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In this study, we asked whether the event-related potentials associated to cue and

target stimuli of a Central Cue Posner Paradigm (CCPP) may encode key parameters of

Bayesian inference – prior expectation and surprise – on a trial-by-trial basis. Thirty-two

EEG channel were recorded in a sample of 19 young adult subjects while performing a

CCPP, in which a cue indicated (validly or invalidly) the position of an incoming auditory

target. Three different types of blocks with validities of 50%, 64%, and 88%, respectively,

were presented. Estimates of prior expectation and surprise were obtained on a trial-

by-trial basis from participants’ responses, using a computational model implementing

Bayesian learning. These two values were correlated on a trial-by-trial basis with the

EEG values in all the electrodes and time bins. Therefore, a Spearman correlation

metrics of the relationship between Bayesian parameters and the EEG was obtained.

We report that the surprise parameter was able to classify the different validity blocks.

Furthermore, the prior expectation parameter showed a significant correlation with the

EEG in the cue-target period, in which the Contingent Negative Variation develops.

Finally, in the post-target period the surprise parameter showed a significant correlation

in the latencies and electrodes in which different event-related potentials are induced.

Our results suggest that Bayesian parameters are coded in the EEG signals; and namely,

the CNV would be related to prior expectation, while the post-target components P2a,

P2, P3a, P3b, and SW would be related to surprise. This study thus provides novel

support to the idea that human electrophysiological neural activity may implement a

(Bayesian) predictive processing scheme.

Keywords: predictive coding, Bayesian processing, ERPs, P300, Contingent Negative Variation, Central Cue

Posner Paradigm
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INTRODUCTION

Wide consensus is accumulating around the idea that the human
brain is a prediction machine, which learns statistical regularities
in the form of internal generative models and uses the models
to continuously generate predictions to guide perception and
action (von Helmholtz, 1866; Rao and Ballard, 1999; Friston,
2005, 2010; Doya et al., 2007; Bar, 2009; Pezzulo et al., 2014,
2015, 2017, 2018; Summerfield and de Lange, 2014; Friston
et al., 2015, 2016a,b, 2017). We still have scarce evidence on the
ways the human brain may implement the computational steps
required for Bayesian inference and learning, e.g., the generation
of expectations prior to observing stimuli and of surprise or
prediction error signals afterward (Egner and Summerfield, 2013;
Pouget et al., 2013).

An effective way to understand how the brain may
extract and encode statistical regularities during a cognitive
task is performing a model-based computational analysis of
participants’ behavioral and brain data (Daw, 2009). Previous
studies using a model-based methodology have identified a
variety of Bayesian parameters to be used as regressors for fMRI
or EEG data, which include: Predictive surprise, which represents
the subjective information content, or surprisal received when
an event is observed (Shannon, 1948); Bayesian surprise, or the
degree of updating in the beliefs after experiencing a new event
(Baldi and Itti, 2010); Prior expectation, or (the mean of) the
expected probability for a given event before the observations
(note that in a trial-by-trial analysis, the posterior expectation
at some trial T can be considered as the prior expectation at the
next trial T+1).

A study employing the Hierarchical Gaussian Filter (HGF;
Mathys et al., 2014) for a model-based analysis of a sensory
learning task reported that fMRI activity in the visual,
supramodal, and midbrain indexed low-level sensory prediction
errors, whereas fMRI activity in the basal forebrain indexed
higher-level prediction errors (Iglesias et al., 2013). Another study
combining electrophysiological and neuroimaging approaches
reported signatures of Bayesian inference at multiple hierarchical
levels during a social learning task (Diaconescu et al., 2017).
The model-based approach has been also widely used in
combination to EEG techniques. Indeed, event-related potentials
(ERPs) provide high time resolution of neural activity and are
particularly suited to investigate dynamical neural phenomena
like the coding of prediction errors in Bayesian models. For
example, (Kolossa et al., 2013) showed that short and long-term
effects of previous targets on P300 amplitude are modeled by
means of digital filters with different time constants; see also
(Squires et al., 1976; Duncan-Johnson and Donchin, 1977) for
other approaches to study the neural signatures of Bayesian
computations in ERPs.

Another line of research using a Bayesian approach in
combination with ERPs has shown that, in an urn-ball paradigm,
three components of the P300 late positive complex – P3a, P3b,
and positive SlowWave – index dissociated different processes of
Bayesian inference: the updating of Bayesian surprise (updating
of beliefs about hidden states), predictive surprise (the subjective
information content received from an observed event) and the

updating of predictions of observations (the so-called postdictive
surprise) (Kolossa et al., 2015). Finally, another related ERP
study using the urn-ball task linked P3a and P3b signals to
prior probabilities and likelihoods, respectively (Kopp et al.,
2016); see also (Seer et al., 2016). Yet, despite these progresses,
there are several aspects of a putative neural coding of Bayesian
parameters that remain incompletely understood. In particular,
while surprise signals have been studied quite extensively, the
relationship of the prior expectation parameter with the EEG
signals has not been addressed directly.

