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Abst rac t .  Co-evolution can give rise to the "Red Queen effect", where 

interacting populations alter each other's fitness landscapes. The Red 

Queen effect significantly complicates any measurement of co-evolutionary 

progress, introducing fitness ambiguities where improvements in perfor- 

mance of co-evolved individuals Call appear as a decline or stasis in the 

usual measures of evolutionary progress. Unfortunately, no appropriate 

measures of fitness given the Red Queen effect have been developed in 

artificial life, theoretical biology, population dynamics, or evolutionary 

genetics. We propose a set of appropriate performance measures based 

on both genetic and behavioral data, and illustrate their use in a simula- 

tion of co-evolution between genetically specified continuous-time noisy 

recurrent neural networks which generate pursuit and evasion behaviors 

in autonomous agents. 

1 I n t r o d u c t i o n  

Some biologists have suggested that the 'Red Queen effect' arising from co- 

evolutionary arms races has been a prime source of evolutionary innovations 

and adaptations [19, 5, 16]. The Red Queen was a living chess piece in Lewis 

Carroll's Through the Looking Glass, who ran perpetually without getting very 

far because the landscape kept up with her. Similarly, in co-evolution between 

predators and prey, hosts and parasites, males and females, or competitors within 

a species, traits in organisms evolve against traits in competitor organisms that 

are themselves evolving: each lineage's fitness landscape changes perpetually. 

Adaptive advantage is continually eroded under co-evolution. 

Or so the theory goes. But does sustained competition really lead to smooth, 

directional evolutionary progress, or to noisy, unreliable, fits and starts, or to 

endless cycling through different evolutionarily unstable strategies? How impor- 

tant is tight co-evolution among two or a few competing lineages, versus diffuse 

co-evolution among many? These issues are critical to the debate between those 

* Copyright @1995 D. Cliff and G. F. Miller. All rights reserved. 
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who view evolution as a smoothly running engine of adaptation (e.g. [5]), and 

other theorists who view it as a more contingent history of genetic drift, ad 

hoe modification, and developmental limitation (e.g. [9]). The Red Queen ques- 

tion is a microcosm of the ancient debate over the links between evolution, life, 

teleology, and progress. 

Testing the significance of the Red Queen has proven difficult. The fossil 

record provides only ambiguous evidence of co-evolutionary progress [7], and 

fossils may not reveal the bodily and behavioral innovations that are impor- 

tant in most co-evolutionary scenarios. Simple population genetics models may 

over-estimate the smoothness of co-evolution by neglecting phylogenetic and 

developmental constraints that keep lineages stuck in local optima while their 

competitors surge ahead. Comparative studies across extant species reveal what 

adaptations exist, but not whether they were acquired through tight, synchro- 

nized co-evolution. 

Evolutionary computer simulations are ideal for investigating co-evolution. 

They allow much more complex genotypes, phenotypes, behaviors, and inter- 

actions than population-genetic models or evolutionary game theory. And they 

allow researchers to make detailed measurements during and after co-evolution, 

revealing much more than could be inferred from fossils or comparative studies. 

This paper focuses on developing measurement tools for such simulations. 

We are concerned with methods for measuring co-evolutionary 'progress', both 

to check that  the evolutionary simulation is working properly, and to illuminate 

issues in theoretical biology. The difficulty in most interesting cases is that, unlike 

most genetic algorithms research, there is no pre-determined 'fitness landscape' 

against which progress can be measured. Lineages may evolve against each other 

with respect to certain domains of competition, but there may be no single 

correct solution (e.g. no single optimal stable strategy) for each domain. 

The remainder of this paper is structured as follows. Section 2 reviews the 

the goals and methods of our experiments with simulated co-evolution. Section 3 

then discusses the need for monitoring techniques in greater detail, and Section 4 

describes several of the techniques we have developed. 3 

2 Co-evo lu t ion  of P ursu i t  and Evas ion 

2.1 T h e  R e d  Q u e e n  Effect  in C o - e v o l u t i o n a r y  Simulations 

Our interest in measuring co-evolutionary progress arises from our major on- 

going research project: co-evolving things with eyes, brains, and wheels, that 

chase each other around. Or, more technically, using artificial co-evolution to 

develop neural-network sensory-motor architectures for controlling robot-like 

autonomous virtual pursuers which chase autonomous virtual evaders around 

a 2-dimensional (2-D) space, generating pursuit and/or evasion strategies on the 

basis of simulated visual input. 

3 An expanded version of this paper, with full illustrations, is available [4]. 
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We have argued for the importance of studying these pursuit-evasion contests 

in previous papers [13, 12]. For the purposes of this methodological paper, we 

can simply note that pursuit-evasion contests offer a prime scenario for study- 

ing co-evolutionary dynamics. Pursuit-evasion contests are common in nature: 

predators pursue prey and prey evade predators, until the prey get eaten or the 

predator gets tired and abandons the chase. The success of strategies for pursuit 

and evasion are often mutually coupled: if a new strategy confers extra fitness on 

individuals, then that strategy should spread through the population, and its in- 

creased frequency makes it more likely that the opponent population will adapt 

to counteract it, thereby reducing its fitness benefits. It is this co-evolutionary 

coupling which underlies the Red Queen effect: the fitness landscape of one pop- 

ulation is affected by the current strategies of any opponent populations; and 

the movements of one population over a fitness landscape can significantly al- 

ter the fitness landscapes of the other populations. Despite having fixed fitness 

functions for determining the reproductive success of individuals, the fitness 

landscapes will vary over time as adaptations in one population warp and shift 

and deform the fitness landscape of the other. 

