
Mach Learn (2007) 69:143–167

DOI 10.1007/s10994-007-5003-0

Tracking the best hyperplane with a simple budget
Perceptron

Giovanni Cavallanti · Nicolò Cesa-Bianchi ·
Claudio Gentile

Received: 7 September 2006 / Revised: 15 December 2006 / Accepted:
21 December 2006 / Published online: 2 February 2007
Springer Science + Business Media, LLC 2007

Abstract Shifting bounds for on-line classification algorithms ensure good perfor-
mance on any sequence of examples that is well predicted by a sequence of changing
classifiers. When proving shifting bounds for kernel-based classifiers, one also faces
the problem of storing a number of support vectors that can grow unboundedly, unless
an eviction policy is used to keep this number under control. In this paper, we show
that shifting and on-line learning on a budget can be combined surprisingly well. First,
we introduce and analyze a shifting Perceptron algorithm achieving the best known
shifting bounds while using an unlimited budget. Second, we show that by applying to
the Perceptron algorithm the simplest possible eviction policy, which discards a ran-
dom support vector each time a new one comes in, we achieve a shifting bound close
to the one we obtained with no budget restrictions. More importantly, we show that
our randomized algorithm strikes the optimal trade-off U = �(

√
B) between budget

B and norm U of the largest classifier in the comparison sequence. Experiments are
presented comparing several linear-threshold algorithms on chronologically-ordered
textual datasets. These experiments support our theoretical findings in that they show

Editors: Hans Ulrich Simon, Gabor Lugosi and Avrim Blum

An extended abstract appeared in the Proceedings of the 19th Annual Conference on Learning Theory,
Springer, 2006. The work of all authors was supported in part by the IST Programme of the European
Community, under the PASCAL Network of Excellence, IST-2002-506778.

G. Cavallanti () . N. Cesa-Bianchi
DSI, Università di Milano, via Comelico 39, 20135 Milano, Italy
e-mail: cavallanti@dsi.unimi.it

N. Cesa-Bianchi
e-mail: cesa-bianchi@dsi.unimi.it

C. Gentile
DICOM, Università dell’Insubria, Varese, Italy
e-mail: claudio.gentile@uninsubria.it

Springer

�

144 Mach Learn (2007) 69:143–167

to what extent randomized budget algorithms are more robust than deterministic ones
when learning shifting target data streams.

Keywords Pattern classification . Mistake bounds . Perceptron algorithm . Budget
algorithms

1 Introduction

On-line or incremental learning is a powerful technique for building kernel-based clas-
sifiers. On-line algorithms, like the kernel Perceptron algorithm and its many variants,
are typically easy to implement, efficient to run, and have strong performance guar-
antees. In this paper, we study two important aspects related to incremental learning:
tracking ability and memory boundedness. The need to track a target arises from the
fact that on-line algorithms are often designed to perform well with respect to the
best fixed classifier in hindsight within a given comparison class. However, this is a
weak guarantee: in many real-world tasks, such as categorization of text generated by
a newsfeed, it is not plausible to assume that a fixed classifier could perform consis-
tently well on a long sequence of newsitems generated by the feed. For this reason, a
“shifting” performance model has been introduced (see, e.g., Littlestone & Warmuth,
1994; Herbster & Warmuth, 1998; Auer & Warmuth, 1998; Herbster & Warmuth,
2001; Kivinen, Smola, & Williamson, 2004, and references therein) where the on-line
algorithm is evaluated against an arbitrary sequence of comparison classifiers. In this
shifting model, which is strictly harder than the traditional nonshifting performance
model, the tracking ability refers to the fact that the performance of the algorithm is
good to the extent that the data sequence is well predicted by a sequence of classifiers
whose coefficients may change with time under certain constraints. If the algorithm
is kernel-based we face the additional issue of the time and space needed to com-
pute the classifier. In fact, kernel-based learners typically use a subset of previously
observed data instances to encode a classifier (borrowing terminology from the Sup-
port Vector Machine literature (e.g., Vapnik, 1998; Schölkopf & Smola, 2002, we call
these instances “support vectors”). The problem is that nearly all on-line algorithms
need to store a new support vector after each prediction mistake. Thus, the number of
supports grows unboundedly unless the data sequence is linearly separable in the Re-
producing Kernel Hilbert Space (RKHS) induced by the kernel under consideration.
To address this specific issue, variants of the Perceptron algorithm using a fixed bud-
get of support vectors have been proposed by Crammer, Kandola, and Singer (2004)
and Weston, Bordes, and Bottou (2005), and analyzed by Dekel, Shalev-Shwartz, and
Singer (2006). These algorithms use a rule that, once the number of stored supports
has reached the budget, evicts a support from the storage each time a new vector
comes in. The eviction rule at the basis of our Randomized Budget Perceptron al-
gorithm is surprisingly simple: On a mistaken trial, the algorithm adds in the new
support vector after an old one has been chosen at random from the storage and
discarded.

Since the tracking ability is naturally connected to a weakened dependence on
the past, memory boundedness could be viewed as a way to obtain a good shifting
performance. In fact, we will show that our Randomized Budget Perceptron algorithm

Springer

Mach Learn (2007) 69:143–167 145

has a strong performance guarantee in the shifting model. In addition, and more
importantly, this algorithm strikes the optimal trade-off U = �(

√
B) between the

largest norm U of a classifier in the comparison sequence and the given budget B.
This improves on U = O(

√
B/(ln B)) obtained by Dekel, Shalev-Shwartz, and Singer

(2006) via a more complicated algorithm.
We ran experiments comparing our random budget policy with other rules (such as

the “least recent” eviction rule adopted by Dekel, Shalev-Shwartz, and Singer, 2006)
on shifting datasets derived from the Reuters Corpus Volume 1 (Reuters, 2000). These
experiments show the effectiveness of budget algorithms when learning time-changing
datasets and, in particular, the robustness of our random budget policy as compared
to deterministic ones.

The paper is organized as follows. In the rest of this section we introduce our
main notation, along with preliminary definitions. Section 2 introduces the Shifting
Perceptron algorithm, a simple variant of the Perceptron algorithm achieving the best
known shifting bound without budget restriction. This result will be used as a yardstick
for the results of Section 3, where the Randomized Budget Perceptron algorithm is
introduced and analyzed. Section 4 reports the experimental results. Finally, Section 5
is devoted to conclusions and open problems.

All of our algorithms are kernel-based. For notational simplicity, however, our
analyses will be carried out using the linear kernel.

1.1 Basic definitions, preliminaries and notation

An example is a pair (x, y), where x ∈ Rd is an instance vector and y ∈ {−1, +1}
is the associated binary label. We consider the standard on-line learning model of
Angluin (1988) and Littlestone (1988), in which learning proceeds in a sequence of
trials. In the generic trial t the algorithm observes instance xt and outputs a prediction
ŷt ∈ {−1, +1} for the label yt associated with xt . We say that the algorithm has made
a prediction mistake if ŷt �= yt .

In this paper, we consider variants of the standard Perceptron algorithm of Block
(1962) and Novikoff (1962). At each trial t = 1, 2, . . . this algorithm predicts yt

through the linear-threshold function ŷt = SGN(w�xt), where w ∈ Rd is a weight
vector that is initially set to the zero vector 0. If a mistake is made at trial t , the
algorithm updates w by performing the assignment w ← w + yt xt .

