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Abstract— In this article, we define and address the problem
of finding the visual focus of attention for a varying number
of wandering people (VFOA-W) – determining where a person
is looking when their movement is unconstrained. VFOA-W
estimation is a new and important problem with implications
in behavior understanding and cognitive science, as well as
real-world applications. One such application, presented in this
article, monitors the attention passers-by pay to an outdoor
advertisement using a single video camera. In our approach to the
VFOA-W problem, we propose a multi-person tracking solution
based on a dynamic Bayesian network that simultaneously infers
the number of people in a scene, their body locations, their
head locations, and their head pose. For efficient inference
in the resulting variable-dimensional state-space we propose
a Reversible Jump Markov Chain Monte Carlo (RJMCMC)
sampling scheme, as well as a novel global observation model
which determines the number of people in the scene and their
locations. To determine if a person is looking at the advertisement
or not, we propose Gaussian Mixture Model (GMM) and Hidden
Markov Model (HMM)-based VFOA-W models which use head
pose and location information. Our models are evaluated for
tracking performance and ability to recognize people looking at
an outdoor advertisement, with results indicating good perfor-
mance on sequences where up to three mobile observers pass in
front of an advertisement.

Index Terms— Computer vision, tracking, video analysis, con-
sumer products.

I. INTRODUCTION

A
S motivation for this work, we consider the following

hypothetical question: “An advertising firm has been asked

to produce an outdoor display ad campaign for use in shopping

malls and train stations. Internally, the firm has developed several

competing designs, one of which must be chosen to present

to the client. Is there some way to empirically judge the best

placement and content of these advertisements?” Currently, the

advertising industry relies on recall surveys or traffic studies to

measure the effectiveness of outdoor advertisements. However,

these hand-tabulated approaches are often impractical or too

expensive to be commercially viable, and yield small samples

of data. A tool that automatically measures the effectiveness of

printed outdoor advertisements would be extremely valuable, but

does not currently exist.

However, in the television industry, such a tool does exist. The

Nielsen ratings measure media effectiveness by estimating the

size of the net cumulative audience of a program via surveys

and Nielsen Boxes. If one were to design a similar system

for outdoor advertisements, it might automatically determine the

number of people who have actually viewed an advertisement as

a percentage of the total number of people exposed to it. This

is an example of an important extension of the visual focus of
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Fig. 1. Determining VFOA from eye gaze. In the VFOA-W problem,
allowing an unknown number of people to move about the scene (and
enter/exit the scene) complicates the task of estimating each subject’s visual

focus of attention (VFOA). Because a large field of view is necessary, the
resolution is often too low to estimate the VFOA using eye gaze (as seen
above). In our work, VFOA is inferred from a person’s location and head
pose.

attention (VFOA) problem, in which there exists a varying number

of wandering people. We denote this as the VFOA-W problem,

whose tasks are:

1) to automatically detect and track a varying number of

mobile observers,

2) and to estimate their VFOA with respect to one or more

fixed targets.

Solutions to the VFOA-W problem have implications for other

fields (e.g. human behavior, HCI) as well as real-life applications.

In our example of the outdoor advertisement application, the

goal is to identify each person exposed to the advertisement and

determine if and when they looked at it. We can also collect other

useful statistics such as the amount of time they spent looking at

the advertisement.

The VFOA-W problem represents an extension of traditional

VFOA problems studied in computer vision (e.g. [38]) in two

respects. First, for VFOA-W, the VFOA must be estimated for an

unknown, varying number of subjects instead of a fixed number

of static subjects. Second, in VFOA-W, mobility is unconstrained.

By unconstrained motion, we mean that the subjects are free to

walk about the scene (or wander): they are not forced to remain

seated or otherwise restrained. This complicates the task, as the

subject’s appearance will change as he moves about the scene and

keeps his attention focused on the target.

Camera placement and the unconstrained motion of the subjects

can limit the video resolution of the subjects, making VFOA

estimation from eye gaze difficult, as illustrated in Figure 1. To

address this problem, we follow the work of Stiefelhagen et al.,

who showed that VFOA can be deduced from head pose when

the resolution is insufficient to determine eye gaze [38].

In this article, we propose a principled probabilistic framework

for estimating VFOA-W, and apply our method to the advertising

example to demonstrate its usefulness in a real-life application.

