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Abstract

In most on-line learning research the total on-line loss of the algorithm is compared to the
total loss of the best o�-line predictor u from a comparison class of predictors. We call
such bounds static bounds. The interesting feature of these bounds is that they hold for an
arbitrary sequence of examples. Recently some work has been done where the predictor ut

at each trial t is allowed to change with time, and the total on-line loss of the algorithm
is compared to the sum of the losses of ut at each trial plus the total \cost" for shifting
to successive predictors. This is to model situations in which the examples change over
time, and di�erent predictors from the comparison class are best for di�erent segments of
the sequence of examples. We call such bounds shifting bounds. They hold for arbitrary
sequences of examples and arbitrary sequences of predictors.

Naturally shifting bounds are much harder to prove. The only known bounds are for the
case when the comparison class consists of a sequences of experts or boolean disjunctions.
In this paper we develop the methodology for lifting known static bounds to the shifting
case. In particular we obtain bounds when the comparison class consists of linear neurons
(linear combinations of experts). Our essential technique is to project the hypothesis of the
static algorithm at the end of each trial into a suitably chosen convex region. This keeps
the hypothesis of the algorithm well-behaved and the static bounds can be converted to
shifting bounds.

Keywords: on-line learning, amortized analysis, shifting, switching, bregman divergence,
projection

1. Introduction

Consider the following by now standard on-line learning model which is a generalization of
a model introduced by Littlestone (1989; 1988).
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Learning proceeds in trials t = 1; 2; : : :; `. The algorithm maintains a parameter vector
(hypothesis), denoted by wt 2 <n. In each trial the algorithm receives an instance xt.
It then produces some action or a prediction for xt based on wt. Finally, the algorithm
receives an outcome yt and incurs a loss describing how well the hypothesis wt \performed"
on the example (xt; yt). This loss is some non-negative function L(wt; (xt; yt)).

For example, the algorithm might predict with �(wt �xt), where � is the logistic function,
and the loss might be the square loss, i.e., 1

2(�(wt � xt)� yt)
2. Thus in this example setup

the weight vector w represents a hypothesis hw(x) = �(w � x). By choosing a di�erent
function �, the hypotheses class of the algorithm changes. We abbreviate the loss in trial
t by Lt(wt) and the total loss of the algorithm A on a sequence S = h(x1; y1); : : : ; (x`; y`)i
of examples by L(A;S) =

P`
t=1 Lt(wt):

In the methodology of worst-case loss bounds the total loss of the algorithm is expressed
as a function of the total loss of any member in a comparison class of predictors, which is
usually a subset of the hypotheses class. Such a predictor u also incurs a loss Lt(u) in each
trial and the total loss of u on the entire sequence is abbreviated as L(u; S) =

P`
t=1 Lt(u).

In the simplest case the bounds have the form

L(A;S) � c1L(u; S) + c2 size(u): (1)

Here c1 and c2 are small constants, u is any predictor in the comparison class, and size(u) is
a measurement of the size or complexity of u. We call such bounds static bounds, because
the predictor u does not change with time. Surprisingly, such bounds are achievable even
when there are no probabilistic assumptions made on the sequence of examples (Littlestone,
1988, Mycielski, 1988, Vovk, 1990, Cesa-Bianchi et al., 1996, Haussler et al., 1998, Kivinen
and Warmuth, 1997, Bylander, 1997, Helmbold et al., 1999). In this article we allow the
predictor u to shift with time. For a sequence S of examples of length ` and a schedule of
predictors hu1; : : :;u`i from the comparison class, we seek an upper bound of the form

L(A;S) � c1L(hu1; : : :;u`i; S) + c2 size(hu1; : : :;u`i) + Æ: (2)

Here L(hu1; : : :;u`i; S) is the loss of the schedule of predictors on S, i.e., L(hu1; : : :;u`i; S) =P`
t=1 Lt(ut); size(hu1; : : :;u`i) measures, intuitively, the amount of shifting that occurs in

the schedule and Æ is a small additional term. We call such bounds shifting bounds. In this
article our bounds use the following measure of size(hu1; : : :;u`i):

jjjhu1; : : :;u`ijjjp =
`�1X
t=1

kut � ut+1kp;

where k�kp is a p-norm. This is in accord with other work (Cesa-Bianchi et al., 1996, Kivinen
and Warmuth, 1997, Grove et al., 2001, Gentile and Littlestone, 1999) on worst case loss
bounds, where the static bound also grows with a p-norm of the predictor.

A preliminary shifting result was developed by Littlestone and Warmuth (1994) in the
mistake counting model. The new shifting bounds presented in this article build on previous
work of the authors (Herbster and Warmuth, 1998a) where the loss of the algorithm was
compared against the loss of the best shifting expert (see also Vovk 1997) or the best shifting
disjunction (Auer and Warmuth, 1998).
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The work on shifting experts has been applied to predicting disk idle times (Helmbold
et al., 2000), and load balancing problems (Blum and Burch, 2000), as well as predicting
TCP packet inter-arrival times (Scott, 1998). Vovk (1997) developed a quasi-probabilistic
interpretation of the shifting expert algorithms by Herbster and Warmuth (1998a). Kalai
et al. (1999) and Singer (1998) signi�cantly expanded the shifting expert algorithms to quasi-
probabilistic methods for combining language models and managing portfolios, respectively.

The rest of this article is outlined as follows. In Section 2, we give a general overview
of how a certain class of on-line algorithms with static bounds may be transformed to
algorithms with shifting bounds. In order to obtain a shifting bound we constrain the
hypothesis of the algorithm to a suitably chosen convex region. In Section 3 we discuss how
constraints are chosen to ensure good shifting bounds. In order to maintain the constraints,
we project the hypothesis into the convex region. In Section 4, we discuss how to compute
these projections. Finally, in Section 5 we give the formal bounds for our technique.

2. Shifting bounds for General Additive Regression Algorithms

We focus on a class of Algorithms, called General Additive Regression Algorithms (Jagota
and Warmuth, 1998, Kivinen and Warmuth, 2001), that is characterized by a strictly convex
function F . The function F is used to de�ne a Bregman divergence DF (u;v) (Bregman,
1967, Censor and Lent, 1981, Csiszar, 1991). Bregman used these divergences in convex
programming. In the context of on-line learning, various formulations of these divergence
functions were �rst used in (Auer et al., 1995, Kivinen and Warmuth, 2001, Grove et al.,
2001, Jagota and Warmuth, 1998, Azoury and Warmuth, 2001). At this point we de�ne
Bregman divergence DF (u;v) without fully listing the technical conditions on F speci�ed
in De�nition 20 of the Appendix. Given a strictly convex di�erentiable function F : E!<,
where E � <n is a closed convex set and riE denotes the relative interior1 of E, the
Bregman divergence DF : E � riE![0;1) is de�ned as

DF (u;w) = F (u)� F (w)� (u�w) � rF (w): (3)

The Bregman divergence DF (u;w) is an important tool in this article. The main update
(see (4)) of a General Additive Regression Algorithm is motivated (Kivinen and Warmuth,
1997) by such a divergence. The static loss bounds for these algorithms are proven with an
amortized analysis (Cesa-Bianchi et al., 1996, Kivinen and Warmuth, 1997, Helmbold et al.,
1999, Bylander, 1997, Kivinen and Warmuth, 2001) using a DF divergence as a potential
function. As part of the new methodology of this article we \project" (see De�nition 1) via
a DF divergence to de�ne a new update. This new update, when used in conjunction with
the General Additive Regression Algorithm, allows shifting bounds to be proven.

In this article we focus on three General Additive Regression algorithms: the GD Al-
gorithm (Cesa-Bianchi et al., 1996), the Un-normalized Exponentiated Gradient (EGU)
Algorithm, and the Normalized Exponentiated Gradient (EG) Algorithm (Kivinen and
Warmuth, 1997). The convex functions corresponding to these algorithms are denoted as
sq(w), ne(w), and ne(w), respectively. The convex function sq(w) = 1

2

Pn
i=1wi

2 with
domain <n leads to the divergence Dsq(u;w) =

Pn
i=1

1
2(ui � wi)

2, which is half the

1. Intuitively, the relative interior of a set E corresponds to the \inside" of a set. For example, ri[0; 1] =
(0; 1). The precise de�nitions are given in (Rockafellar, 1970).
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squared Euclidean distance. The convex function ne(w) =
Pn

i=1wi lnwi � wi with domain
[0;1)n leads to the un-normalized relative entropy as the divergence function Dne(u;w) =Pn

i=1ui ln
ui
wi

+ wi � ui. The convex function ne(w) =
Pn

i=1wi lnwi � wi with domain
Pn = fw :

Pn
i=1wi = 1 and wi � 0g gives rise to the relative entropy as the divergence

function Dne(u;w) =
Pn

i=1ui ln
ui
wi
. This is summarized in Figure 1.