When the Perceptron algorithm is run in a RKHS the current hypothesis is repre-
sented as a linear combination of (kernel) dot-products with all past mistaken (“sup-
port”) vectors xt . Since in any given trial the running time required to make a pre-
diction scales linearly with the number of mistakes made so far, the overall running
time needed by the kernel Perceptron algorithm is quadratic in the total number m
of mistakes made. A memory bounded Perceptron algorithm tries to overcome this
drawback by maintaining only a prearranged number of past support vectors, thereby
turning the quadratic dependence on m into a linear one.

We measure the performance of our linear-threshold algorithms by the total num-
ber of mistakes they make on an arbitrary sequence of examples. In the standard
performance model, the goal is to bound this total number of mistakes in terms of
the performance of the best fixed linear classifier u ∈ Rd in hindsight (note that we
identify an arbitrary linear-threshold classifier with its coefficient vector u). Since

Springer

146 Mach Learn (2007) 69:143–167

finding u ∈ Rd that minimizes the number of mistakes on a known sequence is a
computationally hard problem, the performance of the best predictor in hindsight
is often measured using the cumulative hinge loss (see, e.g., Freund & Schapire,
1999; Gentile & Warmuth, 1999). The hinge loss of a linear classifier u on example
(x, y) is defined by d(u; (x, y)) = max{0, 1 − yu�x}. Note that d is a convex func-
tion of the margin yu�x, and is also an upper bound on the indicator function of
SGN(u�x) �= y.

In the shifting or tracking performance model the learning algorithm faces the
harder goal of bounding its total number of mistakes in terms of the cumulative hinge
loss achieved by an arbitrary sequence u0, u1 . . . , un−1 ∈ Rd of linear classifiers (also
called comparison vectors). To make this goal feasible, the bound is allowed to scale
also with the maximum norm U = maxt ‖ut‖ of the classifiers in the sequence and
with the total shift

Stot =
n−1∑
t=1

‖ut−1 − ut‖ (1)

of the classifier sequence.
We assume for simplicity that all instances xt are normalized, that is, ‖xt‖ = 1

for all t ≥ 1. Finally, throughout this paper, we will use {φ} to denote the indicator
function of the event defined by a predicate φ.

2 The shifting Perceptron algorithm

Our learning algorithm for shifting hyperplanes (Shifting Perceptron Algorithm, SPA)
is described in Fig. 1. SPA has a positive input parameter λ which determines the
rate of weight decay. The algorithm maintains a weight vector w (initially set to
zero) and two more variables: a mistake counter k (initialized to zero) and a time-
changing decaying factor λk (initialized to 1). When a mistake is made on some
example (xt , yt) the signed instance vector yt xt is added to the old weight vector,
just like in the Perceptron update rule. However, unlike the Perceptron rule, before
adding yt xt SPA scales down the old weight, so as to diminish the importance of
early update stages. The important thing to observe here is that the scaling factor
(1 − λk) changes with time, since λk → 0 as more mistakes are made. Note that
subscript t runs over all trials, while subscript k runs over mistaken trials only, thus k
serves as an index for quantities (w k and λk) which get updated only in those trials.
In particular, at the end of each trial, k is equal to the number of mistakes made
so far.

It is worth observing what the algorithm really does by unwrapping the recurrence
w k+1 = (1 − λk)w k + yt xt . Assume at the end of trial t the algorithm has made k + 1
mistakes, and denote the mistaken trials by t0, t1, . . . , tk . We have

w k+1 = α0 yt0 xt0 + α1 yt1 xt1 + · · · + αk ytk xtk ,

Springer

Mach Learn (2007) 69:143–167 147

Fig. 1 The shifting Perceptron algorithm

with1

αi =
k∏

j=i+1

(1 − λ j) = exp

(
k∑

j=i+1

log(1 − λ j)

)
≈ exp

(
−

k∑
j=i+1

λ j

)

= exp

(
−

k∑
j=i+1

λ

λ + j

)
≈

(
λ + i + 1

λ + k + 1

)λ

≈ ck (i + 1)λ,

ck being a positive constant independent of i . Thus SPA is basically following a (degree-
λ) polynomial vector decaying scheme, where the most recent “support vector” xtk is
roughly worth (k + 1)λ times the least recent one (i.e., xt0). Clearly enough, if λ = 0
all support vectors are equally important and we recover the classical Perceptron
algorithm. Note that the simpler update w k+1 = (1 − λ)w k + yt xt (i.e., with a constant
scaling factor λ ∈ [0, 1)) would yield the exponential decaying scheme

αi = (1 − λ)k−i = ck

(
1

1 − λ

)i

investigated by, e.g., Kivinen, Smola, and Williamson (2004) and Dekel,
Shalev-Shwartz, and Singer (2006).

Now, since we are facing a shifting target problem, it is reasonable to expect that the
optimal degree λ in Fig. 1 depends on how fast the underlying target is drifting with
time. As we will see in a moment, the above polynomial weighting scheme gives SPA

a desirable robustness to parameter tuning, beyond making the analysis fairly simple.

2.1 Analysis

The analysis is a standard potential-based analysis for mistake-driven on-line algo-
rithms (see Block, 1962; Littlestone, 1988; Novikoff, 1962).

1 See the appendix for more precise approximations.

Springer

148 Mach Learn (2007) 69:143–167

The following simple lemma is central to our analysis. The lemma bounds the
growth rate of the norm of the algorithm’s weight vector. The key point to remark
is that, unlike previous algorithms and analyses (Dekel, Shalev-Shwartz, & Singer,
2006; Herbster & Warmuth, 2001; Kivinen, Smola, & Williamson, 2004), we do not
force the weight vector w k to live in a ball of bounded radius. Instead, we allow the
weight vector to grow unboundedly, at a pace controlled in a rather precise way by
the input parameter λ. The proof is given in the appendix.

Lemma 1. With the notation introduced in Fig. 1, we have

‖w k‖ ≤ e

√
λ + k + 1

2λ + 1

for any k = 0, 1, 2 . . ., where e is the base of natural logarithms.

The following theorem contains our mistake bounds for SPA. The theorem delivers
shifting bounds for any constant value of parameter λ. For instance, λ = 0 gives
a shifting bound for the classical (non-shifting) Perceptron algorithm.2 For any
sequence (u0, u1, . . .) of comparison vectors, the bound is expressed in terms of the
cumulative hinge loss D, the shift S, and the maximum norm U of the sequence.
These quantities are defined as follows:

D =
m−1∑
k=0

d(uk ; (xtk , ytk)) (2)

S =
m−1∑
k=1

‖uk − uk−1‖ (3)

U = max
t=0,...,n−1

‖ut‖ . (4)

We recall that tk is the trial at the end of which w k gets updated and uk is the
comparison vector in trial tk . Note that D and S are only summed over mistaken trials.
Larger (but more interpretable) bounds can be obtained if these sums are replaced by
sums running over all trials t . In particular, S may be replaced by Stot defined in (1).

As expected, the optimal tuning of λ grows with S and, in turn, yields a mistake
bound which scales linearly with S. We emphasize that, unlike previous investigations
(such as those by Kivinen, Smola, and Williamson (2004)), our shifting algorithm is
independent of scaling parameters (like the margin of the comparison classifiers 〈ut 〉).
In fact, our “optimal” tuning of λ turns out to be scale-free.