The goal of the present study is testing the quantitative
relationships between ERPs and the Bayesian estimations of prior
expectation and surprise, on a trial-by-trial basis, by adopting
a model-based approach. Specifically, this study investigates
the coding of Bayesian parameters in ERP signals during a
Central Cue Posner Paradigm (CCPP), in which participants saw
centrally presented cues that were either valid (i.e., correctly cued
the target) or invalid. The CCPP task is especially compelling, as
it induces an expectancy period between the spatial cue and the
target, and a surprise after the target is revealed (if unexpected).
Critically, cues had different levels of validity in different blocks
(50%, 68%, and 86%, respectively); but those needed to be learned
during the task – which implies that participant may experience
different subjective degrees of surprise during learning. This
manipulation permitted us to study the putative coding of two
critical parameters of Bayesian inference – prior expectation
(i.e., a mean prediction derived from a Bayesian model, see
below) and surprise (i.e., the discrepancy between prediction
and evidence) – in trial-by-trial ERP signals, while participants
learned the task. Single-trial prior expectation and surprise
parameters were inferred from participants’ behavior using a
Bayesian learning model (HGF, Mathys et al., 2011) that was
previously validated in a Posner task (Vossel et al., 2014). The
prior expectation and surprise parameters inferred by the model
based were then correlated with ERP signals recorded from the
same participants and trials.

Following the hypothesis that the brain implements Bayesian
computations (aka, Bayesian brain hypothesis), we expected the
single-trial EEG amplitude to correlate with the prior expectation
parameter in the preparatory period (cue-target period) and
with the surprise parameter in the belief-updating (post-target)
period. This result would indicate that ERP signals index key
parameters of Bayesian inference, in the proper temporal order
(i.e., prior expectations need to be formed first, to be used
to derive surprise signals). In keeping with this hypothesis,
it has been suggested that the negative slow potential, termed as
Contingent Negative Variation (CNV), may be a neural signature
for prior probabilities, and related to the updating of beliefs
about the relationship of cue and target (Gómez and Flores,
2011). In the post-event period, the P3a, P3b and late positive
slow wave component present higher amplitude in invalid than
valid trials during CCPP (Mangun and Hillyard, 1991; Arjona
et al., 2016), suggesting a higher neural processing of invalid with
respect to valid trials. The amplitude of the late positive complex
is sensitive to the validity or invalidity of the trial, but also to
the validity probability in a given block (Arjona et al., 2016),
i.e., the so-called global probability, and to the recent stimulus
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FIGURE 1 | The Central Cue Posner Paradigm used in this study. Representation of a valid and an invalid trial. The arrows indicate the possible location of a target

and the position of the target in the current trial is indicated in rectangle. The central arrow (cue) was presented in the center of the screen, and the auditory stimulus

(target) was presented monaurally. The temporal sequence of stimulus presentation appears in the middle part of the figure. The inferior part of the figure indicated

the three options of validity probability blocks and a typical sequence of valid (V) and invalid (I) trials for each type of block.

sequence, i.e., the local probability (Arjona Valladares et al., 2017;
Arjona et al., 2018).

Furthermore, we expected prior expectation and surprise
parameters to be decoded equally well across the three
experimental blocks of the CCPP, which have different statistics.
This is important, as it would indicate that the brain continuously
tracks task statistics, and generates context-specific predictions
and surprise signals (i.e., signals that depend on learned task
statistics), rather than using a more inflexible, non-Bayesian
strategy that simply reacts differentially to invalid versus valid
trials (e.g., by elevating EEG signals for invalid trials).

MATERIALS AND METHODS

Subjects
Thirty subjects (15 females and 15 males) between 18 and 35
years of age (mean: 24 years old and SD: 4.22) participated in the
experiment. Two of them were eliminated because the EEG was
not properly recorded. After computing the prior expectation and
surprise parameters with the HGF model (Mathys et al., 2011),
nine subjects who only produced negligible changes in these
parameters on a trial-by-trial basis were eliminated from further
analysis. The remaining sample of 19 subjects was completely
analyzed. The experiments were conducted with the informed
and written consent of each subject, following the rules of the
Helsinki Convention. The “portal of ética en Biomedicina de la
Junta de Andalucía” approved the study.

Paradigm
The stimuli were presented through E-Prime (2.0), on a computer
screen situated at 60 cm of the subjects. The experimental
paradigm consisted in a visuo-auditory modified version of the

CCPP (Figure 1), with arrow cues appearing at the center of
the screen (DELL E773p, Graphic Card NVIDIA GeForce FX
5200, 1152×864 pixels (75 Hz), color and luminance 9,300 K,
followed by monaural auditory stimulation (1,000 Hz and
72 db). The central arrow stimulus (S1) was intended to induce
spatial orientation, and the monaural auditory stimulus (S2)
corresponded to the imperative stimulus. Subjects had to press
the right button with the index finger of the right hand if the
auditory stimulus appeared in the right ear or the left button
with the left index finger if the auditory stimulus was presented
in the left ear. The Cedrus (model RB-530) was used as a
response device.

The events sequence within a trial was as follows: (I) a central
fixation white cross appears for 300 ms; (ii) the S1 is on for
300 ms; (iii) an expectancy period (with the white cross) lasts for
370 ms (therefore, the total S1–S2 period was 670 ms); (iv) the
S2 comes on for 100 ms and is randomly presented to the left or
right ear, with equal probability (0.5); and (v) the response time is
on for 1,000ms (during this period, the white cross was presented
again) (Figure 1).

The experiment consisted of 600 trials divided into six blocks
(100 trials per block), and there were three types of blocks:
(i) Block validity 50%: in 50% of the trials the S1 points to the
correct location where the S2 will appear (valid trials) and in the
other 50% the S1 points to the wrong location (invalid trials). (ii)
Block validity 68%: in 68% of the trials the S1 points to the correct
location where the S2 will appear (valid trials) and in the other
32% the S1 points to the wrong location (invalid trials). (iii) Block
validity 86%: in 86% of the trials the S1 points to the correct
location where the S2 will appear (valid trials) and in the other
14% the S1 points to the wrong location (invalid trials). The 30
participants were divided into six groups upon a different order
of presentation of the blocks (six block orders). Different validity
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blocks are then counterbalanced, and the possible effect caused
by the influence of the previous type of block was canceled. There
were 12 training trials.

