. We also show how the original deterministic algorithm can be tuned so
that its number of mistakes is at most2A + (2

√
2 + o(1))

√
Ak ln(n/k) for the same set

of sequences.

Our lower bounds show that these bounds are very close to optimal. We show that for any
algorithm the expected number of mistakes must be at leastA+ (1− o(1))

√
Ak ln(n/k).

So our upper bound has the correct constant on the leading term and almost the optimal
constant on the second term. For deterministic algorithms our lower bounds show that the
constant on the leading term is optimal.
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Our lower bounds for both the deterministic and the randomized case cannot be improved
significantly because there are essentially matching upper bounds achieved by non-efficient
algorithms with the correct factors on the firstand the second term. These algorithms
use

(
n
k

)
experts (Cesa-Bianchi et al., 1997): each expert simply computes the value of a

particulark-literal disjunction and one weight is kept per expert. This amounts to expanding
then-dimensional Boolean inputs into

(
n
k

)
Boolean inputs and then using single literals

(=experts) (Littlestone & Warmuth, 1994; Vovk, 1990; Cesa-Bianchi et al., 1997) as the
comparison class instead ofk-literal disjunctions. The expected number of mistakes of the
randomized algorithm is at mostQ+

√
Qk ln(n/k) + k log2(n/k)/2 whereQ is a bound

on the number of classification errors of the bestk-literal disjunction. The mistake bound
of the deterministic algorithm is exactly twice as high. Observe that these algorithms have
to use aboutnk weights, and that they need that much time in each trial to calculate their
prediction and update the weights. Thus, their run time is exponential ink.

In contrast, our algorithm uses onlyn weights. On the other hand, the noise in the upper
bounds of our efficient algorithm is measured in attribute errors rather than classification
errors. This arises since we are using just one weight per attribute. Recall that a classification
error with respect to ak-literal disjunction can equate to up tok attribute errors. To capture
errors that affect up tok attributes efficiently the expansion to

(
n
k

)
experts seems to be

unavoidable. Nevertheless, it is surprising that our version ofWinnow is able to get
the right factor before the number of attribute errorsA and for the randomized version
almost the right factor before the square root term. In some sense,Winnow compresses(
n
k

)
weights to onlyn weights. At this point we don’t have a combinatorial interpretation

of our weights. Such an interpretation was only found for the single literal (expert) case
(Cesa-Bianchi, Freund, Helmbold, & Warmuth, 1996).

As Littlestone (1991) we use an amortized analysis with an entropic potential function to
obtain our worst-case loss bounds. However, besides the more careful tuning of the bounds
we take the amortized analysis method a significant step further by proving mistake bounds
of our algorithm as compared to the bestshiftingdisjunction.

1.2. Shifting disjunctions

Assume that a disjunctionu is specified by ann-dimensional binary vector, where the
components with value1 correspond to the monotone literals of the disjunction. For two
disjunctionsu andu′ the Hamming distance||u− u′||1 measures how many literals have
to be “shifted” to obtainu′ from u. A disjunction scheduleT for a sequence of examples
of lengthT is simply a sequence ofT disjunctionsut. The(shift) sizeof the scheduleT
is
∑T
t=1 ||ut−1 − ut||1 (u0 is the all zero vector). In the original non-shifting case allut

(t ≥ 1) are equal to somek-literal disjunctionu, and according to the above definition the
“shift size” isk.

At trial t the scheduleT predicts with disjunctionut. We define the number of attribute
errors of an example sequence〈(xt, yt)〉 with respect to a scheduleT as the total number
of attributes that have to be changed in the sequence of examples to make it consistent with
the scheduleT , i.e., for which the changed instancesx′t satisfyut(x′t) = yt.

Note, that the loss bounds for the non-shifting case can be written ascA+O(
√
AB+B),

whereB = log2

(
n
k

)
is the number of bits it takes to describe a disjunction withk literals, and
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wherec = 1 for the randomized andc = 2 for the deterministic algorithm. Surprisingly, we
were able to prove bounds of the same form for the shifting disjunction case.B is now the
number of bits it takes to describe the best scheduleT andA is the number of attribute errors
of this schedule. IfZ is the shift size of scheduleT then it takeslog2

(
A+Z
Z

)
+ Z log2N

bits to describe a scheduleT in respect to a given sequence of examples.2

Our worst-case mistake bounds are similar to bounds obtained for “competitive algo-
rithms” in that we compare the number of mistakes of our algorithm against the number
of attribute errors of the best off-line algorithm that is given the whole sequence ahead of
time. The off-line algorithm still incursA attribute errors and here we bound the additional
loss of the on-line algorithm over the number of attribute errors of the best schedule (as
opposed to the coarser method of bounding the ratio of on-line over off-line).

Winnow does multiplicative updates to its weights. Whenever the algorithm makes a
mistake then the weights of all the literals for which the corresponding bit in the current
input instance is one are multiplied by a factor. In the case ofWinnow2, the version of
Winnow this paper is based on (Littlestone, 1988), this factor is eitherα or 1/α, where
α > 1 is a parameter of the algorithm. The multiplicative weight updates might cause the
weights of the algorithm to decay rather rapidly. Since any literal might become part of
the disjunction schedule even when it was misleading during the early part of the sequence
of examples, any algorithm that is to predict well as compared to the best disjunction
schedule must be able to recover weights quickly. Our extension ofWinnow2 simply
adds a step to the original algorithm that resets a weight toβ/n whenever it drops below
this boundary. Similar methods for lower bounding the weights were used in the algorithm
Wml of (Littlestone & Warmuth, 1994) which was designed for predicting as well as the
best shifting single literal (which is called expert in (Cesa-Bianchi et al., 1997)). In addition
to generalizing the work of (Littlestone & Warmuth, 1994) to arbitrary size disjunctions we
were able to optimize the constant in the leading term of the mistake bound ofWinnow
and develop a randomized version of the algorithm.

In (Herbster & Warmuth, 1998) the work of (Littlestone & Warmuth, 1994) was general-
ized in a different direction. The focus there is to predict as well as the best shifting expert,
where “well” is measured in terms of other loss functions than the discrete loss (counting
mistakes) which is the loss function used in this paper. Again, the basic building block is
a simple on-line algorithm that uses multiplicative weight updates (Vovk, 1990; Haussler
et al., 1994) but now the predictions and the feedback in each trial are real-valued and lie
in the interval[0, 1]. The class of loss functions includes the natural loss functions of log
loss, square loss and Hellinger loss. Now the loss does not occur in “large” discrete units.
Instead the loss in a trial may be arbitrarily small and thus more sophisticated methods
are needed for recovering small weights quickly (Herbster & Warmuth, 1998) than simply
lower bounding the weights.