2.2 S imula t ion  M e t h o d s  

Brief details of our simulation system were given in [13], and full details are 

available in [3]. We will give here here only enough detail to establish the context 

for discussion of the problems of measuring co-evolutionary progress. 

The simulation uses a conventional generational (as opposed to steady-state) 

genetic algorithm (GA). There are two separate populations which compete and 

co-evolve against each other: one undergoes selection for pursuit behaviors, the 

other for evasion. Each population is spatially distributed with local mating and 

local replacement. That is, each individual in the population is assigned a spatial 

location on a 2-D grid (with toroidal wrap-around at the edges). When a new 

generation is bred, each individual is only allowed to breed with other individuals 

from nearby grid locations, and the offspring is also placed in a nearby grid 

location. In principle, this spatial structuring of the population should allow for 

the emergence and maintenance of somewhat distinct subpopulatious, that shade 

into each other across "clines'. 

Each individual has a genotype which is a string of approximately 1600 bits. 

A relatively complex 'morphogenesis' process translates the genotype into the 

agent's body morphology: the body has simple effectors, visual sensors, and a 

recurrent continuous-time dynamic artificial neural network whose parameters 

(connectivity, weights, thresholds, time-constants, etc) are determined by the 

genotype. Rather than using variable-length genotypes (e.g. [2]) to allow evolu- 

tionary control of the number of artificial neurons in the network, sequences of 

the fixed-length genotype are ignored in morphogenesis unless they are preceded 

by an appropriate 'marker sequence' which enables their expression: thus some 

portions of each genotype may be active (i.e. expressed in morphogenesis) while 

others may be inactive ' junk DNA'. Reproduction uses mutation, a stochastic 

multipoint crossover operator, and a translocation operator: see [3]. Elitism is 
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used in the breeding phase (i.e. the newly bred population receives an unadul- 

terated copy of the most fit genotype from the previous generation, located at 

the same grid position as before). 

Reproductive success is determined by fitness, and fitness is evaluated for 

each individual by taking the mean score of a number of noisy trials with differ- 

ing initial conditions (i.e. individual positions and orientations). In each trial a 

pursuer and an evader are given fixed amounts of energy which is expended in 

movement .  They compete until one of three termination conditions is met: (1) 

if there is a collision between the pursuer and the evader; (2) if both contesta~t,s 

have run out of energy and drifted to a halt; or (3) 15 seconds of simulated 

t ime have elapsed. 4 Significant noise affects the simulated sensors and effectors, 

and in the activities of the artificial neural units. For efficiency, we use the same 

technique as Sims [18], where each individual's fitness is evaluated only in trials 

against the elite (i.e. highest-scoring) individual from the previous generation 

of the opponent population: we refer to this technique as LEO (Last Elite Op- 

ponent) evaluation. At the end of each trial, the individual under evaluation is 

given a score. In the experiments discussed below, the score for evaders is simply 

the amount  of simulated t ime before the trial ended; the score for pursuers is a 

temporal  integral of the instantaneous rate of approach (which encourages the 

pursuer to approach the evader), plus a 'bonus '  reward awarded if a collision 

occurs. The differences in the scoring techniques mean that  the contests are not 

zero-sum. See [3] for further discussion of this and other fitness scoring methods. 

At the end of each generation, various statistics are calculated in order to 

moni tor  progress. The genotype of the elite of each generation is saved for use 

in the LEO contests of the next generation, and acts as a representative of the 

population for several of our monitoring procedures. Because starting conditions 

can vary and behavior is noisy, there is uncertainty as to whether the genotype 

ranked as the elite really is the best in the population or is an unexceptional 

individual that  was lucky in evaluations. We reduce this uncertainty, using the 

standard statistical techniques such as blocking and stratified sampling across 

initial conditions. Thus, it is highly unlikely that  the same poor genotype will 

be incorrectly identified as a legitimate elite over several successive generatiot,~. 

3 T h e  N e e d  f o r  N e w  M e a s u r e m e n t  T e c h n i q u e s  

3.1 I n s t a n t a n e o u s  F i t n e s s  Tel ls  U s  L i t t l e  

During a simulation experiment,  the fitness values of each individual are available 

at the end of each generation. These values have to be calculated and stored for 

use in the breeding phase of the generational GA. These values usually form the 

basis of monitoring progress in non-co-evolutionary applications where the fitness 

landscape is fixed in advance. In such non-co-evolutionary scenarios, progress can 

be monitored by plotting summary  statistics (such as the mean or best) of the 

4 The simulation approximates continuous time using Euler integration techniques at 

a temporal resolution of 100 steps per simulated second. 
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fitnesses of the population. A successful simulation experiment can be expected 

to show a gradual increase in a relevant population fitness measure. The fitness 

measure will asymptote as the population converges on one or more fitness peaks, 

signifying an end to the evolutionary search. In unsuccessful experiments (e.g. 

where the GA parameters have been poorly set), fitness may never increase 

above that of the initial random population, or it may increase and then hold at 

a comparatively low value (indicating convergence to a suboptimal local fitness 

peak), or it may climb to a high value and then subsequently fall away (indicating 

convergence followed by genetic drift, caused by an excessive mutation rate). 