EEG Recordings
The EEG was recorded from 32 scalp sites in an extended
version of the International 10–20 System, using tin electrodes
mounted on an electrode cap (Electrocap). Impedance was
maintained below 5 KOhms. Data were recorded in DC using
a common average as reference, and they were not filtered.
The ground electrode was located on the line between Fpz
and Fz. The amplification gain was 20.000, and the data were
acquired at a sampling rate of 512 Hz (ASA-lab EEG/ERP
system, ANT, Holland). EEG recordings were analyzed with
the EEGlab v10.0.0.0b (Delorme and Makeig, 2004) and Matlab
R2016a (MathWorks Inc., MA, United States) software packages.
To eliminate AC power line interference and blink artifacts in
the EEG, an Independent Components Analysis (Groppe et al.,
2009) was performed. Criteria for determining these artifactual
components were their scalp map distribution, time course and
spectral power. These components were discarded, and the EEG
signal was reconstructed.

Behavioral Analysis
The reaction time (RT) and errors of the present experiment
were previously published (Arjona et al., 2016). Results showed
the typical pattern of cost-benefit of the CCPP, with faster and
more accurate responses in valid compared to invalid trials.
See the Supplementary Material for descriptive statistics of the
behavioral data.

Here, we re-analyzed the trial-by-trial data, using the HGF:
a computational model that implements hierarchical Bayesian
inference and learning (Mathys et al., 2011, 2014; Diaconescu
et al., 2017). The rationale for using the HGF model is twofold.
First, the HGF embodies the hypothesis that the brain uses
a (hierarchical) Bayesian scheme to infer task contingencies
(e.g., the validity of cues) and to update these hypotheses
when it receives novel information (i.e., after each trial). As
it uses a Bayesian scheme, the HGF provides an estimate
of each participant’s prior expectation and surprise parameters
during the task, on a trial-by-trial basis, by fitting participants’
response times (RS) for valid and invalid trials. Correlating these
parameters with EEG signals on a trial-by-trial basis would allow
us testing the hypothesis that the brain might perform related
Bayesian computations. Second, the HGF was already validated
in the context of a CCPP task (Vossel et al., 2014), which provides
some confidence in the fact that the theoretical assumptions
it makes (e.g., about how participant’s response times can be
modeled) are sufficiently realistic in this context.

The HGF receives as input participant’s response time
(in milliseconds) for each trial; note that trial order of each
participant is preserved. Moreover, each trial has two labels,
which indicate whether the trial is valid (i.e., cue and target
are congruent) or invalid (i.e., cue and target are incongruent),
and whether the response was correct or an error (in this latter
case, the trial is ignored). The HGF uses this input to infer
participants’ hidden states or beliefs about the task (e.g., about cue

validity, see later) that best explain their observed responses, and
which vary on a trial-by-trial basis (and can thus be correlated
with participants’ trial-by-trial EEG signals). To this aim, the
HGF learns the parameters of a so-called generative model, i.e.,
a probabilistic mapping between participants’ hidden beliefs and
their responses.

The generative model of HGF includes a hierarchy of hidden

states x
(k)
i , with i = 1, 2, 3, denoting the three levels of the

model, see Figure 2.
At the first hierarchical level, the model encodes the

state x
(k)
1 whose binary values represent the category (valid or

invalid) of the current trial. The probability of the state x
(k)
1 is

conditioned on a second-level real variable x
(k)
2 , according to the

following rule:

xk1|x
k
2 ∼ Bernoulli(xk1; s(x

k
2))

where s(x) = (1 + e−x)−1. Here, the state xk2 is interpreted as the
‘tendency’ of the stimulus to be valid. By hypothesis, the value of
xk2 evolves across trials following a Gaussian random walk and is
normally distributed around its value at the previous trial:

xk2 ∼ N (x
(k−1)
2 ; e(x

(k)
3 +ω))

with variance described by the term exp(x
(k)
3 + ω), where ω is a

measure of the trial-by-trial variability in xk2 .

At the highest hierarchical level, the state xk3 expresses the
‘log-volatility’ (e.g., a rate of change of the statistics) of the
environment. (Note that our CCPP task comprises three types
of blocks having different cue validities – 50%, 68%, and 86% –
hence one can consider that shifting block types entails a form of
volatility in the cue validity statistics.) The state xk3 is assumed
to be normally distributed around its value of the previous
trial, with a variance defined by a subject-specific parameter
ϑ, which denotes the variability of the volatility over time
(‘meta-volatility’).

xk3 ∼ N (x
(k−1)
3 ; ϑ)

The HGF uses Bayesian inference to update all the
aforementioned posterior densities (or beliefs) of the variables
xk1 , x

k
2 , and xk3 on a trial-by-trial basis, by integrating sensory

evidence (about cue validity). As full Bayesian inference can
be intractable, the HGF uses variational model inversion and
a mean field approximation (Mathys et al., 2011; Vossel et al.,
2014), to calculate the posterior densities of the variables xki . By

denoting the mean and precision (i.e., inverse variance) of xki
as µ and π, respectively, the update of µk

i at level i and trial k
has a general form (with a slightly different form for i = 2), see
(Mathys et al., 2011; Vossel et al., 2014):

µk
i − µ

(k−1)
i ∝

π̂
(k)
i−1

πk
i

δ
(k)
i−1

where the accent (ˆ) designates the expected value predicted

before observations and δ
(k)
i−1is the prediction error about the

input coming from the level below.
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FIGURE 2 | A graphical illustration of the Hierarchical Gaussian Filter (HGF) model of Mathys et al. (2014). The figure shows the hidden states x
(k)
i and parameters

(ζ, ω, and ϑ ) encoded by the model, and the probabilistic relations (edges) across multiple hierarchical levels and across time (e.g., k–1, k, k+1). RS denotes the

subject’s response. Please see the main text and Mathys et al. (2014) for details on the HGF.

