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Both perceiving and processing external sound stimuli as well as actively maintaining

and updating relevant information (i.e., working memory) are critical for communication

and problem solving in everyday acoustic environments. The translation of sensory

information into perceptual decisions for goal-directed tasks hinges on dynamic

changes in neural activity. However, the underlying brain network dynamics involved

in this process are not well specified. In this study, we collected functional MRI

data of participants engaging in auditory discrimination and auditory working memory

tasks. Independent component analysis (ICA) was performed to extract the brain

networks involved and the sliding-window functional connectivity (FC) among networks

was calculated. Next, a temporal clustering technique was used to identify the

brain states underlying auditory processing. Our results identified seven networks

configured into four brain states. The number of brain state transitions was negatively

correlated with auditory discrimination performance, and the fractional dwell time of

State 2-which included connectivity among the triple high-order cognitive networks and

the auditory network (AN)-was positively correlated with working memory performance.

A comparison of the two tasks showed significant differences in the connectivity of the

frontoparietal, default mode, and sensorimotor networks (SMNs), which is consistent

with previous studies of the modulation of task load on brain network interaction. In

summary, the dynamic network analysis employed in this study allowed us to isolate

moment-to-moment fluctuations in inter-network synchrony, find network configuration

in each state, and identify the specific state that enables fast, effective performance

during auditory processing. This information is important for understanding the key

neural mechanisms underlying goal-directed auditory tasks.

Keywords: dynamic network interaction, functional MRI, goal-directed auditory tasks, independent component

analysis, brain state clustering

INTRODUCTION

Both perceiving and processing external sound stimuli as well as actively maintaining and updating
relevant information (i.e., working memory) are critical for communication and problem solving
in everyday acoustic environments (Huang et al., 2013). The translation of sensory information
into perceptual decisions for goal-directed tasks hinges on dynamic changes in neural activity
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(Kopell et al., 2014). However, the dynamic changes in brain
networks involved in this process are not well specified.

Functional connectivity (FC) is generally used to evaluate
interactions in the brain, and it usually refers to the degree of
co-variation between spatially distributed signals emanating
from the brain. Interactions include FC among different
brain regions that constitutes a local brain network and FC
among different brain networks that constitute the large-
scale brain network. Resting state fMRI measurements
have shown that a brain network of auditory modality-
specific areas in the temporal lobe participate in auditory
processing (Damoiseaux et al., 2006). Task fMRI studies
based on different cognitive loads have reported that distinct
cortical networks were activated by auditory attention and
working memory load (Huang et al., 2013), and FC between
the supratemporal plane (STP) and inferior parietal lobule
(IPL) in the auditory network (AN) was modulated when
discriminating and actively maintaining different pitch-varying
sounds (Hakkinen and Rinne, 2018). Another study on auditory
word processing based on FC analyses demonstrated that
auditory processing recruited the language network (LN),
the dorsal attention network (DAN), and the default mode
network (DMN). This study also found that intra-network
connectivity was stronger in one language than in another
(Jung et al., 2018).

Although previous studies have suggested that multiple
brain networks are involved in processing auditory goal-
directed tasks, it should be noted that these FC studies
are commonly conducted based on the hypothesis that FC
in the human brain is stable. Correspondingly, the network
dynamics during the auditory process are unclear. Recent
work has increasingly found that FC is dynamic and evolves
in biologically meaningful ways at temporal scales ranging
from years to seconds (Gonzalez-Castillo and Bandettini, 2018).
At shorter temporal scales, FC patterns computed over tens
of seconds contain sufficient information to determine the
tasks in which subjects are actively engaged (Shirer et al.,
2012; Gonzalez-Castillo et al., 2015). A study that used
magnetoencephalographic signals to assess human listeners
judging acoustic stimuli composed of carefully titrated clouds
of tone sweeps, suggested that global network communication
during perceptual decision-making was implemented in the
human brain by large-scale couplings between beta-band neural
oscillations (Alavash et al., 2017). However, how large-scale
functional network interactions change dynamically in the
temporal domain and how different cognitive loads modulate
dynamic functional network connectivity (FNC) in auditory
tasks is still unclear. Further investigation of these unsolved
questions is important to improve our understanding of how
these processes support goal-directed functioning in everyday
acoustic environments.