Theorem 2. For any n ∈ N, any sequence of examples (x1, y1), . . . , (xn, yn) ∈ Rd ×
{−1, +1} such that ‖xt‖ = 1 for each t, and any sequence of comparison vectors
u0, . . . , un−1 ∈ Rd , the algorithm in Fig. 1 makes a number m of mistakes bounded

2 Thus, even in a shifting framework the Perceptron algorithm, with no modifications, achieves a (subopti-
mal) shifting bound.

Springer

Mach Learn (2007) 69:143–167 149

by

m ≤ D + K 2 + K
√

D + λ + 1, (5)

where K = e√
2λ+1

(S + (4 λ + 1) U). Moreover, if we set λ = S
4U , then we have

K ≤ e
√

8SU + U 2 and

m ≤ D + e
√(

8SU + U 2
)

D + e2 (8SU + U 2) + e (2S + 3U). (6)

Proof: Consider how the potential u�
k w k+1 evolves over mistaken trials. We can write

u�
k w k+1 = u�

k ((1 − λk)w k + ytk xtk)

= (1 − λk)
(
u�

k w k − u�
k−1w k + u�

k−1w k
) + ytk u�

k xtk

= (1 − λk)(uk − uk−1)�w k + (1 − λk)u�
k−1w k + ytk u�

k xtk

≥ −(1 − λk) ‖uk − uk−1‖ ‖w k‖ − λk ‖uk−1‖ ‖w k‖ + u�
k−1w k + ytk u�

k xtk

≥−(1 − λk) ‖uk − uk−1‖ ‖w k‖−λk ‖uk−1‖ ‖w k‖ + u�
k−1w k

+ 1 − d(uk ; (xtk , ytk))

the last inequality following from the very definition of d(uk ; (xtk , ytk)). Rearranging
yields

u�
k w k+1−u�

k−1w k ≥−(1 − λk) ‖uk − uk−1‖ ‖w k‖ − λk ‖uk−1‖ ‖w k‖
+ 1 − d(uk ; (xtk , ytk)).

Recalling that w0 = 0, we sum the above inequality over3 k = 0, 1, . . . , m − 1, then
we rearrange and overapproximate. This results in

m ≤ D +
m−1∑
k=1

(1 − λk)||uk − uk−1|| ||w k ||︸ ︷︷ ︸
(I)

+
m−1∑
k=1

λk ||uk−1|| ||w k ||︸ ︷︷ ︸
(II)

+ ||um−1|| ||wm ||︸ ︷︷ ︸
(III)

.

We now use Lemma 1 to bound from above the three terms (I), (II), and (III):

(I) ≤ S max
k=1,...,m−1

((1 − λk) ‖w k‖)

≤ S
e (m − 1)

λ + m − 1

√
λ + m

2λ + 1

3 For definiteness, we set u−1 = 0, though w0 = 0 makes this setting immaterial.

Springer

150 Mach Learn (2007) 69:143–167

(from Lemma 1 and the definition of λk)

≤ e S

√
λ + m

2λ + 1
. (7)

Moreover, from Lemma 1 and the inequality
√

x+1
x ≤ 4(

√
x + 1 − √

x), ∀x ≥ 1, ap-
plied with x = λ + k, we have

(II) ≤ U
m−1∑
k=1

λk ‖w k‖

≤ U
m−1∑
k=1

eλ

λ + k

√
λ + k + 1

2λ + 1

≤ U
4eλ√
2λ + 1

m−1∑
k=1

(√
λ + k + 1 − √

λ + k
)

= U
4eλ√
2λ + 1

(√
λ + m − √

λ + 1
)
. (8)

Finally, again from Lemma 1, we derive

(III) ≤ e ‖um−1‖
√

λ + m + 1

2λ + 1
. (9)

At this point, in order to ease the subsequent calculations, we compute upper bounds
on (7), (8) and (9) so as to obtain expressions having a similar dependence4 on the
relevant quantities around. We can write

(7) ≤ e S

√
λ + m + 1

2λ + 1
,

(8) ≤ 4 e λ U

√
λ + m + 1

2λ + 1
,

(9) ≤ e U

√
λ + m + 1

2λ + 1
.

Putting together gives

m ≤ D + e (S + (4 λ + 1) U)

√
λ + m + 1

2λ + 1
.

Solving for m and overapproximating once again gets

m ≤ D + K 2 + K
√

D + λ + 1,

4 This seems to be a reasonable trade-off between simplicity and tightness.

Springer

Mach Learn (2007) 69:143–167 151

where K = K (λ) = e√
2λ+1

(S + (4 λ + 1) U). This is the claimed bound (5).

We now turn to the choice of λ. Choosing λ minimizing the above bound would
require, among other things, prior knowledge of D. In order to strike a good balance
between optimality and simplicity (and to rely on as little information as possible)
we come to minimizing (an upper bound on) K (λ). Set λ = cS/U , where c is some
positive constant to be determined. This yields

K (λ) = e U
(4c + 1) S/U + 1√

2cS/U + 1
≤ e

√
(4c + 1)2

2c
SU + U 2, (10)

where we used

α r + 1√
β r + 1

≤
√

α2

β
r + 1 α, r ≥ 0, β > 0,

with α = 4c + 1, β = 2c, and r = S/U . We minimize (10) w.r.t. c by selecting c =
1/4. Plugging back into (5) and overapproximating once more gives (6). �

3 A randomized Perceptron with budget

Consider the update w k+1 = (1 − λk)w k + yt xt used by the algorithm in Fig. 1. As
mentioned in the previous section, in the special case λk = λ for all k ≥ 1, this corre-
sponds to associating with each support vector xt a coefficient decreasing exponentially
with the number of additional mistakes made. This exponential decay is at the core
of many algorithms in the on-line learning literature, and has the immediate conse-
quence of keeping bounded the norm of weight vectors. This same idea is used by the
Forgetron of Dekel, Shalev-Shwartz, and Singer (2006), a recently proposed variant
of the Perceptron algorithm that learns using a fixed budget of support vectors. In fact,
it is not hard to show that the Forgetron analysis can be extended to the shifting model.
In this section, we turn our attention to a way of combining shifting and budget algo-
rithms by means of randomization, with no explicit weighting on the support vectors.
As we show, this alternative approach yields a simple algorithm and a crisp analysis.

Consider a generic Perceptron algorithm with bounded memory. The algorithm
has at its disposal a fixed number B of “support vectors”, in the sense that, at any
given trial, the weight vector w maintained by the algorithm is a linear combination
of yi1

xi1
, yi2

xi2
, . . . , yiB xiB where i1, . . . , iB is a subset of past trials where a mistake

was made. Following (Crammer, Kandola, & Singer, 2004; Dekel, Shalev-Shwartz, &
Singer, 2006; Weston, Bordes, & Bottou, 2005), we call B the algorithm’s budget. As
in the standard Perceptron algorithm, each example on which the algorithm makes a
mistake becomes a support vector. However, in order not to exceed the budget, before
adding a new support the algorithm has to discard an old one.

The analysis of the Forgetron algorithm is based on discarding the oldest support.
The exponential coefficients (1 − λ)−i assigned to supports guarantee that, when λ is
properly chosen as a function of B, the norm of the discarded vector is at most 1/

√
B.

In addition, it can be proven that the norm of w k is at most
√

B/(ln B) for all k ≥ B.