The lowest level of the hierarchical generative model of
HGF describes how the subjects’ beliefs cause their response
times at each trial k. The model of (the inverse of) subjects’
response time RS is:

RSk =

{

ζ1valid + ζ2 αk if x1 = 1

ζ1invalid + ζ2 (1 − αk) if x1 = 0

Note that RS denotes the inverse of response time, not response
time, as the former but not the latter is assumed to follow
a normal distribution. Furthermore, the response time model
is separated for valid and invalid trials, which follow different
distributions in CCPP and other tasks (Mathys et al., 2011;
Vossel et al., 2014).

The parameters ζ1valid, ζ1invalid, and ζ2 of the RS model are
estimated along with all the other parameters of HGF, using
subjects’ responses for each trial and the factor αk defined as:

αk =
1

(1 − log2µ̂
(k)
1 )

Here, −log2µ̂
(k)
1 is the Shannon surprise for the predicted

stimulus µ̂
(k)
1 , defined as the softmax µ̂

(k)
1 = s(µ̂

(k)
2 of the belief

for the rate of change. Note that, intuitively, α is assumed as an
attention factor, which becomes zero with zero surprise.

We used the HGF model to calculate two parameters – prior
expectation and surprise – for each subject (as we estimated ζ,
ω, and ϑ separately for each subject) and for each trial (as the
HGF is sensitive to the order of trials actually experienced by each
subject), based on subjects’ response times during the task.

Prior expectation (on x
(k)
1 ) corresponds to µ̂

(k)
1 and is

calculated by the HGF model as the mean of the (probabilistic)
expectation of the cue validity, for each subject and for each

trial. Surprise corresponds to −log2µ̂
(k)
1 and is calculated by the

HGF model as a function of the prior expectation and the actual
cue validity at each trial. The term “surprise” refers here to the
Shannon (1948) surprise associated with each target stimulus
during the experiment. It is worth noting that while in some
settings Shannon surprise for a given stimulus can be considered
an objective measure and is defined as the negative logarithm
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of stimulus probability, here it is a subjective measure. This is
because participants have to estimate their subjective probability
of stimuli, using their own generative model of the task, which
is different from subject to subject and depends on the history of
previous trials that each subject experienced.

EEG Analysis
An offline filtering of 0–30 Hz was applied to the EEG.
Independent Component Analysis Artifact (Delorme and
Makeig, 2004) corrected recordings were averaged off-line using
a rejection protocol based on the voltage amplitude: All the
epochs for which the EEG exceeded ±100 microvolts in any
channel were automatically discarded for ERP analysis. The
algebraically linked mastoids were computed off-line and used as
a reference for analytical purposes. ERPs were obtained for each
subject by averaging the EEG, using the switching-on of the cue
and the target as trigger. Two baselines were used to compute
the ERPs; (i) for the CNV period was the −100 to 0 ms interval
before the cue stimuli; and (ii) for the post-target components
N1, P2, P2a, P2p, P3a, P3b, and SWwas the−100 to 0 ms interval
before the target stimuli.

To compute the possible relations between the Bayesian
parameters (prior expectation and surprise) inferred by the HGF
and the EEG signal, we performed a trial-by-trial correlational
analysis (see Figure 3 for the complete pipeline analysis). To test

FIGURE 3 | Analysis pipeline. The subject is presented to a Central Cue

Posner Paradigm and Reaction times and EEG are collected. From the HGF

model we derive the surprise prior expectation (Xn) and surprise parameter

(Yn). The EEG, after data pre-processing, permits to obtain the event-related

potentials (ERPs) induced by the arrow cue (S1) and by the auditory target

(the statistics for the ERPs are described in Arjona et al., 2016). Finally the

correlations in a trial-by-trial basis between the HGF parameters (Xn and Yn)

with the EEG are obtained. See more details in the “Materials and

Methods” section.

the hypothesis that the prior expectation parameter was related to
the EEG time window in which Contingent Negative Variation
(CNV) develops, the prior expectation of individual subjects was
correlated with the EEG values in the following manner: for
each time bin, electrode and trial, the voltage value was obtained
and then Spearman correlated with the prior expectation value.
This procedure was used in the period between S1 and S2
and the corresponding pre-cue period [−200 (pre-S1) to 670
(post-S1) ms]. As indicated in Figure 3, the vector of the prior
expectation parameter (Xn, a vector with dimensions: number
of trials × 1) is correlated with the columns of the matrix
EEGn,t (a matrix with dimensions: number of trials × number
of time points). The prior expectation computed from the model
in a given trial is correlated with EEG values at the next trial,
given that the expectation concerns the (validity of the) next
stimulus. This computation provides a vector with the correlation
of the prior expectation parameter vs. the spontaneous EEG
values along time (dimensions: number of time points × 1).
For presentation purposes, the grand-average of the individual
correlational vectors was computed.