However, in a co-evolutionary scenario, the Red Queen effect makes it hard 

to monitor progress by taking instantaneous measures of fitness at the end of 

each generation. Because fitnesses are defined relative to a co-evolving set of 

traits in other individuals, the fitness landscape(s) for the co-evolving individu- 

als can vary dynamically. Hence periods of comparative stasis in instantaneous 

measures could signify a corresponding evolutionary stasis or could disguise a 

period of tightly-coupled co-evolution where adaptive changes in one population 

(which would register as increases in instantaneous fitness if the opponent popu- 

lation was held fixed) are matched by adaptive counter-changes in the opponent 

population (thereby holding the instantaneous fitness measures of both popu- 

lations close to the values exhibited prior to the change and counter-change in 

strategies). Similarly, if the instantaneous measures decrease over time, this may 

represent either a setback in progress due to genetic drift, or co-evolutionary 

progress where both populations have adapted to make the pursuit-evasion con- 

tests significantly more difficult for their opponents. 

As illustration, Figures 1 and 2 show instantaneous fitness measures for pur- 

suer and evader populations in an experiment lasting 700 generations. If each 

population got better, the lines should go up. Although the data for the pursuer 

population shows a steady climb in fitness over the first 200 generations, the 

mean fitness value at generation 205 is never improved upon, and the mean fit- 

nesses over generations 500 to 600 are roughly the same as those over generations 

50 to 100, which could be interpreted as a lack of progress in the intervening 

400 generations. Superficially, the data for the evader population is even worse: 

mean population fitness is at its highest at the start of the experiment, show- 

ing a steady decline over the first 300 generations, followed by 400 generations 

of roughly constant fitness at a level around 70% of that exhibited at the start. 

Given that both populations are selected for maximizing fitness, these data could 

indicate that something is seriously wrong, with progress either not occurring 

or not being maintained. As we shall see in the following sections, real progress 

is occurring in this experiment, but other monitoring techniques are required to 

demonstrate this. 

We use the term fitness arnbiguilies to refer to such cases where qualitative 

trends in time-series of instantaneous fitness measures could feasibly be inter- 

preted as either continuing progress or as a breakdown of the co-evolutionary 

process. Fitness ambiguities introduce two problems: 

First, how do we know when to terminate an experiment that is failing due to 
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Fig. 1. Instantaneous fitness measures 

for pursuer population over 700 

generations of co-evolution. Horizontal 

axis is generation number, vertical is 

fitness. Solid line is mean population 

fitness: dashed and dotted lines are 

mean plus and minus one standard 

deviation, respectively. Data smoothed 

by calculating rolling average over 

preceding five generations. See text for 

discussion. 

Fig. 2. Instantaneous fitness 

measures for evader population over 700 

generations of co-evolution: format as 

for Figure 1. The range of fitness values 

is different from that of the pursuers, 

because of the difference in evaluation 

functions. See text for discussion. 

bugs or poor choice of parameters? The importance of this problem can be appre- 

ciated when one considers the computational requirements of our co-evolutionary 

simulation experiments. In the experimental regime described in Section 2.2, run- 

ning on an unladen Sun SPAaC20, with two populations each of size 100, using 

LEO competitions with 9 trials per individual, our fully optimized C code man- 

ages to evaluate each individual in an average of about 10 seconds (evaluation 

time can vary greatly because of the multiple termination conditions described in 

Section 2.2). So one complete generation takes roughly 35 minutes, and a single 

experiment of 1000 generations takes a little over three weeks of continuous com- 

putation. As one of our aims is to study the effects of varying the experimental 

conditions (e.g. different evaluation functions, genetic encoding techniques, set- 

tings of the constants governing motion, or environmental circumstances such as 

worlds with obstacles or boundaries), it would be nice to be able to disambiguate 

fitness ambiguities at the earliest possible opportunity. In short, we need to know 

whether to kill a pointless experiment or allow hidden progress to continue. 

The second problem stems from our concern to establish an informative and 

reliable characterization of the co-evolutionary dynamics exhibited by our ex- 

periments. The possibility of ambiguities in time-series of instantaneous fitness 

measures makes such characterization impossible without further analysis. Yet 

we believe that our experiments offer an opportunity to empirically explore is- 

sues of progress that are keenly debated in the evolutionary biology literature: 

notions of teleology, diffuse vs. tight co-evolution, smooth vs. punctuated equi- 
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libria, directional progress vs. cycling, etc. Resolving these issues has proven 

difficult because of the limitations of fossil records, genetics, comparative mor~ 

phology, and comparative psychology: our simulations offer an opportunity to 

study the co-evolution of complex autonomous agents under experimental con- 

ditions that allow detailed measurements of genotypes, body morphologies, and 

behaviors. 

3.2 ( T h e  Lack  o f )  R e l a t e d  W o r k  

These two problems have led us to explore techniques that allow us to reliably 

monitor the sometimes hidden co-evolutionary progress in our simulations. To 

our surprise, we found that  no applicable techniques had been developed in the 

fields of artificial life, theoretical biology, behavioral ecology, or evolutionary 

genetics. The complexity of our simulations violates many of the simplifying as- 

sumptions on which theoretical studies of evolution, co-evolution, and population 

dynamics, are founded. Furthermore, although other artificial life research has 

employed co-evolution to develop autonomous agent architectures (e.g. [18, 15]), 

such work has concentrated mainly on the end results, rather than on the dy- 

namics of the co-evolutionary process. 

Co-evolving pursuit and evasion strategies may appear related to the long- 

established literature on theoretical modeling of predator-prey population dy- 

namics. Yet all such work with which we are familiar, from the well-known 

deterministic Lotka-Volterra equations to the more recent spatially-distributed 

stochastic population models (see e.g. [14]), depends on monitoring fluctuations 

in the sizes of two competing populations. As the population size is constant in 

our experiments, this large body of theoretical work is of little use to us. 