Springer

152 Mach Learn (2007) 69:143–167

These facts can be used to prove a mistake bound in terms of the hinge loss of the
best linear classifier u in hindsight, as long as ‖u‖ = O(

√
B/(ln B)). In this section

we show that a purely random policy of discarding support vectors achieves a mistake
bound without imposing on ‖u‖ any constraint stronger than ‖u‖ = O(

√
B), which

must be provably obeyed by any algorithm using budget B.
More precisely, suppose w k makes a mistake on example (xt , yt). If the current

number of support vectors is less than B, then our algorithm performs the usual
additive update w k+1 = w k + yt xt (with no exponential scaling). Otherwise the al-
gorithm chooses a random support vector Qk , where P(Qk = yi j xi j) = 1/B for j =
1, . . . , B, and performs the update w k+1 = w k + yt xt − Qk . Note that Qk satisfies
Ek Qk = w k/B where Ek[·] denotes the conditional expectation E[· | w0, . . . , w k].
The resulting algorithm, called Randomized Budget Perceptron (RBP), is summarized
in Fig. 2.

The main idea behind this algorithm is the following: by removing a random support
we guarantee that, in expectation, the squared norm of the weight w k+1 increases by at
most 2 − (2/B) ‖w k‖2 each time we make an update (Lemma 3). This in turn implies
that, at any fixed point in time, the expected norm of the current weight vector is
O(

√
B). The hard part of the proof (Lemma 4) is showing that the sum of the norms

of all distinct weights generated during a run has expected value O(
√

B) E M +
O(B3/2 ln B), where M is the random number of mistakes.

3.1 Analysis

Similarly to Section 2.1, we state a simple lemma (whose proof is deferred to the
appendix) that bounds in a suitable way the norm of the algorithm’s weight vector.

Fig. 2 The randomized budget Perceptron algorithm

Springer

Mach Learn (2007) 69:143–167 153

Unlike Lemma 1, here we do not solve the recurrence involved. We rather stop earlier
at a bound expressed in terms of conditional expectations, to be exploited in the proof
of Lemma 4 below.

Lemma 3. Let B ≥ 2. With the notation introduced in this section, we have

Ek ‖w k+1‖2 ≤
{

k + 1 for k = 0, . . . , B − 1(
1 − 2

B

) ‖w k‖2 + 2 for k ≥ B.

Moreover, using Jensen’s inequality,

Ek ‖w k+1‖ ≤
⎧⎨⎩

√
k + 1 for k = 0, . . . , B − 1√(
1 − 2

B

) ‖w k‖2 + 2 for k ≥ B.

The main result of this section bounds the expected number of mistakes, E M , made
by RBP in the shifting case.

For any sequence (x1, y1), . . . , (xn, yn) ∈ Rd × {−1, +1} of examples and any se-
quence (u0, u1, . . . , un−1) of comparison vectors, this bound is expressed in terms of
the expectations of the cumulative hinge loss D, the shift S, and the maximal norm
U of the sequence, defined in (2), (3) and (4), respectively. (All expectations are un-
derstood with respect to the algorithm’s randomization.) Following the notation of
previous sections, tk denotes the (random) trial where w k is updated and uk is the
comparison vector in trial tk . Moreover, in what follows, we assume the underlying
sequence of examples and the sequence u0, u1, . . . of linear classifiers are fixed and
arbitrary. This implies that the value of the random variable {M = k} is determined
given w0, . . . , w k−1 (i.e., {M = k} is measurable w.r.t. the σ -algebra generated by
w0, . . . , w k−1), which is fairly essential for the ensuing analysis.

The next lemma is our key tool for proving expectation bounds. It may be viewed
as a simple extension of Wald’s equation to certain dependent processes.

Lemma 4. With the notation and the assumptions introduced so far, we have, for any
constant ε > 0, and any integer B ≥ 2,

E

[
M∑

k=B

‖w k‖
]

≤ B3/2

2
ln

B

2ε
+ (1 + ε)

√
B E[max{0, M + 1 − B}].

Proof: Set for brevity ρ = 1 − 2/B. We can write

E

[
M∑

k=B

‖w k‖
]

= E

[∞∑
k=B

{M ≥ k} ‖w k‖
]

Springer

154 Mach Learn (2007) 69:143–167

= E

[∞∑
k=B

Ek−1[{M ≥ k} ‖w k‖]

]

= E

[∞∑
k=B

{M ≥ k}Ek−1 ‖w k‖
]

(since {M ≥ k} is determined by w0, . . . , w k−1)

≤ E

[∞∑
k=B

{M ≥ k}
√

ρ ‖w k−1‖2 + 2

]
(11)

(from Lemma 3)

≤E

[∞∑
k=B

{M ≥k − 1}
√

ρ ‖w k−1‖2 + 2

]

= E

[∞∑
k=B−1

{M ≥k}
√

ρ ‖w k‖2+2

]

<
√

ρB + 2 + E

[∞∑
k=B

{M ≥ k}
√

ρ ‖w k‖2 + 2

]
(12)

the last inequality following from Lemma 3, which implies ‖w B−1‖2 ≤ B − 1 (recall
that the algorithm proceeds deterministically in the first B steps, so here no expectation
is needed).

Now, (12) can be treated in a similar fashion. We have

(12) =
√

ρB + 2 + E

[∞∑
k=B

{M ≥ k}Ek−1

[√
ρ ‖w k‖2 + 2

]]
(since, as before, {M ≥ k} is determined by w0, . . . , w k−1)

≤
√

ρB + 2 + E

[∞∑
k=B

{M ≥ k}
√

ρ(ρ ‖w k−1‖2 + 2) + 2

]
(from Jensen’s inequality and Lemma 3)

≤
√

ρB + 2 + E

[∞∑
k=B

{M ≥ k − 1}
√

ρ(ρ ‖w k−1‖2 + 2) + 2

]

=
√

ρB + 2 + E

[∞∑
k=B−1

{M ≥ k}
√

ρ(ρ ‖w k‖2 + 2) + 2

]

<
√

ρB + 2 +
√

ρ(ρB + 2) + 2 + E

[∞∑
k=B

{M ≥ k}
√

ρ(ρ ‖w k‖2 + 2) + 2

]
Springer

Mach Learn (2007) 69:143–167 155

the last inequality following again from ‖w B−1‖2 ≤ B − 1. Iterating for a total of i
times we obtain that (12) is less than

i−1∑
j=0

√√√√ρ j+1 B + 2

j∑

=0

ρ
 + E

⎡⎣ ∞∑
k=B

{M ≥ k}
√√√√ρi ‖w k‖2 + 2

i−1∑
j=0

ρ j

⎤⎦
≤

i−1∑
j=0

√
ρ j+1 B + B − ρ j+1 B +

√
ρi B2 + B E

[∞∑
k=B

{M ≥ k}
]
,

where for the first term we used

j∑

=0

ρ
 = 1 − ρ j+1

1 − ρ
= B

2
(1 − ρ j+1)

and for the second term we used

i−1∑
j=0

ρ j ≤ 1

1 − ρ
= B

2

and the trivial upper bound ‖w k‖2 ≤ B2 for all k ≥ 1. We thus obtain

E

[
M∑

k=B

‖w k‖
]

< i
√

B +
√

ρi B2 + B E

[∞∑
k=B

{M ≥ k}
]

= i
√

B +
√

ρi B2 + B E[max{0, M + 1 − B}].