The recent development of time-resolved analyses of
functional neuroimaging data provide a unique opportunity
to examine time-varying reconfigurations in global network
structure (Shine et al., 2016). Many studies now use independent
component analysis (ICA) to extract brain networks and assess
dynamic changes in connectivity strength among networks

to explore the neural mechanisms underlying development
and brain disease (Faghiri et al., 2018). In this study, we used
this method to track the dynamic changes in FNC during
different auditory tasks. We also assessed the modulation
of task load on FNC and its correlation with cognitive
behaviors. We believe that this dynamic FNC analysis may
reveal detailed information regarding brain dynamics during
auditory goal-directed tasks.

MATERIALS AND METHODS

Participants
Twenty college students (mean age: 22.5 years, age range: 20–24,
10 female, right handed) participated in this study. They all had
normal hearing, with no history of neurological disorders.

Experiments
The whole experiment included one auditory discrimination run
and one auditory working memory run, with a total length
of 402s for each run. Both runs started with an 8-s fixation,
followed by eight 36-s sound blocks interleaved with eight 12-s
resting blocks. The eight task block included four sound-source
categories (two living categories of animal sounds and human
sounds and two non-living sound-source categories of traffic
sounds and tool sounds) intersected with two directions (left
and right) (Engel et al., 2009). In each sound block, 12 sound
samples (with same category and direction) were randomly
presented, and each lasted for 2.5 s with an inter-sample-interval
of 0.5 s. In the auditory discrimination task, participants were
asked to judge whether the current sound samples were same
as the first sound samples in that block (0-back). For the
sound blocks in the auditory working memory task, a 2-back
paradigm was used; here, participants were instructed to judge
whether a current sound sample was same as the one given
two samples before.

Data Collection
Imaging data were acquired using a 3.0-T SIEMENS MRI
scanner. An eight-channel head coil was used during scanning.
Foam pads and earplugs were used for all participants to reduce
head motion and scanner noise. To prevent visual input from
distracting participants from the auditory task, eyeshades were
worn by participants during testing. T2∗-weighted images were
acquired using a gradient echo-planar imaging (EPI) sequence
with the following parameters: repetition time (TR) = 2000 ms,
echo time (TE) = 30 ms, voxel size = 3.1 × 3.1 × 4.0 mm3,
matrix size = 64 × 64, slices = 33, slice thickness = 4 mm,
slice gap = 0.6 mm. T1-weighted anatomical images were
acquired using a three-dimensional magnetization-prepared
rapid acquisition gradient echo (3D MPRAGE) sequence with
the following parameters: TR = 1900 ms, TE = 2.52 ms, time
of inversion (TI) = 1100 ms, voxel size = 1 × 1 × 1 mm3,
matrix size = 256 × 256. Participants perceived auditory
stimuli through the earphones of the VisuaStim Digital MRI
Compatible fMRI system.
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Data Preprocessing
The DPABI toolbox1 was employed for data preprocessing. For
each run, the first four images were removed to minimize
magnetic saturation effect. Slice timing and head motion
correction were performed for the remaining functional images.
The translation and rotation parameters of head motion were
less than 2 mm and 2◦. We also calculated the framewise
displacements using a method reported in a previous study
(Jenkinson et al., 2002). The framewise displacements were
0.04 ± 0.01 and 0.04 ± 0.02 for the two runs, demonstrating the
head motion across frames was controlled well. Next, structural
T1-weighted images were co-registered to the mean functional
image, and then normalized to Montreal Neurological Institute
(MNI) space using a non-linear registration. EPI data were
spatially normalized to MNI space with warping parameters
estimated from coregistered, high-resolution T1 images, and
voxel size was re-sampled as 3 × 3 × 3 mm3. The normalized
data were then smoothed with a 6-mm full-width half-maximum
Gaussian kernel to improve the signal-to-noise ratio. After
that, experimental paradigm convolved with the canonical
hemodynamic response function was used as a regressor in a
general linear model to calculate the brain activation map in
each task. Six head motion parameters and their derivatives
was used as covariates. For the FC analysis, six head motion
parameters and their derivatives, as well as the experimental
paradigm convolved with the canonical hemodynamic response
function, were regressed out of the smoothed fMRI time series.
The residual was used for the task-state FC analysis to exclude
the artificial correlation between networks induced by shared
activations (Poldrack et al., 2011).