Studies in ethology and behavioral ecology (e.g. [11]), although acknowl- 

edging the importance of predator-prey arms races, focus on the functions of 

current behavior rather than the dynamics of co-evolution. Macroevohtionary 

theory (e.g. [6]) typically treats co-evolution as a phenomenon that is hard to 

observe outside the fossil record. 

Finally, evolutionary genetics and almost all research in either theoretical bi- 

ology or artificial life which could be relevant (e.g. [1]) studies (co-)evolution at 

the level of discrete genes for particular traits. W. Hamilton and his associates 

(e.g. [17]) have developed techniques for visualizing and analyzing simplified co- 

evolutionary systems. However, the genetic encoding used in our simulations is 

sufficiently complex that there is no clear method of identifying a gene for a given 

trait: sequences of bits in a genotype may affect the connectivity of the artificial 

neural network, or may determine a parameter for one of the artificial neurons, 

but the observable behavior of the phenotype is a complex emergent property of 

the network interacting with the environment, which itself includes another net- 

work (controlling the opponent). In fact, because the space of possible behaviors 

for our artificial agents is continuous in both time and space, a precise defini- 

tion of what constitutes a ' trait '  is problematic. Although Kauffman's work on 

co-evolution in N K C  fitness landscapes (e.g. [10, Chapter 6]) appears relevant, 
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it is not clear how to determine N,  K,  or C for our simulations, ~ particularly as 

all three factors could vary dynamically as co-evolution progresses. 

These issues have led us to conclude that  our work is exploring largely un- 

charted territory: we are a t tempting to gain the insight offered by theoretical 

analyses in an artificial co-evolutionary system sufficiently complex that  no es- 

tablished theoretical analysis tools are applicable. In the remainder of this paper 

we describe analysis and monitoring techniques we have developed to fill this gap. 

4 M e a s u r e m e n t  T e c h n i q u e s  

4.1 Ancestral  Opponent  Contests  

In an earlier paper  [13], we noted that  one possible technique for monitor-  

ing co-evolutionary progress is to evaluate an individual I from generation g 

against representatives of I ' s  opponent population from each previous genera- 

tion g - Ag  : Ag C {0, 1 , . . . , g } .  Tha t  is, I is entered into contests with the 

'ancestors '  of its current opponent. Current individuals should do well against 

outdated opponents; the more ancient the opponent, the better they should do. 

More technically, if progress has occured then we might expect that  I ' s  fitness 

will increase with Ag: the fitness scores for I will be positively correlated with 

Ag over some time-scale which we will refer to as the 'evolutionary t ime-lag'  r; 

I should in general do better  in competitions against opponents drawn from ear- 

lier opponent generations, because co-evolutionary adaptat ion in I ' s  population 

should have rendered these strategies less effective. 

However, we needn' t  expect performance against ancestral opponents to im- 

prove all the way back. For example, ancient ancestors may have had tricks that  

more recent ancestral opponents have lost. So there are no strong reasons for 

expecting the positive correlation to be extended indefinitely, nor even for ex- 

pecting the correlation to be monotonically increasing. For example: while I may 

reasonably be expected to do better  in contests with individuals drawn from the 

opponent population at (say) generation g - 10 than in contests with opponents 

from generation g, it could be that  when I competes with individuals from op- 

ponent generation g - 100 it fares much worse than it does against opponents 

from generation g. This s tatement  may appear counterintuitive, but there are 

at least two possible explanations for such a result: the limits of 'evolutionary 

memory ' ,  and the possibility of cyclical trajectories through strategy space over 

evolutionary time-scales. 

- Co-evolutionary adaptat ion in a population P1 (e.g. pursuers) can be ex- 

pected to render strategies from recent generations of an opponent popula- 

tion P2 (e.g. evaders) less effective. But it is feasible that  the genetic changes 

selected in P1 to combat  these recent P2 strategies eliminates or reduces phe- 

notypic traits in P1 that  contributed to counteracting P2 strategies earlier 

5 N is the number of traits coded on a genotype, K the number of epistatically linked 

traits within a genotype, and C the number of epistaticaily linked traits in a co- 

evolving (opponent) species. 
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in evolutionary time. Such displacements will not reduce the fitness of P1 

individuals if the distant P2 strategies are no longer employed in the current 

or recent generations of P2. In a reciprocal manner,  the P~ population is 

less likely to have retained the genetic material  responsible for the distant 

strategies if P l ' s  subsequent counter-adaptations rendered them ineffective. 

If bounds are imposed by limited resources or developmental constraints, 

displacement of out-dated genetic material  is likely to form the basis of con- 

tinuing adaptat ion.  Even if such limitations are not significant, the escalating 

arms race may render distant P2 strategies obsolete, so that  they and their 

P1 counter-strategies fade away through neutral mutations. Either way, the 

ul t imate result is that  current Pz individuals fare badly when pitted against 

P2 individuals from generations sufficiently distant that  they are beyond the 

'evolutionary memory '  of the P1 genomes. 

- Cycling between strategies is possible if there is an intransitive dominance 

relationship between strategies. For example, suppose one a t tempted to co- 

evolve two populations that  compete by playing each other at the childrens' 

game "rock-paper-scissors" 6 where each individual in the population is lim- 

ited to one genetically determined choice which it uses in all contests in 

its lifet.ime (i.e., in game-theoretic terms, only pure strategies are allowed). 