We are free to choose the number i of iterations. We set i in a way that the factor√
ρi B2 + B gets as small as (1 + ε)

√
B. Since ρi ≤ e−2i/B and

√
1 + x ≤ 1 + x/2

for any x ≥ 0, it suffices to pick i ≥ B
2

ln B
2ε

, yielding the claimed inequality. �

Theorem 5. Given any ε ∈ (0, 1), any n ∈ N, any sequence of examples (x1, y1), . . . ,
(xn, yn) ∈ Rd × {−1, +1} such that ‖xt‖ = 1 for each t, the algorithm in Fig. 2 makes
a number M of mistakes whose expectation is bounded as

EM ≤ 1

ε
E D + Stot

√
B

ε
+ UB

ε
+ U

√
B

2ε
ln

B

2ε

for any sequence of comparison vectors u0, . . . , un−1 ∈ Rd , with expected hinge loss
E D, total shift Stot, and such that maxt ‖ut‖ = U ≤ 1−ε

1+ε

√
B.

Remark 6. Note the role played by the free parameter ε ∈ (0, 1). If ε is close to 0,
then the comparison vectors u0, . . . , un−1 are chosen from a large class, but the bound
is loose. On the other hand, if ε is close to 1, our bound gets sharper but applies to a
smaller comparison class. We can rewrite the above bound in terms of U = 1−ε

1+ε

√
B.

Springer

156 Mach Learn (2007) 69:143–167

For instance, setting ε = 1/2 results in

EM ≤ 2 ED + 18 U (Stot + U 2) + 6 U 2 ln(3 U).

The dependence on Stot is linear as in (6), which is the best bound we could prove on
Perceptron-like algorithms without imposing a budget.

Remark 7. In the nonshifting case our bound reduces to

EM ≤ 1

ε
ED + UB

ε
+ U

√
B

2ε
ln

B

2ε
.

This is similar to the (deterministic) Forgetron bound shown by Dekel, Shalev-Shwartz,
and Singer (2006), though we have a better dependence on D and a worse dependence
on U and B. However, and more importantly, whereas the Forgetron bound can be
proven only for ‖u‖ = O(

√
B/(ln B)), our result just requires ‖u‖ = O(

√
B). Note

that this relationship between ‖u‖ and B achieved by our algorithm is optimal. Indeed,
via a simple generalization of the argument presented by Dekel, Shalev-Shwartz,
and Singer (2006), it can be proven that any5 randomized algorithm using budget B
makes a mistake with probability at least 1/(2(B + 1)) on each example (xt , yt) of
an infinite sequence (x1, y1), (x2, y2), . . . such that yt u�xt ≥ 1 for all t = 1, 2, . . . ,

where u ∈ RB+1 satisfies ‖u‖ = √
B + 1.

Remark 8. From a computational standpoint, our simple randomized policy compares
favorably with other eviction strategies that need to check the properties of all support
vectors in the currect storage, such as those of Crammer, Kandola, and Singer (2004)
and Weston, Bordes, and Bottou (2005). Thus, in this context, randomization exhibits
a clear computational advantage.

Proof of Theorem 5: We proceed as in the proof of Theorem 2 and adopt the same
notation used there. Note, however, that the weights w0, w1, . . . are now the realization
of a random process on Rd and that the number M of mistakes on a given sequence
of examples is a random variable. Without loss of generality, in what follows we may
set w k = w M for all k > M . We can write

u�
k w k+1 = u�

k (w k + ytk xtk − {k ≥ B} Qk)

= (uk − uk−1)�w k + u�
k−1w k + ytk u�

k xtk − {k ≥ B} u�
k Qk

≥ (uk − uk−1)�w k + u�
k−1w k + 1 − d(uk ; (xtk , ytk)) − {k ≥ B} u�

k Qk .

5 To be precise, the argument applies to any randomized learning algorithm whose probability p of predicting
+1 when the current instance is orthogonal to the span of its supports is a fixed and deterministic quantity.

Springer

Mach Learn (2007) 69:143–167 157

We rearrange, sum over k = 0, . . . , M − 1, recall that w0 = 0, and take expectations
on both sides of the resulting inequality,

EM ≤ E

[
M−1∑
k=0

d(uk ; (xtk , ytk))

]
+ E

[
u�

M−1w M
]︸ ︷︷ ︸

(I)

+ E

[
M−1∑
k=B

u�
k Qk

]
︸ ︷︷ ︸

(II)

+ E

[
M−1∑
k=1

(uk−1 − uk)�w k

]
︸ ︷︷ ︸

(III)

.

The first term in the right-hand side equals E D. Thus we need to find suitable upper
bounds on (I), (II), and (III). Recalling that U = maxt ‖ut‖, and noting that ‖w k‖ ≤ B
for all k, we have (I) ≤ U B. To bound (II), we write

(II) = E

[∞∑
k=B

{M ≥ k + 1} u�
k Qk

]

= E

[∞∑
k=B

Ek
[{M ≥ k + 1} u�

k Qk
]]

= E

[∞∑
k=B

{M ≥ k + 1}u�
k Ek Qk

]
(since {M ≥ k + 1} and uk are determined given w0, . . . , w k)

= E

[∞∑
k=B

{M ≥ k + 1}u�
k w k

B

]
(since Ek Qk = w k/B).

Hence

(II) ≤ U

B
E

[∞∑
k=B

{M ≥ k + 1} ‖w k‖
]

≤ U

B
E

[∞∑
k=B

{M ≥ k} ‖w k‖
]

= U

B
E

[
M∑

k=B

‖w k‖
]

≤ U
√

B

2
ln

B

2ε
+ (1 + ε)

U√
B

EM

(from Lemma 4 and the assumption B ≥ 2).

Next, we bound (III) as follows

(III) = E

[
M−1∑
k=1

tk∑
t=tk−1+1

(ut−1 − ut)
�w k

]
Springer

158 Mach Learn (2007) 69:143–167

≤ E

[
M−1∑
k=1

tk∑
t=tk−1+1

‖ut−1 − ut‖ ‖w k‖
]

≤ E

[
n−1∑
t=1

‖ut−1 − ut‖ ‖w t‖
]

where w t is the random weight used by the algorithm at time t . A simple adaptation
of Lemma 3 and an easy induction argument together imply that E ‖w t‖ ≤ √

B for
all t . Thus we have

E

[
n−1∑
t=1

‖ut−1 − ut‖ ‖w t‖
]

=
n−1∑
t=1

‖ut−1 − ut‖ E ‖w t‖ ≤ Stot

√
B.

Piecing together gives

EM ≤ ED + (1 + ε)
U√

B
EM + Stot

√
B + UB + U

√
B

2
ln

B

2ε
.

The condition U ≤ 1−ε
1+ε

√
B implies the desired result. �

4 Experiments

We tested the empirical performance of our algorithms by conducting a number of
experiments on a collection of datasets derived from the first 20,000 newswire stories
in the Reuters Corpus Volume 1 (RCV1, Reuters, 2000). A standard TF-IDF bag-of-
words encoding was used to transform each news story into a normalized vector of real
attributes (see Cesa-Bianchi, Conconi, & Gentile, 2003, for details on preprocessing).

In order to evaluate the tracking properties of our algorithms, we generated a col-
lection of shifting binary datasets based on the most frequent categories (recall that
each RCV1 article is labelled with one or more elements from a set of 101 seman-
tic categories). Different shifting datasets were obtained by “binarizing” consecutive
equally-sized chunks of RCV1 against different target categories. The binarization of
a chunk against a given category is done in the most natural way: by replacing the
original set of labels of each story with the single label +1 if the target category is in
the set and with the label −1 otherwise.