Why are disjunctions so important? Whenever a richer class is built by (small) unions
of a large number of simple basic concepts, our methods can be applied. Simply expand
the original input into as many inputs as there are basic concepts. Since our mistake
bounds only depend logarithmically on the number of basic concepts, we can even allow
exponentially many basic concepts and still have polynomial mistake bounds. This method
was previously used for developing noise robust algorithms for predicting nearly as well
as the best discretizedd-dimensional axis-parallel box (Maass & Warmuth, 1998; Auer,
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1993) or as well as the best pruning of a decision tree (Helmbold & Schapire, 1997). In
these cases a multiplicative algorithm maintains one weight for each of the exponentially
many basic concepts. However, for the above examples, the multiplicative algorithms with
the exponentially many weights can still be simulated efficiently. Now, for example, the
methods of this paper immediately lead to an efficient algorithm for predicting as well as the
best shiftingd-dimensional box. Thus, by combining our methods with existing algorithms,
we can design efficient learning algorithms with provably good worst-case loss bounds for
more general shifting concepts than disjunctions.

Besides doing experiments on practical data that exemplify the merits of our worst-
case mistake bounds, this research also leaves a number of theoretical open problems.
Winnow is an algorithm for learning arbitrary linear threshold functions and our methods
for tracking the best disjunction still need to be generalized to learning this more general
class of concepts.

We believe that the techniques developed here for learning how to predict as well as the
best shifting disjunction will be useful in other settings such as developing algorithms that
predict nearly as well as the best shifting linear combination. Now the discrete loss has to
be replaced by a continuous loss function such as the square loss, which makes this problem
more challenging.

1.3. Related work

There is a natural competitor toWinnow which is the well known Perceptron algorithm
(Rosenblatt, 1958) for learning linear threshold functions. This algorithm does additive
instead of multiplicative updates. The classical Perceptron Convergence Theorem gives a
mistake bound for this algorithm (Duda & Hart, 1973; Haykin, 1994), but this bound islinear
in the number of attributes (Kivinen et al., 1997) whereas the bounds for theWinnow-
like algorithms arelogarithmic in the number of attributes. The proof of the Perceptron
Convergence Theorem can also be seen as an amortized analysis. However, the potential
function needed for the perceptron algorithm is quite different from the potential function
used for the analysis ofWinnow. If wt is the weight vector of the algorithm in trialtandu is
a target weight vector, then for the perceptron algorithm||u−wt||22 is the potential function
where||.||2 is the Euclidean length of a vector. In contrast the potential function used for the
analysis ofWinnow (Littlestone, 1988, 1989) that is also used in this paper is the following
generalization3 of relative entropy (Cover, 1965):

∑n
i=1[wi − ui + ui ln(ui/wi)].

In the case of linear regression, a framework was developed (Kivinen & Warmuth, 1997)
for deriving updates from the potential function used in the amortized analysis. The same
framework can be adapted to derive both the Perceptron algorithm andWinnow. The
different potential functions for the algorithms lead to the additive and multiplicative algo-
rithms, respectively. The Perceptron algorithm is seeking a weight vector that is consistent
with the examples but otherwise minimizes some Euclidean length.Winnow instead,
minimizes a relative entropy and is thus rooted in the Minimum Relative Entropy Principle
of Kullback (Kapur & Kesavan, 1992; Jumarie, 1990).
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1.4. Organization of the paper

In the next section we formally define the notation we will use throughout the paper. Most
of it has already been discussed in the introduction. Section 3 presents our algorithm and
Section 4 gives the theoretical results for this algorithm. In Section 5 we consider some more
practical aspects, namely how the parameters of the algorithm can be tuned to achieve good
performance. Section 6 reports some experimental results. The analysis of our algorithm
and the proofs for Section 4 are given in Section 7. Lower bounds on the number of mistakes
made by any algorithm are shown in Section 8 and we conclude in Section 9.

2. Notation

A target scheduleT = 〈u1, . . . ,uT 〉 is a sequence of disjunctions represented byn-ary
bit vectorsut = (ut,1, . . . , ut,n) ∈ {0, 1}n. The size of the shift from disjunctionut−1

to disjunctionut is zt = ||ut−1 − ut||1 =
∑n
i=1 |ut−1,i − ut,i|. The total shift size of

scheduleT is Z =
∑T
t=1 zt where we assume thatu0 = (0, . . . , 0). If u1 = · · · = uT

thenZ = k = ||u0 − u1||1 =
∑n
i=1 u1,i. To get more precise bounds for the case when

there are shifts in the target schedule we will distinguish between shifts where a literal is
added to the disjunction and shifts where a literal is removed from the disjunction. Thus,
we definez+

t = |{1 ≤ i ≤ n : ut−1,i = 0 andut,i = 1}|, z−t = |{1 ≤ i ≤ n : ut−1,i =
1 andut,i = 0}|, and thenZ+ =

∑T
t=1 z

+
t as the number of times a literal is switched on,

andZ− =
∑T
t=1 z

−
t as the number of times a literal is switched off. Clearlyz+

t + z−t = zt
andZ+ + Z− = Z.

A sequence of examplesS = 〈(x1, y1), . . . , (xT , yT )〉 consists of attribute vectors
xt = (xt,1, . . . , xt,n) ∈ {0, 1}n and classificationsyt ∈ {0, 1}. The prediction of dis-
junction ut for attribute vectorxt is ut(xt) = 1 if ut · xt =

∑n
i=1 ut,ixt,i ≥ 1 and

ut(xt) = 0 if ut · xt = 0. The number of attribute errorsat at trial t with respect to a
target scheduleT is the minimal number of attributes that have to be changed, resulting in
x′t, such thatut(x′t) = yt. That isat = minx′∈{0,1}n{||x′t − xt||1 : ut(x′t) = yt}. The

total number of attribute errors of sequenceS with respect to scheduleT isA =
∑T
t=1 at.

