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Abstract 
 

Cluttered background and occlusion cause large 

ambiguity in the tracking of video objects. When the object is 

small (like a soccer ball in broadcast game video signals), the 

ambiguity gets even more severe. In this paper, we propose an 

adaptive particle filter with effective proposal distribution to 

handle these situations. In the proposed tracking approach, 

motion estimation is embedded into the state transition to 

tackle abrupt motion changes and generate good proposal 

distributions. We also propose a mixture model to account for 

multiple hypotheses in the template correlation surface when 

estimating the appearance likelihood. In addition, motion 

continuity and trajectory smoothness are combined with 

template correlation in the observation likelihood to further 

filter out visual distracters. As an example of small object 

tracking, promising results of the ball tracking (as small as 30 

pixels) in soccer game videos are presented to illustrate that 

the proposed scheme handles the cluttered background and 

occlusion effectively.  

 

1. Introduction 
 
   Visual tracking is a crucial element of many computer vision 
systems. A lot of applications such as visual surveillance, smart 
rooms, video compression and vision-based interfaces often 
require a visual tracker to be robust in complex environments 
and efficient in computation [1, 4-7, 10, 12, 14]. 
    Recently, particle filters (PF) have gained more attention in 
visual tracking [1, 4, 7, 10, 12, 14]. The efficiency and 
accuracy of the particle filter depends on two key factors: how 
a swarm of particles are generated by a proposal distribution 
and how these particles are weighted to approximate the real 
posterior state distribution. The pioneering work of 
Condensation [7] uses the state transition prior as the proposal 
distribution. This type of particle filter is prone to be distracted 
by background clutter because the state transition does not 
take into account the most recent observation.  
    As an alternative, the unscented particle filter was used in 
[12] to generate importance densities. However, this approach 
needs to convert likelihood evaluations into state space 
measurements. Furthermore, it is still likely to fail in the 
presence of abrupt motion changes. An adaptive particle filter 

was proposed in [14], where adaptive state transition utilizing 
the new observation data on the affine flow constraints is 
realized and the diversity of particles is adapted based on 
motion estimation errors.  
   However, how to estimate the particle weight from the 
current observation data to differentiate the object from the 
cluttered background is more critical. Histogram and contour 
have been proved to be robust features in object tracking 
through clutter [4, 7, 11, 12], but they may not characterize 
well the appearance of small objects. The intensity-based 
appearance model is used in [14] and a mixture model is 
employed to handle its variation. Nonetheless, cluttered 
background is not coped with explicitly in [14]. 
    Likewise, in [1] motion estimation is embedded into the 
state transition, too. Its likelihood function accounts for 
uncertainty in template matching based on correlation surface 
(with a fixed size) [9]. Despite that, no motion or trajectory 
information is involved into the likelihood calculation even 
though motion continuity and trajectory smoothness are 
helpful to filter out the visual distracters in complicated 
cluttered background. Moreover, this approach doesn’t take 
into account multiple candidates [11] in the correlation surface. 
   In comparison, in [10] not only patch correlation 
(normalized cross correlation), shape and color information, 
but also motion measurements are introduced into the 
likelihood function. Even so, no template is adapted in this 
method. In contrast, "naïve update" [8] was performed. For 
this reason, it cannot handle severe occlusion or "drifting" 
artifacts explicitly.  

 
1.1 Ball tracking in soccer game video 
    In this paper, our experiments focus on the soccer ball in 
game videos, an instance for small object tracking. Actually 
soccer video analysis is receiving increasing attention from 
researchers [2, 3, 13] as a convergence of computer vision and 
multimedia technologies, mainly motivated by applications 
such as event analysis, automatic indexing and object-based 
encoding. In particular, significant research work aims at 
obtaining the ball’s position since it plays an important role in 
detecting key events and improving object-based compression 
performance. 
    However, detecting and tracking the ball in sports video 
from broadcast signals is a really challenging problem. The ball 
may look very similar in appearance to other regions of the 



image; for example, portions of the players' jerseys could 
trigger false alarms.  It is also frequently merged with field 
lines or occluded by the players and, additionally, the ball 
moves fast most of the time and is quite small (less than 30 
pixels in size) when the camera is capturing a wide view of the 
playfield. 

 
1.2 Overview of our approach 
    In this paper, we propose an adaptive particle filter with 
effective proposal distribution to deal with severe cluttered 
background in small object tracking. Our proposal is inspired 
by [14] with combination of work in both [1] and [10]. To 
start with, motion estimation is embedded into state transition 
to tackle abrupt motion changes and generate a good proposal 
distribution. Then, we propose a mixture model to account for 
multiple hypotheses in the template correlation surface for 
estimating the appearance likelihood. Different from [1] and 
[10], we utilize the explicit motion measures through both the 
dynamic model and the likelihood function. 
   The paper is organized as follows. Section 2 discusses the 
proposed tracking algorithm, an adaptive particle filter. In 
Section 3, results using broadcast soccer videos are shown. 
Finally, conclusions are drawn in Section 4. 

