
Tracking the Conductance of Rapidly Evolving
Topic-Subgraphs

Sainyam Galhotra
XRCI, Bangalore

sainyamgalhotra@gmail.com

Amitabha Bagchi
IIT Delhi

bagchi@cse.iitd.ac.in

Srikanta Bedathur
IBM Research

sbedathur@in.ibm.com

Maya Ramanath
IIT Delhi

ramanath@cse.iitd.ac.in

Vidit Jain
American Express Big Data

Labs, India

viditumass@gmail.com

ABSTRACT

Monitoring the formation and evolution of communities in large

online social networks such as Twitter is an important problem that

has generated considerable interest in both industry and academia.

Fundamentally, the problem can be cast as studying evolving sub-

graphs (each subgraph corresponding to a topical community) on an

underlying social graph – with users as nodes and the connection

between them as edges. A key metric of interest in this setting is

tracking the changes to the conductance of subgraphs induced by

edge activations. This metric quantifies how well or poorly con-

nected a subgraph is to the rest of the graph relative to its internal

connections. Conductance has been demonstrated to be of great

use in many applications, such as identifying bursty topics, tracking

the spread of rumors, and so on. However, tracking this simple

metric presents a considerable scalability challenge – the underlying

social network is large, the number of communities that are active

at any moment is large, the rate at which these communities evolve

is high, and moreover, we need to track conductance in real-time.

We address these challenges in this paper.

We propose an in-memory approximation called BloomGraphs to

store and update these (possibly overlapping) evolving subgraphs.

As the name suggests, we use Bloom filters to represent an approx-

imation of the underlying graph. This representation is compact

and computationally efficient to maintain in the presence of updates.

This is especially important when we need to simultaneously main-

tain thousands of evolving subgraphs. BloomGraphs are used in

computing and tracking conductance of these subgraphs as edge-

activations arrive. BloomGraphs have several desirable properties in

the context of this application, including a small memory footprint

and efficient updateability. We also demonstrate mathematically

that the error incurred in computing conductance is one-sided and

that in the case of evolving subgraphs the change in approximate

conductance has the same sign as the change in exact conductance in

most cases. We validate the effectiveness of BloomGraphs through

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivs 3.0 Unported License. To view a copy of this li­
cense, visit http://creativecommons.org/licenses/by­nc­nd/3.0/. Obtain per­
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 42nd International Conference on
Very Large Data Bases, September 5th ­ September 9th 2016, New Delhi,
India.
Proceedings of the VLDB Endowment, Vol. 8, No. 13
Copyright 2015 VLDB Endowment 2150­8097/15/09.

extensive experimentation on large Twitter graphs and other social

networks.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

General Terms

Theory, Conductance, Bloom filters

1. INTRODUCTION
An important problem in the study of social networks is tracking

the spread of individual memes or topics. These topics may be

specific hashtags, URLs, words or phrases or media objects. One

natural and important approach in this area has been to study the

properties of subgraphs induced on the social network by the users

who are posting and propagating these topics (see, e.g. [2, 36, 37])

with the idea that the evolution of these “topic-focused subgraphs”

contains information that can help shed light on the viral nature of

these topics. Apart from the focus on predicting virality, tracking

the spread of topics has important applications in social sciences

and market analysis. However, tracking and computing the graph

properties of rapidly evolving subgraphs is computationally chal-

lenging due to the volume and velocity of the data involved. Not

only are there a large number of interactions, these interactions

happen within a short span of time, on an underlying network that

consists of millions of nodes and edges. For example, in August

2013, Twitter disclosed that an average of 5, 700 tweets were gener-

ated every second (i.e., around 500 million tweets a day) and activity

around a television show made this number peak at 143, 000 tweets

per second on 3rd August 2013 [26].

In this paper, we focus on how to track the evolution of topic-

focused subgraphs in real-time with very small memory footprint

for each subgraph being tracked. The basic setting in which we

operate is as follows: we are given an underlying social graph

where graph nodes correspond to users and the edges represent

their social connections (e.g., the follower-followee relationship

on Twitter). As this graph typically changes relatively slowly, we

assume it to be static. Topic-focused subgraphs are formed and

evolve through activation of edges in this graph. In Twitter, edge-

activations correspond to the retweeting of or replying to a tweet or

even tweeting within topic. A topic-focused subgraph evolves by

including more nodes and edges when users tweet (or retweet) on

the same topic, thus (re)activating the edges between them. Such

2170



subgraphs can evolve very rapidly, sometimes leading to the topic

going viral. For instance, the recent infamous example of the hashtag

#JustineSacco went viral within a few hours of the first tweet [34].

We are specifically interested in the real-time computation of

the conductance of these topic-focused subgraphs, a metric that

quantifies how well connected the subgraph is to the rest of the

graph1. Efficiently computing the conductance of a subgraph (or a

cut) of a graph has many applications, for example in clustering [24,

28]. In the context of networks, especially social networks, it has

been widely used to measure the quality of communities detected by

community detection algorithms, and has been shown to be closely

related to other measures of the clusteredness of communities like

the clustering coefficient [18]. Recently conductance is shown to

be an important metric in deciding whether or not a topic has gone

viral [2] – which forms a key motivation for our work presented

here. The rapidly evolving nature of the topic-focused subgraphs,

the size of the underlying graph as well as the need for a real-time

solution, makes this a challenging problem. Our solution needs to

satisfy the following requirements:

1. Handle a high rate of updates

2. Have low memory footprint for each subgraph being tracked

since a large number of subgraphs (i.e., topics) may need to

be tracked simultaneously

3. The computation of conductance of the tracked subgraph

should be very efficient.

1.1 Contribution
In this paper, we propose the BloomGraphs framework which

consists of an in-memory approximation of subgraphs that are being

tracked, as well as a persistent approximation of the entire under-

lying social network. As their name suggests, BloomGraphs use

Bloom filters to compactly store the adjacency structure of the graph,

and use this representation to manage a large number of topic-based

subgraphs simultaneously in-memory. Starting with this basic idea,

we make the following main contributions:

• We develop a scalable framework for real-time tracking of a

large number of topic-based communities simultaneously in

memory.

• We show that BloomGraphs allow strictly one-sided error in

estimating the conductance of the evolving subgraphs.

• We provide extensions to support conductance tracking under

streaming moving time-window scenario.

• We support theoretical claims with empirical evidence over

real world graphs derived from a 4-week crawl of close to 8

million users on Twitter as well as other social networks.

• Finally, we show that BloomGraphs are much faster and more

space efficient for computing conductance than traditional

graph structures.

The key insight behind our definition of BloomGraphs is that com-

puting a graph metric like conductance does not require the full

functionality of traditional space-intensive graph storage structures.

In particular we do not always need retrieve a pointer to the neigh-

bors of a node to compute conductance, we can restrict ourselves to

checking if a particular node lies in the neighborhood of another,

even if the set membership operation involved throws up some false

positives as it does with Bloom filters. Our results demonstrate

1It should be noted that this is not the same as computing the
conductance of the entire graph, which is defined as the smallest
conductance score among all possible subgraphs of the graph.

that for this particular metric the error inherent in Bloom filters

can be managed and a quantifiable approximation can be achieved.

We are therefore in a position to leverage the tremendous time and

space efficiencies Bloom filters offer, making our work an impor-

tant step towards building systems where structural properties of a

large-number of rapidly evolving subgraphs need to be estimated in

real-time.

Organization. The rest of the paper is organized as follows: in

Section 2, we provide a brief overview of graph dynamics in Twitter

that we focus on and the definition of conductance of a subgraph.

The Section 3 describes BloomGraphs, the primary contribution of

this paper, and develops a theoretical framework to estimate conduc-

tance scores using BloomGraphs both in a snapshot setting as well

as a streaming setting of edge activations. A detailed experimental

evaluation using Twitter crawls as well as a large social network

derived from LiveJournal are given in Section 4. Details of related

work are given in Section 5, before concluding remarks and outline

of future work in Section 6.

2. OVERVIEW

2.1 Data Model
Let G(V,E) denote the underlying graph, where V and E denote

the vertex set and the edge set respectively. In general, G can either

be a directed or an undirected graph, depending on the applica-

tion. For example, in the case of Twitter network, G corresponds

to the social network between the users induced through directed,

follower-followee relationships. In case of Facebook-like social net-

work, the edges could be undirected corresponding to the symmetric

friendship relationship.