We denote byS(Z,A, n) the class of example sequencesS with n attributes which are
consistent with some target scheduleT with shift sizeZ and with at mostA attribute
errors. If we wish to distinguish between positive and negative shifts we denote the corre-
sponding class byS(Z+, Z−, A, n) whereZ+ andZ− are the numbers of literals added
and removed, respectively, in the target schedule. ByS0(k,A, n) we denote the class of
example sequencesS with n attributes which are consistent with some non-shifting tar-
get scheduleT = 〈u, . . . ,u〉 of sizek (i.e.,

∑n
i=1 ui = k) and with at mostA attribute

errors. For the case that only upper bounds onZ, Z+, Z−, or k are known we de-
note the corresponding classes byS≤(Z,A, n) =

⋃
z≤Z S(z,A, n), S≤(Z+, Z−, A, n) =⋃

z+≤Z+,z−≤Z− S(z+, z−, A, n), andS≤0 (k,A, n) =
⋃
κ≤k S0(κ,A, n), respectively.

The loss of a learning algorithmL on an example sequenceS is the number of misclas-
sifications
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Table 1.Algorithm Swin.

Parameters:
The algorithm uses parametersα > 1, β ≥ 0, w0 > 0, and a functionp : R→ [0, 1].

Initialization:
Set the weights to initial valuesw0,1 = · · · = w0,n = w0.

Prediction:
In each trialt ≥ 1 setrt = wt−1 · xt and predict

ŷt =

{
1 with probabilityp(rt)
0 with probability1− p(rt).

Receive the binary classificationyt.

If yt = p(rt) then setwt = wt−1, else

Update:
If yt 6= p(rt) then for alli = 1, . . . , n set

1. w′t,i = wt−1,iα
xt,i(2yt−1),

2. wt,i = max
{
w′t,i,

β
n

}
.

M(L, S) =
T∑
t=1

|ŷt − yt|

whereŷt ∈ {0, 1} is the binary prediction of the learning algorithmL in trial t.

3. The Algorithm

We present algorithmSwin (“Shifting Winnow”), see Table 1, an extension of Little-
stone’sWinnow2 algorithm (Littlestone, 1991). Our extension incorporates a randomiza-
tion of the algorithm, and it guarantees a lower bound on the weights used by the algorithm.
The algorithm maintains a vector ofnweights for thenattributes. Bywt = (wt,1, . . . , wt,n)
we denote the weights at the end of trialt, andw0 denotes the initial value of the weight
vector. In trialt the algorithm predicts using the weight vectorwt−1. The prediction of the
algorithm depends onrt = wt−1 · xt =

∑n
i=1 wt−1,ixt,i, and a functionp : R → [0, 1].

The algorithm predicts 1 with probabilityp(rt), and it predicts 0 with probability1−p(rt).
(To obtain a deterministic algorithm one has to choose a functionp : R → {0, 1}.) After
predicting the algorithm receives the classificationyt. If yt = p(rt) thenwt = wt−1, i.e.
the weight vector is not modified. Sinceyt ∈ {0, 1} andp(rt) ∈ [0, 1] this can only occur
when the prediction was deterministic, i.e.,p(rt) ∈ {0, 1}, and correct. An update occurs
in all other cases when the prediction was wrong orp(rt) ∈ (0, 1).

The updates of the weights are performed in two steps. The first step is the original
Winnow update, and the second step guarantees that no weight is smaller thanβ

n for some
parameterβ (a similar approach was taken in (Littlestone & Warmuth, 1994)). Observe
that the weights are changed only if the probability of making a mistake was non-zero. For
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the deterministic algorithm this means that the weights are changed only if the algorithm
made a mistake. Furthermore, thei-th weight is modified only ifxt,i = 1. The weight is
increased (multiplied byα) if yt = 1, and it is decreased (divided byα) if yt = 0. The
parametersα, β,w0, and the functionp(·), have to be set appropriately. A good choice for
functionp(·) is the following: for a randomized prediction let

p(r) =


0 if r ≤ lnα+2β

α+1
(α−1)(r(α+1)−lnα−2β)

2(lnα−(α−1)β) if lnα+2β
α+1 < r < lnα

α−1

1 if r ≥ lnα
α−1 .

(RAND)

and for a deterministic version of the algorithm let

p(r) =

{
0 if r ≤ α lnα+(α−1)β

α2−1

1 if r > α lnα+(α−1)β
α2−1 .

(DET)

For the randomized version one has to chooseβ < lnα
α−1 . Observe that (DET) is obtained

from (RAND) by choosing the thresholdΘ = α lnα+(α−1)β
α2−1 such thatp(Θ) = 1/2 in

(RAND). This corresponds to the straightforward conversion from a randomized prediction
algorithm into a deterministic prediction algorithm.

Theoretically good choices of the parametersα, β, andw0 are given in the next section
and practical issues for tuning the parameters are discussed in Section 5.

4. Results

In this section we give rigorous bounds on the (expected) number of mistakes ofSwin,
first in general and then for specific choices ofα, β, andw0, all with p(·) chosen from
(RAND) or (DET). These bounds can be shown to be close to optimal for adversarial
example sequences; for details see Section 8.

Theorem 1 (randomized version) Letα > 1, 0 ≤ β ≤ lnα
α−1 , w0 = β

n , andp(·) as
in (RAND). Then for allS ∈ S(Z+, Z−, A, n)

EM(Swin, S) ≤ α
A lnα+ Z+ ln

(
n
eβ

)
+ Z− ln(eα) + β

lnα− (α− 1)β
.

If β ≤ n
e then the bound holds for allS ∈ S≤(Z+, Z−, A, n).

Theorem 2 (deterministic version) Letα > 1, 0 ≤ β ≤ lnα
α−1 , w0 = β

n , andp(·)
as in (DET). Then for allS ∈ S(Z+, Z−, A, n)

M(Swin, S) ≤ (α+ 1)
A lnα+ Z+ ln

(
n
eβ

)
+ Z− ln(eα) + β

lnα− (α− 1)β
.

If β ≤ n
e then the bound holds for allS ∈ S≤(Z+, Z−, A, n).
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Theorem 3 (non-shifting case) Let α > 1, β = 0 andw0 > 0. Then for all
S ∈ S0(k,A, n)

EM(Swin, S) ≤ α
k ln 1

ew0
+A lnα+ nw0

lnα

if Swin uses the functionp(·) given by (RAND), and

M(Swin, S) ≤ (α+ 1)
k ln 1

ew0
+A lnα+ nw0

lnα

if Swin uses the functionp(·) given by (DET).
If w0 ≤ 1

e then the bounds hold for allS ∈ S≤0 (k,A, n).

Remark. The usual conversion of a boundM for the randomized algorithm into a bound
for the deterministic algorithm would give2M as the deterministic bound.4 But observe
that our deterministic bound is just1 + 1/α times the randomized bound.

Since at any time a disjunction cannot contain more thann literals we haveZ+ − Z− ≤
min{n,Z} which gives the following corollary.