Our method consists of two components: a dynamic Bayesian

network, which simultaneously tracks people in the scene and
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estimates their head pose, and two VFOA-W models based on

Gaussian mixture models (GMM) and hidden Markov models

(HMM) which infer a subject’s VFOA from their location and

head pose. We assume a fixed uncalibrated camera which can be

placed arbitrarily, with the condition that subjects appear vertical

with their face in view of the camera when they look at the target,

as in Fig. 1.

Besides defining the VFOA-W problem itself, which to our

knowledge is a previously unaddressed problem in the literature,

we also make several contributions towards a solution. First,

we propose a probabilistic framework for solving the VFOA-W

problem by designing a mixed-state dynamic Bayesian network

that jointly represents the people in the scene and their various

parameters. The state-space is formulated in a true multi-person

fashion, consisting of size and location parameters for the head

and body, as well as head pose parameters for each person in

the scene. This type of framework facilitates defining interactions

between people.

Second, because the dimension of the state representing a single

person is sizable, the multi-object state-space can grow to be

quite large when several people appear together in the scene.

The dimension of the state-space also changes as people enter

or leave the scene. Efficiently inferring a solution in a large

variable-dimensional space is a challenging problem. To address

this issue, we designed a Reversible Jump Markov Chain Monte

Carlo (RJMCMC) sampling method to do inference in this large

variable dimensional space.

Third, in order to localize, identify, and determine the correct

number of people present, we propose a novel global observation

model. This model uses color and binary measurements taken

from a background subtraction model and allows for the direct

comparison of observations containing different numbers of ob-

jects.

Finally, we demonstrate the applicability of our model by

applying it to the outdoor advertisement problem. We show that

we are able to gather useful statistics such as the number of

people who looked at the advertisement and the total number of

people exposed to it on a set of video sequences in which people

walk past a simulated advertisement. We provide an evaluation of

our approach on this data using a comprehensive set of objective

performance measures.

The remainder of the article is organized as follows. In Section

II we discuss related works. In Section III we describe our

joint multi-person head-pose tracking model. In Section IV we

propose the GMM and HMM methods for modeling VFOA-W.

In Section V we describe our parameter setting procedure. In

Section VI we evaluate our models on captured video sequences

of people passing by an outdoor advertisement. Some limitations

of our approach are discussed in Section VII. Finally, Section

VIII contains some concluding remarks.

II. RELATED WORK

To our knowledge, our work is the first attempt to estimate the

VFOA-W. However, there is an abundance of literature concerning

the three component tasks of the VFOA-W problem: multi-person

tracking, head pose tracking, and VFOA estimation.

A. Multi-Person Tracking

Multi-person tracking is the process of locating a variable

number of moving people or objects in a video over time. Multi-

person tracking is a well studied topic with a variety of different

approaches. We restrict our discussion to probabilistic tracking

methods which use a particle filter (PF) formulation [20], [39],

[15], [23]. Some computationally inexpensive methods use a

single-object state-space model [23], but suffer from the inability

to resolve the identities of different objects or model interactions

between objects. As a result, much work has been focused on

adopting a rigorous Bayesian joint state-space formulation to the

problem, where object interactions can be explicitly defined [20],

[39], [15], [17], [44], [32]. However, sampling from a joint state-

space can quickly become inefficient as the dimension of the

space increases when more people are added [20]. Recent work

has concentrated on using MCMC sampling to track multiple

people more efficiently [17], [44]. In a previous work [32], we

proposed to generalize this model to handle a varying number

of people using RJMCMC, which allows for a formal definition

of object appearance (births) and disappearances (deaths) from

the scene through the definition of a set of reversible move

types (see Section III-D). In this work, we extend the model of

[32] to handle a more complex object model and a larger state-

space, necessitating the design of new move types and proposal

distributions, a new observation model, and inter- and intra-person

interactions.

B. Head-Pose Tracking

Head-pose tracking is the process of locating a person’s head

and estimating its orientation in space. Existing methods can

be categorized in two of the following ways: feature-based vs.

appearance-based approaches and parallel vs. serial approaches.

In feature-based approaches, a set of facial features such as the

eyes, nose, and mouth are tracked. Making use of anthropometric

measurements on these features, the relative positions of the

tracked features can be used to estimate the head-pose [10],

[13], [37]. A feature-based approach employing stereo vision

was proposed in [42]. The major drawback of the feature-based

approach is that it requires high resolution head images, which is

impractical in many situations. Occlusions and other ambiguities

present difficult challenges to this approach as well.

In the appearance-based approach, instead of concentrating on

specific facial features the appearance of the entire head is mod-

eled and learned from training data. Due to its robustness, there

is an abundance of literature on appearance-based approaches.