To test the hypothesis that the surprise parameter was related
to the EEG after appearance of the target, the voltage values
in each time bin, electrode and trials were Spearman correlated
to the surprise parameter during the post-target period [1,000
(post-S2) ms] and corresponding pre-target period [−200 (pre-
S2)]. This procedure was similar to that described for the CNV
period (see above), but using the surprise parameter and the post-
target time window. For correlations, surprise is aligned with the
EEG of the same trial in which is computed, given that surprise
represents the subjective information content of an event when is
observed (in this case the auditory target) (Shannon, 1948). The
correlation analyses between the EEG and the HGF parameters
were computed using “Matlab R2016a.”

We analyzed how EEG signals related to Bayesian parameters,
by focusing on the same electrodes and time windows in
which differences in ERPs for valid and invalid trials were
previously obtained (Arjona et al., 2016). The obtained Spearman
correlation (between the EEG and the Bayesian estimated
parameter) was then used as a metrics for the statistical
comparison against the pre-cue or pre-target periods. For the
CNV, the relevant time window was 370–670 ms after the cue
arrow (S1) and the analyzed electrodes Fz and Cz. For the post-
target components, the latencies and electrodes corresponded to
N1 (90–120 ms, FC1, FC2, C3, Cz, C4); P2a (153–193 ms; F3,
Fz, F4, FC1, FC2); P2p (153–193 ms; CP1, CP2, P3, Pz, P4); P3a
(290–340 ms; FC1, FC2, Cz), P3b (380–530 ms; P3, Pz, P4, POz,
O1, Oz, O2) and the negative slow wave (SW) (380–530 ms; FP1,
FPz, FP2, F3, Fz, F4).

Wemade an additional effort to find possible significant effects
in the component P2 (P2a and P2b are obtained as subtraction of
ERPs in invalid from ERPs in valid trials). For assessing possible
Bayesian effects of the P2 component, the electrodes Cz, Pz, and
POz – which are the electrodes showing the higher amplitude
for this component (Arjona et al., 2016) – were selected in the
same time window as P2a and P2p (153–193 ms). The mean
of the Spearman correlation coefficient was obtained for these
latencies and electrodes. The pre-cue and pre-target periods for
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the Spearman correlation coefficient were obtained for the same
electrodes in the time window −200 to 0 ms before the cue
(for the CNV analysis) and before the target (for the post-target
analysis), respectively.

An independent ANOVA was computed for each component,
with the factors time window (pre-cue or pre-target period and
time window of a given component as levels) and electrodes.
Please notice that Spearman correlation can have positive and
negative values, therefore what the statistics is testing is if
Spearman correlation (between the EEG and the estimated
Bayesian parameter) is significantly different from the interval
−200 to 0 ms previous to the cue or to the target, in the
time window corresponding to a given ERP component. The
Greenhouse–Geisser correction for sphericity was applied when
sphericity was not obtained. T-test were used as post hoc analysis
when needed. The ANOVAs were computed using “SPSS_23.”

Finally, the correlations of the single trial EEG values versus
the surprise parameter estimated from the HGF model were
compared (by means of ANOVA) with the correlations obtained
between the EEG and a model that assumes that subjects know
the true probabilities of the stimuli. The true probabilities were
obtained from the empirical validity probability of each block
of trials (e.g., in the 86% validity block the true probability for
valid trials was 0.86, and the complementary 0.14 for invalid
trials). Then the (Shannon) surprise for the true probability
parameter is computed as S = −log2 p. Although subjects cannot
calculate the same surprise values (as they do not have access
to the true probabilities), we asked if they could approximate
it – and whether the surprise values calculated using the true
probabilities and/or extracted from the HGFmodel correlate well
with the EEG signal. If the surprise estimated from the HGF
model is coded in the EEG, and corresponds to a good estimation
of the empirical surprise imposed by the stimuli sequence, the
correlations between the HGF surprise and the EEG should be
similar to the correlations between the EEG and the surprise
estimated from the true probabilities. To obtain the correlations
between the single trials EEG and the true probability, we adopted
the same approach as shown in Figure 3, but used the surprise
estimated from the true probabilities rather than the surprise
inferred by the HGF model.

RESULTS

We tested whether the surprise parameter inferred by the HGF
model (Mathys et al., 2011) was sensitive, and sufficient to
discriminate the behavior of participants in different blocks. The
results shown in Figure 4 show that the (average) surprises
calculated by the HGF model cluster subjects robustly by
block, thus indicating that the HGF model provides sensitive
parameters. The clustering procedure was applied to the
initial 28 subjects.

However, the results of the HGF model show two different
trial-by-trial surprise patterns for the participants, which
are shown in Figures 5A,B, respectively. The first pattern
corresponded to 19 subjects, who showed a big response to
surprise in invalid trials and also adjusted surprise in valid trials

to themean surprise of the block (Figure 5A). The second pattern
corresponded to seven subjects, who showed small response
to Invalid trials, despite they adjusted to the mean surprise of
the block of trials (Figure 5B). We quantified these different
patterns computing the differential (Matlab function diff ) with
respect to trial order, to obtain a metric of the sensitivity
of the subjects with respect to changes in experimental trial
sequences (e.g., Valid→Invalid, Invalid→Valid). We computed
the absolute value to the differential of surprise and then the
mean value across trials of the differential, i.e., a sensitivity to
change (defined as mean[abs(diff(surprise))]) for each subject.
Figure 5C shows 19 subjects (labeled with an A) with high
sensitivity to change and seven subjects (labeled with a B) with
a low sensitivity to change. As one of the primary interests of the
present study was to correlate post-target EEG with the surprise
parameter, we limited the EEG correlation analysis to the 19
subjects with high sensitivity to change. This is because the seven
subjects that did not show a clear response to surprise in invalid
trials presented a very low surprise variance on a trial-by-trial
basis, and this pattern would not permit to obtain significant
correlations with the EEG signal.