For any convex function F and loss function L, the General Additive Regression Al-
gorithm uses the following update (Kivinen and Warmuth, 1997, Helmbold et al., 1997,
1998):

wt+1 = argmin
w2E

[DF (w;wt) + �(L(wt � xt; yt) +rvL(v � xt; yt)jv=wt � (w �wt))]: (4)

We call this the general gradient descent update. It is an approximation to the following
more diÆcult to compute update

wt+1 = argmin
w2E

DF (w;wt) + �L(w � xt; yt);

which is motivated in (Kivinen and Warmuth, 1997). The explicit solutions to (4) for the
convex functions sq(w), ne(w), and ne(w) are summarized in Figure 1.

The update (4) may also be expressed in the simpler form

wt+1 = f�1 (f(wt)� �rLt(wt)) ; (5)

where f = rF for the GD and EGU algorithms. For the GD algorithm f is the identity
function, and hence in this case the GD update is the standard online gradient descent
update. In (Kivinen and Warmuth, 2001) the update (4) is also shown to be expressible
in the form (5) for the EG Algorithm by choosing an alternate convex function F which is
closely related to ne, except that it is expressed as a function of n� 1 dimensions.

We now outline how worst-case loss bounds are obtained in the static case. At the
center of all the static proofs (Kivinen and Warmuth, 1997, Helmbold et al., 1999, Bylander,
1997, Kivinen and Warmuth, 2001) for the General Additive Regression Algorithms lies the
following type of inequality:

a(�) Lt(wt)� b(�) Lt(u) � DF (u;wt)�DF (u;wt+1): (6)

Here a and b are non-negative functions that depend on the learning rate � and upper
bounds on the norms of the instances. Note that DF (u;wt) � DF (u;wt+1) may be seen
as the progress towards the o�-line weight vector u. Since this inequality holds for each
trial, we can sum Equation (6) over trials. The progresses towards u that appear on the
right-hand sides form a telescoping sum, and only the �rst and last terms survive:

a(�)L(A;S) � b(�)L(u; S) � DF (u;w1)�DF (u;w`+1): (7)

The last term, DF (u;w`+1), can be dropped, since the divergence is non-negative and we
are forming an upper bound. The �rst term, DF (u;w1), plays the role of the size measure
of u. Rearranging the above and picking a good choice for � gives bounds of the form (1).

The new approach (which allows us to prove bounds for the shifting case) starts with
picking a suitable convex region �. After the usual update, the hypothesis vector is projected
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into this convex region. This gives us two bene�ts. First, we can show that the General
Additive Regression Algorithms may be modi�ed to maintain convex constraints on the
hypothesis vector. Second, we show that shifting bounds may readily be obtained. The
convex region plays a key role in bounding the size of the schedule of predictors.

De�nition and properties of the Projection update

The divergence DF may also be used to de�ne a type of projection (Bregman, 1967). As
is the case with Euclidean distance, the projection of a point onto a hyperplane allows a
Pythagorean-type theorem (Bregman, 1967) to be proven. The Generalized Pythagorean
Theorem 2 will be the key to proving shifting bounds.

The projection of a point x onto a closed convex set � is simply the point in � closest
to x w.r.t. the divergence DF .

De�nition 1 The projection of a point w 2 riE w.r.t. divergence DF : E � riE![0;1),
where E � <n, onto a closed convex set � is de�ned by:

P(�;DF )(w) = argmin
u2�\E

DF (u;w): (8)

In the Appendix we show that the projection exists and is unique, provided that F is strictly
convex and di�erentiable (see also Bregman 1967 and Csiszar 1991).

Recall the standard Pythagorean Theorem for the divergence associated with the convex
function sq(w):

ku�wk22 = ku� pk22 + kp�wk22; when (u� p) ? (p�w):

The orthogonality condition can be rewritten as p being a projection of w onto a hyperplane
that contains u. Here projections are w.r.t. the (squared) Euclidean distance. Surprisingly,
a generalization of the Pythagorean Theorem holds for projections w.r.t. a large class of
DF divergences (see the Appendix for a list of technical restrictions on F ).

Theorem 2 (Pythagoras generalized (Bregman, 1967)) Given a divergence DF :E�
riE![0;1), a closed convex set � � <n such that �\ riE 6= ;, and points w 2 riE and
u 2 �, then

DF (u;w) � DF (u; P(�;DF )(w)) +DF (P(�;DF )(w);w): (9)

In the special case where � is an aÆne set the above becomes an equality.

A hyperplane is an example of an aÆne set. Any aÆne set in <n may be represented as an
intersection of k hyperplanes \ki=1fv : v � xi = yig for k � n. Formally a set A is aÆne if
for any v;w 2 A and every � 2 < the point �v + (1� �)w is in A.

Note that the above Inequality (9) is opposite to the triangle inequality that holds for
a (distance) metric. For this reason, we call DF a divergence instead of a distance.

The above theorem has been proven many times under a variety of assumptions, e.g.
(Bregman, 1967, Csiszar, 1991, Jones and Byrne, 1990, Bauschke and Borwein, 1997). For
the sake of completeness we provide a streamlined proof in the Appendix. The following
corollary of the Generalized Pythagorean Theorem will be used repeatedly in the analyses
of our Algorithms.
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Corollary 3 Given a divergence DF : E � riE![0;1), a closed convex set � such that
�\ riE 6= ;, and points w 2 riE and u 2 �, then

DF (u;w)�DF (u; P(�;DF )(w)) � 0: (10)

Using the above de�nition of projection, we now introduce our modi�cation of the General
Additive Regression Algorithms:

General gradient descent update:

wm
t = argmin

w2E
[DF (w;wt) + �(L(wt � xt; yt) +rvL(v � xt; yt)jv=wt � (w �wt))]

Projection update:

wt+1 = P(�;DF )(w
m
t ) (11)

Since we now have two updates, we will refer to the intermediate weight vector following
the generalized gradient update as wm

t . We call this algorithm the Constrained General
Additive Regression Algorithm. We use C-GD(�;�), C-EGU(�;�), and C-EG(�;�) for the
example algorithms of this article.

In order to obtain shifting bounds for C-GD(�;�), C-EGU(�;�), and C-EG(�;�), we
need to choose a constraint set for each of the algorithms. The constraint sets �sq;2;
 ,
�ne;1;ln n

�
, and �ne;1;ln n

�
(see Figure 1) are chosen to obtain shifting bounds for GD, EGU,

and EG, respectively. The three parameters of a constraint set �F;p;
 describe the shape
of the constraint set. The �rst parameter refers to the convex function F , which also
determines the main update (see 11) of the algorithm. The second parameter p 2 [1;1] is
associated with the norm of the instances of the loss bounds proven for the algorithm. The
third parameter 
 2 [0;1) essentially \scales" the constraint set.

In (Kivinen and Warmuth, 1997) it is observed that the bounds of GD depend on the
2-norm of both the instances xt and the predictor u, while in EGU (as well as EG) the
bounds depend on the1-norm of the instances xt and the 1-norm of the predictor u. In the
shifting versions of these algorithms the constraint set �sq;2;
 is the level set of the 2-norm,
and the constraint sets �ne;1;ln n

�
and �ne;1;ln n

�
are shifted level sets of the 1-norm. Our

worst-case loss bounds for C-GD(�;�sq;2;
) thus depend on jjjhu1; : : :;u`ijjj2 and kxtk2, and
the bounds for C-EGU(�;�ne;1;ln n

�
) and C-EG(�;�ne;1;ln n

�
) depend on jjjhu1; : : :;u`ijjj1

and kxtk1. In Section 3 we discuss the de�nition and choice of constraint set in more
detail.

Calculating an arbitrary projection P(�;DF )(w) may be computationally expensive. How-
ever, the projections P(�sq;2;
 ;Dsq)(w), P(�ne;1;ln n

�
;Dne)(w), and P(�ne;1;ln n

�
;Dne)

(w) are

computable (see Figure 1) in O(n) time. In particular, the projection update
P(�ne;1;ln n

�
;Dne)(w) corresponds to simple weight clipping. Similar updates were used in the

Fixed-share Algorithm (Herbster and Warmuth, 1998a), the WML Algorithm (Littlestone
and Warmuth, 1994), and the algorithms for tracking disjunctions (Auer and Warmuth,
1998). In Section 4 we discuss the computations of the projections in more detail.
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C-GD(�;�sq;2;
) C-EGU(�;�ne;1;ln n
�
) C-EG(�;�ne;1;ln n

�
)

Convex Function F (w)

sq(w) = ne(w) = ne(w) =
1
2

Pn
i=1wi

2
Pn

i=1wi lnwi�wi

Pn
i=1wi lnwi�wi

w 2 <n w 2 [0;1)n w 2 Pn

Divergence Function DF (u;w)

Dsq(u;w) = Dne(u;w) = Dne(u;w) =Pn
i=1

1
2 (ui � wi)

2
Pn

i=1ui ln
ui
wi
+wi�ui

Pn
i=1ui ln

ui
wi

General Gradient Descent Update

wm
t+1;i = wt;i � �rt;i (12) wm

t+1;i = wt;ie
��rt;i (13)

w
m
t+1;i=

wt;ie
��rt;i

nX

i=1

wt;ie
��rt;i

(14)

Constraint Set �F;p;


�sq;2;
 = fu : kuk2 � 
g �ne;1;ln n
�
= [�

n
; n
�
]n �ne;1;ln n

�
= [�

n
; 1]n\Pn

Projection Update wt+1 = P(�;DF )(w
m
t )

wt+1 =(
wm
t wm

t 2�sq;2;




wm

t

kwm
t k2

wm
t 62�sq;2;


(15)

wt+1;i =8><
>:

wm
t;i wm

t;i 2 [�
n
; n
�
]

�
n

wm
t;i <

�
n

n
�

wm
t;i >

n
�

(16)

See Figure 3.