Functional Network Extraction
Functional brain network data were extracted using the group
ICA method implemented by the GIFT toolbox2. Spatially
independent component maps and their respective time series
were extracted from the data using the following steps. For each
subject, preprocessed data were first reduced to 27 components
using principle component analysis. Next, individual data were
appended along the time dimension and another principle
component analysis was performed for group level dimension
reduction, fromwhich 18 componentswere retained. The number
of components was estimated based on the minimum description
length criterion. Once this had been performed, the infomax
algorithm was applied for ICA; here, the algorithm was run 10
times to reduce the effect of subject order. The results were
clustered via ICASSO3 and the most central solution was used to
ensure stability. For all components, the stability index of ICA
estimate-clusters was around 1, demonstrating that the result
was stable even though the subject order was adjusted. Using
the back-reconstruction approach, the spatial maps and time
courses for each subject were extracted. After visually checking
all components, those with a peak in white matter, ventricles,
brain stem, or cerebellum, or those with a spatial map and

1http://www.rfmri.org/dpabi
2http://mialab.mrn.org/software/gift
3http://research.ics.aalto.fi/ica/icasso/

time course dominated by high frequency fluctuations (likely
due to motion or physiological effects) were removed. Fourteen
components remained based on brain activation maps of the two
tasks (Figure 1) in which significant activations were observed in
auditory regions, visual regions, sensorimotor regions, cerebellar
regions, frontoparietal regions, DMN regions and frontoinsular
regions in salience network (SN; p < 0.001, corrected for
false discovery rate). Previous studies about the brain networks
involved into auditory cognitive tasks (Schneiders et al., 2012;
Huanget al., 2013;Kumaret al., 2016)werealso referred to.Finally,
the14 componentsweregrouped into7 functional brainnetworks.

Dynamic FNC Calculation
The whole data processing steps were illustrated in Figure 2. For
time series data of the 14 selected components, we first performed
linear detrending and low pass filtering (0.1 Hz). Next, a sliding-
window approach was used to calculate dynamic FNC. A window
size of 30s was selected according to previous studies, which
suggested that 30s–60s of data can effectively capture dynamic
information (Hutchison et al., 2013; Allen et al., 2014; Faghiri
et al., 2018). A tapered window was created by convolving a
Gaussian with a rectangular function. For each window, a full
correlation matrix was calculated. The sliding step was 1 sample,
resulting in a total of 178 dynamic FNC matrices.

Brain State Clustering and State Analysis
To examine the reoccurring FNC patterns in the temporal
process, we used k-means clustering on all sliding-window
FNC matrixes of all subjects by Manhattan distance because
L1 distance is more suitable for calculating similarity of high-
dimensional data (Charu et al., 2001). A maximum iteration
of 150 was used on the time-varying FNC matrices to cluster
brain states. Different number of clusters was calculated from
2 to 10. Through dividing within- by between-cluster distances,
four clusters was determined by the elbow criterion of the
cluster validity index.