Based on this, we model interactions between vertices in the

network as a sequence of edge activations with each activation

consisting of a time-stamp, and an associated set of activation labels.

In real-world terms, this may correspond to a tweet being sent

to all the followers, two friends exchanging some message, etc.

The activation labels are typically derived from the content of the

message/tweet underlying the edge activation and correspond to a

topic description.

2.2 Conductance
The conductance of a directed graph, G = (V,E) is an isoperi-

metric quantity that provides a lower bound on the ratio of the

outdegree of any set of vertices to their total degree. Formally, for

any S ⊆ V , we define

φG(S) ,
|{(u, v) ∈ E : u ∈ S, v ∈ V \ S}|

|{(u, v) ∈ E : u ∈ S}|
,

and we define the conductance of the graph G as

φG , min
S⊂V

φG(S).

Note that the latter quantity φG is a property of the whole graph

while φG(S) is a property of the subset of vertices S. In the rest of

this paper we will use the term conductance to refer to the conduc-

tance of a subset. When we need to refer to the conductance of the

graph we will use the term graph conductance to avoid confusion.

We will see shortly that from a computational complexity point of

view these two quantities differ greatly.

From the definition we can see that the conductance is a measure

of how “expansive” or “close knit” the set of vertices is: higher

conductance implies more outward connections, lower conductance

implies that this cluster of vertices is more “inward-looking.” For

2171



a more detailed discussion on the use of conductance as a metric,

please refer to Section 5.

We only note here that the quantity that we refer to as conductance

is also called the sparsity of a cut in the algorithms literature since a

set of vertices S ⊆ V can be viewed as a cut that divides the graph

into two parts S, V \S (see, eg., [27]). In the case of random walks in

graphs, or, more generally, for Markov chains on finite state spaces,

the term “bottleneck ratio of a set of states” has been used by some

authors to denote the probability that a random walk (or Markov

chain) defined on a set of states V , moves from a subset of states S
to a state in V \ S (see, e.g., [29]). In the case of random walks this

bottleneck ratio is exactly the same as our definition of conductance.

Lovász and Simonovits use the term “local conductance” for a

similar quantity [30]. Completely unrelated to our setting is the use

of the term conductance for individual edges in the study of random

walks in terms of electrical resistance (see, again, [29]). Despite

the varied uses of the term conductance and for the different names

given to the quantity defined above, we use the term conductance

for this quantity in this paper since, as we will see in Section 5, this

term has been used widely in the context of community detection in

networks.

Computation complexity of conductance. To compute the

conductance of a set of vertices S we need to determine which of

the edges of these vertices are internal to the set, i.e., given an edge

(u, v) where u ∈ S we need to check if v ∈ S. This can be done in

time O(d̄|S|T (|S|)) where d̄ is the average degree of the vertices of

S, and T (k) is the time taken to answer a set membership query on a

set with k elements. T (k) is typically constant if the set membership

structure is a hash map of some sort. Note that this running time

is agnostic to the order in which the edges are considered and so if

we consider a streaming model where the vertices come in one at a

time we can achieve the same time complexity although in this case

T (k) may be O(log k) since we do not know the size of S a priori.

Delving a little deeper, we see that realising the computation

of the function T (·) involves storing the set S in an intelligent

way to speed up the computation. When we have to compute the

conductance for a large set of graphs in parallel then the problem is

compounded since a large number of sets have to be stored. This

can lead to a significant storage expense, which will further lead

to decreased time efficiency. It is this problem that we set out to

address in this paper.

We note that although computing the conductance is a polynomial

time problem, computing the graph conductance, which involves

finding the minimum of the conductance over all subsets of the

vertex set is known to be a NP-hard problem (see Section 5 for

details of what is known about this in the literature.)

3. BLOOMGRAPHS AND CONDUC­

TANCE
In this section we describe the basic BloomGraph structure and

show how to compute conductance using this structure.

3.1 Definition
Since we deal with directed graphs, each node in the graph has

a set of edges incoming to it and a set of edges outgoing from it.

We define separate notation for these two sets. Given a directed

graph G = (V,E) and a u ∈ V , we denote by
←−
Γ (u) the set

{v : (v, u) ∈ E} i.e. the set of nodes that have an outgoing edge

that terminates in u and by
−→
Γ (u) the set {v : (u, v) ∈ E} i.e. the

set of nodes that have an incoming edge that originates in u. We

will extend this notation to sets of nodes as well in the natural way

i.e. for U ⊆ V ,
←−
Γ (U) = {v : ∃u ∈ U, (v, u) ∈ E} and similarly

for
−→
Γ (U). Only when we extend this notation to sets of nodes, for

convenience of presentation we will allow
←−
Γ (U) and

−→
Γ (U) to be

multisets, and their cardinality, therefore, will capture the number

of edges incoming and outgoing (respectively) to a set of nodes U .

A number of different Bloom filters will appear in the rest of

the paper. We use bold math to denote them e.g. A. The size

i.e. number of bits of the Bloom filter will be understood by the

context and will not be explicitly denoted. In Section 3.3 we will

use counting Bloom filters which we will denote with a hat above

the symbol i.e. Â to distinguish them from normal Bloom filters.

We will also use the following notation for common Bloom filter

operations:

• member(B, v): Tests whether the element v is stored in the

set represented by Bloom filter B.

• insert(B, v): Inserts the element v in the set represented by

Bloom filter B.

• ∩(A,B): This returns a new Bloom filter that contains the

intersection of the Bloom filters A and B.

• ∪(A,B): This returns a new Bloom filter that contains the

union of the Bloom filters A and B.

• num(A) : This returns the approximate number of elements

in the set represented by the Bloom filter.

Finally as notation only for the purpose of analysis and not as an

operation, we will denote by size(A) the actual size of the set stored

in the Bloom filter A. Clearly, size(A) ≤ num(A) due to the

existence of false positives.

DEFINITION 3.1. Given a directed graph G = (V,E) and a

positive integer parameter m, the BloomGraph B(G,m) of G is the

set of Bloom filters {InG(u),OutG(u) : u ∈ V }, where InG(u)

is a Bloom filter of size m that stores the set
←−
Γ (u) and OutG(u)

is a Bloom filter of size m that stores the set
−→
Γ (u). We refer to

InG(u) and OutG(u) as the neighbourhood filters of u. When

the graph G is clear from the context we will drop the subscript

and simply write In(u) and Out(u). Additionally we also store∣∣∣←−Γ (u)
∣∣∣ and

∣∣∣−→Γ (u)
∣∣∣ for every u ∈ V .

A BloomGraph is essentially a way of storing adjacency lists using

Bloom filters. Unlike in traditional graph representations it is not

possible to extract the neighbors of a node from a BloomGraph,

we are only allowed to check if a particular node is a neighbour of

another node by querying the relevant neighborhood filter using the

member(·, ·) operation. When queried, the neighbourhood filter

may return some false positives and hence the neighbourhood stored

is in effect a superset of the actual neighbourhood. All the Bloom

filters used have the same size i.e. m. This makes it possible to

efficiently intersect the different Bloom filters, an operation that

will be needed often as we will see. Clearly BloomGraphs cannot

represent multiedges between a pair of nodes although they can

represent self-loops.

3.2 Computing conductance
We now show how to use BloomGraphs to compute conductance.

For ease of understanding of our methods we restate the definition of

conductance given in Section 2.2 in terms of the notation introduced

above: the conductance of a set of vertices U ⊆ V of a graph G,

2172



φG(U) (or simply φ(U) when the graph concerned is understood)

is:

φ(U) =

∣∣∣−→Γ (U)
∣∣∣

∑
u∈U

∣∣∣−→Γ (u)
∣∣∣
.

Algorithm

We now describe an approximate algorithm to calculate the conduc-

tance of a subset U using the BloomGraph of G. The algorithm

BloomConductance takes the B(G,m) as input along with the set

U . The algorithm is iterative. We go through the nodes of U one at

Algorithm BloomConductance(G,U)
Set num← 0
Set den← 0
/* Initialise numerator and denominator to 0. */

Set U← ∅
/* Bloom filter contains the nodes which we have considered. */

For each u ∈ U
/* Iterate over the nodes in U . */

Set num← num+
∣∣∣−→Γ (u)

∣∣∣− num(∩(U,Out(u)))

−num(∩(U, In(u)))
/* Add outgoing edges of u, subtract those that go into U . */

Set den← den+
∣∣∣−→Γ (u)

∣∣∣
insert(U, u)
/* Add the outgoing edges. */

Return num
den

Figure 1: BloomConductance run on a vertex set U .

a time. For each node we add the size of its outgoing neighborhood

to the numerator, subtracting those edges that become internal since

they either go from u to the nodes of U that have already been

processed, or come in to u from one of those nodes (see Figure 2).