Figure 1: Summary information for C-GD(�;�sq;2;
), C-EGU(�;�ne;1;ln n
�
), and

C-EG(�;�ne;1;ln n
�
). Here rt;i is shorthand for @Lt(wt)

@wt;i
. In the case of

the square loss, rt;i = 2xt;i(wt � xt � yt).

An overview of proof techniques based on projections

We have three results that follow almost immediately from properties of projections and the
static bounds. First, we show that if the predictor u from the comparison class lies in the
constraint set, the previous static loss bounds hold for the constraint algorithm. Second,
we prove a shifting bound on a predictor schedule hu1; : : :;u`i whose predictors must all
lie in �. Third, in Section 5.1, we extend the shifting bound so that the predictor schedule
may contain predictors that lie outside of �.
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For the �rst part recall that wt is the weight vector at the start of a trial, and wm
t the

weight vector between the two updates. With this notation, Inequality (6) becomes

a(�)Lt(wt)� b(�)Lt(ut) � DF (u;wt)�DF (u;w
m
t ): (17)

Note that this inequality no longer telescopes. By Corollary 3 we have

0 � DF (u;w
m
t )�DF (u;wt+1);

provided that u lies in the constraint set. The sum of the two inequalities is again a
telescoping inequality with the same functions a and b:

a(�)Lt(wt)� b(�)Lt(ut) � DF (u;wt)�DF (u;wt+1): (19)

Thus the constraint algorithms have the same static bounds, provided that the predictor
vector u lies in the constraint set.

For the second part we assume that all the predictors of predictor schedule hu1; : : :;u`i
lie in the constraint set. Thus Equation (19) holds for each trial:

a(�)Lt(wt)� b(�)Lt(ut) � DF (ut;wt)�DF (ut;wt+1): (20)

This again does not telescope. We �x this by adding

GF (ut;ut+1) := DF (ut;wt+1)�DF (ut+1;wt+1): (21)

Intuitively, GF (ut;ut+1) measures the cost for shifting from ut to ut+1. Since the sequence
of predictors hu1; : : :;u`i is arbitrary (the shifting loss bound holds for all sequences of
predictors), this cost may be positive or negative, i.e., ut+1 may be closer to or farther from
the algorithm's current hypothesis wt+1. By adding (20) and (21) and by summing over all
trials we get the following:

L(A;S)�
b(�)

a(�)
L(hu1; : : :;u`i; S)+

1

a(�)

"
DF (u1;w1)�DF (u`+1;w`+1)�

X̀
t=1

GF (ut;ut+1)

#
:

By expanding GF (u`;u`+1) the bound reduces to

L(A;S) �
b(�)

a(�)
L(hu1; : : :;u`i; S)+

1

a(�)

"
DF (u1;w1)�DF (u`;w`+1)�

`�1X
t=1

GF (ut;ut+1)

#
:

(22)

This would be a good bound if GF (ut;ut+1) was lower bounded. Unfortunately this is
not true for arbitrary wt+1. For example, for the potential function sq(w) = 1

2

Pn
i=1w

2
i ,

Gsq(ut;ut+1) =
1

2
kutk

2
2 �

1

2
kut+1k

2
2 �wt+1 � (ut � ut+1): (23)

Observe that unless we have a bound on some norm of wt+1, the cost Gsq(ut;ut+1) cannot
be lower bounded solely in terms of ut and ut+1. However, wt+1 2 �sq;2;
 and thus by
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our choice of the constraint set �sq;2;
 , kwt+1k2 � 
. Through an application of H�older's
inequality, we have

Gsq(ut;ut+1) �
1

2
kutk

2
2 �

1

2
kut+1k

2
2 � 
kut � ut+1k2; (24)

and plugging into Equation (22) we obtain a reasonable upper bound of the form (2):

L(C-GD(�;�sq;2;
); S)�
b(�)

a(�)
L(hu1; : : :;u`i; S)+

1

a(�)

�
Dsq(u1;w1)�

Dsq(u`;w`+1) +
1

2
ku`k

2
2 �

1

2
ku1k

2
2 + 


`�1X
t=1

kut � ut+1k2

#
: (25)

In this section, we have seen that a convex function F may be used to de�ne a General
Additive Regression Algorithm. Such an algorithmmay then be transformed to an algorithm
for which a shifting loss bound may be proven. The transformed algorithm contains an
additional update, which projects the hypothesis vector of the algorithm onto a constraint
set �. In the following sections we prove bounds based on the techniques outlined above.

3. Constraint sets for shifting

In this section, we develop a method for choosing � in terms of the convex function F .
To obtain a shifting loss bound it is necessary to choose a constraint region that keeps the
hypothesis vector w bounded. The constraint region is chosen so that we may bound the
cost of shifting on trial t independently of the hypothesis vector wt. Below we recall (21)
where we de�ned GF (ut;ut+1) to measure the cost of shifting from predictor ut to predictor
ut+1:

GF (ut;ut+1) = DF (ut;wt+1)�DF (ut+1;wt+1): (26)

This cost must be bounded to obtain a shifting loss bound. Expanding the de�nition of GF

we have

GF (ut;ut+1) = F (ut)� F (ut+1)� (ut � ut+1) � rF (wt+1): (27)

We bound the last term with H�older's inequality, which states that a � b � kakpkbk p
p�1

for a; b 2 <n and p 2 [1;1]. Hence the magnitude of the last term is now bounded by
krF (wt+1)kpkut+1 � utk p

p�1
. In the following de�nition we de�ne a constraint set �F;p;


that directly bounds krF (wt+1)kp.

De�nition 4 Given a convex function F : E!<, parameters p 2 [1;1], and 
 2 [0;1)
we de�ne the �F;p;
 constraint set to be

�F;p;
 = E\fw : krF (w)kp � 
g: (28)

The above constraint set is not necessarily convex. In order to de�ne a unique projection
to a set, that set must be convex. Therefore the primary quali�cation for a constraint set
�F;p;
 to be useful is convexity. Now we consider the choice of the parameters p and 
 for
constraint sets �sq;p;
, �ne;p;
 , and �ne;p;
.

289



Herbster and Warmuth

The constraint set �sq;p;
 (for constrained GD) is convex for parameters p 2 [1;1], and

 2 [0;1). We �x p = 2 and use origin-centered hyperspheres as our constraint sets:

�sq;2;
 = fw : kwk2 � 
g:

There are two reasons for choosing origin-centered hyperspheres. First, the projection
P(�sq;2;
 ;Dsq)(w) is simple to compute (see Theorem 5): ifw is in �sq;2;
 then the projection

equals w; otherwise we project by multiplying w by the scalar 

kwk2

(see Equation (29))

so that it lies on the boundary of the hypersphere. Second, because the 2-norm is the only
p-norm that may be identi�ed with an inner product, it is the only �sq;p;
 constraint set
that generalizes to arbitrary Hilbert spaces.

The GD Algorithm and its loss bound is shown in (Cesa-Bianchi et al., 1996) to hold
not only for <n but also for arbitrary Hilbert spaces. If we choose constraint sets of the
form fw : kwk � 
g the projection is still well de�ned for Hilbert spaces. This is a bene�t
since the technique developed in (Aizerman et al., 1964) for the Perceptron Algorithm
(Rosenblatt, 1958) and in (Boser et al., 1992) for the \optimal separating hyperplane"
Algorithm (Vapnik and Chervonenkis, 1974), may be applied to constrained GD. This
technique allows the transform of the comparison class from the set of linear predictors in
<n to the set of all functions in some reproducing kernel Hilbert space (Aronszajn, 1950),
e.g., polynomials of degree d, or linear combinations of Gaussians. The shifting bounds
continue to hold for these expanded comparison classes.