More generally, consider a co-evolutionary competit ion between two popula- 

tions P1 and P2 and let Pi( f )  >- Pj(g) denote the fact that  individuals from 

population P/ at generation f generally win competitions against individu- 

als from population Pj at generation g; assume that  P~(g) >- Pu(g - ,dga) 

and Pl(g - Aga) >- P2(g - Agb) with Ag~ < Ag b. A transitive dominance 

hierarchy would exist if P,(g) >.- P 2 ( g -  ~gb), but an intransitive dominance 

cycle could be established if P2(g - Agb) >- Pl(g). LEO contests would tend 

to make cycles especially likely. 

Of course, it is possible that  particular co-evolutionary systems will not ex- 

hibit either of these two phenomena, but it is crucial to appreciate that,  in 

general, co-evolutionary systems such as ours should not be expected to exhibit 

continuous progressive adaptat ion with each generation ' improving'  on previous 

generations, toward some opt imal  state. Our qualitative notion of an evolution- 

ary time-lag r (which may itself vary over evolutionary time) serves to emphasize 

that  the results from ancestral opponent contests need to be judged with care. 

Figures 3 and 4 show results from ancestral opponent contests for the elite 

pursuer and elite evader from generation 700 of the run illustrated in Fig- 

ures 1 and 2. In both cases there is a general trend towards higher fitness as 

~3g increases 7 (note that  Ag decreases from left to right: in this case Ag = 700 

6 This is a two-player game where each player simultaneously announces a choice of 

'scissors', 'paper', or 'rock': unless there is a tie, the player with the dominant choice 

wins. The dominance relationships are: scissors cut the paper; paper smothers the 

rock; and rock breaks the scissors. 

r These data could perhaps be better characterized as periods of relative stasis either 

side of a period of significant improvement over generations 200 to 350: we return to 

discussion of these data in Section 4.2. 
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at g = 0 and Ag = 0 at g = 700). These ancestral fitness data support the 

claim made in Section 3.1 that the data presented in Figures 1 and 2 mask some 

underlying co-evolutionary progress. 

Of course Figures 3 and 4 only compare generation 700 elites against their 

ancestral opponents. What  about the corresponding data for all the previous 

elites against their ancestral opponents? To show that we would need as many 

graphs as there have been generations. However there is an efficient way to dis- 

play all such comparisons: by representing data from Figures 3 and 4 as a row of 

intensities with high scores darker and lower scores lighter. Clearly for genera- 

tion 1 we would have only one previous generation from which to draw ancestral 

opponents, yielding a single cell. As we compare elites from each successive gen- 

eration against all of their ancestral opponents the rows will get longer and 

longer, and we can stack them one above the other, so the top row represents all 

the data from a single plot like Figures 3 or 4. We refer to the fitness data from 

these tests as ClaO data (from Current Individual vs. Ancestral Opponents). 
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Fig. 3. Generation 700 

elite pursuer scores better against earlier 

evaders. Graph shows pursuer ancestral 

fitness scores for the run illustrated 

in Figures 1 and 2. Horizontal axis is 

generation number g, from which an 

ancestral opponent is drawn; vertical 

axis is fitness scored by elite pursuer 

from generation 700 in contest with 

elite evader from generation g. Data 

smoothed by calculating rolling average 

over preceding ten generations. See text 

for discussion. 

Fig. 4. Generation 700 elite evader 

scores better against earher pursuers. 

Graph shows evader ancestral fitness 

scores for the run illustrated in Figures 1 

and 2. Horizontal axis is generation 

number g, vertical is fitness scored 

by elite evader from generation 700 

in contest with elite pursuer from 

generation g. Smoothing as for Figure 3. 

See text for discussion. 

Figure 5 shows a simplified schematic of the c I , o  display format, for vi- 

sualizing the results of an experiment where two populations P1 and P2 have 

co-evolved. Essentially, the format is a triangle formed by stacking successive 2-D 

data-sets such as those shown in Figures 3 and 4. In order to spatially compress 
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the data, the fitness scores for P2 determine the darkness of each cell on the grid: 

darker cells signify higher scores. Thus the top row of cells is the ancestral fitness 

data for P2 at generation ,5, the one below that  is the ancestral fitness data for 

P2 at generation 4, and so on. The cells along the diagonal edge therefore repre- 

sent the score of the elite of P2 from generation g in contest with the elite fl'om 

P1 at the same generation, and the shading ill the ne x t  diagonal line represents 

the scores from the elite of P2 at generation g in contest with the elite of P1 

from generation g - 1: a clear parallel with LEO contests; although these are the 

instantaneous fitness scores of the elites, they should be in close agreement with 

the instantaneous population-average fitness data such as Figures 1 and 2. 

The utility of this ClAO display" format  is indicated by Figure 6, which shows 

idealizations of the patterns that  would be present if the co-evolutionary process 

was affected by limited evolutionary memory or by cyclic trajectories through 

strategy space. 
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Fig. 5. Simplified Schematic of the CIAO 

fitness plots: the cells would be shaded 

to reflect the scores of individuals from 

P2, with darker shades indicating higher 

fitness. See text for further details. 

Fig. 6. Idealised illustration of patterns 

indicating intransitive 

dominance cycling (left, where current 

elites do well against opponents from 3 or 

4 generations ago but not so well against 

those from generations further back); 

and limited evolutionary memory (right, 

where current elites do well against 

opponents from 3, 8, or 13 generations 

ago but not so well against generations 

inbetween). The presence of straight 

diagonal bands of intensity indicates a 

constant r: if r varies, the bands would 

follow curves. 