Corollary 1 Letα > 1, 0 ≤ β ≤ min
{

lnα
α−1 ,

n
e2α

}
, andw0 = β

n . If p(·) as in (RAND)

then for allS ∈ S≤(Z,A, n)

EM(Swin, S) ≤ α
A lnα+ Z ln

(
αn
β

)/
2 + min{n,Z} · ln

(
n

e2αβ

)/
2 + β

lnα− (α− 1)β
.

If p(·) as in (DET) then for allS ∈ S≤(Z,A, n)

M(Swin, S) ≤ (α+ 1)
A lnα+ Z ln

(
αn
β

)/
2 + min{n,Z} · ln

(
n

e2αβ

)/
2 + β

lnα− (α− 1)β
.

At first we give results on the number of mistakes ofSwin, if no information besidesn,
the total number of attributes, is given.

Theorem 4 Letα = 1.44, β = 0.125, w0 = β
n , andp(·) be as in (RAND). Then for all

S ∈ S≤(Z,A, n)

EM(Swin, S) ≤ 1.7 ·A+ 2.33 · Z · (lnn+ 2.44)
+2.33 ·min{n,Z} · lnn+ 0.581.

Letα = 1.32, β = 0.0269,w0 = β
n , andp(·) be as in (DET). Then for allS ∈ S≤(Z,A, n)

M(Swin, S) ≤ 2.4 ·A+ 4.32 · Z · (lnn+ 3.89)
+4.32 ·min{n,Z} · (lnn+ 1.34) + 0.232.

Letα = 1.44, β = 0, w0 = 1
n , andp(·) be as in (RAND). Then for allS ∈ S0(k,A, n)
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EM(Swin, S) ≤ 1.44 ·A+ 3.95 · k · (lnn− 1) + 3.95.

If n ≥ 3 then the above bound holds for allS ∈ S≤0 (k,A, n). For n ≤ 2 we have
EM(Swin, S) ≤ 1.44 ·A+ 3.95 for all S ∈ S≤0 (n,A, n).

Letα = 1.75, β = 0, w0 = 1
n , andp(·) be as in (DET). Then for allS ∈ S0(k,A, n)

M(Swin, S) ≤ 2.75 ·A+ 4.92 · k · (lnn− 1) + 4.92.

If n ≥ 3 then the above bound holds for allS ∈ S≤0 (k,A, n). For n ≤ 2 we have
M(Swin, S) ≤ 2.75 ·A+ 4.92 for all S ∈ S≤0 (n,A, n).

In Section 8 we will show that these bounds are optimal up to constants. IfA andZ
are known in advance then the parameters of the algorithm can be tuned to obtain even
better results. If for example in the non-shifting case the numberk of attributes in the target
concept is known we get

Theorem 5 Let α = 1.44, β = 0, w0 = k
n , andp(·) be as in (RAND). Then for all

S ∈ S0(k,A, n)

EM(Swin, S) ≤ 1.44 ·A+ 3.95 · k · ln n
k
.

If k ≤ n
e then the above bound holds for allS ∈ S≤0 (k,A, n). For k ≥ n

e we setw0 = 1
e

and getEM(Swin, S) ≤ 1.44 ·A+ 3.95 · ne for all S ∈ S≤0 (n,A, n).
Letα = 1.75, β = 0, w0 = k

n , andp(·) be as in (DET). Then for allS ∈ S0(k,A, n)

M(Swin, S) ≤ 2.75 ·A+ 4.92 · k · ln n
k
.

If k ≤ n
e then the above bound holds for allS ∈ S≤0 (k,A, n). For k ≥ n

e we setw0 = 1
e

and getM(Swin, S) ≤ 2.75 ·A+ 4.92 · ne for all S ∈ S≤0 (k,A, n).

Of particular interest is the case whenA is the dominant term, i.e.,AÀ k ln n
k .

Theorem 6 LetA ≥ k ln n
k , α = 1 +

√
k
A ln n

k , β = 0, w0 = k
n , andp(·) be as in

(RAND). Then for allS ∈ S0(k,A, n)

EM(Swin, S) ≤ A+ 2
√
Ak ln

n

k
+ 3k ln

n

k
.

If k ≤ n
e then the above bound holds for allS ∈ S≤0 (k,A, n). For k ≥ n

e , A ≥ n
e , α =

1+
√

n
Ae ,w0 = 1

e , we haveEM(Swin, S) ≤ A+2
√
An/e+3ne for all S ∈ S≤0 (n,A, n).

If A ≥ 2k ln n
k , α = 1 +

√
2k
A ln n

k , β = 0, w0 = k
n , andp(·) be as in (DET), then for

all S ∈ S0(k,A, n)

M(Swin, S) ≤ 2A+ 2
√

2Ak ln
n

k
+ 4k ln

n

k
.
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If k ≤ n
e then the above bound holds for allS ∈ S≤0 (k,A, n). For k ≥ n

e , A ≥ 2ne ,

α = 1 +
√

2n
Ae , w0 = 1

e , we haveM(Swin, S) ≤ 2A + 2
√

2An/e + 4ne for all S ∈
S≤0 (n,A, n).

In the shifting case we get for dominantAÀ Z lnn

Theorem 7 Let ε =
√

Z+min{n,Z}
2A ln An

Z , andA andZsuch thatε ≤ 1
10 . Then for

α = 1 + ε, β = ε
ln ε−1 , w0 = β

n , andp(·) as in (RAND), and for allS ∈ S≤(Z,A, n),

EM(Swin, S) ≤ A+

√
2A(Z + min{n,Z}) ln

An

Z

(
1 +

2
ln ε−1

+
3ε
2

)

If ε =
√

Z+min{n,Z}
A ln An

Z ≤ 1
10 , α = 1 + ε, β = ε

ln ε−1 , w0 = β
n , andp(·) as in (DET),

then for allS ∈ S≤(Z,A, n),

M(Swin, S) ≤ 2A+ 2

√
A(Z + min{n,Z}) ln

An

Z

(
1 +

3
ln ε−1

+ ε

)
.

In Section 8 we will show that in Theorems 6 and 7 the constants onA are optimal.
Furthermore, we can show for the randomized algorithm that also the magnitude of the
second order term in Theorem 6 is optimal.