The constraint sets2 �ne;p=1;
 and �ne;p=1;
, for constrained EGU and EG, respec-
tively, are convex for all 
 2 [0;1). For each p 2 [1;1) there exists a 
 such that the
constraint set �ne;p;
 is nonconvex. The constraint set �ne;1;
 is the simple rectangular
region [e�
 ; e
 ]n and the constraint set �ne;1;
 is [e�
 ; e
 ]n\Pn.

In the papers (Herbster and Warmuth, 1998a, Vovk, 1997, Blum and Burch, 2000) the
hypothesis vector was implicitly constrained to the region �ne;1;
=ln n

�
= [�

n
; 1]\Pn. Thus

to maintain continuity in notation with those papers we parameterize the negative entropy-
based constraint sets by ln n

�
rather than 
. In (Herbster and Warmuth, 1998a) and (Vovk,

1997), the ln n
�
parameterization is shown to have a probabilistic interpretation.

4. Computing projections

The computation of the projection P(�;DF )(w) (as de�ned in De�nition 1) divides into two
cases. For the �rst case, when w is contained in �, the projection of w to � is simply
w. This follows directly from the facts DF (u;w) � 0 and u = w , DF (u;w) = 0
(Proposition 21). For the second case, when w is not in �, computing the projection may be
nontrivial. However, we show that the projections P(�sq;2;
 ;Dsq)(w), P(�ne;1;ln n

�
;Dne)(w),

and P(�ne;1;ln n
�
;Dne)

(w) can be computed in O(n) time.

The constraint set �sq;2;
 corresponds to an origin-centered sphere, and intuitively the
projection of w when w is not on the sphere is simply to \radially scale" w so that it is on
the boundary of �sq;2;
 . The following proof con�rms the intuition.

2. The use of the gradient in De�nition 4 is slightly problematic for some convex functions F if the dimension
of the aÆne hull of the domain of F is less than n. In particular, for ne the gradient is only determined
up to a constant, i.e., rne(w) = (ln(w) + c; : : :; ln(w) + c) for all c 2 <. For simplicity we set c = 0.
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�
p

w

o

q

Figure 2: Illustration for the proof of Theorem 5

Theorem 5 The projection P(�sq;2;
 ;Dsq)(w) is computed by

P(�sq;2;
 ;Dsq)(w) =

(
w w 2 �sq;2;


w
kwk2

w 62 �sq;2;

(29)

Proof For this proof we abbreviate P(�sq;2;
 ;Dsq)(w) to p, �sq;2;
 to �,

w
kwk2

to q, and we

let o denote the origin. Recall that Dsq(a; b) =
1
2ka� bk22; for the sake of brevity we omit

the factors of 1
2 in this proof.

Assume w 62 �. The point p is on the boundary of �, since if p is not on the boundary
of � then there exists an � > 0 such that the point p0 = p+ �(w�p) is contained in �. But
kp0 �wk22 = (1� �)2kp�wk22 and this contradicts the assumption that p is the projection
w. Suppose p 6= q; then Figure 2 correctly illustrates the relations between o, p, q, and w,
since kqk2 = 
 and q is a convex combination of w and o. By the triangle inequality,

ko� pk2 + kp�wk2 > ko�wk2 = ko� qk2 + kq �wk2:

Since ko� pk2 = ko� qk2 = 
, we have that kp�wk2 > kq �wk2. This implies that
Dsq(p;w) > Dsq(q;w), which contradicts the assumption that p is the projection of w.
We conclude that p = q.

The constraint set �ne;1;ln n
�
corresponds to the box constraint [�

n
; n
�
]n. The projection

onto the constraint set corresponds to \clipping" each coordinate that is not in [�
n
; n
�
]. The

proof, that this projection is clipping, follows directly from the fact that the de�nition of
the constraint set �ne;1;ln n

�
and the divergence Dne treat each component independently.

Thus the proof reduces to the single component case.
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Theorem 6 The projection p = P(�ne;1;ln n
�
;Dne)(w) is computed by

8i :1; : : : ; n : pi =

8<
:

wi wi 2 [�
n
; n
�
]

�
n

wi <
�
n

n
�

wi >
n
�

(30)

Proof Suppose p = P(�ne;1;ln n
�
;Dne)(w) and p does not equal the r.h.s. of (30). Then

there exists a component pi such that either wi <
�
n
and pi >

�
n
; wi >

n
�
and pi <

n
�
; or

wi 2 [�
n
; n
�
] and pi 6= wi. Without loss of generality, assume wi <

�
n
and pi >

�
n
. Let p0

equal p, but with the ith component set to �
n
, i.e., p0 = (p1; : : : ; pi�1;

�
n
; pi+1; : : : ; pn). Since

the function gb(a) = a ln a
b
+ b � a is strictly convex and is minimized when a = b, the

following inequality holds since �
n
is a convex combination of wi and pi:

pi ln
pi

wi
+ wi � pi >

�

n
ln

�
n

wi
+ wi �

�

n
> wi ln

wi

wi
+ wi � wi:

Therefore

Dne(p;w)�Dne(p
0;w) = pi ln

pi

wi

+ wi � pi �

�
�

n
ln

�
n

wi

+ wi �
�

n

�
> 0;

which contradicts the supposition that p is the projection of w.

The constraint set �ne;1;ln n
�
corresponds to the region [�

n
; 1]n\Pn. Unlike the compu-

tations of the previous two projections, the projection v� = P(�ne;1;ln n
�
;Dne)(w) does not

lend itself to simple description. On �rst inspection, this projection should be similar to
P(�ne;1;ln n

�
;Dne)(w), since the form of the divergences Dne and Dne are the same except

for the restriction of the domain to Pn. However, the additional constraint
Pn

i=1v
�
i = 1

introduces complications, as the independence between components is lost. For instance,
consider a simple case for the computation of P(�ne;1;ln n

�
;Dne)

(w). The weight vector w

to be projected contains components which are less than �
n
. In the projected vector those

components are �xed to �
n
, and the remaining components are normalized (multiplied by

some fraction) so that all the components now sum to one. The action of normalizing some
components could also result in some components dropping to less than �

n
. Therefore, the

projection algorithm chooses the set of components with least cardinality (the elements of
this set must also be smaller than the remaining components of the weight vector) such
that when these components are set to �

n
, the remaining components may be normalized

without any component falling below �
n
. A straightforward algorithm is as follows: a) sort

the components of the weight vector w; b) for each k = 0; : : :; n� 1, generate a candidate
solution by �xing the k smallest components to �

n
, then normalizing the remaining compo-

nents; c) from those n candidate solutions choose the solution with minimal k that satis�es
the constraints. Given an eÆcient implementation, this algorithm takes O(n lnn) time. In
Figure 3 we present an algorithm that computes the projection P(�ne;1;ln n

�
;Dne)

(w) in O(n)

time. This algorithm avoids sorting the components. Instead it recursively uses an O(n)
algorithm for �nding the median.
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Theorem 7 The algorithm in Figure 3 calculates the projection P(�ne;1;ln n
�
;Dne)

(w) in

O(n) time.

Before we prove Theorem 7, we give an overview of the \problem" and then prove
three claims (Claims 1, 2, and 3) which provide a simple characterization of the projection
P(�ne;1;ln n

�
;Dne)

(w). We then present the proof of Theorem 7 which combines the three

claims.

Computing the projection P(�ne;1;ln n
�
;Dne)

(w) is a convex programming problem. The

convex program is as follows:

given a w 2 riPn and a � 2 [0; 1], find the v that minimizes Dne(v;w),
such that 8i : 1; : : : ; n : vi �

�
n

and
Pn

i=1vi = 1.

Let I be an n�n identity matrix, let ~x denote the n-dimensional vector (x; : : : ; x), let � be
a Lagrange multiplier, and �nally let � = (�1; : : : ; �n) be a vector of n Lagrange multipliers.
The Lagrangian for our minimization problem is

L(�; �;v) = Dne(v;w) + � � (Iv �
~�

n
) + �((v �~1)� 1): (31)

Solving rvL(�; �;v) = ~0 gives

8i : 1; : : : ; n : vi = e��i��wi:

Let m0 = e�� and let mi = e��i . Thus the above n equations may be rewritten as

8i : 1; : : : ; n : vi = m0miwi: (32)

The above n equations and the n+ 1 constraint equations must be satis�ed by any v that
is the minimizer of the convex program. The solution is unique by Proposition 23. We
proceed to prove that the v calculated by the algorithm in Figure 3 is the minimizer of
the convex program. We also introduce the following notation: v� = P(�ne;1;ln n

�
;Dne)

(w),

	 = fi : v�i =
�
n
g (called an index set), and & =

P
i2	wi.