Figure 6 shows the ERPs grand average in selected electrodes
in the pre-target (preparatory period) and post-target periods of
components CNV, P2, P3a, P3b, and SW. Notice the increase of
the P3b component in invalid trials (red) with respect to valid
trials (black), and in the high validity blocks with respect to low
validity blocks. See Arjona et al. (2016) for the topographical
differences between blocks and validity conditions. Figure 7 (left
panel) shows the Spearman correlation values of single trial EEG
voltage values with the prior expectation values in the post-
S1 period for the 19 subjects, while Figure 7 (middle panel)
shows the grand average of the correlation. Notice the increase of
negative correlation in this period as time increases. The Figure 7
(right panel) shows the frontal topography of the correlation
between EEG and prior expectation in the time window of the
CNV component (S1–S2 period). The ANOVA results showed
a statistically significant difference of the Spearman correlation
between EEG and the prior expectation in the pre-cue time
window with respect to the CNV time window; with the time
window as a main effect [F(1,18) = 5.75, p = 0.028; η 2

p = 0.242].
Figure 8 shows the correlation values of single trial EEG

voltage values with the surprise parameter in individual subjects
(Figure 8, left panel) and in the grand average (Figure 8, middle
panel). The topographical representation of the correlations for
the time windows of the different ERPs analyzed are displayed.
For the correlation of the EEG values in the time windows
of the different post-target ERPs with the surprise parameter,
main effects of the time window factor were obtained in the
P2a F(1,18) = 15.63, p < 0.001; η2

p = 0.465 in frontal sites
(due to a negative correlation between surprise and voltage),
in the P3a latency a F(1,18) = 6.24, p = 0.022; η2

p = 0.257
with a positive correlation central-posterior topography, P3b
F(1,18) = 9.68, p = 0.006; η2

p = 0.35 showing a posterior positive
correlation topography, and the negative SW F(1,18) = 5.59,
p = 0.029; η2

p = 0.237 with a negative anterior topography.
The central-posterior topography of the correlation in the P3a
latency suggests that this correlation indicates a mixed effect
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FIGURE 4 | Clustering of blocks from the surprise parameter inferred by the HGF model. A, B, and C represent three blocks with different percentages of cue validity

(50%, 68%, and 86%, respectively). Note that the HGF model recovers well the statistically differences between the blocks, by forming three distinct blocks.

of the P3a and P3b components. However, in the late latencies
(Figure 8, right panel) the displayed topography corresponded to
the typical posterior topography of P3b and the anterior negative
SW. Additionally, there was an interaction between the effects
of the time window and electrodes factors in the P2 component
[F(1.52,27.41) = 8.04, p = 0.004; η2

p = 0.309]. The correlation
metrics for the P2 component was statistically significant only in
the electrode Cz (p = 0.049).

In those components in which the correlations of the EEG
versus the surprise parameter were significant, an ANOVA
comparison with the correlations of the EEG versus the true
stimuli probability was computed. Only the P3b component
presented a statistically significant difference between these
correlations (EEG vs. surprise) due to a higher correlation of
the surprise computed from the true probability parameter
with respect to the surprise computed from the HGF model
[F(1,18) = 5.8, p = 0.027; η2

p = 0.244] (Figure 9).

DISCUSSION

Our results show that, when analyzed on a trial-by-trial bases,
the EEG signal collected while participants performed a Central
Cue Posner task index critical parameters of Bayesian inference-
prior expectation and surprise – as derived from a computational
(Bayesian) learning model, the HGF. Importantly, our analysis
revealed that the intervals during which statistically significant
results between valid and invalid trials could be decoded in the
EEG signal are compatible with the time course of Bayesian

inference, with prior expectation signals decoded after the cue
period, during the CNV period (Figures 6, 7), and surprise
signals occurring after the target, at the critical latency of P300
(Figures 7, 8), which has long been associated to processes of
surprise and information gain (Donchin, 1981; Kolossa et al.,
2013). Interestingly, the predictive capacity of the surprise
parameter inferred by the HGF model was the same as the
predictive power of the surprise computed as if the subjects were
aware of the true probabilities of the experiment, except for
the time window of P3b. This result suggests that the surprise
inferred by the HGF model approximates a perfect knowledge of
the empirical stimuli probabilities imposed by the experimental
design; but yet some aspects of the coding of surprise may not be
fully considered in the HGF model.