5. Practical Tuning of the Algorithm

In this section we give some thoughts on how the parametersα, β, andw0 of Swin should
be chosen for particular target schedules and sequences of examples. Our recommendations
are based on our mistake bounds which hold forany target schedule and foranysequence
of examples with appropriate bounds on the number of shifts and attribute errors. Thus,
it has to be mentioned that, since many target schedules and many example sequences are
not worst case, our bounds usually overestimate the number of mistakes made bySwin.
Therefore, parameter settings different from our recommendations might result in a smaller
number of errors for a specific target schedule and example sequence. On the other hand,
Swin is quite insensitive to small changes in the parameters (see Section 6) and the effect
of such changes should be benign.

If little is known about the target schedule or the example sequence, then the parameter
settings of Theorems 4 or 5 are advisable since they balance well between the effect of
target shifts and attribute errors. If good estimates for the number of target shifts and the
number of attribute errors are known then good parameters can be calculated by numerically
minimizing the bounds in Theorems 1, 2, 3 or Corollary 1, respectively.

If the average rate of target shifts and attribute errors is known such thatZ ≈ rZT and
A ≈ rAT with rZ > 0, rA ≥ 0, then for largeT the error raterT = M(Swin, S)/T is by
Corollary 1 approximately upper bounded by
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rT ¹ α
rA lnα+ rZ ln

(
αn
β

)/
2

lnα− (α− 1)β

for randomized predictions and by

rT ¹ (α+ 1)
rA lnα+ rZ ln

(
αn
β

)/
2

lnα− (α− 1)β

for deterministic predictions. Again, optimal choices forα andβ can be obtained by
numerical minimization.

6. Experimental Results

The experiment reported in this section is not meant to give a rigorous empirical evaluation
of algorithmSwin. Instead, it is intended as an illustration of the typical behavior ofSwin,
compared with the theoretical bound and also with a version ofWinnow which was not
modified to adapt to shifts in the target schedule.

In our experiment we usedn = 100 boolean attributes and a target scheduleT of length
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Figure 1. Shifts in the target schedule used in the experiment.

T = 9, 000 which starts with 4 active literals. After 1,000 trials one of the literals is
switched off and after another 1,000 trials another literal is switched on. This switching on
and switching off of literals continues as depicted in Figure 1. ThusZ− = 4 andZ+ = 8
(since there are initially 4 active literals).

The example sequence〈(xt, yt)〉 was chosen such that for half of the examplesyt = 1
and for the other halfyt = 0. The values of attributes not appearing in the target schedule
were chosen at random such thatxt,i = 1 with probability 1/2. For examples withyt = 1
exactly one of the active attributes (chosen at random) was set to 1. For examples with
attribute errors all relevant attributes were either set to 1 (for the caseyt = 0 where
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at =
∑n
i=1 ut,i) or set to 0 (for the caseyt = 1 whereat = 1). Attribute errors occurred

at trialst = 1500, 2250, 3500, 4250, 5500, 6250, 7500, 8250 with yt = 1 andat = 1 and
at trialst = 2500, 4500, 6500, 8500 with yt = 0 andat = 4.

Figure 2 shows the performance ofSwin compared with the theoretical bound where the
parameters were set by numerically minimizing the bound of Corollary 1 as described in
the previous section, which yieldedα = 2, β = 0.067, w0 = β/n. The theoretical bound
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Figure 2. Comparison ofSwin with the theoretical bound for a particular target schedule and sequence of
examples. Shifts and attribute errors are indicated byz+, z−, anda.

at trial t is calculated from the actual number of shifts and attribute errors up to this trial.
Thus, an increase of the bound is due to a shift in the target schedule or an attribute error
at this trial. In Figure 2 the reasons for these increases are indicated byz+ for a literal
switched on,z− for a literal switched off, anda for attribute errors.

Figure 2 shows that the theoretical bound very accurately depicts the behavior ofSwin,
although it overestimates the actual number of mistakes by some amount. It can be seen
that switching off a literal causes far less mistakes than switching on a literal, as predicted
by the bound. Also, the relation between attribute errors and mistakes can be seen.

The performance ofSwin for the whole sequence of examples is shown in Figure 3 and
it is compared with the performance of a version ofWinnow which was not modified for
target shifts. As can be seenSwin adapts very quickly to shifts in the target schedule. On
the other hand, the unmodified version ofWinnow makes more and more mistakes for
each shift.

The unmodified version ofWinnow we used is justSwin with β = 0. Thus, the weights
are not lower bounded and can become arbitrarily small which causes a large number of
mistakes if the corresponding literal becomes active. We used the sameα for the unmodified
version but we setw0 = 4/n which is optimal for the initial part of the target schedule.
Therefore, the unmodifiedWinnow adapts very quickly to this initial part, but then it
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Figure 3. A version ofWinnow which does not lower bound the weights makes many more mistakes thanSwin.

makes an increasing number of mistakes for each shift in the target schedule. For each shift
the number of mistakes made approximately doubles.

In the last plot, Figure 4, we compare the performance ofSwin with tuned parameters to
the performance ofSwin with the generic parameter setting given by Theorem 4. Although
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Figure 4. Tuned parameters ofSwin versus the generic parametersα = 1.44, β = 0.125.

the tuned parameters do perform better the difference is relatively small.
The overall conclusion of our experiment is that, first, the theoretical bounds capture the

actual performance of the algorithm quite well, second, that some mechanism of lower
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bounding the weights ofWinnow is necessary to make the algorithm adaptive to target
shifts, and third, that moderate changes in the parameters do not change the qualitative
behavior of the algorithm.

7. Amortized Analysis

In this section we first prove the general bounds given in Theorems 1 and 2 for the random-
ized and for the deterministic version ofSwin. Then, from these bounds we calculate the
bounds given in Theorems 4-7 for specific choices of the parameters.

The analysis of the algorithm proceeds by showing that the distance between the weight
vector of the algorithmwt, and vectorut representing the disjunction at trialt, decreases,
if the algorithm makes a mistake. The potential/distance function used for the previous
analysis ofWinnow (Littlestone, 1988, 1989, 1991) is the following generalization of
relative entropy to arbitrary non-negative weight vectors:

D(u,w) =
n∑
i=1

[
wi − ui + ui ln

ui
wi

]
.

(This distance function was also used for the analysis of theEgu regression algorithm
(Kivinen & Warmuth, 1997), which shows thatWinnow is related to theEgu algorithm.)
By taking derivatives it is easy to see that the distance is minimal and equal to 0 if and only
if wt = ut. With the convention that0 ln 0 = 0 and the assumption thatu ∈ {0, 1}n the
distance function simplifies to

D(u,w) =
n∑
i=1

[wi − ui − ui lnwi] .