After obtained the four brain states, state transition was
defined as the number of times a subject transitioned from one
state to another. The time proportion of each subject stayed in
each state within the whole task duration was defined as fractional
dwell time in that state. Due to the non-normality of the two
measures after Kolmogorov-Smirnov test (the number of state
transitions: p = 0.026, and the fractional dwell time in four states:
p = 0.034, 0.021, 0.117, and 0.200) with SPSS 22.0 software4,
the number of state transitions and the fractional dwell time of
each state were separately compared between the two tasks using
permutation test. The permutation test was performed as follows.
Mean inter-group difference of each measure was calculated
firstly, and then all the values of this measure were randomly
reassigned into the two groups for 10,000 times. If less than 5%
of mean values of randomized inter-group differences were equal
or larger than the mean value of original inter-group differences,
the result was seemed as significant (p < 0.05). In addition, the
spatial strength of each state was also compared between tasks
using paired t-tests (p < 0.05, corrected for false discovery rate).

4https://www.ibm.com/analytics/spss-statistics-software
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FIGURE 1 | The brain activation maps during auditory discrimination task (A) and auditory working memory task (B) calculated by general linear model.

Correlation Analysis of Brain State
Measure With Behavior
For the auditory discrimination and auditory working memory
tasks, dprime scores (Haatveit et al., 2010) were calculated
separately to evaluate behavioral performance. Pearson
correlations of dprime score with number of state transition
and fractional dwell times were conducted to examine whether
the dynamic brain network states were related to behavior. The
framewise displacement of each subject was used as a covariate
in the partial correlation analysis. The significance of the results
was tested using fisher t-test (p < 0.05).

RESULTS

Spatial Maps of Task-Related Functional
Brain Networks
After removing the components related to artifacts, we selected
14 task-related brain network components based on the
spatial maps and frequency distribution as mentioned in the
method section. The extracted 14 independent components were
distributed in 7 functional networks, including the AN, the visual
network (VN), the sensorimotor network (SMN), the cerebellar
network (CER), the frontoparietal network (FPN), the DMN,
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FIGURE 2 | The whole data processing steps.

and the SN (Figure 3). The spatial maps of functional networks
were displayed using a threshold of z-score > 2.0 and multiple
components within one functional network were displayed in
a composite plot.

Dynamic Functional Network
Connectivity Patterns
The dynamic interactions among the seven functional networks
were evaluated using a sliding-window correlation analysis
method on the corresponding time series. The 178 dynamic

FNC matrices were clustered into 4 brain states. For better
visualization, each state was represented by its centroid and is
shown in Figure 4 using a threshold of absolute correlation
value r > 0.5 (The original connectivity matrix is shown in
Supplementary Figure S1).

As shown in Figure 4, State 1 consisted of all seven brain
networks. In State2, strong connectivity was observed in three
higher cognitive networks (FPN, DMN, SN) and two primary
networks (AN and VN). In this state, we can see strong inter-
network interactions among the three higher cognitive networks
as well as between a higher cognitive network (FPN) and
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FIGURE 3 | The seven brain networks extracted by independent component analysis. (A–G) refer to AN (auditory network), VN (visual network), SMN (sensorimotor

network), CER (cerebellum network), FPN (frontoparietal network), DMN (default mode network), and SN (salience network), respectively. Number in color bar means

component number. Brain networks in panels (B,C,E,F) were composed by multiple independent components.

a primary network (AN). In contrast, strong FC in State 3
and State 4 involved two cognitive networks (DMN, FPN)
and two primary networks (SMN, VN or AN). In State 3,
we observed strong cross-network interactions between FPN
and SMN as well as between SMN and VN. With respect to
State 4, only one strong inter-network interaction was found
between FPN and AN.