Claim 1

8i 62 	 : v�i =
1� j	j�

n

1� &
wi:

Proof The Kuhn-Tucker complementary principle (Rockafellar, 1970, Theorem 28.3, Con-
dition (a)) states that for each slack inequality (i.e., v�i >

�
n
), the corresponding Lagrange

multiplier is 0. Thus for all i 62 	, v�i = m0wi. Since
P

i62	 v�i = 1�j	j�
n
and

P
i62	wi = 1�&

we conclude

m0 =

P
i62	 v�iP
i62	 wi

=
1� j	j�

n

1� &
:
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Claim 2 Without loss of generality for i < j we assume wi � wj. Let m0 =
1�j	j�

n

1�& ; then

v� = f
�

n
; : : : ;

�

n
;m0wj	j+1; : : : ;m0wng: (33)

Proof By Claim 1 the projection v� is a \permutation" of Equation (33); either v�i =
�
n
or

v�i = m0wi with exactly j	j terms equal to �
n
. Suppose v� is not in the form of Equation (33);

then there exists p < q such v�p = m0wp and v�q = �
n
. Set v0 = v�, except v0p = �

n
and

v0q = m0wp. Clearly v0 lies within the constraints, and thus is a feasible solution to the
convex programming problem. Then

Dne(v
�;w)�Dne(v

0;w)

= m0wp ln
m0wp

wp

+
�

n
ln

�
n

wq

�
�

n
ln

�
n

wp

�m0wp ln
m0wp

wq

= m0wp ln
wq

wp
�
�

n
ln
wp

wq

= (m0wp �
�

n
) ln

wq

wp
:

Since m0wp >
�
n
and wq � wp > 0 we have Dne(v

�;w)�Dne(v
0;w) � 0. This contradicts

our assumption that v� is the unique minimizer of the convex program. Hence our suppo-
sition that v� is not in the form of Equation 33 is false.

Claim 3 Let m0
0 =

1�k�
n

1�
Pk

i=1wi
, m00

0 =
1�(k+1)�

n

1�
Pk+1

i=1 wi
,

v0 = f

kz }| {
�

n
; : : : ;

�

n
;m0

0wk+1; : : : ;m
0
0wng;

and

v00 = f

k+1z }| {
�

n
; : : : ;

�

n
;m00

0wk+2; : : : ;m
00
0wng;

then Dne(v
0;w) � Dne(v

00;w).

Proof The vector v0 is the minimum of the following convex program:

given a w 2 riPn and a � 2 [0; 1] find the v that minimizes

Dne(v;w), such that v1 = � � � = vk =
�
n

and
Pn

i=1vi = 1.

The vector v00 is a feasible point of the above convex program, henceDne(v
0;w)�Dne(v

00;w).

Proof [Proof of Theorem 7] We �rst prove that the projection of w may be computed by
choosing the set of components of w with the least cardinality (the elements of this set
must also be smaller than the remaining components of the vector) such that when these
components are set to �

n
, the remaining components may then be normalized without any
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1. W = f1; : : :; ng
2. C# = 0 ; C% = 0
3. while W 6= ; do
4. ! = �ndmedian(fwi : i 2 Wg)
5. L = fi : wi < !; i 2 Wg; L# = jLj; L% =

P
i2Lwi

6. M = fi : wi = !; i 2 Wg; M# = jMj; M% =
P

i2Mwi

7. H = fi : wi > !; i 2 Wg

8. m0 =
1�(C#+L#)

�
n

1�(C%+L%)

9. if !m0 <
�
n
then

10. C# = C# + L# +M# ; C% = C% + L% +M%

11. if H = ; then ! = min(fwi : wi > !; 1 � i � ng)
12. W = H
13. else
14. W = L

15. m0 =
1�C#

�
n

1�C%

16. 8i : 1; : : : ; n : v�i =

�
�
n

wi < !

wim0 wi � !

Figure 3: Algorithm to compute v� = P(�ne;1;ln n
�
;Dne)

(w).

component falling below �
n
. Second, we argue that the algorithm in Figure 3 correctly

computes that projection v� in O(n) time.

Claim 1 proves that the projection v� vector consists of a \index" set of components 	
of w �xed to �

n
, while the remaining components are normalized. By identifying a potential

projection vector with an index set 	 one can narrow the choice of the potential projection
vector v� from any vector in �ne;1;ln n

�
to the 2n vectors that correspond to the 2n sets

	 � f1; : : :; ng. Claim 2 proves that the magnitude of a component to be �xed is smaller
than the magnitude of a component to be normalized, i.e., if i 2 	 and j 62 	, then wi � wj .
This further narrows the number of potential index sets to n. These n sets correspond to
the index sets containing the k = 0; : : : ; n� 1 smallest components of w. Finally, Claim 3
shows that among these n index sets, if 	0 � 	00 with corresponding potential projection
vectors v0 and v00, then Dne(v

0;w) � Dne(v
00;w). Thus to compute the projection we need

to choose the index set of least cardinality whose corresponding potential projection is also
contained in the constraint set �ne;1;ln n

�
.

We have shown thus far that the projection is characterized by a particular \minimal"
index set 	. The \minimal" index set may be speci�ed uniquely by a single component !
of the weight vector w. The threshold component ! is the component which is just larger
than the components of the index set 	, i.e., 	 = fi : wi < !g. The algorithm thus �nds
the projection by �nding the threshold component !.

The algorithm seeks the threshold component !; when ! is found, the projection is
computed by �xing all the components less than ! to �

n
and normalizing the remaining

components (line 16). We proceed to discuss how the algorithm �nds !, though we ignore
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some details of the control structure. On each iteration of the algorithm (lines 3-14) a new
value for the threshold component ! is examined3. The values chosen for ! are determined
from the index set variableW. The variableW is equal initially to f1; : : :; ng. On each iter-
ation the median4 of the component values of W (line 4) is chosen as a potential threshold
component !. The elements of W are then sorted into two sets, L and H (lines 5,7); the
set L contains the indices of components of W which are smaller than !, and H contains
correspondingly the indices of components larger than !. The value m0, the normalizing
constant, is then calculated (line 8). If m0! < �

n
, then by Claims 2 and 3 the true threshold

component must be larger than the current ! and is thus contained in H. Otherwise, the
true threshold component must equal ! or be contained in L. Since ! was the median ele-
ment, the algorithm now iterates (lines 3-14) with either W = H or W = L, as appropriate
(note that maxfjLj; jHjg � 1

2 jWj). When W = ; the iteration of lines 3-14 completes, and
the threshold component ! has been found. There are a maximum of dlog n+1e iterations.
The ith iterate takes O( n

2i
) time, thus the algorithm spends O(n) time in lines 3-14. Con-

sequently, the time complexity of the algorithm is O(n).

5. Applications

In Section 2 we sketched a general technique for proving shifting relative loss bounds.
The technique consisted of modifying a General Additive Regression Algorithm by adding
a projection update that projects the algorithm's hypothesis onto a constraint set. The
analysis of the projection update was then easily combined with the amortized analysis of
the original algorithm to prove a shifting loss bound. In De�nition 8 we explicitly de�ne
the type of amortized analysis that is necessary to apply our technique. In De�nition 9 we
give the general technique for transforming an algorithm with an amortized analysis to an
algorithm for which we can prove a shifting relative loss bound. A general bound is then
given in Theorem 10 and this bound is applied in theorems 14, 15, and 16 to the shifting
analysis of EG, GD, and EGU, respectively. Finally, we show in Theorem 18 that the
shifting loss bound analysis of EGU may be extended to predictor schedules with predictors
not in the constraint set.

De�nition 8 Consider an on-line algorithm AF (�), based on a convex function F : E!<,
with constant learning rate � and associated nonnegative functions a(�) and b(�). Let w 2
riE � <n denote the \weight vector" of the algorithm at the start of a trial; let w0 denote
the updated weight vector at the end of the trial. If for all w 2 riE and all u 2 E the
following inequality holds

a(�) L(w)� b(�) L(u) � DF (u;w)�DF (u;w
0) (34)

then we say that the algorithm AF (�) has an amortized analysis.

3. Even though on each iteration a new ! is examined, it is possible that a previously examined ! will
eventually become the threshold component (see line 11).

4. The median of a set of n numbers may be found in O(n) time (Blum et al., 1973). For our purposes if
n is even, it does not matter if the algorithm chooses the n

2
or (n

2
+ 1) largest element.
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We sketched in Section 2 how the inequality of the de�nition (see also Equation 6) can
be applied. Also, the three General Additive Regression Algorithms GD, EGU, and EG
have an amortized analysis according to above de�nition (see Cesa-Bianchi et al. 1996 and
Kivinen and Warmuth 1997).

Given an on-line algorithm AF (�) with an amortized analysis and a convex set �F;p;
 �
E, we may transform algorithm AF (�) to an algorithm with a shifting loss bound.

De�nition 9 The constrained online algorithm C-AF (�;�F;p;
) is de�ned by transforming
the algorithm AF (�) with an amortized analysis as follows.