If the Bloom filters used had no false positives then the correct-

ness of this algorithm follows from the fact that any edge (u, v)
that is internal to U (i.e. u, v ∈ U ) gets included in the numer-

ator erroneously when the first of these nodes is processed but is

then removed when the second one is processed. However, since

each Bloom filter used has some false positives, the conductance

computed by BloomConductance is approximate.

U6

u1

u2

u4

u5

u6

u3

u7

Figure 2: When u7 is processed the red edges are not external since

they go into U6, and the two blue edges which were earlier outgoing

from U6 now become internal.

Theoretical guarantees

We will now see that BloomConductance has two important prop-

erties. Firstly, as we show in Proposition 3.1 the approximate con-

ductance computed at the end of each iteration is a lower bound on

the actual value of the conductance (see (1) below), i.e., the approxi-

mate conductance is always lower than the exact conductance. We

also show that the extent to which the approximate conductance is

smaller than the exact conductance can be bounded (see (2) below)

although in this case, the result is in terms of the expected value of

the approximate conductance. This expectation is over the random

choices made in the Bloom filters storing the neighbourhoods of

the vertices in the BloomGraph. Overall, Proposition 3.1 shows

that the expected value of the conductance computed using the

BloomGraph structure is a quantifiable approximation of the exact

conductance, and has the additional property that it never exceeds

the exact conductance, i.e., the error is always one-sided.

We also show that BloomConductance has a stronger property

that makes it a good approximation even to detect changes in the

conductance: we state this property as Theorem 3.2: In simple terms

what this theorem says is that as long as the nodes of U do not

have too high a degree, the change in approximate conductance is

in the same direction as that of the exact conductance from step to

step i.e. if the conductance increases between step i and step i+ 1,

so does the approximate conductance and if it decreases so does

the approximate conductance. We will make the condition for this

property to hold precise in the statement of the theorem and discuss

the implications of this condition in greater detail in a discussion

presented after the proof of the theorem.

In the following we assume that if the algorithm considers the

nodes of U in the order u1, u2, . . . then we denote by Ui the set of

nodes {uj : 1 ≤ j ≤ i}. We denote the conductance of Ui esti-

mated by BloomConductance as φ̂(Ui), noting that since the Bloom

filters used to build the BloomGraph using random hash functions,

the quantity φ̂(Ui) is a random variable. Further, we denote the error

in the value of num in the ith iteration of the algorithm by ∆(ui) i.e.

if α̂i = num(∩(Ui−1,Out(ui))) + num(∩(Ui−1, In(ui))) and

αi =
∣∣∣Ui−1 ∩

−→
Γ (ui)

∣∣∣+
∣∣∣Ui−1 ∩

←−
Γ (ui)

∣∣∣, then ∆(ui) = α̂i − αi.

Further, we note that the false positive probability for a Bloom

filter of size m that has had ℓ items inserted in it using k hash

functions was calculated by Broder and Mitzenmacher [8] to be

pm,k(ℓ) =

(
1−

(
1−

1

m

)kℓ
)k

,

and so βN,m,k(ℓ) = (N − ℓ)pm,k(ℓ). Where m and k are under-

stood, we will simply write p(ℓ) for these two quantities. Now we

move to the results.

PROPOSITION 3.1. The approximate value of conductance

φ̂(Ui) calculated at the end of the ith iteration of the algorithm

BloomConductance(G,U) has the following properties for all

1 ≤ i ≤ |U |:

φ̂(Ui) ≤ φ(Ui), (1)

(1− pm,k(i− 1)(1 + flux(Ui))) · φ(Ui)− c ≤ E[φ̂(Ui)], (2)

where pm,k(i) is the false positive probability for a Bloom filter of

size m with i elements stored in it using k hash functions, the flux,

flux(U), of a set of nodes U , is defined as the average incoming

degree of U divided by the average outdegree of U , and c is a small

constant that depends on the maximum incoming and outgoing

degrees of Ui and not on its conductance.

2173



PROOF. The proof of (1) is straighforward:

φ̂(Ui) =

∑i

j=1

(∣∣∣−→Γ (uj)
∣∣∣− α̂j

)

∑i

j=1

∣∣∣−→Γ (uj)
∣∣∣

≤

∑i

j=1

(∣∣∣−→Γ (uj)
∣∣∣− αj

)

∑i

j=1

∣∣∣−→Γ (uj)
∣∣∣

= φ(Ui),

where the inequality follows from the fact that α̂i which is the sum

of sizes of two Bloom filters is always at least αi which is the sum

of the sizes of the two sets being stored in those Bloom filters.

In order to prove (2), we need to compute the expected number

of false positives in ∩(U,Out(ui)) and ∩(U, In(ui)), where ui

is the vertex of U processed at step i. A careful case analysis that

separates the possible false positives into different categories based

on which of the sets being intersected (if any) they belong to yields

the result. We omit the proof due to lack of space.

Now we show that the change in approximate conductance from

one step to another has the same sign as the change in the exact

conductance when certain conditions hold. The condition can be

simply stated as follows: if the node added has small degree the

conductance and the approximate conductance computed by Bloom-

Conductance either both increase or both decrease.

THEOREM 3.2. Given a graph G = (V,E) and a set of nodes

U ⊂ V as input to BloomConductance(G,U), we assume that the

algorithm considers the nodes of U in the order u1, u2, . . . and

we denote by Ui the set of nodes {uj : 1 ≤ j ≤ i}. Further, we

denote by ∆(ui) the error in the value of num in the ith itera-

tion of the algorithm i.e. ∆(ui) = num(∩(Ui−1,Out(ui))) +

num(∩(Ui−1, In(ui)))−
∣∣∣Ui−1 ∩

−→
Γ (ui)

∣∣∣+
∣∣∣Ui−1 ∩

←−
Γ (ui)

∣∣∣.

• If the conductance drops on considering a new node, ui

i.e. φ(Ui) < φ(Ui−1) and |
−→
Γ (ui)|

[
i−1∑
j=1

∆(uj)

]
<

[
i−1∑
j=1

|
−→
Γ (uj)|

]
∆(ui) then the approximate conductance

also drops i.e. φ̂(Ui) < φ̂(Ui−1), and

• if the conductance of a set rises on considering a new node,

ui i.e. φ(Ui) > φ(Ui−1) and |
−→
Γ (ui)|

[
i−1∑
j=1

∆(uj)

]
>

[
i−1∑
j=1

|
−→
Γ (uj)|

]
∆(ui) then the approximate conductance cal-

culation also rises i.e. φ̂(Ui) > φ̂(Ui−1)

We will need the following lemma which tells us that the decrease

in computed conductance between one iteration of BloomConduc-

tance and the next can be upper bounded by the actual decrease in

conductance if a certain technical condition holds.

LEMMA 3.3. Given a graph G = (V,E) and a set of nodes

U ⊂ V the approximate values φ̂(Ui), 1 ≤ i ≤ |U | computed by

BloomConductance(G,U) in its iterations have the property that

φ̂(Ui)− φ̂(Ui−1) < φ(Ui)− φ(Ui−1)

if and only if

|
−→
Γ (ui)|[φ(Ui−1)− φ̂(Ui−1)] < ∆(ui). (3)

PROOF. The change in approximate conductance when ui is

added to the graph can be rewritten as

φ̂(Ui)− φ̂(Ui−1) =
|
−→
Γ (ui)| − α̂i − φ̂(Ui−1)|

−→
Γ (ui)|

∑i

j=1

∣∣∣−→Γ (uj)
∣∣∣

If, and whenever, the condition (3) is true, this gives us:

φ̂(Ui)− φ̂(Ui−1) <
|
−→
Γ (ui)| − ∩(i)− φ(Ui−1)|

−→
Γ (ui)|

∑i

j=1

∣∣∣−→Γ (uj)
∣∣∣

= φ(Ui)− φ(Ui−1).

Now, since φ(Ui) − φ̂(Ui) =
∑i

j=1 ∆(uj)
∑

i
j=1

−→
Γ (ui)

, Theorem 3.2 follows

directly from Eq (1) of Proposition 3.1 and Lemma 3.3.