Several authors have proposed using neural networks [28], [19],

principal component analysis [8], and multi-dimensional Gaussian

distributions [41] as modeling tools.

In the serial approach to head-pose tracking, the tasks of head

tracking and pose estimation are performed sequentially. This is

also known as a “head tracking then pose estimation” framework,

where head tracking is accomplished through some tracking

algorithm, and features are extracted from the tracking results

to perform pose estimation. This methodology has been used by

several authors [37], [28], [19], [43], [41], [7]. In approaches

relying on state-space models, the serial approach may have a

lower computational cost over the parallel approach as a result of

a smaller configuration space, but head-pose estimation depends

on the tracking quality.

In the parallel approach, the tasks of head tracking and pose

estimation are performed jointly. In this approach, knowledge

of the head-pose can be used to improve localization accuracy,

and vice-versa. Though the configuration space may be larger
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in the parallel approach, the computational cost of the two

approaches may ultimately be comparable as a result of the

parallel approach’s improved accuracy through joint tracking and

pose estimation. Benefits of this method can be seen in [42] and

[3]. In this work, we adopt an appearance-based parallel approach

to head-pose tracking, where we jointly track the bodies, the

heads, and estimate the poses of the heads of multiple people

within a single framework.

C. Visual Focus of Attention

Estimating VFOA is of interest to several domains as a person’s

VFOA is often strongly correlated with his behavior or activity.

Strictly speaking, a person’s VFOA is determined by his eye gaze.

However, measuring the VFOA using eye gaze is often difficult

or impossible as it can require either the movement of the subject

to be constrained, or high-resolution images of the eyes, which

may not be practical ([34], [22]).

In [38], Stiefelhagen et al. made the important observation that

visual focus of attention can be reasonably derived by head-pose

in many cases. We rely on this assumption to simultaneously

estimate the VFOA for multiple people without restricting their

motion. Others have followed this work, such as Danninger et

al. [9] (where VFOA is estimated using head-pose in an office

setting), Stiefelhagen [36] (where VFOA for multiple people and

multiple targets is estimated through head pose), and Katzenmaier

et al. [16] (where the head pose is used to determine the addressee

in human-human-robot interaction). Note that in these related

works the VFOA is modeled for a fixed number of seated people

using an unsupervised learning process.

D. Other Related Work

While we believe that this work is the first attempt to estimate

VFOA-W, there exist several previous works in a similar vein.

The 2002 Performance Evaluation of Tracking and Surveillance

Workshop (PETS) defined a number of estimation tasks on videos

depicting people passing in front of a shop window, including 1)

determining the number of people in the scene, 2) determining

the number of people in front of the window, and 3) determining

the number of people looking at the window. Several methods

attempted to accomplish these tasks through various means,

including [21], [25]. However, among these works there were no

attempts to use head-pose or eye gaze to detect when people were

looking at the window; all estimations were done using only body

location, assuming that a person pausing in front of the window

is looking at it. A preliminary version of this article appeared in

[30].

III. JOINT MULTI-PERSON AND HEAD-POSE TRACKING

In a Bayesian approach to multi-person tracking, the goal is to

estimate the posterior distribution for a target state Xt, taking

into account a sequence of observations Z1:t = (Z1, ..., Zt),

p(Xt|Z1:t). The state, or joint multi-person configuration, is

the union of the set of individual states describing each person

in the scene. The observations consist of information extracted

from an image sequence. The posterior distribution is expressed

recursively by

p(Xt|Z1:t) = C
−1

p(Zt|Xt) × (1)
Z

Xt−1

p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1,

Fig. 2. State model for varying numbers of people and their head-
pose. The joint multi-person state, Xt consists of an arbitrary number of
single-person states Xi,t, each of which contains a body X

b
i,t and head X

h
i,t

component. The body is modeled as a bounding box with parameters for the
location (xb, yb), height scale sb, and eccentricity eb. The head location Lh

has similar parameters for location (xh, yh), height sh, and eccentricity eh,
as well as in-plane rotation γh. The head also has an associated exemplar

θh, which models the out-of-plane head rotation.

where the dynamic model, p(Xt|Xt−1), governs the temporal

evolution of Xt given the previous state Xt−1, and the obser-

vation likelihood, p(Zt|Xt), expresses how well the observed

features Zt fit the predicted estimation of the state Xt. Here C

is a normalization constant.