The gray-scales in a CIAO plot could be set by normalizing all the scores in 

each data-set  to the range of the entire data-set. Thus the darkest cell(s) in the 

figures would represent the highest scores in the entire data-set, and the brightest 

the worst. An alternative method of setting the gray-scales is to normalize all 

scores in each row in the image to the range of the data in tha t  row. The effect on 

the image is similar to histogram-equalization used for contrast enhancement in 

image processing (e.g. [8]), but here the adjustment of gray-scales on each row 
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has a natural  interpretation: the darkest cell in each row signifies the highest 

score for the elite in P2 of the generation plotted on that  row, and the lightest 

the worst. Figures 7 and 8 show c l ao  data from the experiment discussed above, 

with gray-scales normalized across rows. 

Fig. 7. Pursuer clno fitness scores for 

the run illustrated in Figures 1 and 2. 

Evader generations 0 to 700 run left to 

right in steps of 5, pursuer generations 

0 to 700 run bottom to top in steps of 

5. Darker cells represent higher fitness 

scores, gray-levels normalized to data 

range across each row. See text for 

discussion. 

Fig. 8. Evader CIAO scores for the run 

illustrated in Figures 1 and 2. Pursuer 

generations 0 to 700 run left to right 

in steps of 5, evader generations 0 to 

700 run bottom to top in steps of 5. 

Intensity range as for Figure 7. See text 

for discussion. 

From these CIAO plots it is possible to give some account of the co-evolutionary 

dynamics of this particular experiment. Figures 7 and 8 both have the greatest 

density of (lighter) low-score cells towards the diagonal edge, with more of t',.e 

(darker) high-score cells towards the left-hand edge. This indicates that  in gen- 

eral there has been continuous progress in both populations, and that  neither of 

the patterns shown in Figure 6 have occurred in the first 700 generations of this 

experiment.  

In the pursuer scores there appears to be a significant improvement  around 

generations 220 to 300: elite pursuers from all subsequent generations do well 

against the first 220 generations of elite evaders; moderately well against those in 

the range 220 to 300, and then fare fairly badly against evaders from generations 

300 to 700. A similar pat tern  is revealed in the evader score, although there is 

evidence that  the evaders improve slightly around generations 550 to 700. 

Examinat ion of CIAO data can clearly help identify major  changes in the 

relative fitnesses of elites from the two populations, and helps to characterize 
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the dynamics of the co-evolutionary experiment to date. Not surprisingly, these 

benefits come at a (computational) cost: the number of evaluations required for 

a complete ClAO analysis of a particular simulation experiment can easily exceed 

the number of evaluations in the experiment itself. Consider a co-evolutionary 

simulation lasting ng generations, with two populations each of size p. Then there 

will have been 2ngp fitness evaluations over the duration of the experiment. A 

evaluations. c~Ao analysis of the resulting two sets of elite individuals requires ng 

Thus, the full ClaO analysis will take longer than the experiment itself once 

n 2 > 2ngp (i.e. n g >  2p), or when the number of generations exceeds twice the 

population size, as it does in this run. Of course, computational savings can 

be made by sub-sampling the CIAO space at an appropriate resolution At,  e.g. 

evMuating once every Ag = l0 generations. The computational savings come 

with a corresponding loss of temporal resolution: the time-scale at which co- 

evolutionary interactions can be monitored is reduced (e.g. with Ag = 10, tightly 

coupled adaptation/counter-adaptation events occurring within 10 generations 

may be missed) and sub-sampling the space also introduces issues of spatial 

frequency aliasing which could be highly disruptive if intransitive strategy cycles 

are present in the clAo data. 

4.2 G e n e t i c  D i s t a n c e  M e a s u r e s  

Although the ClAO data indicates co-evolutionary interaction and progress at 

the phenotype level (i.e. by showing the fitness values resulting from evaluations 

of behavioral performance), it, gives no indication of the corresponding dynamics 

at the genotype level; yet for a complete account of the co-evolutionary process, 

such genetic analysis is necessary. To this end, we have developed a set of simple 

monitoring procedures which gives good indication of significant co-evolutionary 

interactions at the genetic level. 

Furthermore, because these genetic analysis techniques do not require (tom- 

putationally intensive) evaluation of phenotypes, relevant data can be calculated 

on-line during the progress of an experiment without incurring a significant pro- 

cessing overhead. Therefore these techniques offer the advantage that they can 

be used to monitor progress in an experiment while it is running, and hence 

allow for identification of experiments which should be terminated due to lack 

of progress. Two techniques are introduced below: "elite bitmaps" and "ances- 

tral Hamming maps" ; a third technique, "consensus distance plots", is described 

in [4]. All three techniques analyze one population in isolation from any other 

co-evolving populations: the intention is to identify periods of significant ge- 

netic change which can clarify features present in the C~AO data. For brevity, 

we illustrate these techniques with examples generated using only the pursuer 

population from the experiment analyzed in the previous sections: in practice it 

is necessary to separately apply these monitoring techniques to both the pur- 

suer and the evader populations: see [4] for illustration of the results of applying 

these techniques to the evader population. Another technique we are exploring is 

chronospeciation analysis: testing whether successful offspring result from cross- 

ing individuals of generation g with individuals from generation g - Ag. If not, 
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'chronospeciation' has occured: current individuals can no longer breed with 

their ancestors, indicating that significant evolutionary change has occurred. 

The chronospecies concept in theoretical biology can't be tested very easily in 

nature, but simulations allow as to perform these cross-generational breeding 

experiments. 