Choose a convex constraint set �F;p;
 (see Definition 4). Then,

let wm
t denote the weight vector at the end of every trial t in

algorithm AF (�); at the end of every trial t add the update

wt+1 = P(�F;p;
 ;DF )(w
m
t )

to algorithm AF (�), completing the transformation.

We now have the requisite de�nitions to give a general shifting loss bound for a broad class
of algorithms which have an amortized analysis.

Theorem 10 The shifting loss for algorithm C-AF (�;�F;p;
) is bounded by

L(C-AF (�;�F;p;
); S) �
b(�)

a(�)
L(hu1; : : :;u`i; S)+

1

a(�)
[DF (u1;w1)�DF (u`;w`+1) + F (u`)� F (u1) + 
jjjhu1; : : :;u`ijjj p

p�1
] (35)

for all hu1; : : :;u`i 2 �`F;p;
.

Proof We sum the following three inequalities,

a(�) Lt(wt)� b(�) Lt(ut) � DF (ut;wt)�DF (ut;w
m
t ) (36)

0 � DF (ut;w
m
t )�DF (ut;wt+1) (37)

F (ut)�F (ut+1)�
kut�ut+1k p
p�1

� DF (ut;wt+1)�DF (ut+1;wt+1) (38)

to obtain

a(�)Lt(wt)�b(�)Lt(ut)+F (ut)�F (ut+1)�
kut�ut+1k p
p�1

�DF (ut;wt)�DF (ut+1;wt+1):

(39)
The �rst inequality (36) is equivalent to (34); only the notation has changed. The second
equality follows from Corollary 3, since wt+1 = P(�F;p;
 ;DF )(w

m
t ) and ut 2 �F;p;
. We

prove the third inequality (38) by expanding DF (ut;wt) � DF (ut+1;wt+1) to F (ut) �
F (ut+1)+rF (wt+1) �(ut+1�ut). Then from H�older's inequality, rF (wt+1) �(ut+1�ut) �
�krF (wt+1)kpkut � ut+1k p

p�1
. Thus the lower bound is completed, since krF (wt+1)kp <


 by the de�nition of �F;p;
 (see De�nition 4). We then obtain a shifting loss bound (35)
by summing (39) over trials t = 1; : : :; ` � 1, and then adding to the sum on trial t = `

only the inequalities (36) and (37). The bound then holds by straightforward algebraic
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manipulations of the sum.

Observe in the above theorem that when choosing the constraint set �F;p;
 there is a tradeo�
between the size of the constraint set (feasible predictors) and the size of bound (35). For
example, if r < s, �F;r;
 leads to a smaller constraint set and loss bound than does �F;s;
,
since �F;r;
 � �F;s;
 and kwk r

r�1
� kwk s

s�1
.

In order to apply Theorem 10 to GD, EGU and EG we need to use the original Lemmas
from (Cesa-Bianchi et al., 1996, Kivinen and Warmuth, 1997) that determine the functions
a(�) and b(�) as in (34). In the following Lemmas we expand Lt(w) and Lt(u) to (w �x�y)

2

and (u � x � y)2, respectively, to emphasize the implicit dependence in these Lemmas on
the magnitudes of x and y.

Lemma 11 ((Cesa-Bianchi et al., 1996, Lemma 4.3)) For some X > 0, let kxk2 <

X and let � = 1
4X2 . Then for any w 2 <n let

w0 = w � 2�(w � x� y)x;

then for any u 2 <n

1

4X2
(y �w � x)2 �

1

2X2
(y � u � x)2 � Dsq(u;w)�Dsq(u;w

0): (40)

Lemma 12 ((Kivinen and Warmuth, 1997, Lemma 5.14)) Let x2 [0;X]n; y2 [0; Y ]
for some X;Y > 0, and let � = 1

3XY
. Then for any w 2 [0;1)n let

8i : 1; : : : ; n : w0
i = wie

��xi(w�x�y);

then for any u 2 [0;1)n

1

3XY
(y �w � x)2 �

1

XY
(y � u � x)2 � Dne(u;w)�Dne(u;w

0): (41)

Lemma 13 ((Kivinen and Warmuth, 1997, Lemma 5.8)) Let x 2 [a1; a1+X]�: : :�
[an; an +X] for some X > 0 and a 2 <n, and let � = 2

3X2 . Then for any w 2 Pn let

8i : 1; : : : ; n : w0i =
wie

��xt;i(x�w�y)Pn
j=1wje

��xt;j(x�w�y)
;

then for any u 2 Pn

2

3X2
(y �w � x)2 �

1

X2
(y � u � x)2 � Dne(u;w)�Dne(u;w

0): (42)

We now use the above lemmas in conjunction with Theorem 10 to prove shifting loss bounds
for C-GD(�;�sq;2;
), C-EGU(�;�ne;1;ln n

�
), and C-EG(�;�ne;1;ln n

�
).

Theorem 14 Consider a trial sequence S = h(x1; y1); : : : ; (x`; y`)i with kxtk2 < X and
yt 2 < for all t for some constant X > 0. Let � = 1

4X2 . For some constant 
 > 0,
let �sq;2;
 be the constraint set and let w1 = (0; : : : ; 0). Then for all predictor sequences
hu1; : : :;u`i 2 �`sq;2;
 we have the bound

L(S;C-GD(�,�sq;2;
)) � 2L(hu1; : : :;u`i; S) + 4X2[
1

2
ku`k

2
2 + 
jjjhu1; : : :;u`ijjj2]: (43)
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Proof We combine Lemma 11 with Theorem 10 and exclude the negative terms since we
are upper bounding.

In the following theorem, the notation H(x) =
Pn

i=1xi ln
1
xi
for the \entropy" of a vector

in [0;1)n is used.

Theorem 15 Consider a trial sequence S = h(x1; y1); : : : ; (x`; y`)i with xt 2 [0;X]n and
yt 2 [0; Y ] for all t for some constants X > 0 and Y > 0. Let � = 1

3XY
. For some constant

� 2 [0; 1], let �ne;1;ln n
�
be the constraint set and let w1 = ( 1

n
; : : : ; 1

n
). Then for all predictor

sequences hu1; : : :;u`i 2 �`ne;1;ln n
�
we have the bound

L(S;C-EGU(�;�ne;1;ln n
�
)) � 3L(hu1; : : :;u`i; S)

+ 3XY
h
ku1k1 lnn+ ku`k1 +H(u`) + 1 + ln(

n

�
)jjjhu1; : : :;u`ijjj1

i
: (44)

Proof We combine Lemma 12 with Theorem 10 and exclude negative terms since we are
upper bounding.

Theorem 16 Consider a trial sequence S = h(x1; y1); : : : ; (x`; y`)i with xt 2 [a1; a1+X]�
: : :� [an; an +X] for some constants X > 0 and a 2 <n. Let � = 2

3X2 . For some constant
� 2 [0; 1], let �ne;1;ln n

�
be the constraint set and let w1 = ( 1

n
; : : : ; 1

n
). Then for all predictor

sequences hu1; : : :;u`i 2 �`ne;1;ln n
�

we have the bound

L(S;C-EG(�;�ne;1;ln n
�
)) �

3

2
L(u; S) +

3

2
X2

�
lnn+

1

2
ln(

n

�
)jjjhu1; : : :;u`ijjj1

�
: (45)

Proof Since the predictors and the weights are constrained within a subset of Pn we may
obtain a slightly tighter bound than the straightforward combination of Lemma 13 and
Theorem 10. Observe that if p 2 Pn and

Pn
i=1qi = 0, then p � q � 1

2kpk1kqk1.
5

5.1 An extension of the analysis of C-EGU(�;�ne;1;ln n
�
) to sparse predictor

vectors

One of the key strengths of the EG and EGU Algorithms is that the loss bound may be
exponentially smaller (Kivinen and Warmuth, 1997) than that of the GD Algorithm in
terms of the dimension of the instances (xt). This occurs when the predictor vector u is
sparse (u contains O(1) non-zero components) for typical xt (e.g., xt 2 f�1; 1g

n). A lower
bound6 for this sparse case is also shown by an adversary argument in (Kivinen et al., 1997).

Given that a major strength of the EGU Algorithm is the case when the predictor vector
u is sparse then the bound of C-EGU(�;�ne;1;ln n

�
) in the Theorem 15 is limited in that

5. Note that by H�older's inequality one can obtain the weaker bound of p � q � kpk
1
kqk1, i.e., the factor

of 1
2
is missing.

6. In (Kivinen et al., 1997) this is shown for the perceptron vs. winnow. This argument can be extended
to the case of GD vs. EGU.
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each predictor vector ut in the sequence of predictor vectors hu1; : : :;u`i is non-sparse since
it is contained within �ne;1;ln n

�
= [�

n
; n
�
]n.