In practice, the estimation of the filtering distribution in Eq. 1

is often intractable. However, it can be approximated by applying

the Monte Carlo method, where the target distribution (Eq. 1)

is represented by a set of N samples {X
(n)
t , n = 1, ..., N},

where X
(n)
t denotes the n-th sample. In this work we use

RJMCMC, where a set of uniformly-weighted samples form a so-

called Markov chain. Given the sample set approximation of the

posterior at time t− 1, p(Xt−1|Z1:t−1) ≈
P

n δ(Xt−1 −X
(n)
t−1),

the Monte Carlo approximation of Eq. 1 is written

p(Xt|Z1:t) ≈ C
−1

p(Zt|Xt)
X

n

p(Xt|X
(n)
t−1). (2)

In the following sub-sections we describe the joint multi-person

and head tracking model, the dynamic model, the observation

model, and how RJMCMC sampling is used to do inference.

A. State-Space Definition for a Varying Number of People

The state at time t describes the joint configuration of people

in the scene. Because the amount of people in the scene may

vary, we define a state model designed to accommodate changes

in dimension [32]. The joint state vector Xt is defined by Xt =

{Xi,t|i ∈ It}, where Xi,t is the state vector for person i, and

It is the set of all person indexes at time t. The total number

of people present in the scene is mt = |It|, where | · | indicates

set cardinality. A special case exists when there are no people

present in the scene, denoted by Xt = ∅ (the empty set).

Each person is represented by two components: body X
b
i,t,

and head X
h
i,t, Xi,t = (Xb

i,t,X
h
i,t) as seen in Figure 2. The

body component is represented by a bounding box, whose state

vector contains four parameters, X
b = (xb, yb, sb, eb) (we drop

the i, t subindices to simplify notation). The point (xb, yb) is the

continuous 2D location of the center of the bounding box, sb is

the height scale factor of the bounding box relative to a reference

height, and eb is the eccentricity defined by the ratio of the width

of the bounding box to its height.

The head component is represented by a bounding box which

may rotate in the image plane, along with an associated discrete
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exemplar used to represent the head-pose (see Fig. 4). The state

vector for the head is defined by X
h = (Lh, θh) where Lh =

(xh, yh, sh, eh, γh) denotes the continuous 2D configuration of

the head, including the continuous 2D location (xh, yh), the height

scale factor sh, the eccentricity eh, and the in-plane rotation γh.

The discrete variable, θh represents the head-pose exemplar which

models the out-of-plane head rotation. Note that the head pose is

completely defined by the couple (γh, θh).

B. Dynamic and Interaction Model

The dynamic model governs the evolution of the state between

time steps. It is responsible for predicting the motion of people

(and their heads) as well as governing transitions between the

head-pose exemplars. It is also responsible for modeling inter-

person interactions between the various people, as well as intra-

person interactions between the body and the head. We define the

dynamic model for a variable number of objects as

p(Xt|Xt−1) ∝ pV (Xt|Xt−1)p0(Xt), (3)

where pV (Xt|Xt−1) is the multi-object transition model and

p0(Xt) is an interaction term. The multi-person transition model

is defined more specifically as

pV (Xt|Xt−1) =

 Q

i∈It
p(Xi,t|Xt−1) if It 6= ∅

k if It = ∅
, (4)

where k is a constant. The single-person transition model is given

by
p(Xi,t|Xt−1) =



p(Xi,t|Xi,t−1) if i previously existed, i ∈ I1:t−1

p(Xi,t) if i is a previously unused index, i 6∈ I1:t−1
(5)

where p(Xi,t) is a mixture which selects parameters from either

a previously dead tracked object or a new proposal (see Section

III-E, birth move). The first term, p(Xi,t|Xi,t−1) is given by

p(Xi,t|Xi,t−1) = p(Xb
i,t|X

b
i,t−1)p(Lh

i,t|L
h
i,t−1)p(θh

i,t|θ
h
i,t−1),

(6)

where the dynamics of the body state X
b
i and the head spatial state

component Lh
i are modeled as 2nd-order auto-regressive (AR)

processes. This model applies for dead objects as well as live

objects, as it is necessary for the positions of dead objects to

be propagated for a certain duration in order to allow them to

possibly be reborn. The head-pose exemplars, θh
i , are modeled

by a discrete 1st-order AR process represented by a transition

probability table.

The interaction model p0(Xt) handles two types of interactions,

inter-person p01
and intra-person p02

: p0(Xt) = p01
(Xt)p02

(Xt).