Furthermore, our paradigm using three different blocks with
different levels of cue validity illustrates that Bayesian parameters
can be decoded reliably even when task statistics change. The
Bayesian parameters extracted from the computational model
appear to track the changing statistics of cue validity, rather
than simply reflecting a fixed strategy of response to invalid
versus valid trials. This result is in keeping with the idea that the
brain continuously performs statistical learning and inference.
Interestingly, the tracking of the EEG correlations with the
Surprise parameter have been obtained in the same latencies
and electrodes in which significant differences are obtained in
ERPs between valid and invalid trials (P2, p3a, P3b and negative
slow wave) (Arjona et al., 2016). Similarly, the prior expectation
parameter presented EEG correlations during the CNV period.
Previous studies have shown that CNVs are modifiable by the
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FIGURE 5 | Surprise values, on a trial-by-trial basis. (A) Example subject whose surprise values are strongly related to current block validity (which changes every

200 trials) and trial-by-trial changes in validity (sharp peaks of surprise values). (B) Example subject whose surprise values are only related to the current block trial

validity. (C) Represents the mean sensitivity to change for each individual subject, the mean[abs(diff (surprise))] represents the computation method to obtain the

mean sensitivity to surprise to the validity or invalidity of the trial in each subject (see section “Materials and Methods”). “A” indicates the cluster of subjects with high

sensitivity to invalidity, and “B” the subjects with low sensitivity to invalidity. Please notice that the 19 first subjects presented a much higher sensitivity to changes in

trial validity than the seven subjects at the right of the display. This difference in the sensitivity of surprise to validity change permitted to split the sample in two

subgroups. The correlational analysis was exclusively applied to the 19 subjects at the left (high sensitivity of surprise to changes in validity).

outcome of previous trial – i.e., they increase amplitude after
a valid trial (Arjona et al., 2014) and reduce amplitude after
an invalid trial (Arjona Valladares et al., 2017; Arjona et al.,
2018). This body of evidence suggests that CNV may index the
expectation of the next event at the neural level.

The HGF model was able to model the saccadic latencies from
a CCPP (Vossel et al., 2014). The authors of the study showed
that a full HGF model, which takes into account the volatility of
the environment, approximated saccadic response times better
than alternative (i.e., incomplete) models. In their report, the

surprise parameter extracted by the full HGF model (but not
the incomplete models) was able to classify the different blocks
of trials – as an increase in trial validity was accompanied by
a reduction in Shannon surprise. It is also worth noticing that,
similar to the results we report here, in the Vossel et al. (2014)
study only a portion of the participants (19 out of 28) showed a
clear trial-by-trial change of surprise to invalid trials.

Here, we significantly advance previous findings about
the neural encoding of Bayesian parameters, by reporting a
significant correlation of the CNV period of EEG with the
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FIGURE 6 | Event-related potentials: CNV, P2a, P3a, P3b, and SW. ERPs are Presented into different validity blocks (50%, 68%, and 86% of validity, respectively),

and by showing separately lines for valid (black) and invalid (red) trials within each validity block. See Arjona et al. (2016) for the topographical differences between

blocks and validity conditions. The different ERP components in which statistically significant correlations between the EEG and the prior expectancy or surprise

parameters were obtained are labeled in the ERPs.

FIGURE 7 | Correlation of the prior expectation parameter with the EEG values in the period between cue (S1) and target (S2), for the electrodes Fz and Cz. The left

panels show the correlation in all individual subjects and the middle panel shows the average of correlations. The topography of correlations is displayed in the right

panel. The time windows in which the correlations between the EEG and the prior expectation parameter were significant are gray shaded.

expectation parameter extracted from the HGF model. This
result is consistent with the line of evidence suggesting that
CNV may be a marker of top-down expectation in sensory
processing (Chennu et al., 2013). The CNV has been associated to
expectation in psychophysiological research. Specifically, when a
warning informative stimulus (S1) about the characteristics of a
second stimulus (S2) is presented, the preparation for S2 induces
a change in cortical activity, recorded as a CNV component
(Rockstroh, 1982). It has been shown that this preparation
induces not only the activation of motor cortex but also the
sensory task-specific cortices (Brunia, 1999; Gómez et al., 2003).
The CNV would thus correspond to the neural signature of the
activation of the task-set neural related areas, by activating areas

needed for the subsequent processing of the S2 stimulus (Gómez
et al., 2004). CNV localization studies showed that CNV would
be composed of different sub-components: An early component
that would ignite the preparatory anticipatory properties of CNV,
located in anterior cingulate cortex and supplementary motor
cortex; a component related to the activation of the motor and
sensory cortices needed for the execution of the task; and a
Workingmemory and/or executive attention component, located
in dorsolateral prefrontal-cortex and parietal areas (reviewed in
Gómez and Flores, 2011).

Single neurons recordings in animals and fMRI studies in
humans (Requin et al., 1990; Luck et al., 1997; Kastner et al.,
1999) support the tonic activation of the frontal, striate and
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FIGURE 8 | Correlation of the HGF surprise parameter with the EEG values in the post-target (S2) period of the components P2, P3a, and P3b/SW. The left panels

show the correlation in all individual subjects and the middle panels show the average of correlations. The topography of correlations for components P2, P3, and

P3b/SW is displayed in the right panels. The time windows in which the correlations between the EEG and the surprise parameter were significant are gray shaded,

indicating the ERP component that corresponded to this particular time window.