E l i t e  B i t m a p s  At the end of each generation in our experiments we record 

the genotype of the elite individual in each population. Figure 9 illustrates the 

genotypes for the elite pursuers over the 700 generations of the experiment. This 

'elite b i tmap '  shows the elite genotype at each generation, stacked horizontally 

with the earliest generation at the top and the latest at the bottom. Such raw 

genotype data reveals some qualitative structures, three of which are worth at- 

tention: 

- There are clear vertical bands of varying extent: these bands correspond to 

bits in the elite genotypes which were largely unchanged over a series of 

generations. The horizontal extent of the band is governed by the length of 

the gene sequence which is constant between elites of successive generations, 

and the vertical extent indicates the number of generations during whK.h 

this sequence was maintMned in the elite. 

- There are several 'noisy' areas where no banding is present: In general these 

areas correspond to sequences on the elite genotypes which have no impact 

at the behavioral level: either because they are not expressed at the mor- 

phogenesis stage, or because the morphological features governed by these 

sequences has a negligible effect on the behavior of the individual. In either 

case, a high degree of genetic variance in such sequences can be expected 

on the elite genotypes, yielding little or no correlation between successive 

generations and hence no clear vertical banding in the bitmap. 

- There are horizontal 'faultlines' at various locations. Where banding either 

commences, ceases, or continues but with a different pattern of bits in the 

band. These faultlines indicate significant changes in the genetic profile of the 

population elite. The horizontal extent of the faultline indicates the degree of 

change. If the faultline extends across the entire genotype, then a new genetic 

'strain'  of elite has emerged from the underlying population. Faultlines with 

a more limited horizontal extent indicate more gradual changes in the genetic 

constitution of the elite. Some faultlines will be caused by the translocation 

operator employed in our GA. If the faultline initiates a new pattern of 

banding, or marks a transition from 'noise' to banding, then it indicates a 

major  change to the affected sequence of genotype which is retained over 

successive generations. If the new banding pattern fades into noise, then 

the sequence could be 'hitch-hiking': that  is, the sequence does not itself 

contribute to the fitness of the elite, but is retained by virtue of its presence 

in a genotype which has other sequences that confer sufficiently high fitness 

to maintain the genotype as the elite. 
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Fig. 9, Bitmap for elite 

pursuer genotypes. 1600-bit genotypes 

stacked horizontally, with generation 0 
at the top and 700 at the bottom. Dark 

pixels represent a '0' in the genotype; 

light pixels represent '1'. 

Fig. 10. Result of image-processing on 

the bitmap of Figure 10. Dark pixels 

indicate bits which are elements of 
vertical bands lasting for 9 generations 

or longer. See text for discussion. 

These qualitative phenomena can be identified in a more objective manner by 

applying elementary image processing operations to the elite bitmap: convolving 

the bi tmap with appropriate masks allows for the automatic highlighting of areas 

of banding, faulting, and noise. Figure 10 shows the result of convolving the elite 

bi tmap with a simple one-dimensional mask which highlights vertical bands of 9 

generations or more. Darker areas in the image indicate the presence of banding, 

and lighter areas indicate noise (or bands lasting less than 9 generations). The 

horizontal faultlines are also more prominent in the processed bitmap: Around 

generations 250 to 300 there is a clear group of faultlines with a large horizontal 

extent (indicating change in large sequences on the elite genotype). Several of 

these faultlines are followed by periods of strong banding (i.e. dark areas on the 

processed bitmap).  

A n c e s t r a l  H a m m i n g  M a p s  While the (processed) elite bitmap can help iden- 

tify genotype sequences that are retained over successive generations and in- 

stances of significant change marked by faultlines, it is essentially a qualitative 

technique. To make meaningful comparative statements, quantitative measures 

of genotype-sequence retention and change are required. 

In particular, it can be useful to quantify the degree to which a given elite 

genotype shares genetic material with the elites in the preceding generations. 

An obvious measure to use is the Hamming distance between the two bit-string 

genotypes. For brevity, we will use the following notation: let E(g) denote the 

elite individual in a population at generation g; let G(E(g)) denote the genotype 

for E(g); and let H(f,  g) denote the Hamming distance between G(E(f)) and 

G(E(g))  (note that  if f = g then g( f ,  g) = 0). In a manner similar to the cIAo 

plots, we can determine the Hamming distances H(g, g - Ag) : Ag e {1 , . . . ,  g}. 

That  is, the Hamming distances between G(E(g)) and the genotypes of the elites 

from each preceding generation of the same population. This "ancestral Ham- 

ming data" can be plotted as intensities on a 2-D grid, resulting in an ancestral 
Hamming map. Figure 11 shows a schematic ancestral Hamming map, and Fig- 
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ure 12 shows idealized qualitative patterns that indicate particular features of 

the underlying evolutionary dynamics. Further quantitative analysis of the an- 

cestral Hamming data can be guided by searching for such qualitative features: 

- If there is constant slight change in the genetic constitution of the elite over 

successive generations, then H(g,g  - A t )  should fall off smoothly as Ag 

increases, and all horizontal lines of cells in ancestral Hamming map will 

have roughly the same H (see the left-hand example in Figure 12). 

- If a new elite genotype occurs at generation g and is sufficiently fit with 

respect to the opponent population that  it or its immediate descendants 

also form the elite for subsequent generations, then this will show in the 

ancestral Hamming map as a 'wedge' of low-H cells on the grid: see the 

center example in Figure 12. 