4.1 Datasets

In our experiments we used the following four target categories: 70, 101, 4, and 59.
These correspond to the 2nd, 3rd, 4th, and 5th most frequent categories, respectively,
in the first 20,000 news stories of RCV1 (we did not use the most frequent category
because of its significant overlap with the other ones).

These categories were used to generate four groups of binary datasets with increas-
ing number of shifts (0, 1, 3, and 7). Each group contained four different datasets with
the same number of shifts but binarized against a different sequence of categories (see

Springer

Mach Learn (2007) 69:143–167 159

details below). The experiments in each group are reported as averages over the four
datasets in the group.

The four groups of datasets are costructed as follows.

1. The datasets in the first group have no shifts. Each of the four datasets within this
group is obtained through binarization against one of the four target categories.

2. The datasets in the second group have one shift. This amounts to splitting each
dataset into two equally-sized chunks (thus each chunk has 10,000 examples) and
associating different target categories with the two chunks. For each dataset, the
two target categories are randomly selected.

3. The datasets in the third group have three shifts. Each dataset is obtained through
binarization against a random permutation of the four target categories. Each chunk
has 5000 examples.

4. The datasets in the fourth group have seven shifts. Each dataset is obtained through
binarization against a random permutation of the four target categories (repeated
twice). This results in datasets having 8 chucks, with 2500 examples each.

Since the newswire stories from RCV1 are chronologically ordered, our collection of
datasets can naturally be viewed as modelling the task of detecting the “topic of the
day”. In this interpretation, a change in the target category (i.e., a “shift”) reflects a
change in the topic of the day, which must be detected by the learning algorithm.

4.2 Algorithms

Besides the Shifting Perceptron Algorithm (SPA) and the Randomized Budget Percep-
tron (RBP) algorithm, we evaluated the behavior of two non-budget baseline algorithms:
the original Perceptron (PERC) algorithm, and the Second-Order Perceptron (SOP) al-
gorithm, as defined in Cesa-Bianchi, Conconi, and Gentile (2005). In addition, we
also tested the following first and second-order budget Perceptron algorithms.

– The Forgetron Algorithm (FA), introduced by Dekel, Shalev-Shwartz, and Singer
(2006).

– A variant, here referred to as LBP (Least recent Budget Perceptron), of the Ran-
domized Budget Perceptron algorithm where we always remove the oldest support
whenever the budget is exceeded. Note that this algorithm differs from the Forgetron
algorithm, since the latter may also decide to scale the contribution of old supports.
In this sense LBP can be regarded as an aggressive variant of FA.

– The Randomized Budget Second-Order Perceptron algorithm (here abbreviated as
RBSOP). It is a budget version of SOP in which the support to be discarded is chosen
at random among the current set of supports in the cache.

– The variant (here referred to as LBSOP, Least recent Budget Second-Order Percep-
tron) of RBSOP where we always remove the oldest support vector.

– The (original) Budget Perceptron, here abbreviated as CKS, as described by Cram-
mer, Kandola, and Singer (2004).

All algorithms were run with a polynomial kernel of degree four. We empirically
observed that, on our datasets, the error rates exhibited by budget and non-budget
algorithms dropped the most when we switched from a linear to a polynomial kernel
of degree four. Little or no improvement was achieved for higher degrees.

Springer

160 Mach Learn (2007) 69:143–167

Table 1 Average number of support vectors (rounded to the
closest integer) used by non-budget perceptron algorithms
on chunks of different size. Standard deviations are given in
parentheses

Chunk size PERC SOP

20000 1368 (±152,29) 1358 (±134,68)

10000 772 (±84,60) 751 (±75,58)

5000 445 (±50,70) 419 (±43,17)

2500 260 (±32,98) 241 (±26,76)

Finally, in all second-order variants we set the parameter a to 1 (see Cesa-Bianchi,
Conconi, & Gentile, 2005, for details), while for the Shifting Perceptron algorithm we
manually tuned the decay parameter λ for each group of datasets.

4.3 Results

In order to provide a better insight into the tracking properties of budget algorithms,
we first tested the performance (in terms of number of support vectors) of PERC and
SOP on all individual chunks appearing in our shifting datasets. Average results are
reported in Table 1.

The main experimental results are summarized in Figs. 3–5. For clarity, we plotted
first and second-order algorithms separately. Because SPA and PERC exhibited the
same performance in low shifting settings, we did not plot SPA error rates in Fig. 3
and in the first two plots of Fig. 4.

The two plots in Fig. 3 depict the (average) performance of the algorithms on
non-shifting datasets, as the budget B increases.

As expected, on this task the budget versions tend to perform worse than their non-
budget counterparts. Specifically, the second-order algorithms have a slight advantage
over the first-order ones (had we used a linear kernel this advantage would have been
considerably higher) especially for small budget sizes. Moreover, randomized and
non-randomized budget versions of each base algorithm exhibit similar performance
results. Unsurprisingly, CKS shows a much higher error rate than any other algorithm for

 0.08

 0.1

 0.12

 0.14

 0.16

 0 200 400 600 800 1000 1200 1400 1600

e
rr

o
r

budget size

RBP
LPB

FA
CKS

PERC

 0.08

 0.1

 0.12

 0.14

 0.16

 0 200 400 600 800 1000 1200 1400 1600

e
rr

o
r

budget size

LBSOP
RBSOP

SOP

Fig. 3 Average error rates on non-shifting datasets, as the budget size B increases. The two horizontal
lines show the error performance of the corresponding baseline (B = ∞) algorithms

Springer

Mach Learn (2007) 69:143–167 161

 0.08

 0.1

 0.12

 0.14

 0.16

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

e
rr

o
r

budget size

RBP
LBP

FA
CKS

PERC

 0.08

 0.1

 0.12

 0.14

 0.16

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

e
rr

o
r

budget size

LBSOP
RBSOP

SOP

1. (a) 1. (b)

2. (a) 2. (b)

3. (a) 3. (b)

 0.08

 0.1

 0.12

 0.14

 0.16

 0 500 1000 1500 2000 2500

e
rr

o
r

budget size

RBP
LBP

FA
CKS

PERC
SPA (lambda=0.5)

 0.08

 0.1

 0.12

 0.14

 0.16

 0 500 1000 1500 2000 2500

e
rr

o
r

budget size

LBSOP
RBSOP

SOP

 0.08

 0.1

 0.12

 0.14

 0.16

 0 500 1000 1500 2000 2500 3000 3500

e
rr

o
r

budget size

RBP
LBP

FA
CKS

PERC
SPA (lambda=3.5)

 0.08

 0.1

 0.12

 0.14

 0.16

 0 500 1000 1500 2000 2500 3000 3500

e
rr

o
r

budget size

LBSOP
RBSOP

SOP

Fig. 4 Average error rates on 1-shift (1(a) and (b)), 3-shifts (2(a) and (b)) and 7-shifts (3(a) and (b)) tasks

the same budget size. In fact the RCV1 dataset is relatively noisy, and the performance
of CKS is known to degrade quickly in these situations (see, e.g., Weston, Bordes, &
Bottou, 2005).

As the number of shifts increases (see Fig. 4) each baseline moves higher, with
the Second-Order Perceptron getting worse faster then the standard Perceptron
algorithm. This may be due to the fact that SOP has a stronger dependence on the
spectral structure of a dataset. When this changes, as is the case when a shift happens,
the cost to re-adapt to a new dataset is higher.