Brain State Analysis Results
The average state transition times and fractional dwell time of
each state for the two tasks are listed in Table 1. The number
of state transitions were similar for both tasks (permutation test,
p = 0.17). For fractional dwell time, it can be seen that nearly
the same percentage of time was spent in the two tasks for
States 3 and 4, while the fractional dwell times of State 1 and
State 2 showed opposite trends in the auditory discrimination
and auditory 2-back tasks. When comparing the fractional dwell
times of each state between the two tasks, there was no significant
differences (permutation test, p = 0.33, 0.20, 0.98, and 0.96,
respectively for the four states).

The spatial pattern of each state was also compared between
the auditory discrimination task and the auditory working
memory task. Significant differences were observed for States
1, 3, and 4, but only differences in State 4 were retained
after correcting for multiple comparisons (see Figure 5). In
State 4, stronger negative connectivity between FPN and DMN
and stronger positive connectivity between DMN and SMN
were found for the working memory task, while stronger
positive connectivity within FPN was found for the auditory
discrimination task (p < 0.05, FDR corrected).

Correlation Results of Brain State
Measure With Behavior
Significant correlation of dprime score with the number of
state transition and with fractional dwell time in different states
for the two tasks were separately reported in Figure 6. It
can be seen clearly that a negative correlation (r = −0.590,
p = 0.004, Figure 6A) between dprime scores and the number
of state transitions in the auditory discrimination task. For the
auditory working memory task, there was a positive correlation
(r = 0.577, p = 0.005, Figure 6B) between dprime scores and the
fractional dwell time in State 2. No significant correlation was
observed between dprime scores and the fractional dwell time
in other States.

DISCUSSION

In this study, we used data-driven ICA method to extract
functional brain networks, and then a temporal clustering
analysis on the sliding-window FNC to reveal the time-variable
FNC pattern (i.e., brain state) during two goal-directed auditory
tasks. This approach allowed us to isolate moment-to-moment
fluctuations in inter-network synchrony, which were related
to behavioral variability during auditory discrimination and
working memory tasks. The findings in this study also reveal the
modulation of cognitive demands on the connectivity of time-
variable functional networks. Altogether, this study provides
a new perspective on time-sensitive shifts in brain network
interactions, and this may help us understand the key neural
mechanisms underlying goal-directed auditory tasks.
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FIGURE 4 | Four reoccurring brain states during auditory processing revealed by clustering analysis. Panels (A–D) refer to State 1, 2, 3, 4. Color bars refer to the

connectivity strength. AN: auditory network; VN: visual network; SMN: sensorimotor network; CER: cerebellum network; FPN: frontoparietal network; DMN: default

mode network; SN: salience network.

TABLE 1 | The average state transition times and fractional time in each state for the two tasks.

No. of state transition Fractional dwell time in each state

State 1 State 2 State 3 State 4

Auditory discrimination 10.15 ± 0.93 0.26 ± 0.05 0.15 ± 0.03 0.22 ± 0.05 0.37 ± 0.05

Auditory 2-back 11.7 ± 0.64 0.19 ± 0.04 0.21 ± 0.04 0.22 ± 0.03 0.37 ± 0.04

In this study, seven brain networks were found to be
configured into four states. State 1 included all networks. States
2, 3, and 4 mainly included strong connectivity in FPN, DMN,
AN, VN, and SMN, but the interaction patterns of these
networks differed in each state, demonstrating that these states
may contribute to different cognitive processing. The network
configuration is consistent with previous auditory cognitive
studies (Schneiders et al., 2012; Huang et al., 2013; Kumar et al.,
2016). For example, using auditory near perception threshold
(NT) paradigms, researchers observed that a stronger integration
of the auditory network with the frontoparietal and other

high-order cognitive networks was key for subsequent auditory
performance (Leske et al., 2015). In another study, researchers
investigated the brain system for actively maintaining sound
memory over short periods of time (Kumar et al., 2016). Their
results supported the hypothesis that a systemmaintained sound-
specific representations in the auditory cortex by projecting
from higher-order areas, including the hippocampus and frontal
cortex. Another recent study documented that the activation
of the auditory cortex and adjacent regions in the IPL were
strongly modulated during active listening and depended on
task requirements (Wikman and Rinne, 2018). In contrast
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to these studies, we investigated network interactions from
a dynamic perspective and found that brain States 2 and 4
mainly showed a strong interaction between FPN and AN,
suggesting that these two states may contribute to sound
maintenance and active listening. State 3 contained strong
interactions in both FPN-SMN and SMN-VN connectivity. The
involvement of SMN, which is important in motor output
(De Luca et al., 2005), implies that these interactions may
contribute to cognitive decision and button-press. Further