- Ancestral Hamming maps can give a useful indication of the genetic consti- 

tution of the underlying spatially distributed population in a GA. Because 

a spatially distributed population is capable in principle of sustaining sep- 

arate 'subpopulations',  as described in Section 2.2, there is no reason to 

expect that  H(g, g - A t )  will always decrease smoothly as Ag increases. In 

particular, it is possible that H(g, g - A t )  is high for some small At ,  but 

low for a larger value of Ag (see the right-hand example in Figure 12). Such 

a situation would indicate that E(g), is more strongly related to the earlier 

elites than to the more recent elites, and that the more recent elites came 

from a different 'subpopalation'.  If ever G(E(g)) has a comparatively high 

H for all G(E(g - A t ) ) ,  then the indication is that E(g) is a member of 

a subpopulation which shares comparatively little genetic material with the 

previous elites, and so g is the first generation in which members of that  

subpopulation have attained sufficient fitness to be selected as the elite. 

Figure 13 shows an ancestral Hamming map for elites of the pursuer popula- 

tion introduced in Figure 1. For roughly the first 220 generations there is little 

evidence of any significant structure. Around generations 220 and 260 there are 

the first two of a number of dark 'wedges', indicating the emergence of genotype 

sequences which remain (partially) present in the population elite for many gen- 

erations: even the column at generation g = 400 shows some darkening (i.e. lower 

H)  around Ag = 140 and Ag = 180; this clearly (and quantitatively) indicates 

that  the changes in genotype at g = 220 and g = 260 were retained for many 

subsequent generations: a fact that  wasn't particularly clear in the processed 

bi tmap of Figure 10. 

C o n s e n s u s  D i s t a n c e  P l o t s  Although monitoring genetic change in the elite 

genotypes is a valuable source of information for characterizing (co-)evolutionary 

dynamics, it is important  to ensure that changes in the elite genotype are refl~c- 

tive of changes in the underlying population of genotypes. When the evaluation 

process is noisy or uncertain, there is always a possibility that changes in the 

elite genotype between one generation and the next are stochastic evaluation 

artifacts, rather than significant evolutionary events. To disambiguate the two, 
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Fig. 11. Simplified schematic 

of Ancestral Hamming Maps. H(f, 9) 
denotes Hamming distance H between 

a ( E ( f ) )  and G(E(g)). Grid-cells would 

be shaded to reflect values of H (lower H 

given darker shading). Horizontal lines of 

cells indicate H(g, g - Ag) for constant 

Ag while g varies. Vertical lines of ceils 

indicate H(g, g-,.Sg) for constant 9 while 

~g  varies. Diagonal lines of cells indicate 

H(g,f)  for constant f while g varies. 

This map terminates at Ag _= 5, but 

could have been continued to Ag = 8. 

Fig.  12. Idealised illustration of patterns 

in Ancestral Hamming Maps, for three 

cases of generation 0 to 14. Left: 

steady genetic change (either through 

retention of adaptive mutations or 

through neutral genetic drift); the elite 

of each generation shares much genetic 

material with the elite of the previous 

generation (i.e. H ( g , g -  1) is always 

low), but accumulated genetic change 

results in more distant ancestral elites 

having much less shared genetic material 

(i.e. H(g,g - d) : d > ~  10 is 

always high). Center: at generation 

5 a new elite genotype appears that 

is largely dissimilar from all previous 

genotypes. The 9 = 5 elite genotype 

(or its descendants) remains as the 

elite until generation 10, when another 

new genotype, sharing much material 

with the g = 5 elite, becomes 

the elite for the remainder of the 

generations shown on the map. Right: 

two converged subpopulations alternate 

in their role as the elite, with little or 

no genetic material shared between the 

subpopulations. 

it is necessary to moni to r  a representative popula t ion statistic. We have found 

tha t  significant evolut ionary  event, s in our experiments can be identified by mon-  

itoring, at each generat ion,  the distr ibution of  Hamming  distances f rom the pop- 

ula t ion 's  consensus sequence to  each individual genotype in the populat ion.  The  

consensus sequence for the popula t ion can be thought  of as the "average" geno- 

type in the populat ion.  The  rationale for these plots, and illustration of  their 

use on da ta  f rom the above experiment,  are given in [4]. 

5 C o n c l u s i o n  

Co-evolut ionary  s imulat ions  for developing advanced artificial au tonomous  agents 

are so complex tha t  new techniques for moni tor ing progress are required. A1- 
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Fig. 13. Ancestral Hamming Map for elite pursuers. Generations 1 to 700 run from 

left to right. Ancestral distance fag) increases from top to bottom: top edge indicates 

Hamming distance from elite of generation g - 1: bottom edge indicates Hamming 

distance from elite of generation g - 200. Intensities indicate Hamming distance as 

a percentage of genome length: intensity increases linearly from black (0% distant) 

to white (> 50% distant). Note that the Hamming distance between two randomly 

generated bit-strings of the same length will be 50% of the length (on the average). 

though this paper concentrated on our ongoing work in evolving pursuit and 

evasion strategies, we believe that both the problems and the solutions we have 

identified are general: it is likely that fitness ambiguities will occur in any co- 

evolutionary situation, and that these ambiguities can be resolved by combining 

CIAO tests with the various genetic analysis techniques described in Section 4.2. 

Thus, researchers interested in monitoring or analyzing evolutionary activity in 

either real or artificial systems where the fitness landscapes change over time 

(either through co-evolution or because the non-biotic environment is dynamic) 

should find use for the analysis methods we have described here. The open-ended 

nature of co-evolutionary simulations makes it difficult to detect the Red Queen's 

presence: the techniques developed in this paper now let us track her protean 

manifestations. 
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