 

2. The Proposed Tracking Approach 
 
    Particle filter is a state space method for implementing a 
recursive Bayesian filter by Monte Carlo simulations. The key 
idea is to approximate the posterior probability distribution by 
a weighted particle set. Each particle represents one 
hypothetical state of the object, with a corresponding discrete 
sampling probability (weight). The mean state of an object is 
estimated at each time step by weighted average of all the 
particles. Usually resampling is used to alleviate particles' 
degeneracy. 
    The efficiency and accuracy of a particle filter for tracking 
relies on the definition of a good proposal distribution and an 
effective observation model for particle weights. Below we 
will give details on these issues in our proposed algorithm. 
    We define the object’s state vector as ),( yxX = , where (x, 

y) is the window center of the object. The state space model 
for object tracking is formulated as 

),(1 ttt XfX µ=+
,                                     (1) 

),( ttt XgZ ξ= ,                                      (2) 

where 
tX  represents the object state vector, 

t
Z  is the 

observation vector, f  and g  are the dynamic model and the 

observation model, respectively, and 
t

µ  and 
t

ξ  represent the 

process and observation noise, respectively.  
 
2.1. Dynamic Model 
    The dynamic model characterizes the object state change 
between frames. Similar to [1, 10, 14], we directly obtain the 
apparent motion of the object by a hierarchical estimation 
framework [5, 6]. Since the most recent observation is used 
for state transition, a better proposal distribution is generated. 
 
2.1.1. Adaptive Motion Model 

    Let us denote the estimated motion for the object as 
tV .  

Accordingly, the dynamic model in (1) can be reformulated as 

tttt
VXX µ++=+1

,                             (3) 

with 
tµ  denoting the state prediction error. 

 
2.1.2. Adaptive Process Noise Variance 

    To vary the diversity of particles, ][ maxmin, µµµ ∈t
 is 

proportional to the motion estimation error, i.e. a defined 

residual measure 
tyx IvIuI ++ , where 

tyx III ,,  are partial 

derivatives of the intensity function I with respect to x, y and t.  
    If motion estimation fails (by thresholding the average of 
absolute difference), motion is set zero like a "random walk" 
and 

t
µ  is set as the maximum value. 

 
2.2. Observation Model 
   The observation model measures the weights of particles 
based on a predefined likelihood function. Here it is defined as 

11 1int )|()|()|()|( −− −= tt O

t

trj

t

O

t

mot

ttttt XZPXZPXZPXZP ,(4) 

where },,{ int trj

t

mot

ttt ZZZZ =  and the intensity measurement 

int
tZ  is assumed to be independent from either the motion 

measurement mot

t
Z  or the trajectory measurement trj

t
Z , 

tO = 0 

if the object is occluded, and 1 otherwise. When the object is 
‘visible’ trajectory constraints are not enforced, which avoids 
violating the temporal Markov chain assumption; on the other 
hand, when the object is occluded or motion estimation fails, 
the trajectory smoothness takes the place of motion continuity 
in the observation likelihood. Details of each likelihood 
component are given below. 
   The intensity measurement is computed with the similarity 
between the target model (template) and the candidate particle. 
A simple metric is the sum-of-squared-differences (SSD) for 
each particle as 

∑
∈∈

+−=
W

t

NeibX

t XITZ

t
χ

χχ 2)]()([minarg
                   (5) 

where W is the object window, Neib is a small neighborhood 
around 

tX , T is the object template and (.)I  is the image in 

the current time. 
    This metric cannot be used directly for intensity likelihood 
in the case of highly cluttered background. Instead, the 
correlation surface [9] can better measure the uncertainty and 
generate a reasonable estimate. 
    The SSD-based correlation surface for each particle in its 
support area Neib is defined as 

NeibXXITXr t

W

tt ∈+−=∑
∈

,)]()([)( 2

χ
χχ .            (6) 

    Compared with the fixed size of the correlation surface in [1, 
9], the surface size in our proposal varies (from 3x3 to 11x11 
pixels in the examples) proportionally to the motion estimation 
error as well given in formula (3), similar to the process noise 
variance, which provides a flexible measure of the ambiguity in 
template matching. 
    Inspired by [7, 11], we assume having detected J candidates 
from the correlation surface inside Neib. As a result, J+1 
hypothesis can be defined as: 



},...,1:{0 JjCcH j === , 

},,...,1:,{ jiJiCcTcH ijj ≠==== , j=1,…, J, 

where Tc j =  means the jth candidate is associated with the 

true match, Cc j =  otherwise.  Hypothesis 
0H  means that none 

of the candidates is associated with the true match.  
   The clutter is assumed to be uniformly distributed over Neib 
and hence the true match-oriented measurement is Gaussian 
distributed. Consequently, the combined intensity likelihood is 
formulated as 