We start with the analysis of the randomized algorithm with shifting target disjunctions.
The other cases will be derived easily from this analysis. At first we calculate how much
the distanceD(ut,wt) changes between trials:

D(ut−1,wt−1)−D(ut,wt)
= D(ut−1,wt−1)−D(ut,wt−1) (1)

+D(ut,wt−1)−D(ut,w′t) (2)

+D(ut,w′t)−D(ut,wt). (3)

Observe that term (1) might be non-zero in any trial, but that terms (2) and (3) are non-zero
only if the weights are updated in trialt. For anyγ, δ with

γ ≤ 1 + lnwt,i ≤ δ

for all 1 ≤ i ≤ n and0 ≤ t ≤ T − 1 we can lower bound term (1) by

D(ut−1,wt−1)−D(ut,wt−1) =
n∑
i=1

(ut,i − ut−1,i)(1 + lnwt−1,i)

≥ γz+
t − δz−t .
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If the weights are updated in trialt, term (2) is bounded by

D(ut,wt−1)−D(ut,w′t)

=
n∑
i=1

[
wt−1,i − w′t,i + ut,i ln

w′t,i
wt−1,i

]

=
n∑
i=1

wt−1,i(1− αxt,i(2yt−1)) +
n∑
i=1

ut,ixt,i(2yt − 1) lnα

=
n∑
i=1

wt−1,ixt,i(1− α2yt−1)

+
n∑
i=1

ut,i(xt,i − x′t,i)(2yt − 1) lnα+
n∑
i=1

ut,ix
′
t,i(2yt − 1) lnα

≥ rt(1− α2yt−1)− at lnα+ yt(2yt − 1) lnα.

The third equality holds since eachxt,i ∈ {0, 1}. Remember thatx′t is obtained fromxt
by removing the attribute errors fromxt. The last inequality follows from the fact that∑n
i=1 ut,ix

′
t,i ≥ 1 if yt = 1 and

∑n
i=1 ut,ix

′
t,i = 0 if yt = 0.

At last observe thatwt,i 6= w′t,i only if yt = 0 andw′t,i <
β
n . In this casew′t,i =

wt−1,iα
−1 ≥ β

αn and we get for term (3)

D(ut,w′t)−D(ut,wt) =
n∑
i=1

[
w′t,i − wt,i + ut,i ln

wt,i
w′t,i

]
≥ −β(1− α−1).

Summing over all trials we have to consider the trials where the weights are updated and
we have to distinguish between trials withyt = 0 and trials withyt = 1. Let

M0 = {1 ≤ t ≤ T : yt = 0, p(rt) > 0},
M1 = {1 ≤ t ≤ T : yt = 1, p(rt) < 1},

denote these trials. Then, by the above bounds on terms (1), (2), and (3) we have

T∑
t=1

D(ut−1,wt−1)−D(ut,wt)

≥
T∑
t=1

[
γz+
t − δz−t − at lnα

]
+
∑
t∈M0

[
rt(1− α−1)− β(1− α−1)

]
+
∑
t∈M1

[rt(1− α) + lnα] .

Now we want to lower bound the sum overM0 andM1 by the expected (or total) number
of mistakes of the algorithm. We can do this by choosing an appropriate functionp(·,wt).
We denote bypt the probability that the algorithm makes a mistake in trialt. Then, the
expected number of mistakes is

∑T
t=1 pt. Observe thatpt = 0 for any t 6∈ M0 ∪M1,
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since in this caseyt = p(rt). Furthermore,pt = p(rt) if t ∈ M0 andpt = 1 − p(rt) if
t ∈M1. Thus, it is sufficient to find a functionp(·) and a constantC with

∀r : p(r) > 0 : r(1− α−1)− β(1− α−1) ≥ Cp(r) (4)

and

∀r : p(r) < 1 : r(1− α) + lnα ≥ C(1− p(r)). (5)

For such a functionp(·) satisfying (4) and (5) we get

T∑
t=1

D(ut−1,wt−1)−D(ut,wt) ≥ γZ+ − δZ− −A lnα+ C · EM(Swin, S),

assuming thatS ∈ S(Z+, Z−, A, n). Since

T∑
t=1

(D(ut−1,wt−1)−D(ut,wt)) = D(u0,w0)−D(uT ,wT ) ≤ nw0

we can upper bound the expected number of mistakes by

EM(Swin, S) ≤ δZ− − γZ+ +A lnα+ nw0

C
.

Hence, we want to choosep(·) andC such thatC is as big as possible. For that fixp(·) and
let r∗ be a value wherep(r∗) becomes 1.5 Since the left hand sides of equations (4) and (5)
are continuous we get(r∗ − β)(1− 1/α) ≥ C andr∗(1− α) + lnα ≥ 0, and combining
these two we have

C ≤ lnα− (α− 1)β
α

.

This can be achieved by choosingp(·) as in (RAND) which satisfies (4) and (5) forC =
(lnα− (α− 1)β)/α. Of course we have to chooseβ < lnα

α−1 . Putting everything together
we have the following lemma.

Lemma 1 Letβ < lnα
α−1 and assume that

γ ≤ 1 + lnwt,i ≤ δ

for all 1 ≤ i ≤ n and0 ≤ t ≤ T − 1 wherewt,i are the weights used by algorithmSwin.
Then for allS ∈ S(Z+, Z−, A, n)

EM(Swin, S) ≤ αδZ
− − γZ+ +A lnα+ nw0

lnα− (α− 1)β

if Swin uses the functionp(·) given by (RAND).
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For the deterministic variant of our algorithm the functionp(·) has to take values in{0, 1}.
Thus, we get from (4) and (5) that(r− β)(1− 1/α) ≥ C andr(1−α) + lnα ≥ C which
yields

C ≤ lnα− (α− 1)β
α+ 1

.

This we get by choosingp(·) as in (DET) which satisfies (4) and (5) forC = (lnα− (α−
1)β)/(α+ 1).

Lemma 2 Letβ < lnα
α−1 and assume that

γ ≤ 1 + lnwt,i ≤ δ

for all 1 ≤ i ≤ n and0 ≤ t ≤ T − 1 wherewt,i are the weights used by algorithmSwin.
Then for allS ∈ S(Z+, Z−, A, n)

M(Swin, Z,A) ≤ (α+ 1)
δZ− − γZ+ +A lnα+ nw0

lnα− (α− 1)β

if Swin uses the functionp(·) given by (DET).