Discussion of Theorem 3.2

Consider the quantity ∆(ui). This represents the “error” in esti-

mating the number of outgoing edges after the ith node is added.

When ui enters the system some edges that were outgoing from

Ui−1 = {u1, . . . , ui−1} now become internal since they end in

ui (which is now part of the set Ui) and those that are outgoing

from ui into Ui−1 cannot be added as outgoing edges from Ui, they

are, in fact, internal to Ui. So these two sets of edges need to be

estimated. The larger the size of these sets, the larger the error in

this estimation, since Bloom filters give greater errors when we put

more elements into the set. Theorem 3.2 makes this relationship

more precise.

In Theorem 3.2 the main mathematical condition turns on the

comparison between the ratios

|
−→
Γ (ui)|[

i−1∑
j=1

|
−→
Γ (uj)|

] and
∆(ui)[

i−1∑
j=1

∆(uj)

] .

Let us call the first one the outdegree ratio of the ith vertex and the

second one the intersection error ratio.

To put it in words, Theorem 3.2 says that when the conductance

drops on adding the ith vertex the ratio of the number outgoing

edges of the ith vertex to the number of edges of the first i − 1
vertices must be smaller than the ratio of the error in estimating the

number of edges that become internal on adding the ith vertex to the

number of such edges for the first i− 1 vertices put together. This

is a somewhat technical condition from which certain conclusions

can be drawn. Let us investigate these.

If the ith vertex has a large outdegree relative to the vertices

seen before, i.e., its outdegree ratio is high, then we expect the

conductance to increase and if it shares few edges with the past

vertices, i.e., its intersection error ratio is low, then Theorem 3.2

tells us that its approximate conductance will also rise. One way to

ensure that a vertex with large outdegree has a low intersection error

ratio is to consider it earlier in the sequence, thereby ensuring that

there are very few vertices in Ui−1 for it to have intersections with.

So, if we have the freedom to choose the order in which the vertices

are to be considered, it would make sense to consider vertices with

high outdegree earlier. In other words the main pathological case

occurs when a node with a large outgoing degree is considered late

in the sequence, causing the exact conductance to grow. Being

considered late in the sequence makes its intersection error ratio

high and the condition of Theorem 3.2 gets violated and so there is

no guarantee of the approximate conductance increasing. In Sec 4

2174



we will see that such pathological cases occur rarely in real data

sets.

3.3 The streaming scenario
In a streaming scenario as the community we are tracking evolves,

some nodes enter and others leave. In such a situation it does not

make sense to recompute conductance for the entire set of nodes

from scratch since the change in the set of nodes considered could

be quite small compared to the size of the set. In this section we

leverage the large overlap from one time window to another to give

a faster algorithm for computing the conductance of the set of nodes

that occur in a data stream.

In the context of Twitter where our communities are defined as

sets of users tweeting on a particular topic (or hashtag), we say

formally that given a window of size β and a time increment of size

α, at time t we consider those nodes that have talked about the topic

between time t− β and t. In the next step we will consider those

nodes that have talked on the topic between time t − β + α and

t+ α. In most cases, since α will be much smaller than β (say α is

1 hour and β is 24 hours), the difference between the two sets being

considered in two successive steps is expected to be very small. In

this scenario we would ideally like to add the small set of new nodes

and delete the small set of nodes that are no longer to be considered

when the window slides ahead.

The algorithm BloomConductance does not work in such a case

since it relies only on the BloomGraph representation of the graph G
and on Bloom filters to store the nodes of the subgraph induced by U .

Consider the scenario where as time moves forward, a node u ∈ U
has to be deleted from the set of nodes U under consideration. In

order to update the conductance we have to delete the set
−→
Γ (u) \U

which is the same as
−→
Γ (u) ∩

−→
Γ (U). To facilitate this operation

we would have to store the
−→
Γ (U) in a Bloom filter and delete

those elements of
−→
Γ (u) that are also present in

−→
Γ (U). However

−→
Γ (U) may be a multiset, i.e., there may be a vertex w which has

an incoming edge from u as well as from some other vertex v ∈ U .

Even if deletion were possible, deleting w from the Bloom filter

storing
−→
Γ (U) would remove w completely since storing multiple

instances of the same value is not possible in a Bloom filter and,

therefore, we would lose information about the edge (v, w).
In order to handle this issue, we will introduce what we call the

edge BloomGraph of G, a structure in which the edges incident

to each node are stored in Bloom filters of fixed size. To store an

edge in a Bloom filter we need to give it an id. For this we use

Cantor’s Pairing function, a method for mapping a pair of integers

to an integer [9]. The function is defined as follows

π(k1, k2) ,
1

2
(k1 + k2)(k1 + k2 + 1) + k2,

and has the property that it maps each pair to unique integer. For an

edge u→ v in our setting, we use the node ids of the users u and v,

which are integers, as k1 and k2 and obtain π(k1, k2) as the integer

id of the edge. This id is then inserted into a counting Bloom filter

that is supposed to store an edge set of which the edge u→ v is an

element.

DEFINITION 3.2. Given a directed graph G = (V,E) and a

positive integer parameter m, the edge BloomGraph B(G,m, k)

of G is the set of Bloom filters {ÎnG(u), ÔutG(u) : u ∈ V },

where ÎnG(u) is a Counting Bloom filter of size m that stores

the set {π(v, u) : ∀v ∈ V and (v, u) ∈ E} and ÔutG(u) is a

Bloom filter of size m that stores the set {π(u, v) : ∀v ∈ V and

(u, v) ∈ E}, where π(·, ·) is the Cantor’s pairing function. For

each counting Bloom filter we use k bits at each location to store

the number of hashes at that location. We refer to ÎnG(u) and

ÔutG(u) as neighbourhood edge filters. When the graph G is

clear from the context we will drop the subscript and simply write

În(u) and Ôut(u). Additionally we also store |
←−
Γ (u)| and |

−→
Γ (u)|

for every u ∈ V .

Our streaming algorithm will also need to store three edge sets

associated with a set of nodes.

DEFINITION 3.3. Given a directed graph G = (V,E) and a

positive integer parameter m, a set of nodes U ⊆ V has three

counting Bloom filters of size m associated with it. These are

called Înt(U), Êxti(U) and Êxto(U) and store the sets {(u, v) :
u, v ∈ U}, {(u, v) : u /∈ U, v ∈ U} and {(u, v) : u ∈ U, v /∈ U}
respectively, and are called the BloomEdgeSets associated with U .

For brevity we will sometimes use the notation BE(U) to denote the

BloomEdgeSets of U .

With this representation in hand we present an algorithm to calcu-

late conductance of an evolving set of nodes. In Figure 3 we present

the description of an algorithm we call BloomConductances (s for

streaming). We assume that this algorithm is given the BloomEdge-

Sets of a set of nodes U , along with two sets of nodes Λ1 and Λ2

where Λ1 ⊂ U and Λ2 ∪ U = ∅. In other words we assume that

prior to the call of this function our set of nodes was U and some

nodes from this are being deleted while some are being added. The

net deletion is given by the set of nodes Λ1 and the net addition is

given by the set of nodes Λ2. We assume that the node ids of the

nodes in these sets are presented to the algorithm as input. The edge

Bloomgraph B(G,m, k) of the background graph G is assumed to

be available throughout.

The algorithm works by using B(G,m, k) to create the

BloomEdgeSets of Λ1 and Λ2. This is done by a function called

GetBloomEdgeSets. Then it takes the three sets of BloomEdge-

Sets (those belonging to U , Λ1 and Λ2) and uses them to create

the BloomEdgeSets of U ′′ = U \ Λ1 ∪ Λ2. This is done by first

computing the BloomEdgeSets of U ′ = U \ Λ1 using a function

called BloomSetMinus and then computing the BloomEdgeSets of

U ′′ = U ′ ∪ Λ2 using a function called BloomUnion. Once the

BloomEdgeSets of this node set are available, calculating its con-

ductance is easy.