FIGURE 9 | Correlation values between the EEG and the surprise parameters computed from the HGF model and from the true probability for each block, for the

electrodes Fz (A) and Pz (B). The gray shaded area corresponds to the time window in which the correlations were significantly different (in the P3b time window;

see the “Results” section).
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extra-striate cortices during preparatory periods while visual
stimulation is delivered. Therefore, the possible microscopic
neural bases of CNV would be in the tonic depolarization
of cortical apical dendrites that would increase the neuronal
excitability facilitating that firing threshold can be reached in the
pre-activated areas (Rockstroh, 1982). It has been proposed that
this tonic change in the neural activity baseline would be related
at a psychological level with expectation values for a given target
(Egner and Summerfield, 2013). The significant correlation of
the EEG during the CNV period with the (Bayesian) expectation
extracted from the HGF gives a quantitative support to the
suggestions that CNV is in fact coding for the quantitative
level of expectation of next target (Gómez and Flores, 2011).
The correlation of EEG vs. expectation in the CNV period
was topographically located in frontal areas, supporting the
idea that fronto-striatal circuits are concerned with Bayesian
estimation (reviewed in Kopp et al., 2016). The proposal of
a CNV coding for the expectation parameter agrees with the
study by Bennett et al. (2015), which using a reward anticipation
task and recording the so-called Slow Preceding Negativity
(a negativity similar to CNV and anticipating rewards) showed
a significant regression between the Slow Preceding Negativity
and the entropy of the beliefs distribution. The regression showed
a decrease in the amplitude of the Negativity with the increase
of beliefs entropy, suggesting that a greater certitude about the
amount of reward was coded by an increase in amplitude of this
anticipatory negative wave.

During the post-target period there was a correlation of the
surprise parameter with p2a/P2 component, the late positive
complex (covering P3a, p3b and progressing to the late slow
positivity) and with the negative frontal SW. P2a would be
considered similar to the visual Frontal Selection Positivity,
related to task-relevant stimuli processing in the transition from
the selection of relevant features to the selection of responses
(Kenemans et al., 1993; Makeig et al., 1999; Potts et al., 2004).
The time window of P2a is the first time window in which
the surprise parameter is significantly correlated to the surprise.
The correlation is inverse; i.e., P2a would have higher amplitude
with low surprise. This suggests that P2a may be related
to confirmatory outcomes of prior expectations, facilitating
the selection of adequate responses. This early response to
confirmation (earliest than the positive correlations with surprise
in the subsequent P3a and P3b) suggests that confirmation of
prior expectations relies on frontal sites.

Previous studies have shown the coding of Bayesian
parameters in the late positive complex, with Bayesian surprise
being coded by P3a and predictive or Shannon surprise coded
by the P3b component (Kolossa et al., 2015; Kopp et al., 2016;
Seer et al., 2016). As discussed above, the surprise computed
through the HGF model is a “subjective” (Bayesian) measure:
it comes from a generative model, whose participant-specific
parameters are estimated using the participant responses, rather
than from an “objective” knowledge of task contingencies. We
found this surprise parameter to be correlated with the voltage
latencies of P3a and P3b components. During the latency of P3a,
the correlation maps have a central and posterior topography,
showing a mixed contribution of P3a and P3b. However, the

electrodes in which P3a is usually recorded show a significant
positive correlation, indicating that P3a would be related to the
cognitive processing of the surprise parameter (Kolossa et al.,
2015; Kopp et al., 2016; Seer et al., 2016; Higashi et al., 2017).
This correlation was prolonged to the latencies of posterior P3b,
suggesting that the neural activities related to generation of P3b
would also be related to surprise computation. This suggests that
surprise may not be computed in a single step, or that its neural
trace should be distributed to different areas to produce their
cognitive effects.

The EEG data reported here were previously analyzed using
a pure psychophysiological approach, with a focus on couples
of trials (e.g., the differences between valid–valid versus invalid–
valid trials) (Arjona et al., 2016). Here, we extend these previous
findings, by using the HGF to study how EEG responses vary
as a function of the full history, rather than just the previous
trial. Interestingly, the previous reports using the present EEG
data found an effect of the global probability (Arjona et al.,
2016) and of local probability (Arjona et al., 2018). A lack
of interaction between these two levels permitted to suggest
independent neural networks for the processing of local (short-
term) and global (long-term) probabilities (Arjona et al., 2018),
similar to the differential coding of short-term and long-term
memory in distinct brain areas. The results reported here did
not speak to a separation between local and global probabilities,
since the HGF model integrates information across all trials, in a
Bayesian way. Therefore, the HGF approach cannot distinguish
whether posteriors related to global versus local probabilities
are computed independently (Squires et al., 1976; Kolossa et al.,
2013; Arjona Valladares et al., 2017; Arjona et al., 2018). The
fact that a few subjects presented a surprise value typical of
the block, but not phasic changes in surprise in invalid trials
(while most of the subjects presented these tonic and phasic
changes) suggests that short and long-term effect of estimating
the prior probabilities of events could be performed in an
independent manner.

The negative frontal slow wave presented a significant
correlation with surprise. This component appears in the
same time window than P3b and the positive slow wave, but
has a different neural origin (Løvstad et al., 2012). From a
psychophysiological perspective, it has been proposed that this
negative slow wave would represent the reorientation effort after
distracters, similarly to the so-called reorientation negativity
(Wetzel and Schröger, 2014). Its negative correlation with
the surprise parameter would indicate that an unpredictable
stimulus would induce the activation of the frontal neural
network related to reorientation of attention to the next
most probable event.

In sum, we found a reliable trial-by-trial correlation between
prior expectation and surprise parameters extracted by the HGF
on the basis of behavioral data collected in a Central Cue Posner
task, and EEG signals collected from the same participants in
the same trials. Our results contribute to a growing literature
showing that the human brain updates critical parameters of
Bayesian inference continuously during the task, using principles
of statistical learning (that are implicit in how HGF updates its
parameters). Specifically, the CNV period would be related to
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the coding of priors, the P2a component with the confirmation
of priors, while P3a and P3b would be related to the coding
of trial surprise.
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