Now we are going to calculate boundsγ, δ on1 + lnwt,i. We get these bounds by lower
and upper boundingwt,i. Obviouslywt,i ≥ β

n for all t andi. The upper bound onwt,i is
derived from the observation thatwt,i > wt−1,i only if yt = 1, p(rt) < 1, andxt,i = 1.
Sincep(r) = 1 for r ≥ 1 with thep(·) as in (RAND) or (DET), andrt ≥ wt−1,ixt,i we
find thatwt,i ≤ α. Thusln eβ

n ≤ 1 + lnwt,i ≤ ln(eα).

Lemma 3 If βn ≤ w0 ≤ α then for allt = 0, . . . , T andi = 1, . . . , n the weightswt,i of
algorithmSwin with functionp(·) as in (RAND) or (DET) satisfy

β

n
≤ wt,i ≤ α

and

ln
eβ

n
≤ 1 + lnwt,i ≤ ln(eα).

Proof of Theorems 1 and 2.By Lemmas 1, 2, and 3. 2

Proof of Theorem 3 In the non-shifting case whereu1 = · · · = uT = u and u0 =
(0, . . . , 0) term (1) is 0 for allt ≥ 2, and it is

D(u0,w0)−D(u1,w0) = k + k lnw0

for t = 1 wherek =
∑n
i=1 ui is the number of attributes in the target disjunctionu. Thus,

in the non-shifting case the termδZ− − γZ+ in the upper bounds of Lemmas 1 and 2 can
be replaced byk ln 1

ew0
, which gives the theorem. 2
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7.1. Proofs for specific choices of the parameters

Proofs of Theorems 4 and 5.By Theorem 3 and Corollary 1 and simple calculations.2

Proof of Theorem 6. Forα = 1 + ε andw0 = k/n we get from Theorem 3 that

EM(Swin, S) ≤ (c+ ε)
k ln n

ek +A ln(1 + ε) + k

ln(1 + ε)

with c = 1 and

M(Swin, S) ≤ (c+ ε)
k ln n

ek +A ln(1 + ε) + k

ln(1 + ε)

with c = 2. Then

(c+ ε)
k ln n

ek +A ln(1 + ε) + k

ln(1 + ε)

≤ (c+ ε)A+ (c+ ε)
k ln n

k

ε− ε2/2

≤ (c+ ε)A+ (c+ ε)
1 + ε

ε
k ln

n

k

= cA+
(
εA+

c

ε
k ln

n

k

)
+ (c+ 1 + ε)k ln

n

k
.

In the second inequality we used thatε ≤ 1. Substituting the values forc andε gives the
statements of the theorem. 2

Proof of Theorem 7. Forα = 1 + ε, β = ε
ln ε−1 , andw0 = β

n we get from Corollary 1 that

EM(Swin, S) ≤ (c+ ε)·

·
A ln(1 + ε) + Z ln

(
(1+ε)n ln ε−1

ε

)/
2 + min{n,Z} · ln

(
n ln ε−1

e2(1+ε)ε

)/
2 + ε

ln ε−1

ln(1 + ε)− ε2/ ln ε−1

with c = 1 and

M(Swin, S) ≤ (c+ ε)·

·
A ln(1 + ε) + Z ln

(
(1+ε)n ln ε−1

ε

)/
2 + min{n,Z} · ln

(
n ln ε−1

e2(1+ε)ε

)/
2 + ε

ln ε−1

ln(1 + ε)− ε2/ ln ε−1

with c = 2. Then forε ≤ 1/10

(c+ ε)
A ln(1 + ε) + Z ln

(
(1+ε)n ln ε−1

ε

)/
2 + min{n,Z} · ln

(
n ln ε−1

e2(1+ε)ε

)/
2 + ε

ln ε−1

ln(1 + ε)− ε2/ ln ε−1

≤ (c+ ε)A
ln(1 + ε)

ln(1 + ε)− ε2/ ln ε−1
+ (c+ ε)

(Z + min{n,Z}) ln
(

(1+ε)n ln ε−1

ε

)/
2

ln(1 + ε)− ε2/ ln ε−1

≤ (c+ ε)A
(

1 +
2ε

ln ε−1

)
+ (c+ ε)

(Z + min{n,Z}) ln
(
n
ε2

)/
2

ε
(1 + ε)
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≤ cA+
(
εA+

c

2ε
(Z + min{n,Z}) ln

( n
ε2

))
+

2(c+ ε)εA
ln ε−1

+ (c+ 1 + ε)(Z + min{n,Z}) ln
( n
ε2

)/
2

≤ cA+ εA

(
2 +

2(c+ ε)
ln ε−1

+
ε(c+ 1 + ε)

c

)
for

ε =

√
c

2
Z + min{n,Z}

A
ln
An

Z
.

This gives the bounds of the theorem. 2

8. Lower Bounds

We start by proving a lower bound for the shifting case. We show that for any learning
algorithmL there are example sequencesS for which the learning algorithm makes “many”
mistakes. Although not expressed explicitly in the following theorems we will show that
these sequencesS can be generated by target schedulesT = 〈u1, . . . ,uT 〉 where each
disjunctionut consists of exactly one literal, i.e.,ut = ej for somej whereej is thejth
unit vector.

Our first lower bound shows that for any deterministic algorithm there is an adversarial
example sequence inS(Z,A, n) such that the algorithm makes at least2A + Ω(Z logn)
mistakes. Related upper bounds are given in Theorems 4 and 7.

Theorem 8 For any deterministic learning algorithmL, anyn ≥ 2, anyZ ≥ 1, and any
A ≥ 0, there is an example sequenceS ∈ S(Z,A, n) such that

M(L, S) ≥ 2A+
⌊
Z + 1

2

⌋
blog2 nc .

Proof. For notational convenience we assume thatn = 2ν , ν ≥ 1, andZ = 2R − 1,
R ≥ 1. We construct the example sequenceS depending on the predictions of the learning
algorithm such that the learning algorithm makes a mistake in each trial. We partition the
trials intoR rounds. The firstR−1 rounds have lengthν, the last round has lengthν+ 2A.
Attribute errors will occur only within the last2A+ 1 trials. We choose the target schedule
such that during each round the target disjunction does not change and is equal to someej .