Algorithm BloomConductances(G,BE(U),Λ1,Λ2)
BE(Λ1)← GetBloomEdgeSets(B(G,m, k),Λ1)
BE(Λ2)← GetBloomEdgeSets(B(G,m, k),Λ2)
/* Get the three BloomEdgeSets for each of the disjoint collection of nodes. */

BE(U ′)← BloomSetMinus(BE(U),BE(Λ1))
/* Compute the BloomEdgeSets of U′ = U \ Λ1 . */

BE(U ′′)← BloomUnion(BE(U ′),BE(Λ2))
/* Compute the BloomEdgeSets of U′′ = U \ Λ1 ∪ Λ2 . */

Set Conductance(U ′′)← num(Êxto(U
′′))

num(Înt(U′′))+num(Êxto(U′′))

/* Compute conductance once we have BE(U′′). */

Figure 3: BloomConductances run on subsets U , Λ1 and Λ2.

We omit a formal description of the procedures GetBloomEdge-

Sets, BloomSetMinus and BloomUnion due to space constraints.

The first of these, GetBloomEdgeSets, incrementally builds the

BloomEdgeSets of a set of nodes by considering the two edge

Bloom filters associated with each node in the edge BloomGraph,

taking care to determine which edge falls in which of the three

BloomEdgeSets.

2175



U \ Λ1

Λ1
Λ2

[Exto(U \ Λ1)

[Exti(U \ Λ1)

[Exto(Λ1)

[Exti(Λ1)

[Exto(Λ2)

[Exti(Λ2)

Figure 4: The internal and external edge sets of U and U \ Λ1 and

U \ Λ1 ∪ Λ2 can be easily computed from the internal and external

edge sets of U , Λ1 and Λ2.

To illustrate the working of BloomSetMinus, we discuss the ex-

ample shown in Figure 4. The set of internal edges of U \ Λ1 can

be constructed from the set of internal edges of U by removing

the internal edges of Λ and the edges that go between U \ Λ1 and

Λ1. These latter two sets, depicted in red and blue must be then

added to the outgoing and incoming (respectively) edges of U \ Λ1.

To complete the picture the outgoing and incoming edges of Λ1

which were not shared with vertices of U \Λ1 must also be removed

from the outgoing and incoming (respectively) edges of U to get the

outgoing and incoming (respectively) edges of U \ Λ1. Similarly,

to understand the working of BloomUnion we note that edges which

were outgoing from one of the sets being unioned and incoming to

another (the edges coloured green and pink in the Figure 4) must

become internal in the union.

4. EXPERIMENTAL EVALUATION
We conducted experiments using real-world graphs to evaluate

the scalability and the approximation quality of BloomGraphs. We

compared the performance against an alternative of maintaining

the graph and topic-wise subgraphs using standard adjacency list

representation and computing conductance directly using it. In this

section, we describe our experimental framework in detail, and

present our key results.

4.1 Setup
We implemented BloomGraphs in C as a single-threaded program,

and run all our experiments on a server-class machine with 4 ×
Xeon(R) E5-2660 v2 @ 2.20GHz cores, 64GB RAM, and 225GB

harddisk used for persistently storing BloomGraphs. Our Bloom

filter implementation uses hash function of the form:

g(x) = h1(x) + ih2(x) mod p,

where h1(x) and h2(x) are two weak, independent, uniform hash

functions on the universe of numbers with 64 bits, with range

{0, 1, 2, . . . , p − 1}, where p is the size of the Bloom filter. This

form of hash functions have been shown to be useful in implement-

ing effective Bloom filters with no loss in their asymptotic false

positive probability [25]. All experiments were conducted with 3

randomly chosen hash functions. With the exception of stream-

ing setting where we use 2-bit counting Bloom filters, we always

use simple Bloom filters. We consider BloomGraphs with varying

Bloom filter lengths from 10, 000 to 40, 000. Similarly for counting

Bloom filters we use lengths ranging from 30, 000 to 60, 000. It is

No. of Users 7, 695, 882
Avg. outdegree 450
No. of Users who tweet at least once in the data

collection period

3, 008, 496

No. of Hashtags (after filtering) 8, 793, 155
No. of Tweets (over filtered hashtags) 220, 012, 557
No. of Hashtags with at least 100, 000 tweets 119

Table 1: Characteristics of Twitter Dataset

expected that BloomGraphs with larger Bloom filter lengths will

naturally be better in estimating the graph characteristics.

In a preprocessing step, we read the underlying social network

and write its BloomGraph representation to disk. In other words,

each adjacency list of the graph is stored as a Bloom filter. It should

be noted that we have made no effort to optimize the storage of

Bloom filters – for instance, it is possible that for vertices with very

few outgoing edges, a fixed size of Bloom filter bit-vectors may be

more space inefficient than the standard representation of adjacency

vector. Although one can consider space efficient implementation

of resulting sparse Bloom filters, we leave it for future work.

4.2 Datasets
Our primary dataset was a Twitter activity crawl spanning a period

of one month (from 27th March 2014 to 29th April 2014), from

about 10 million users. Since we used Twitter REST API to collect

these tweets, we worked around the limit of 3, 000 tweets for each

user imposed by the APIs by collecting the data at a regular 2-week

frequency. Each crawl resulted in a corpus of 3TB, and in the end

we obtained 260 million tweets. We also used the same Twitter

APIs to collect the background social network of these users, and

found a strongly connected component consisting of 7.7 million

users, which we focus our experiments on. Table 1 summarizes

some of the key characteristics of this dataset. For more details on

the dataset see [7].

In our experiments, we work on topic-focused subgraphs derived

from a set of 119 hashtags which have a support of at least 100, 000
tweets in our collection. We also manually selected the following

representative four topics (hashtags) which have distinctly different

dynamics in our Twitter stream to illustrate the behaviour of Bloom-

Graphs:

#HappyEarthDay: a hashtag that corresponds to the annual Earth

day events celebrated on April 22 all across the world. As expected,

this hashtag has a very well defined peak in activity in days sur-

rounding its actual date, and almost no activity on other times.

#FollowFriday: corresponds to a weekly event hosted at Twitter,

where you can recommend your followers to follow more people.

Thus, we can expect weekly peaks of this topic, around every Friday.

#Haiyan: was used for tagging events related to typhoon Haiyan

which struck Phillippines in 2013. Due to the extensive damage

it caused, even in 2014, in particular during our crawling period,

there were a few users – particularly those involved in relief and

fund-raising activities – regularly tweeting about it.

#News: is a generic tag which is used for any item that can be

considered as a news item. It shows a regular, high activity except

during weekends.

4.3 Accuracy of Conductance Estimation
Our first experiment is aimed at demonstrating the ability of

BloomGraphs to estimate the trend of conductance values of topic

subgraphs. For this purpose, we consider the topic subgraph formed

using tweets in the last 24 hours after each hour – i.e., we process

2176



 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  100  200  300  400  500  600  700
 0

 2000

 4000

 6000

 8000

 10000

 12000
C

o
n
d
u
c
ta

n
c
e

N
o
. 
o
f 
N

o
d
e
s

Day

#HappyEarthDay

BloomGraph 10K
BloomGraph 20K
BloomGraph 30K

BloomGraph 40K
Exact

Topic Graph Size

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  100  200  300  400  500  600  700
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

C
o
n
d
u
c
ta

n
c
e

N
o
. 
o
f 
N

o
d
e
s

Day

#FollowFriday

BloomGraph 10K
BloomGraph 20K
BloomGraph 30K

BloomGraph 40K
Exact

Topic Graph Size

 0.9975

 0.998

 0.9985

 0.999

 0.9995

 1

 0  100  200  300  400  500  600  700
 0

 20

 40

 60

 80

 100

 120

C
o
n
d
u
c
ta

n
c
e

N
o
. 
o
f 
N

o
d
e
s

Day

#Haiyan

BloomGraph 10K
BloomGraph 20K
BloomGraph 30K

BloomGraph 40K
Exact

Topic Graph Size

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  100  200  300  400  500  600  700
 2200
 2400
 2600
 2800
 3000
 3200
 3400
 3600
 3800
 4000
 4200

C
o
n
d
u
c
ta

n
c
e

N
o
. 
o
f 
N

o
d
e
s

Day

#News

BloomGraph 10K
BloomGraph 20K
BloomGraph 30K

BloomGraph 40K
Exact

Topic Graph Size

Figure 5: Accuracy of BloomGraphs in Tracking Conductance

A
v
e

ra
g

e
 R

e
la

ti
v
e

 E
rr

o
r 

in
 

E
s
ti
m

a
ti
o

n

0

0.035

0.07

0.105

0.14

Exact Conductance Buckets

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0

BloomGraph 10K BloomGraph 20K

BloomGraph 30K BloomGraph 40K

Figure 6: Average Relative Error in Conductance Estimation

tweets of last 24 hours, using BloomGraphs to continuously track

the conductance of the topic subgraph.