In this section we present an analysis of C-EGU(�;�ne;1;ln n
�
) that allows sparse pre-

dictor vectors. Thus the set of allowable predictor vectors will be extended to [0; n
�
]n. The

analysis of C-EG(�;�ne;1;ln n
�
) in Theorem 16 is similarly limited but we do not consider

its extension as its analysis is parallel to that of C-EGU(�;�ne;1;ln n
�
).

Since we are changing the analysis of C-EGU(�;�ne;1;ln n
�
) but not the algorithm the

weight vectors are still restricted to [�
n
; n
�
]n. For the simpler case when the comparison class

is a sequence of experts chosen from a set of n \experts",7 the Variable-share Algorithm
(Herbster and Warmuth, 1998a) allows the components of the weight vectors to approach
zero.

Lemma 17 Let w 2 [0;1)n and let ut;ut+1 2 [0; n
�
]n. Then

Dne(ut;w)�Dne(ut+1; P(�ne;1;ln n
�
;Dne)(w)) �

�H(ut) +H(ut+1)� kutk1 + kut+1k1 � ln(
n

�
)kut � ut+1k1 � �: (46)

Proof Note that the divergence Dne is a simple sum over coordinates, and the constraint
set �ne;1;ln n

�
is the same in each coordinate. A simple but lengthy argument can show that

P(�ne;1;ln n
�
;Dne)(w) = P([�

n
;1)n;Dne)(P([0;n� ]n;Dne)(w)):

Let w0 = P([0;n
�
]n;Dne)(w), and let w00 = P([�

n
;1)n;Dne)(w

0). The sum of the following three
inequalities gives Inequality (46), thus proving the lemma:

Dne(ut;w)�Dne(ut;w
0) � 0 (47)

Dne(ut;w
0)�Dne(ut;w

00) � �� (48)

Dne(ut;w
00)�Dne(ut+1;w

00)�

�H(ut)+H(ut+1)�kutk1+kut+1k1�ln(
n

�
)kut�ut+1k1: (49)

Inequality (47) holds by Corollary 3 when all ut lie in the constraint set [0; n
�
]n. Recall that

the latter convex set was used as the constraint set for de�ning w0 as a projection.

For Inequality (48) we expand the de�nition of Dne:

Dne(ut;w
0)�Dne(ut;w

00)=

nX
i=1

(w0
i �w00

i )+

nX
i=1

ut;i ln
w00i
w0i

From the de�nition of w0 and w00 it follows that w0i �w00i � ��
n
and w00i �w0i � 0. Thus the

�rst sum is lower bounded by �� and the second sum is lower bounded by zero, giving us
Inequality (48).

7. The comparison vector corresponding to the i-th expert in the set is the i-th unit vector, i.e., one in
component i and zero otherwise.
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For the proof of Inequality (49) we expand Dne, then apply H�older's inequality and use
the fact that w00i 2 [�

n
; n
�
] :

Dne(ut;w
00)�Dne(ut+1;w

00) =

�H(ut)+H(ut+1)� kutk1+kut+1k1 +
nX
i=1

�
(ut;i � ut+1;i) ln

1

w00i

�

� �H(ut) +H(ut+1)� kutk1 + kut+1k1 � ln(
n

�
)kut � ut+1k1:

Theorem 18 Consider a trial sequence S = h(x1; y1); : : : ; (x`; y`)i with xt 2 [0;X]n and
yt 2 [0; Y ] for all t for some constants X > 0 and Y > 0. Let � = 1

3XY
. For some constant

� 2 [0; 1], let �ne;1;ln n
�
be the constraint set and let w1 = ( 1

n
; : : : ; 1

n
). Then for all predictor

sequences hu1; : : :;u`i 2 f[0;
n
�
]g` we have the bound

L(S;C-EGU(�;�ne;1;ln n
�
)) � 3L(hu1; : : :;u`i; S)+

3XY
h
ku1k1 lnn+ ln(

n

�
)jjjhu1; : : :;u`ijjj1 + �(`� 1) + ku`k1 +H(u`) + 1

i
: (50)

Proof The proof is essentially the same as Theorem 15, except that we cannot directly
apply Theorem 10. The same summing and rearranging of inequalities occurs as in Theo-
rem 10 except that Lemma 17 replaces the sum of inequalities (37) and (38).

Finally, we give a tuning of � for the purpose of minimizing the above loss bound8. The
tuning introduce two parameters, ^̀ and Û , where ^̀ is an upper bound on the length of the

trial sequence and Û is an approximation to jjjhu1; : : :;u`ijjj1. We set � = minf Û
^̀�1

; 1g, we

choose this value of � since if ^̀ and Û equals ` and jjjhu1; : : :;u`ijjj1 respectively then this
tuning minimizes the loss bound with respect to �.

Corollary 19 Consider a trial sequence S = h(x1; y1); : : : ; (x`; y`)i with xt 2 [0;X]n and
yt 2 [0; Y ] for all t for some constants X > 0 and Y > 0. Let � = 1

3XY
. Let ^̀ � `

and let Û � 0 then set � = minf Û
^̀�1

; 1g. Let �ne;1;ln n
�

be the constraint set and let

w1 = ( 1
n
; : : : ; 1

n
). Then for all predictor sequences hu1; : : :;u`i 2 f[0;

n
�
]g` when � = Û

^̀�1
we

have the bound

L(S;C-EGU(�;�ne;1;ln n
�
)) � 3L(hu1; : : :;u`i; S)+

3XY

"
(ku1k1 + jjjhu1; : : :;u`ijjj1) lnn+ jjjhu1; : : :;u`ijjj1 ln

^̀� 1

Û
+Û +ku`k1+H(u`)+1

#
;

(51)

8. However, the tuning ignores the issue that as we increase � the comparison class shrinks. However, the
comparison class never shrinks smaller than f[0; n]ng`.
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and when � = 1 we have the bound

L(S;C-EGU(�;�ne;1;ln n
�
)) � 3L(hu1; : : :;u`i; S)

+ 3XY [(ku1k1 + jjjhu1; : : :;u`ijjj1) lnn+ (`�1)+ku`k1 +H(u`) + 1] : (52)

The term (` � 1) indicates that (52) is a fairly weak performance guarantee. This is not
surprising since \large" � indicates that we expect a great deal of shifting between predictor
vectors as measured by jjjhu1; : : :;u`ijjj1 when compared to the sequence length.

6. Conclusion

We are developing important methods based on projections that can be used for proving
worst-case loss bounds when the predictor from the comparison class is allowed to shift
over time. These methods apply to such algorithms as the WM Algorithm (Littlestone and
Warmuth, 1994), the Aggregating Algorithm (Vovk, 1995), the Hedge Algorithm (Freund
and Schapire, 1997), and various exponentiated gradient algorithms (Kivinen andWarmuth,
1997, Helmbold et al., 1999, Bylander, 1997, Kivinen and Warmuth, 2001), as well as Win-
now (Littlestone, 1988). The application of the projection update to the static case is also
interesting. Prior knowledge may be represented with convex constraints. The constraints
may then be maintained without any increase in the loss bound. For example this method-
ology can be applied to the on-line portfolio prediction problem (Cover, 1991, Helmbold
et al., 1998). In this case linear inequality constraints may be used to express relations that
must be maintained between the instruments of the portfolio.

In future work the methodology developed in this paper needs to be applied to other
families of algorithms such as the p-norm algorithms (Grove et al., 2001, Gentile and Little-
stone, 1999). Also, the tightness of our bounds should be investigated by proving matching
lower bounds. Lower bounds in the expert setting for the entropic loss have been proven in
(Herbster and Warmuth, 1998a).
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Appendix: Bregman Divergences and the Generalized Pythagorean

Theorem

We prove a series of simple propositions culminating in a generalized Pythagorean Theorem.
These results have been proven by many others with slightly varying sets of assumptions.
See for example (Bregman, 1967, Csiszar, 1991, Jones and Byrne, 1990, Bauschke and
Borwein, 1997, Censor and Zenios, 1997). We begin by giving a more detailed de�nition of
Bregman divergences. Here ri and bd denote the relative interior and relative boundary9 of
a set (Rockafellar, 1970).

De�nition 20 Let F be a function from a closed convex set E � <n into < such that the
following three conditions hold:

(C1) F is strictly convex.

9. Intuitively, the relative interior of a set E corresponds to the \inside" of a set, and the relative boundary
to the \boundary" of a set. For example, ri[0; 1] = (0; 1), and bd[0; 1] = f0; 1g.
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w

9>>>>>=
>>>>>;
DF (u;w)

F ( ~w)

~w

F (w) + ( ~w �w) � rF (w)

u

Figure 4: The Bregman divergence

(C2) F is di�erentiable.

(C3) 8r 2 bdE;8s; t 2riE : (rF (r)�rF (s)) � (t�r) < 0.