)|( int
tt XZP = ),()(

10 ∑ =
+⋅ J

j ttjN
rNqCUq σ ,          (7) 

s.t. ∑ =
=+

Jj jqq
~10 1 , 

where 
N

C  is the normalization factor, and 
jq  is the prior 

probability  (
0q =0.5 in the examples show in this paper) for 

hypothesis 
jH ,  j=0,…, J. This mixture model gives a 

reasonable approximation to the intensity likelihood for each 
particle under the clutter. 
    Similar to [1, 9], “occlusion” detection (object's locating in 
highly cluttered regions is called “virtual” occlusion) is 
implemented as follows. To approximate the probability 
distribution on the true match location, a response distribution 
is defined as  

)),(exp()( tt XrXD ⋅−= ρ                          (8) 

where ρ  is the normalization factor, chosen to ensure 

0.1),(
),(

≈∑ ∈ Neibyx t yxD .  We use the maximal eigenvalue of the 

covariance matrix 
tR  associated to measurements int

t
Z as 

confidence metric: if it is bigger than a given threshold, we 
detect the presence of “occlusion”. In fact, when more peaks 
occur in the response distribution, the approximated Gaussian 
distribution gets flat, and accordingly the eigenvalues get 
bigger. 
   If the particle is regarded as “occluded,” a minimal weight is 
set to it, which may result in its rejection in resampling.  
    The motion likelihood is calculated based on the difference 
between the particle’s position change (speed) and the average 
object position change in past time, i.e. 

222
mod )|(|)|(| yyxxd tt ∆−∆+∆−∆= ,  t >1 

where ),( tt yx ∆∆ is the particle’s position change with respect 

to ),( 11 −− tt yx  , and ),( yx ∆∆  is the average object speed in past 

history, i.e. 
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Hence the motion likelihood is calculated as 
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This component accouts for contraints from motion continuity 
of the object. In comparison to [10], our motion likelihood 
takes into account the recent motion history of the object. 
    The trajectory likelihood is estimated from the particle’s 
closeness to a trajectory that is obtained from past positions of 

the object. Let’s denote the trajectory function in a polynomial 
form 

∑ =
= m

i

i

i xay
0

,                              (10) 

where ia  are the polynomial coefficients and m is the order of 

the polynomial function (for the examples in this paper, m=2). 
   Only past "visible" object positions are used for trajectory 
fitting. A forgotten factor ot

fF
_λ=   is defined, where 

fλ  is 

the forgotten ratio, ( 10 << fλ , 
fλ =0.9 in this paper), and 

t_o is the number of frames the object has been occluded. This 
factor accounts for that, the more frames the object has been 
occluded, the less reliable the fitted trajectory is (t_o =2 
illustrated in Fig. 1). 

 

Fig. 1 Illustration of object trajectory fitting  
  As a result, the trajectory smoothness likelihood is given by 
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where the closeness metric is ||
0∑ =

−= m

i

i

itrj xayd . 

 
2.3. Position Refining and Template Update 
    If the object is "visible" at the previous frame cur-1 
(

1−cur
O =1), we get the state estimate by weighted average of all 

particles; otherwise, taking the particle with the maximum 
weight. 
   After state estimate, we run “occlusion” detection again 
(explained in Section 2.2.3) to set 

cur
O  for the current frame 

cur. If 
curO =0, we refine it by projecting a predicted one onto 

the estimated trajectory to keep its motion smoothness. 
Illustrated in Fig. 1: given the two last reliable positions 

jX  

and 
iX  at frames j and i respectively (i>j), the predicted one 

curX̂  is calculated as  

curX̂ =
iX +(

iX -
jX )*(cur-i)/(i-j). 

Its projection 
curX

~  is defined as the point on the trajectory 

closest to 
curX̂ .  Hence, we refine the object position as 

curX =(1- ot

f

_λ )
cur

X̂ +
curX

~ * ot

f

_λ .            (12) 

    If 
cur

O =1, we employ the template update approach [8] in a 

conservative way to cope with the appearance variation, i.e. 
the "drifting" artifact in tracking. 
 
2.4. The outline of the proposed method 



   Fig. 2 shows the framework of our proposed approach for 
small object tracking. 