The results for all four topics obtained using the 10K and 40K

configurations of BloomGraphs, as well as using the exact computa-

tion method are shown in Figure 5. These plots also show the size

of the topic subgraph (values correspond to the secondary y-axes of

the plot). We can make the following observations:

• The conductance values estimated by BloomGraphs are con-

sistently smaller than the exact conductance values (shown

in Blue). This is simply an empirical confirmation of the

Proposition 3.1,

• As expected, increasing the Bloom filter size improves the

accuracy of estimation by BloomGraphs, which also follows

from the Proposition 3.1, since the estimation accuracy we

showed to be directly dependent on the false positive proba-

bility of the underlying Bloom filters,

• Irrespective of the estimation accuracy, the conductance

scores reported by BloomGraphs show the same trend as

the exact conductance scores. This is consistent with our

Theorem 3.2 and subsequent Lemma 3.3.

These points clearly demonstrate that BloomGraphs are certainly

valuable in settings where conductance scores of rapidly evolving

topic subgraphs are used as a signal for their viral nature in the

graph.

Furthermore, we can also see that the estimation accuracy of

BloomGraphs is quite high for all the four topics considered. To in-

vestigate this further, we estimated conductance values with varying

BloomGraph sizes over all 119 topics in our test-set. Figure 6 plots

the average relative error in estimation as exact conductance values

of the topic-graph vary. For ease of illustration, we have bucketized

the conductance values at the granularity of 0.01, and plot from the

smallest value (= 0.92) until the largest value (= 1.0). As seen

from these results, estimations based on BloomGraphs are quite

accurate even for small values of the conductance score. Although

the relative error increases for smaller values, it should be noted that

this is consistent with the claim that our estimation errors move in

the same direction as the conductance scores.

Accuracy in Streaming Setting

Now, we turn our attention to the problem of conductance tracking

in a streaming scenario where we would like to utilize the large

amount of overlap in successive 24-hour time-windows(ref. 3.3).

As we already described earlier, unlike the vertex-centric Bloom-

Graphs that we used in the previous setting, we use the edge-centric

algorithm BloomConductances that uses edge BloomGraphs and

BloomEdgeSets to computate conductance as tweets stream in.

2177



 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  100  200  300  400  500  600  700

C
o
n
d
u
c
ta

n
c
e

Day

#HappyEarthDay

Edge BloomGraph 30K
Edge BloomGraph 40K
Edge BloomGraph 50K

Edge BloomGraph 60K
Exact

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700

C
o
n
d
u
c
ta

n
c
e

Day

#FollowFriday

Edge BloomGraph 30K
Edge BloomGraph 40K
Edge BloomGraph 50K

Edge BloomGraph 60K
Exact

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0  100  200  300  400  500  600  700

C
o
n
d
u
c
ta

n
c
e

Day

#Haiyan

Edge BloomGraph 30K
Edge BloomGraph 40K
Edge BloomGraph 50K

Edge BloomGraph 60K
Exact

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  100  200  300  400  500  600  700

C
o
n
d
u
c
ta

n
c
e

Day

#News

Edge BloomGraph 30K
Edge BloomGraph 40K
Edge BloomGraph 50K

Edge BloomGraph 60K
Exact

Figure 7: Accuracy of the Streaming Algorithm BloomConductances

A
v
e

ra
g

e
 R

e
la

ti
v
e

 E
rr

o
r 

in
 

E
s
ti
m

a
ti
o

n

0

0.15

0.3

0.45

0.6

Exact Conductance Buckets

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0

Edge BloomGraph  30K Edge BloomGraph 40K

Edge BloomGraph 50K Edge BloomGraph 60K

Figure 8: Average Relative Error of BloomConductances

Figure 7 plots the conductance estimates obtained when we

use the BloomConductances for tracking conductance of topic-

subgraphs. When we compare these results with those in figure 5,

it is immediately clear that the edge BloomGraph based method

has higher error in estimating the conductance than the node-based

BloomGraph-based algorithm. The plots in Figure 8 which show

the average relative error of edge BloomGraphs in estimating con-

ductance further strengthens this point. Despite this, one can also

see that these errors are also always one-sided, and the relative error

for the 40K configuration of Streaming BloomGraphs is typically

under 30% for higher spectrum of exact conductance scores.

4.4 Efficiency

Experiment setup. We sorted the tweets by time and each tweet

was fed to our system one by one. We randomly chose 10 topics for

which to compute the conductance. In one run of the experiment,

the conductance of exactly one topic was continuously updated for

each tweet (provided the tweet corresponded to the topic) for a 24

hour window. The process was then repeated for the same topic by

shifting the window by one hour. For each topic, there were around

500 such 24-hour windows, leading to a total of over 5000 runs.

The performance of BloomGraphs were compared with the base-

line method of computing conductance exactly after each tweet,

using the adjacency list of the underlying social graph as well as

the topic-focused subgraphs. Note that, for every tweet correspond-

ing to the topic, either the originator of the tweet is already in the

topic subgraph or needs to be added to it. For the former, the main

computation is that of set membership, while for the latter, updating

the conductance of topic-focused subgraph. We also did an exact

batch computation by collecting all tweets in the 24 hour window

and computing the conductance on the corresponding topic-focused

subgraph.

Results. The results are shown in Figure 9 for BloomConductance

and its streaming variants. The X−axis shows the size (number of

nodes) of the topic subgraph and the Y−axis shows the total time

taken to compute conductance in a 24-hour window.

Referring to Figure 9a, we find that computing conductance (one

tweet at a time) using BloomGraphs is two orders of magnitude

faster than the exact tweet-at-a-time computation, and almost 3-4

orders of magnitude faster than the exact batch computation, even if

we use the 40K configurations. Next, we will consider the efficiency

of the streaming variant BloomConductances (see Figure 9b). The

edge BloomGraph bases approach is slightly faster than the regular

BloomGraph approach, and is not affected by the size of the sub-

graph under consideration. Further, it should be noted that in case

of streaming algorithm BloomConductances, we can compute the

conductance of topic graphs in a moving 24-hour window without

having to store the tweets separately.

4.5 Memory Consumption
Since we use Bloom filters with 1- and 2-bits for each position,

it is quite straight-forward to estimate the memory taken by each

2178



 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 0  10000  20000  30000  40000  50000  60000  70000  80000

T
im

e
 t

a
k
e

n
 (

s
e

c
)

# Nodes in the Subgraph

Exact Tweet-at-a-time
Exact Batchwise

BloomGraph 10K

BloomGraph 20K
BloomGraph 30K
BloomGraph 40K

(a) Regular BloomGraphs

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 0  10000  20000  30000  40000  50000  60000  70000  80000

T
im

e
 t

a
k
e

n
 (

s
e

c
)

# Nodes in the Subgraph

Exact Tweet-at-a-time
Exact Batchwise

Edge BloomGraph 30K

Edge BloomGraph 40K
Edge BloomGraph 50K
Edge BloomGraph 60K

(b) Edge BloomGraphs

Figure 9: Efficiency of Conductance Computation

BloomGraph. We illustrate this by considering 40K configuration:

for 1-bit Bloom filter we would require about (40000/8) ≈ 5KB
and for 2-bit counting Bloom filter about (40000 ∗ 2)/8 ≈ 10KB.

While the space usage of regular BloomGraph remains approxi-

mately the same as a 1-bit Bloom filter, for edge BloomGraphs this

is not the case. Note that for edge BloomGraphs we need to maintain

the three BloomEdgeSets corresponding to each topic-graph (one

for the internal and two for the external edgesets) leading to about

30KB of memory for each topic-graph.

This was easily confirmed by the following experiment: we simul-

taneously monitored 5, 000 topic-graphs in memory and obtained

the memory footprint of the process from the USS metric returned

by the smem utility. For BloomGraphs with m = 40K, the memory

footprint was 26, 388KB – consistent with our estimated value

of 25, 000KB. Similarly, for BloomConductances, the memory

footprint was reported as 169, 166KB – again consistent with our

estimated value of about 146, 000KB. In both cases, additional

overheads are due to extra data-structures we maintain for analysing

and computing the conductance value of each subgraph.

In summary, considering the need to compute conductance in

a moving time-window over a stream of edge activations, edge

BloomGraphs provide a competitive solution both in terms of their

efficiency (see Figure 9b) as well as overall memory footprint.