Then the Bregman divergence DF : E � riE![0;1) is de�ned as

DF (u;w) = F (u)� F (w)� (u�w) � rF (w): (53)

The technical Condition (C3) guarantees that any projection of a point in riE (De�nition 1)
w.r.t. to the divergence will not lie on the boundary of E. This condition is not required
to prove the uniqueness and existence of projections (Proposition 23). However, then the
condition is necessary to prove the generalized Pythagorean Theorem 2. Note that the
inner product in Condition (C3) is the directional derivative10 of DF (�; s) at the point r in
the direction t � r. The direction t � r is the direction from r (any point in bdE) to t

(any point in riE). Also note that if the domain of F is <n, then the condition is trivially
satis�ed since the bd<n is the empty set.

The divergence DF (u;w) is strictly convex in u, since it is the sum of a strictly convex
function and a linear function. Similarly, DF (u;w) is di�erentiable in u. Since DF (u;w)
is F (u) minus the tangent plane of F at w evaluated on u (see Figure 4) the following
proposition holds.

Proposition 21 For all u 2 E and w 2 riE:

1. DF (u;w) � 0.

10. The directional derivative may be �1.
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2. u = w , DF (u;w) = 0.

We de�ne the open and closed balls relative to a point and a divergence as

B�(w) = fv : DF (v;w) < �g and B�(w) = fv : DF (v;w) � �g:

SinceDF (u;w) is continuous in u, the closure B�(w) is equal to B�(w). It is straightforward
to check that these balls are strictly convex sets since DF (�;w) is strictly convex.

Proposition 22 For any point w 2 riE, B�(w) is bounded.

Proof Suppose B�(w) is unbounded. Then there exists an unbounded sequence of points
S = hw+k1�1; : : : w+ki�i; : : :i such that w+ki�i 2 B�(w), �i 2 f� : k�k2 = 1g, ki 2 (1;1),
ki < ki+1, and limi!1 ki =1. Consider the related sequence T = hw+ �1; : : : ;w+ �i; : : :i;
since the sequence is contained within a compact set it has a convergent subsequence. Now,
in order to avoid double subscripts we simply assume that the sequence S has the additional
property that the related sequence T is convergent. Let ��w = w + limi!1 �i. Note that
w + �i 2 B�(w), since it is a convex combination of w and w + ki�i; also, �

�
w is in B�(w),

since it is a limit point of a sequence in the compact set B�(w)\fw + � : k�k2 = 1g. We
proceed by computing a bound on DF (w + �i;w),

DF (w+�i;w) = DF ((1 �
1

ki
)w +

w + ki�i

ki
;w)

<(1�
1

ki
)DF (w;w) +

1

ki
DF (w + ki�i;w)

�
�

ki
:

By taking limits we have that

DF (�
�
w;w) = lim

i!1
DF (w + �i;w) � lim

i!1

�

ki
= 0;

where DF (�
�
w;w) = limi!1DF (w + �i;w) since DF is continuous in the �rst argument.

However, we now have that DF (�
�
w;w) � 0, which contradicts Proposition 21.

Recall in De�nition 1 the projection of a point w onto a convex set � w.r.t. divergence
DF : E � riE![0;1) is de�ned as

P(�;DF )(w) = argmin
u2�\E

DF (u;w):

The uniqueness of the projection essentially follows from the boundedness and strict con-
vexity of the balls, and the convexity of the constraint set.

Proposition 23 Given w 2 riE and a closed convex set � such that �\ riE 6= ;, then
P(�;DF )(w) exists and is unique.
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Proof Without loss of generality, assume � � E. We �rst show existence. Let A =
DF (�;w). Since all points in A are lower bounded by 0, a = inf A exists. We now prove that
a lies in A, which proves the existence of a projection. Let Æ > 0. The ball Ba+Æ(w) is closed
and bounded. Therefore the intersection B = Ba+Æ(w)\� is closed and bounded. Since we
are in <n, this implies that B is compact. Let C = DF (B;w). Since B is compact and
DF (�;w) is continuous, it follows that C is compact. Since C is compact, inf C must lie in C.
It follows that a projection exists and all projections lie in D = fv : DF (v;w) = inf Cg\�.
We now show that the setD has a single element, and hence the projection is unique. Let s; t
be distinct elements of D and let u = s+t

2 . Then u 2 �, since � is convex. Since DF (�;w)

is strictly convex, DF (u;w) < DF (s;w)
2 + DF (t;w)

2 = inf C, which is a contradiction. Hence
P(�;DF )(w) is unique.

We prove a sequence of three propositions. The �rst and third comprise Theorem 2, the
generalization of the Pythagorean Theorem. The following proposition treats the special
case of this theorem when � is an aÆne set (second part of Theorem 2).

Proposition 24 Given a divergence DF : E � riE![0;1), an aÆne set H such that
H\ riE 6= ;, and points w 2 riE and u 2 H, then

DF (u;w) = DF (u; P(H;DF )(w)) +DF (P(H;DF )(w);w): (54)

Proof An aÆne set in <n may be represented as the intersection of k � n hyperplanes.
Thus let H = \ki=1fv : v � xi = yig. If w 2 H, then P(H;DF )(w) = w and the proposition
trivially holds. Assume w 62 H. By expanding the DF (cf. De�nition 20) we get the
following equivalent form of Equation (54):

(rF (w)�rF (P(H;DF )(w))) � (u� P(H;DF )(w)) = 0: (55)

We now proceed to prove an implicit form of the projection. Computing the projection
is a convex programming problem, i.e., the computation of argminv DF (v;w) subject to
the constraint that v lies in the convex set E\H. We may ignore the constraint v 2 E,
since technical Condition (C3) ensures that v is in riE. We introduce a vector of Lagrange
multipliers � = (�1; : : :; �k) for the equality constraint that v 2 H:

L(�;v) = DF (v;w) +

kX
i=1

�i(xi � v � yi): (56)

Thus for the projection the following equation holds:

0 = rvL(�;v) j v=P(H;DF )
(w)

= rF (P(H;DF )(w))�rF (w) +
kX
i=1

�ixi:

Rewriting the above equation, we have

rF (w)�rF (P(H;DF )(w)) =

kX
i=1

�ixi; (57)
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and the left-hand-side of (55) becomes (u�P(H;DF )(w))�
Pk

i=1 �ixi. Since xi �P(H;DF )(w) =
yi and xi � u = yi for all i, this inner product is zero.

We next show the generalized Pythagorean Theorem for projections onto halfspaces.

Proposition 25 Given a divergence DF : E � riE![0;1), a closed halfspace H = fv :
x � v � yg such that H\ riE 6= ;, and points w 2 riE and u 2 H, then

DF (u;w) � DF (u; P(H;DF )(w)) +DF (P(H;DF )(w);w): (58)

Proof The case w 2 H is trivially true. Assume w 62 H. Equation (58) has the following
equivalent form:

(rF (w)�rF (P(H;DF )(w))) � (u� P(H;DF )(w)) � 0: (59)

The projection of w clearly lies on the boundary of the halfspace, i.e., the hyperplane
H = fv : x � v = yg. Thus P(H;DF )(w) = P(H;DF )(w). Finding the projection is a convex
programming problem subject to an inequality constraint. Since we are now considering
only one constraint, Equation 56 is now

L(�;v) = DF (v;w) + �(x � v � y):

Equation (57) now holds for a single hyperplane H. This allows us to rewrite the left-hand-
side of (59) as (u�P(H;DF )(w)) ��x. We complete the proof by showing that this expression
is at most zero. First note that the projection lies on the boundary H of H, and thus the
Lagrange multiplier is positive by the Kuhn-Tucker complementary principle (Rockafellar,
1970). Finally, x � P(H;DF )(w) = y and x � u � y, so we have that

(u� P(H;DF )(w)) � �x � 0:

We now prove the �rst part of the generalized Pythagorean Theorem:

Proposition 26 Given a divergence DF : E� riE![0;1), a closed convex set � such that
�\ riE 6= ;, and points w 2 riE and u 2 �, then

DF (u;w) � DF (u; P(�;DF )(w)) +DF (P(�;DF )(w);w): (60)

Proof The case w 2 � is again trivially true. Assume w 62 �. Let � = DF (P(�;DF )(w);w).

Consider the balls B�(w) and B�(w). Note that B�(w)\� = ; and B�(w)\� = P(�;DF )(w).
Let H be a halfspace that contains � but does not intersect with B�(w). The existence of
such a halfspace is implied by the Hahn-Banach separation Theorem (Rudin, 1991). (This
theorem says that for any disjoint open and closed sets there exists a halfspace containing
the closed set such that this halfspace is disjoint with the open set.)

We now claim that P(�;DF )(w) = P(H;DF )(w). Provided this claim is true, the current
proposition clearly follows from the previous one. Since H � �,

DF (P(H;DF )(w);w) � DF (P(�;DF )(w);w) = �:

On the other hand < is impossible because B�(w) and H are disjoint. Thus the above
inequality must be an equality and the claim follows from the uniqueness of projections.
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