 
Fig. 2 Particle filter-based small object tracking 

 

3. Experimental Results 
 
    We have implemented the proposed tracking method in 
Visual C++ and it runs at about 15fps on a 3.2GHz PC 
platform. The video from broadcast soccer game signals in the 
following examples is 360x240, 30Hz and lasts 190 frames. 
The tracker is initialized manually. The template size for the 
soccer ball is 5x5. The number of particles is 200. In all the 
examples in this paper, the yellow ellipse shows the ball 
position and size (for clarity, a zoomed portion from the pink 
area of the frame is shown on the top left corner of each 
image). 
    To illustrate the performance of the proposed method, 
we've ran two classic tracking methods for comparison: one is 
an optic flow-based tracker with template update [8] (a KLT 
tracker) and the other is a traditional template matching 
tracker (the TM tracker) updated by an IIR filter (the update 
ratio is 0.15). Shown in Fig. 3, the template matching (TM) 
tracker first falls in a region on the player jersey and then drifts 
away (frame 43). The estimated normalized cross correlation is 
still high (0.86) on frame 43. In Fig. 4, we see that the optical 
flow-based (KLT) tracker drifts away on frame 36 due to 
partial occlusion by a player jersey area. 
    Tracking results of the proposed algorithm are given in Fig. 
5-9. In this video, occlusion of the ball by the player occurs 
twice (frames 36-40, 147-153) and the field mark lines merge 
with the ball twice (frames 136-140, 175-176). Our proposal 
handles both cases successfully.   

   
Fig. 3: Failure of the TM tracker (frames 35, 43)  

   
Fig. 4: Failure of the KLT tracker (frames 35, 36)   

    

    
Fig. 5 Tracking results (frames 34, 41, 146, 153)  

    For the first case, Fig. 5 shows that our method still finds 
the ball when it reappears from occlusion by players, the most 
complicated case in ambiguity. Furthermore, Fig. 6 shows the 
resampled particles (ellipses in blue) when the ball is physically 
occluded by players (ellipse in black means the final estimate 
with the lowest confidence). We can see that more diversified 
particles are retained to wait for the ball to reappear. 
   The second case is illustrated in Fig. 7, where our tracker 
follows the ball when it has left the field lines for the “clean” 
grass field. Since field lines look similar in color to the ball, 
template matching becomes more ambiguous when the ball 
approaches them. Likewise, Fig. 8 shows the resampled 
particles when the ball falls onto the field line. This case is 
regarded as “virtual” occlusion since its uncertainty is similar 
to a real occlusion. After resampling, particles close to the 
field lines are retained which will be propagated to detect the 
ball that goes into the “clean” grass area again. 
   The tracking error is given in Fig. 9 where the ground truth 
is generated manually (when the ball is occluded, its ‘real’ 
position has to be obtained by interpolation). Actually the 
several peaks in this error curve indicate the time periods when 
the ball is occluded by the player or merges with the field line.  

With the particle set },..,1|),{( )(
1

)(
1 NiX i

t

i

t =−− π  at time t-

1, we proceed at time t as follows: 
    • Prediction: If 

1−tO =1, estimate motion 
tV  and 

prediction error 
tµ ; Otherwise 

tV =0, 
tµ =

maxµ . For 

i=1…N, simulate )(i

tX  ~ ),( )(
1 tt

i

t VXN µ+− ; 

• Updating: For i=1…N, )|( )()( i

tt

i

t XZP=π  by (4), 

consisting of the intensity, motion and trajectory 
likelihood terms by (7), (9) and (11). 

• Resample (if necessary): with the particle weight 

set },..,1|{ )( Nii

t =π , run residual resampling (its virtue 

lie in insensitivity to the particle order compared with 

other techniques). Replace },..,1|),{( )()( NiX i

t

i

t =π  by 

},..,1|)/1,
~

{( )( NiNX i

t = . 

• Estimate: If 
1−tO =1, output the average of all 

particles; Otherwise, select the particles (one or more) 
with the maximum weight and output the average of 
them. Detect occlusion for 

tO  setting. If 
tO =1, handle 

drifting by template update. Otherwise, project the 
estimated position onto the trajectory by (12). 



   
Fig. 6 Ball’s occlusion by player (frame 39, 147)  

   

   
Fig. 7 Tracking results (frames 134, 141, 174, 177)  

   
Fig. 8 Ball’s merging with the line (frame 138, 176)  

 

4. Conclusions 
 
     An adaptive particle filter for small object tracking which 
can effectively handle cluttered background and occlusion has 
been proposed. The adaptive motion model is applied to get 
better proposal distributions with varied diversity of particles. 
To further filter out visual distracters, motion continuity and 
trajectory smoothness are combined with the template 
correlation in the observation likelihood. Experimental results 

when our approach applies for soccer ball tracking show that it 
can deal with challenging situations with success, e.g. ball 
merging with field lines or occlusions.  
   In future work, a small object detector [3] will contribute 
information into the particle filter-based tracker to handle 
motion blur and long-duration occlusions. Besides, other 
interacting objects at the neighborhood, such as player/referee, 
are needed to be tracked at the same time, expanding the 
system towards multiple object tracking.  
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Fig. 9 Tracking accuracy in ball localization (vertical axis corresponds to location error in pixels). 