4.6 Performance over Other Social Networks
Finally, we wanted to characterize the behavior of Bloom-

Graphs in estimating the conductance of a subgraph in a large

real-world social network, other than Twitter graph, as the size

of the selected subgraph increases. For this purpose, we ob-

tained the soc-LiveJournal dataset from Stanford SNAP website

(http://snap.stanford.edu). This is a network consisting

of close to 5 million users, with more 65 million edges connecting

them. Due to lack of space, we do not provide detailed statistics of

this dataset, and direct the interested reader to the SNAP website.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1000  2000  3000  4000  5000  6000  7000  8000  9000 10000
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

E
x
a
c
t 
C

o
n
d
u
c
ta

n
c
e
 S

c
o
re

R
e
la

ti
v
e
 E

rr
o
r 

in
 E

s
ti
m

a
ti
o
n

# Nodes in the Subgraph

BloomGraph 10K
BloomGraph 20K

BloomGraph 30K
BloomGraph 40K

Exact

Figure 10: Accuracy of BloomGraphs on LiveJournal

This network, being a simple social network, differs quite signifi-

cantly from the Twitter social graph and the topic-graphs considered

so far. In LiveJournal graph there are no hashtags/topics on edges

connecting two persons, and there are no dynamics in the network at

all. Over this network, we randomly sampled a connected subgraph

using a simple random-walk based sampling with uniform edge

selection probabilities. We varied the size of the sampled subgraph

between 1, 000–10, 000 nodes in steps of 1, 000, and for each size

we computed exact conductance score as well as the estimates using

BloomGraph. The results, averaged over 5 random-walk runs, using

different sizes of BloomGraphs are plotted in Figure 10. As these re-

sults show, BloomGraphs are quite effective even when the subgraph

they operate on is quite large – especially if we use them in 40K
configuration. In this case, the relative error in conductance scores is

less than 10% even when the size of the subgraph is as large 10, 000.

Although one sees larger error in the 10K configuration, as shown

earlier, the conductance estimated by BloomGraphs follow the same

trend as exact values.

5. RELATED WORK

Study of Social Networks

There exists significant literature on statistical trend prediction in

streaming data, most notably for the Twitter data. In addition to

the application-specific solutions there has been interest in tracking

topics and events in these streams through an appropriate adaptation

of statistical topic models (see, e.g., [1]). In this literature, the for-

mulation of detecting bursts or spikes in topics [16] is relevant to our

work. Goorha and Ungar study the spiking behavior of elements in

an input set of elements [19]. Cataldi et. al. modeled the streaming

elements as a graph and employed page-rank algorithm along with

aging theory to predict spiking elements [10]. Mathioudakis and

Koudas analyzed the sudden change in frequency patterns of these

elements in conjunction with a reputation model for the origin of

the streaming elements to make these predictions [31]. Becker et. al.

discussed an online setting to identify events and the related tweets,

but they did not make predictions for the future [5]. Our work in this

paper can be seen as complementary to this line of research since

we focus on the aspect of computational efficiency of computing the

conductance, a popular metric widely used for studying the nature

of communities in large networks.

Conductance

Conductance is a measure of how “expansive” or “close knit” a set

of vertices of a graph is: higher conductance implies more outward

connections for any cluster of vertices, lower conductance implies

a more inward-looking cluster. As a result this quantity has very

2179



naturally found great applications in graph clustering [24]. A direct

method of clustering involving computing the graph conductance,

i.e. the minimum conductance over all subsets of the vertex set,

designating the vertex set S that achieves the minimum as a cluster

and then iterating with the rest of the graph is infeasible since

computing the graph conductance is NP-hard and in fact thought to

be inapproximable to within a factor of Ω(
√

log log |V |) [11]. The

class of clustering algorithms based on spectral methods provide

provable performance bounds with respect to the graph conductance

measure, but even in their case the second largest eigenvalue of the

Laplacian of the graph can only approximate the graph conductance

(see, e.g., [23, Chap. 4]).

However, since the conductance of a cluster can be easily mea-

sured in a setting where the graph can be efficiently stored, conduc-

tance has been widely used to measure the quality of a variety of

clustering algorithms (see e.g. [28] or, [21] for surveys of clustering

algorithms that use conductance as a quality measure.) In fact, the

clustering coefficient, another popular and natural measure of the

goodness of clustering, has also been shown to be tightly related

to the graph conductance for certain classes of networks, which

reinforces the fundamental nature of conductance as a measure of

cluster quality [18].

The connection of graph conductance with the mixing times of

random walks was conclusively established by Jerrum and Sin-

clair [22]. This well understood connection was extended to more

general diffusion processes on networks, specifically rumors, by

Chierichetti et. al. [12]. This connection was put on a solid em-

pirical basis by Ardon et. al. [2]. In this work the authors studied

the evolution of a number of topics on Twitter over a period of 80

days and found that the emergence of virality was closely related

to a change in the conductance value i.e. when a topic was about

to go viral the conductance of the (evolving) set of nodes of the

Twitter network talking about the node underwent a sharp dip. No

such behaviour was observed for topics that remained non-viral.

This observation was correlated by Weng et. al. who used a feature

called the first surface, which is closely related to conductance, to

predict the growth to virality of hashtags in Twitter [36, 37]. These

and other researchers have attempted to characterise and predict

virality in social systems but have paid little or no attention to the

computational feasibility of their methods. Our work attempts to

bring an algorithmic and systems flavour to this area with the long

term goal of building real-time systems that can feasibly use the

analytical ideas developed to detect and predict viral topics in a

timely fashion.

Algorithms for Large Graphs

Dynamic sets are key to a wide range of applications in computer

networks, probabilistic verification, bio-informatics, and social net-

works. In many of these applications, these sets are too large to fit

in memory for any analysis. For static sets (e.g., a set of edges of

a large graph), distributed representations have been explored. For

instance, Mondal and Deshpande [33] proposed efficient replication

techniques for distributed graph databases. This work minimized

network bandwidth consumption but did not address storage re-

quirements for the graph. For streaming graphs, different efficient

solutions have been proposed to solve specific tasks. Becchetti et

al. [4] proposed efficient algorithms for local triangle counting in

large, dynamic graphs. Sarma et al. [35] studied space-efficient esti-

mation of page-rank for graph streams. Demetrescu et al. [14] show

space-pass trade-offs for shortest path problems in graph streams.

These approaches are specific to individual problems and do not lead

to a common, efficient representation that generalizes well across

different tasks.

Bloom Filters

Bloom filters provide an efficient representation for set membership

queries. While their original formulation [6] did not support ele-

ment deletion, subsequent variants e.g., counting Bloom filters [17]

allowed for efficient deletion. Similarly, some extensions of Bloom

filters such as stable Bloom filters [15] and timing Bloom filters [32]

worked for sliding windows over data streams. Guo et. al. proposed

dynamic Bloom filters that employ multiple filters with increas-

ing capacity to enable representing large graphs [20]. Asadi and

Lin proposed Bloom filter chains to rapidly retrieval for real-time

search on Twitter stream [3]. Their work does not directly apply for

studying the graph characteristics or virality prediction. Chikhi and

Rizk used Bloom filters for in-memory representation of genome

sequence with an additional consideration for removing critical false

positives [13]. While the structure considered in this paper is a

graph-based model (specifically the de-Bruijn graph), the particular

structure of the graph makes it possible for the authors to maintain

only a labelled vertex set and deduce the edge set from the vertex

labels, making it significantly less general than the setting we study

in the current paper. Broder and Mitzenmacher provide a detailed

survey of diverse applications that employ Bloom filters [8].

6. CONCLUSIONS AND FUTURE WORK
Motivated by the problem of maintaining the conductance of a

large number of network communities that are evolving at a high

rate as new edges are activated and new nodes join the commu-

nity, we have proposed a simple graph storage framework called

BloomGraphs which use the well known Bloom filter structure to

store adjacency lists. We have shown theoretically that the error

incurred by BloomGraphs in computing conductance is one sided

and so they are effective in detecting a sharp drop in conductance, a

phenomenon that has been demonstrated in the literature to be a key

indicator of an ascent to virality. We have demonstrated the efficacy

of BloomGraphs on communities of users tweeting the same hashtag

in Twitter network. This is a particular definition of community

but we feel that BloomGraphs could be used over a broad-range of

definitions of a community.