A comparison between the results plotted in Fig. 4 and those in Table 1 reveals
that the task of learning on a shifting dataset is considerably harder than the task of
separately learning all the chunks in the same dataset. This can be explained by saying
that every time a shift takes place, the target hypothesis changes significantly.

Springer

162 Mach Learn (2007) 69:143–167

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

e
rr

o
r

examples

PERC
LBP (B=300)

FA (B=300)
RBP (B=200)

SPA (lambda=3.5)

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

e
rr

o
r

examples

SOP
LBSOP (B=200)
RBSOP (B=200)

Fig. 5 Average instantaneous error rates on 7-shifts datasets

In all our experiments the randomized algorithms exhibited a substantially smooth
convergence to the error rates of their non-budget counterparts. In high shifting settings
the budget algorithms (both randomized and deterministic) tend to outperform the non-
budget ones.

As for LBP, LBSOP and FA, they all manage to outperform their respective baselines
for certain budget sizes. In particular, on any given dataset, they achieve the highest
advantage when the budget size is close to the number of support vectors stored, on
average, by their non-budget counterparts on each chunk of the dataset (compare to
the results in Table 1). This makes sense because, as seen before, in order to learn the
next hyperplane an algorithm has to basically unlearn the previous one. By limiting
the budget to the number of support vectors shown in Table 1, for an appropriate
chunk size, the effort of changing the current hypothesis is greatly diminished. In fact,

Springer

Mach Learn (2007) 69:143–167 163

when these algorithms make a mistake exactly one example related to the previous
hypothesis is removed from the active set and a new one is added while, at the same
time, the budget is large enough to maintain a good hypothesis for the current target.

Randomized algorithms are a bit less capable of exploiting a “good” budget size to
their advantage. It is likely that at some point, after a shift occurs, they start discarding
recent examples more frequently than older ones. On the other hand, their performance
is not dramatically changing for moderately smaller/larger budget sizes.

The budget versions of the second-order algorithms, both randomized and
non-randomized, show lower error rates than their counterparts for small to medium
budget sizes. When the budget size is kept small, the effort to track a shifting
hyperplane appears to be easier, especially for second-order algorithms (compare to
the above discussion on non-budget second-order algorithms on shifting datasets).
Additionally, under this condition, the second-order variants can exploit their ability
to learn a single chunk faster.

As Theorem 2 suggests, upon setting the decay parameter λ, the Shifting Perceptron
algorithm was able to outperform the standard Perceptron algorithm. In addition, the
error rate of SPA is close to the lowest error rate achieved by both LBP and FA.

A remark about the performance exhibited on the 7-shifts datasets. The graphs of
LBP, LBSOP, and FA show a “bump” for budget values around 1500. This is actually
an artifact of our dataset construction. Recall that the seven shifts are obtained by
repeating twice the four target catergories on eight equally-sized chunks. A cache size
of 1500 is just large enough to maintain examples learned on a chunk from the first
half of the dataset while processing the same chunk from the second half. Hence, for
values of the cache size smaller than 1500, the algorithms perform well because of
the “least recent” eviction policy: when a mistake occurs while processing a chunk in
the second half of the dataset, the supports belonging to the corresponding chunk in
the first half have already been evicted, and thus an irrelevant support gets eliminated
from the cache while a relevant one is added. For values of the cache size bigger than
1500, the algorithms also perform well because they are able to process a chunk in the
second half without evicting vectors learned from the corresponding chunk in the first
half. On the other hand, when the cache size is around 1500, the algorithms perform
worse because on each mistake they add to the cache a support vector from a chunk
while eliminating a relevant vector previously learned from the same chunk.

This argument also explains why the “bump” is above the baseline (corresponding
to the performance of a standard Perceptron). Indeed, just like the budget algorithms
using a large cache, the Perceptron, whose budget is unlimited, is able to take advantage
of the chunk repetitions in the datasets.6

Note also that, on the same datasets, the randomized algorithms exhibit a more
robust behavior. This is witnessed by the smooth changes in their performance as the
budget varies. In fact, thanks to randomization, these algorithms always retain some
fraction of the support vectors learned on all previous chunks.

6 We noticed that using additional RCV1 categories (besides 70, 101, 4, and 59) to avoid the repetitions
of chunks in experiments with high shift did not give good results. This because the remaining categories
have significantly lower frequencies and, for this reason, they do not induce enough mistakes in shifting
experiments.

Springer

164 Mach Learn (2007) 69:143–167

Table 2 Order of magnitude of the time complexities involved in
each update and evaluation step for the algorithms used in the exper-
iments. B denotes the budget and m denotes the number of mistakes
already made when the step takes place. The O(1) required for the
update step of SPA and FA is assuming a lazy update scheme, where
the new scaling factors are computed within the evaluation phase.
The O(1) in the update step of RBP implicitely assumes the avail-
ability of an oracle that in unit time returns a random element from
the set {1, . . . , B}

Algorithm Update Evaluation

PERC 1 m
SPA 1 m
CKS B B
FA 1 B
RBP/LBP 1 B
SOP m2 m
RBSOP/LBSOP B2 B

Figure 5 shows the instantaneous error rates exhibited on 7-shifts datasets by both
budget and non-budget algorithms. For the former we only plotted error rates for the
best budget size. In order to get smoother curves, the error rate is sampled every 1250
examples.

In all our experiments we observed that the variance caused by the internal ran-
domization of RBP and RBSOP did not have a significant impact on their performance.

In Table 2 we summarized the time complexity of the algorithms used in our
experiments. In particular, the evaluation step requires O(B) operations for all budget
algorithms. On the other hand, the update step needs O(1) operations for all first-order
budget algorithms, except for CKS, for which the update is O(B), and the second-order
budget algorithms, whose update is quadratic in B.

5 Conclusions and open problems

In this paper we have shown that simple changes to the standard (kernel) Perceptron
algorithm suffice to obtain efficient memory bounded algorithms with good theoretical
shifting performance. Our elaborations deliver robust on-line procedures which we
expect to be of practical relevance in many real-world data-intensive learning settings.

From the theoretical point of view, we have shown that these simple algorithms
compare favorably with the existing kernel-based algorithms working in the on-line
shifting framework. We expect that many of the results proven here could be extended
to the family of p-norm algorithms studied by Grove, Littlestone, and Schuurmans
(1997) and Gentile (2003), and to large margin on-line algorithms (see, e.g., Li &
Long, 2002; Gentile, 2001).

In order to complement the theoretical analysis, we experimentally compared
our algorithms to various first-order and second-order Perceptron algorithms, in-
cluding both randomized and non randomized learners, in low and high shifting
settings. The experiments showed that, in high shifting regimes, RBP achieves a
performance comparable (and sometimes better) to that of the standard Perceptron

Springer

Mach Learn (2007) 69:143–167 165

algorithm, even for remarkably small values of the budget. On the other hand,
two out of three deterministic eviction policies achieve mistake rates smaller than
RBP.7 Indeed, both LBP and FA outperform the Perceptron algorithm for small bud-
get values and even when the shifting is moderate. In particular, the eviction pol-
icy of FA gives the overall best results. The second-order budget algorithms also
behave well. In particular, LBSOP achieves the lowest mistake rates among all al-
gorithms and, in the 7-shift case, this minimum rate is achieved using a budget
smaller than the budget used by the other algorithms to obtain their best perfor-
mance. The experiments also included SPA. As suggested by our theory, with a suitable
tuning of its parameter this algorithm actually outperforms the standard Perceptron
algorithm.