FIGURE 5 | Significant differences in spatial pattern of State 4 in the

comparison of auditory discrimination with auditory working memory tasks.

No significant differences were observed in other States. AN: auditory

network; VN: visual network; SMN: sensorimotor network; CER: cerebellum

network; FPN: frontoparietal network; DMN: default mode network; SN:

salience network.

studies with high temporal resolution technique are needed to
verify the inferences.

Moreover, a comparison between the auditory working
memory and discrimination task datasets showed significant
differences in State 4, demonstrating that State 4 is an indicator
of cognitive load. The load-related increases in connectivity
among cognitive (FPN and DMN) and SMNs are coincident
with the finding of increased task-driven connectivity between
the frontoparietal, dorsal attention, and sensory networks by
a previous study (Shine et al., 2016). Moreover, the increased
negative correlation of FPN-DMN connectivity in working
memory task is consistent with a previous finding (Schneiders
et al., 2012), and further reveal the cognitive resources demanded
for sound maintenance in this state. These results also suggest
that global integration may have facilitated communication
during the more challenging working memory task.

Interestingly, by using dynamic network analysis in this
study, shifts among brain networks can be measured and
the brain-behavior relationship showed that the number of
brain state transitions was negatively correlated with auditory
discrimination performance, meaning that fewer state transitions
contribute to better behavioral performance, but this is not
the case for the auditory working memory task. In this study,
we also found that the fractional dwell time in State 2 was
positively correlated with auditory working memory behavior.
In State 2, the triple networks (i.e., FPN, DMN, and SN) and
the typical FPN-DMN anticorrelation were most prominent.
The triple networks have been suggested as the most crucial
components of a unified network model and are thought to be
extensively involved in diverse cognitive functions (Menon, 2011;
Li et al., 2018). A strong competitive relationship between FPN
and DMN was previously reported to be significantly correlated
with working memory behavior (Hampson et al., 2010) and
may represent a cerebral mechanism that switches mental focus
between internal channels (supported by DMN) and external,
attention-demanding events (Hampson et al., 2010). Moreover,

FIGURE 6 | Correlation of dprime score with the number of state transition (A) and fractional dwell time in corresponding state 2 (B) in the two tasks. Only fractional

dwell time in State 2 showed significant correlation with dprime score of auditory 2-back task.
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the connectivity between the high-order cognitive network (FPN)
and the primary network (AN) was also found to be significant
in this state. Taken in the light of these previous studies,
our findings suggest that State 2 probably contributes to top-
down attention switching, cognitive processing, and behavioral
modulation processing (Zhang et al., 2015; Le Merre et al., 2018),
all of which are necessary for good performance. Therefore, more
time spent in this state should correspond to better auditory
memory performance.

CONCLUSION

The human brain network traverses segregated and integrated
states over time (Shine et al., 2016). The dynamic FNC analysis
used in this study can help identify network configurations of
each state, as well as the specific states that enable fast, effective
performance on goal-directed auditory tasks. Other approaches
are also used in investigating dynamic brain connectivity analysis
(Calhoun and Adali, 2016) and a dynamic approach can also
be found with a stable non-dynamic model. Future studies
can further explore the effectiveness of different methods. In
summary, building on the results of previous auditory cognitive
studies, the dynamic functional network analysis in this study
enrich our understanding of the neural mechanisms underlying
auditory discrimination and working memory.
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