BloomGraphs open quite a few directions of research to pursue

within dynamic graph analysis. While the state-of-art community

detection algorithms operate on a static graph, there is no practi-

cal solution for maintaining these communities as more edges and

nodes stream into the graph. BloomGraphs can be used to track

the conductance of these communities, and when their conductance

scores indicate that the communities are no longer stable, we can

trigger their repair or rerun the community finding on the entire

graph. In addition, we also plan to explore more compact imple-

mentation of Bloom filters, the use of BloomGraphs in other graph

algorithms, and in community detection itself.

Finally, we feel that computing and updating complex metrics like

conductance over evolving graph structures in real-time is already

very important in the area of predictive analytics over networked

structures, and this importance will only grow. This poses major

computational challenges and the computing community’s response

has been to throw more resources at these challenges. It is our

contention that to build these real-time systems it s is crucial that we

build compact structures, like BloomGraphs, that return reasonable

approximate answers very quickly.

7. REFERENCES

[1] L. AlSumait, D. Barbará, and C. Domeniconi. On-line LDA:

adaptive topic models for mining text streams with

2180



applications to topic detection and tracking. In Proc. 8th IEEE

Intl. Conf. on Data Mining (ICDM 2008), pages 3–12, 2008.

[2] S. Ardon, A. Bagchi, A. Mahanti, A. Ruhela, A. Seth, R. M.

Tripathy, and S. Triukose. Spatio-temporal and events based

analysis of topic popularity in Twitter. In Proc. 22nd ACM

Intl. Conf. on Information and Knowledge Management

(CIKM 2013), pages 219–228, 2013.

[3] N. Asadi and J. Lin. Fast candidate generation for real-time

tweet search with bloom filter chains. ACM Trans. Inf. Syst.,

31(3):13, 2013.

[4] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient

semi-streaming algorithms for local triangle counting in

massive graphs. In Proc. 14th ACM SIGKDD Intl. Conf. on

Knowledge Discovery and Data Mining (KDD 2008), pages

16–24, 2008.

[5] H. Becker, F. Chen, D. Iter, M. Naaman, and L. Gravano.

Automatic identification and presentation of twitter content

for planned events. In Proc. 5th Intl. Conf. on Weblogs and

Social Media (ICWSM ’11), 2011.

[6] B. H. Bloom. Space/time trade-offs in hash coding with

allowable errors. Commun. ACM, 13(7):422–426, 1970.

[7] S. Bora, H. Singh, A. Sen, A. Bagchi, and P. Singla. On the

role of conductance, geography and topology in predicting

hashtag virality. arXiv:1504.05351 [cs.SI], April 2015.

[8] A. Z. Broder and M. Mitzenmacher. Network applications of

bloom filters: A survey. Internet Math., 1(4):485–509, 2003.

[9] G. Cantor. Über eine Eigenschaft des Inbegriffs aller reellen

algebraischen Zahlen. J. für die reine und angewandte

Mathematik, 77:258–262, 1874.

[10] M. Cataldi, L. Di Caro, and C. Schifanella. Emerging topic

detection on twitter based on temporal and social terms

evaluation. In Proc. 10th Intl. Workshop on Multimedia Data

Mining (MDMKDD ’10), page Art. no. 4, 2010.

[11] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and

D. Sivakumar. On the hardness of approximating multicut and

sparsest-cut. Comput. Complex., 15:94–114, 2006.

[12] F. Chierichetti, S. Lattanzi, and A. Panconesi. Almost tight

bounds for rumour spreading with conductance. In Proc. 42nd

ACM Symp. Theory of Computing, pages 399–408, 2010.

[13] R. Chikhi and G. Rizk. Space-efficient and exact de bruijn

graph representation based on a bloom filter. Algorithms Mol.

Biol., 8:22, 2013.

[14] C. Demetrescu, I. Finocchi, and A. Ribichini. Trading off

space for passes in graph streaming problems. In Proc. 17th

Annu. ACM-SIAM Symp. on Discrete Algorithms (SODA

2006), pages 714–723, 2006.

[15] F. Deng and D. Rafiei. Approximately detecting duplicates for

streaming data using stable bloom filters. In Proc. ACM

SIGMOD Intl. Conf. on Management of Data, pages 25–36,

2006.

[16] Q. Diao, J. Jiang, F. Zhu, and E. Lim. Finding bursty topics

from microblogs. In Proc. 50th Ann. Meeting of the Assoc for

Computational Lingustics (ACL 2012), volume 1, pages

536–544, 2012.

[17] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder. Summary

cache: a scalable wide-area web cache sharing protocol.

IEEE/ACM Trans. Netw., 8(3):281–293, 2000.

[18] D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low

conductance cuts, and good seeds for local community

methods. In Proc. 18th ACM SIGKDD Intl. Conf. on

Knowledge Discovery and Data Mining (KDD 2012), pages
597–605, 2012.

[19] S. Goorha and L. H. Ungar. Discovery of significant emerging

trends. In Proc. 16th ACM SIGKDD Intl. Conf. on Knowledge

Discovery and Data Mining (KDD 2010), pages 57–64, 2010.

[20] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo. The dynamic

bloom filters. IEEE Trans. Knowl. Data Eng., 22(1):120–133,

2010.

[21] S. Harenberg, G. Bello, L. Gjeltema, S. Ranshous, J. Harlalka,

R. Seay, K. Padmanabhan, and N. Samatova. Community

detection in large-scale networks: a survey and empirical

evaluation. WIREs Comput Stat, 6:426–439, 2014.

[22] M. R. Jerrum and A. J. Sinclair. Approximating the

permanent. SIAM J. Comput., 18:1149–1178, 1989.

[23] R. Kannan and S. Vempala. Spectral Algorithms. NOW, Delft,

Netherlands, 2009.

[24] R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good,

bad and spectral. J. ACM, 51(3):497–515, May 2004.

[25] A. Kirsch and M. Mitzenmacher. Less hashing, same

performance: Building a better bloom filter. In Proc. 14th

Annual European Symp. on Algorithms (ESA ’06), pages

456–467, 2006.

[26] R. Krikorian. New tweets per second record, and how! Twitter

Engineering Blog, 16th August 2013.

https://blog.twitter.com/2013/new-tweets-per-second-record-

and-how.

[27] T. Leighton and S. Rao. Multicommodity max-flow min-cut

theorems and their use in designing approximation algorithms.

J. ACM, 46(6):787–832, 1999.

[28] J. Leskovec, K. J. Lang, and M. W. Mahoney. Empirical

comparison of algorithms for network community detection.

In Proc. 19th Intl. Conference on World Wide Web (WWW

’10), pages 631–640, 2010.

[29] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and

Mixing Times. AMS, 2009.

[30] L. Lovász and M. Simonovits. Random walks in a convex

body and an improved volume algorithm. Random Struct.

Algor, 4(4):359–412, 1993.

[31] M. Mathioudakis and N. Koudas. Twittermonitor: trend

detection over the twitter stream. In Proc. ACM SIGMOD

International Conference on Management of Data, (SIGMOD

’10), pages 1155–1158, 2010.

[32] A. Metwally, D. Agrawal, and A. El Abbadi. Duplicate

detection in click streams. In Proc. 14th Intl. Conf. on World

Wide Web (WWW 2005), pages 12–21, 2005.

[33] J. Mondal and A. Deshpande. Managing large dynamic graphs

efficiently. In Proc. ACM SIGMOD Intl. Conf. on

Management of Data, pages 145–156, 2012.

[34] J. Ronson. How One Stupid Tweet Blew Up Justine Sacco’s

Life. New York Times Magazine, Feb 2015.

http://www.nytimes.com/2015/02/15/magazine/how-one-

stupid-tweet-ruined-justine-saccos-life.html.

[35] A. D. Sarma, S. Gollapudi, and R. Panigrahy. Estimating

pagerank on graph streams. In Proc. 27th ACM

SIGMOD-SIGACT-SIGART Symp. on Principles of Database

Systems (PODS 2008), pages 69–78, 2008.

[36] L. Weng, F. Menczer, and Y.-Y. Ahn. Predicting successful

memes using network and community structure. In 8th Intl.

AAAI Conference on Weblogs and Social Media (ICWSM

2013), 2013.

[37] L. Weng, F. Menczer, and Y.-Y. Ahn. Virality prediction and

community structure in social networks. Sci. Rep., 3:2522,

2013.

2181