A few issues left open by our theoretical analysis are the following. First, the
bound exhibited in Theorem 5 shows an unsatisfactory dependence on U . This is due
to the technical difficulty of finding a more sophisticated argument than the crude
upper bound we use to handle expression (I) occurring in the proof. Second, our
shifting analysis only depends on the total target shift. We conjecture that a better
bound can be obtained under more specific shifting assumptions, like the smooth-
ness condition ‖ut − ut−1‖ ≤ c for all t and for some constant c > 0. Third, moti-
vated by the low variance observed in our experiments, it might be worth trying to
see whether the result of Theorem 5 also holds with high probability, rather than
just in expectation. Finally, it is not clear how our budget analysis could be ex-
tended to RBSOP, the second-order budget algorithm introduced in the experimental
section. A direct combination of the analysis by Cesa-Bianchi, Conconi, and Gen-
tile (2005) with the techniques of Section 3.1 does not seem to lead to interesting
bounds.

Appendix A: Proof of Lemma 1

The lemma holds trivially for k = 0. For k ≥ 1, let t = tk−1 be the trial at the end of
which w k−1 is updated. The update rule of Fig. 1 along with the condition yt w�

k−1xt ≤ 0
allow us to write

‖w k‖2 = (1 − λk−1)2 ‖w k−1‖2 + 2(1 − λk−1)yt w�
k−1xt + ‖xt‖2

≤ (1 − λk−1)2 ‖w k−1‖2 + 1.

Unwrapping the recurrence yields

‖w k‖2 ≤
k−1∑
i=0

k−1∏
j=i+1

(1 − λ j)
2,

7 This can be explained noting that our real-world datasets are presumably far from the worst-case data
sequences implicitely taken into account by the theoretical analysis of RBP.

Springer

166 Mach Learn (2007) 69:143–167

where the product is meant to be 1 if i + 1 > k − 1. The above, in turn, can be bounded
as follows.

k−1∑
i=0

k−1∏
j=i+1

(1 − λ j)
2 ≤

k−1∑
i=0

exp

(
−2

k−1∑
j=i+1

λ j

)

=
k−1∑
i=0

exp

(
− 2λ

k−1∑
j=i+1

1

λ + j

)

≤
k−1∑
i=0

exp

(
−2λ

∫ k

i+1

dx

λ + x

)
=

k−1∑
i=0

(
λ + i + 1

λ + k

)2λ

≤ 1

(λ + k)2λ

∫ λ+k+1

λ+1

x2λdx ≤ 1

2λ + 1

(λ + k + 1)2λ+1

(λ + k)2λ

=
(

λ + k + 1

2λ + 1

)[(
1 + 1

λ + k

)λ+k
] 2λ

λ+k

≤
(

λ + k + 1

2λ + 1

)
e2,

where the last inequality uses (1 + 1/x)x ≤ e for all x > 0, and 2λ
λ+k ≤ 2. Taking the

square root completes the proof. �

Appendix B: Proof of Lemma 3

Let t = tk be the trial where w k gets updated. We distinguish the two cases k < B
and k ≥ B. In the first case no randomization is involved, and we have the standard
(see, e.g., Block, 1962; Novikoff, 1962) Perceptron weight bound ‖w k‖ ≤ √

k, k =
1, . . . , B. In the case k ≥ B the update rule in Fig. 2 allows us to write

‖w k+1‖2 = ‖w k + yt xt − Qk‖2

= ‖w k‖2 + ‖xt‖2 + ‖Qk‖2 − 2w�
k Qk + 2yt (w k − Qk)�xt

≤ ‖w k‖2 + 2 − 2w�
k Qk + 2yt (w k − Qk)�xt .

Recalling Ek Qk = w k/B, we take conditional expectation Ek on both sides:

Ek ‖w k+1‖2 ≤ ‖w k‖2 + 2 − 2
w�

k w k

B
+ 2

(
1 − 1

B

)
yt w�

k xt

≤
(

1 − 2

B

)
‖w k‖2 + 2

the last step following from yt w�
k xt ≤ 0. This gives the desired bound on Ek ‖w k+1‖2.

The bound on Ek ‖w k+1‖ is a direct consequence of Jensen’s inequality. �

Springer

Mach Learn (2007) 69:143–167 167

References

Angluin, D. (1988). Queries and concept learning. Machine Learning, 2(4), 319–342.
Auer, P., & Warmuth, M. (1998). Tracking the best disjunction. Machine Learning, 32(2), 127–150.
Block, H. (1962). The Perceptron: A model for brain functioning. Review of Modern Physics, 34, 123–135.
Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2003). Learning probabilistic linear-threshold classifiers via

selective sampling. In Proceedings of the 16th Annual Conference on Learning Theory (pp. 373–386).
Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2005). A second-order Perceptron algorithm. SIAM Journal

on Computing, 43(3), 640–668.
Crammer, K., Kandola, J., & Singer, Y. (2004). Online classification on a budget. In Advances in Neural

Information Processing Systems 16.
Dekel, O., Shalev-Shwartz, S., & Singer, Y. (2006). The Forgetron: A Kernel-based Perceptron on a fixed

budget. In Advances in Neural Information Processing Systems, 18 (pp. 259–266).
Freund, Y., & Schapire, R. (1999). Large margin classification using the Perceptron algorithm. Machine

Learning (pp. 277–296).
Gentile, C. (2001). A new approximate maximal margin classification algorithm. Journal of Machine

Learning Research, 2, 213–242.
Gentile, C. (2003). The robustness of the p-norm algorithms. Machine Learning, 53(3), 265–299.
Gentile, C., & Warmuth, M. (1999). Linear hinge loss and average margin. In Advances in Neural Information

Processing Systems, 10 (pp. 225–231).
Grove, A., Littlestone, N., & Schuurmans, D. (1997). General convergence results for linear discriminant

updates. In Proceedings of the 10th Annual Conference on Computational Learning Theory (pp. 171–
183).

Herbster, M., & Warmuth, M. (1998). Tracking the best expert. Machine Learning, 32(2), 151–178.
Herbster, M., & Warmuth, M. (2001). Tracking the best linear predictor. Journal of Machine Learning

Research, 1, 281–309.
Kivinen, J., Smola, A., & Williamson, R. (2004). Online learning with Kernels. IEEE Transactions on

Signal Processing, 52(8), 2165–2176.
Li, Y., & Long, P. (2002). The relaxed online maximum margin algorithm. Machine Learning, 46(1/3),

361–387.
Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-threshold algo-

rithm. Machine Learning, 2(4), 285–318.
Littlestone, N., & Warmuth, M. (1994). The weighted majority algorithm. Information and Computation,

108, 212–261.
Novikoff, A. (1962). On Convergence proofs of Perceptrons. In Proceedings of the Symposium on the

Mathematical Theory of Automata (Vol. XII. pp. 615–622).
Reuters (2000). http://about.reuters.com/researchandstandards/corpus/.
Schölkopf, B., & Smola, A. (2002). Learning with kernels. MIT Press.
Vapnik, V. (1998). Statistical Learning Theory. Wiley.
Weston, J., Bordes, A., & Bottou, L. (2005). Online (and offline) on an even tighter budget. In Proceedings

of the 10th International Workshop on Artificial Intelligence and Statistics (pp. 413–420).

Springer