At the beginning of each round there aren = 2ν disjunctions consistent with the examples
of this round. Afterl trials in this round there are still2ν−l consistent disjunctions: we
construct the attribute vector by setting half of the attributes which correspond to consistent
disjunctions to 1, and the other attributes to 0. Furthermore, we setyt = 1− ŷt whereŷt is
the prediction of the algorithm for this attribute vector. Obviously half of the disjunctions
are consistent with this example, and thus the number of consistent disjunctions is divided
by 2 in each trial. Thus, in each of the firstR − 1 rounds there is a disjunction consistent
with all ν examples of this round.
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After ν−1 trials in the last round there are two disjunctions consistent with the examples
of this round. For the remaining2A+ 1 trials we fix some attribute vector for which these
two disjunctions predict differently, and again we setyt = 1 − ŷt. Thus, one of these
disjunctions disagrees at mostA times with the classifications in these2A+ 1 trials. This
disagreement can be seen as caused byA attribute errors, so that the disjunction is consistent
with all the examples in the last round up toA attribute errors. 2

Remark. Observe that a lower bound for deterministic algorithms like

∀L ∃S : M(L, S) ≥ m

implies the following lower bound on randomized algorithms:

∀L ∃S : EM(L, S) ≥ m

2
.

This follows from the fact that any randomized learning algorithm can be turned into
a deterministic learning algorithm which makes at most twice as many mistakes as the
randomized algorithm makes in the average. This means that Theorem 8 implies for any
randomized algorithmL that there are sequencesS ∈ S(Z,A, n) with EM(L, S) ≥
A+

⌊
Z
4

⌋
blog2 nc.

Remark. As an open problem it remains to show lower bounds that have the same form
as the upper bounds of Theorem 7 with the square root term.

Now we turn to the non-shifting case. Fork = 1 there are already lower bounds known.

Lemma 4 (Littlestone & Warmuth, 1994)For any deterministic learning algorithmL,
anyn ≥ 2, and anyA ≥ 0, there is an example sequenceS ∈ S0(1, A, n) such that

M(L, S) ≥ 2A+ log2 n.

A slight modification of results in (Cesa-Bianchi et al., 1997) gives

Lemma 5 (Cesa-Bianchi et al., 1997)There are functionsn(η) andA(n, η) such that for
anyη > 0, any randomized learning algorithmL, anyn ≥ n(η), and anyA ≥ A(n, η),
there is an example sequenceS ∈ S0(1, A, n) such that

EM(L, S) ≥ A+ (1− η)
√
A lnn.

We extend these results and obtain the following theorems. The corresponding upper
bounds are given in Theorems 5 and 6.

Theorem 9 For any deterministic learning algorithmL, anyk ≥ 1, anyn ≥ 2k, and
anyA ≥ 0, there is an example sequenceS ∈ S0(k,A, n) such that

M(L, S) ≥ 2A+ k log2

⌊n
k

⌋
.
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Theorem 10 There are functionsn(η) andA(n, η) such that for anyη > 0, any ran-
domized learning algorithmL, anyk ≥ 1, anyn ≥ kn(η), and anyA ≥ kA(n, η), there
is an example sequenceS ∈ S0(k,A, n) such that

EM(L, S) ≥ A+ (1− η)
√
Ak ln

⌊n
k

⌋
.

Proof of Theorems 9 and 10. The proof is by a reduction to the casek = 1. Then
attributes are divided intok groupsGi, i = 1, . . . , k, such that each group consists of
ni ≥

⌊
n
k

⌋
attributes. Furthermore, we choose numbersai ≥

⌊
A
k

⌋
, i = 1, . . . , k, with∑k

i=1 ai = A. For each groupGi we choose a sequenceSi ∈ S0(1, ai, ni), according to
Lemmas 4 and 5, respectively, such that for any learning algorithmLi

M(Li, Si) ≥ 2ai + log2 ni (6)

and

EM(Li, Si) ≥ ai + (1− η)
√
ai lnni. (7)

These sequencesSi can be extended to sequencesS′i with n attributes by setting all the
attributes not in groupi to 0. Concatenating the expanded sequencesS′i we get a sequence
S. It is easy to see thatS ∈ S(k,A, n). On the other hand, any learning algorithm for
sequences withn attributes can be transformed into a learning algorithm for sequences
with a smaller number of attributes by setting the missing attributes to0. Thus on each
subsequenceS′i of S learning algorithmL makes at least as many mistakes as given in (6)
and (7), respectively. Hence

M(L, S) ≥ 2A+ k log2

⌊n
k

⌋
and

EM(L, S) ≥ 2A+ (1− η)
k∑
i=1

√⌊
A

k

⌋
ln
⌊n
k

⌋

≥ 2A+ (1− η)
√
Ak ln

⌊n
k

⌋
− k
√

ln
⌊
n
k

⌋
A
k − 1

≥ 2A+ (1− 2η)
√
Ak ln

⌊n
k

⌋
if the functionA(n, η) is chosen appropriately. 2

The last theorem shows that for randomized algorithms the constant of1 beforeA in
Theorem 6 is optimal and that the best constant before the square root term is in[1, 2].
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9. Conclusion

We developed algorithmSwin which is a variant ofWinnow for on-line learning of
disjunctions subject to target shift. We proved worst case mistake bounds forSwin which
hold for any sequence of examples and any kind of target drift (where the amount of
error in the examples and the amount of shifts is bounded). There is a deterministic and a
randomized version ofSwin where the analysis of the randomized version is more involved
and interesting in its own right. Lower bounds show that our worst case mistake bounds are
close to optimal in some cases. Computer experiments highlight that an explicit mechanism
is necessary to make the algorithm adaptive to target shifts.
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Notes

1. By expanding the dimension to2n, learning non-monotone disjunctions reduces to the monotone case.

2. Essentially one has to describe when a shift occurs and which literal is shifted. Obviously there is no necessity
to shift if the current disjunction is correct on the current example. Thus only in some of the trials in which the
current disjunction would make a mistake the disjunction is shifted. Since the target schedule might make up
toAmistakes due to attribute errors and there are up toZ shifts, we get up toA+Z trials which are candidates
for shifts. ChoosingZ of them and choosing one literal for each shift gives

(
A+Z
Z

)
nZ possibilities.

3. For this potential function the weights must be positive. Negative weights are handled via a reduction (Little-
stone, 1988, 1989; Haussler et al., 1994).

4. In the worst case the randomized algorithm makes a mistake with probability 1/2 in each trial and the deter-
ministic algorithm always breaks the tie in the wrong way such that it makes a mistake in each trial. Thus the
number of mistakes of the deterministic algorithm is twice the expected number of mistakes of the randomized
algorithm.

5. Formally letr1, r2, . . .→ r∗ with p(r∗) = 1 andp(rj) < 1. Such a sequence〈rj〉 exists ifp(·) is not equal
to 1 everywhere and if there is a valuer with p(r) = 1. For functionsp(·) not satisfying these conditions
algorithmSwin can be forced to make an unbounded number of mistakes even in the absence of attribute
errors.
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