For modeling inter-person interactions we follow the method

proposed in [17], in which the inter-person interaction model

p01
(Xt) serves the purpose of restraining multiple trackers from

fitting the same person by penalizing overlap. It accomplishes

this by exploiting a pairwise Markov Random Field (MRF)

whose graph nodes are defined by the people present at each

time step. The links in the graph are defined by the set C of

pairs of proximate people. By defining an appropriate potential

function φ(Xi,t,Xj,t) ∝ exp(−g(Xi,t,Xj,t)), the interaction

model p01
(Xt) =

Q

ij∈C φ(Xi,t, Xj,t) enforces a constraint in the

multi-person dynamic model, based on the locations of a person’s

neighbors. This constraint is defined by a non-negative penalty

function, g =
2ρ(Xi,Xj)ν(Xi,Xj)
ρ(Xi,Xj)+ν(Xi,Xj) , which penalizes configurations

which contain overlapping pairs of people, where SXi is the

spatial support of Xi,t, ρ(Xi, Xj) = SXi∩S
Xj

SXi
is the recall, and

ν(Xi, Xj) = SXi∩S
Xj

S
Xj

is the precision, so that g = 0 for no

overlap, and increased overlap increases the penalization term g.

We also introduce intra-person interactions to the overall

motion model. The intra-person interaction model is meant to

constrain the head model w.r.t. the body model, so that they

are configured in a physically plausible way (e.g. the head

is not detached from the body). The intra-person interaction

model p02
(Xt) is defined as p02

(Xt) =
Q

k∈It
p(Lh

k,t|X
b
k,t),

where p(Lh
k,t|X

b
k,t) ∝ exp(−λ d2(Lh

k,t,X
b
k,t)), and the distance

function d(·) is equal to zero when the head center is within a

predefined region relative to the body (i.e. the area defined by the

top third of the body bounding box), and equal to the Euclidean

distance between the head and nearest edge of the predefined

region otherwise. This term penalizes head configurations which

fall outside an acceptable range of the body, increasing as the

distance between the head and body increases. With these terms

defined, the Monte Carlo approximation of Eq. 2 can now be

expressed as

p(Xt|Z1:t) ≈ C
−1

p(Zt|Xt)p0(Xt)
X

n

pV (Xt|X
(n)
t−1) (7)

= C
−1

p(Zt|Xt)
Y

ij∈C

φ(Xi,t, Xj,t) × (8)

Y

k∈It

p(Lh
k,t|X

b
k,t)

X

n

pV (Xt|X
(n)
t−1).

C. Observation Model

The observation model estimates the likelihood of a proposed

configuration, or how well the proposed configuration is supported

by evidence from the observed features. Our observation model

consists of a body model and a head model, formed from a set

of five features. The body model consists of binary and color

features, which are global in that they are defined pixel-wise

over the entire image. The binary features (Zbin
t ) make use of

a foreground segmented image, while the color features (Zcol
t )

exploit histograms in hue-saturation (HS) space. The head model

is local in that its features (Zh) are gathered independently

for each person from an area around the head. They are

responsible for the localization of the head and estimation of

the head-pose, and include texture Z
tex
t , skin color Z

sk
t , and

silhouette Z
sil
t features. For the remainder of this section, the

time index (t) has been omitted to simplify notation. Assuming

conditional independence of body and head observations, the

overall likelihood is given by

p(Z|X)
∆
= p(Zcol|Zbin

,X)p(Zbin|X)p(Zh|X). (9)

The first two terms constitute the body model and the third term

represents the head model.

1) Body Model: An issue arises when defining an observation

likelihood for a variable number of objects. Fairly comparing

the likelihoods, a task essential to the filtering process, is more

complicated when the number of objects may vary. For a fixed

number of objects, the comparison of two observation likelihoods

can be relatively straightforward. Given an observation likelihood

for a single object, the joint multi-object observation likelihood

can be defined as the product of the individual object likelihoods

[17], [18], [44]. For a static number of objects, the observation

likelihoods are directly comparable because the number of ob-

jects, and thus the number of factors in the likelihood, is fixed.

Fairly comparing two likelihoods defined in this manner when
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(a) 1 object in X (denoted �)

(b) 2 objects in X (denoted �)

(c) 3 objects in X (denoted �)

(d) binary foreground model (e) binary background model

Fig. 3. The binary observation model determines the number of objects and localizes the objects. In (a)-(c), two ground truth people appear in the scene
segmented from the background (shown in green). The binary foreground model consists of Kbf = 1 Gaussian, the black contour in (d). The background
model consists of three GMMs of Kbb = 4 mixture components each in (e) (m = 1: red contour, m = 2: blue contour, and m = 3: green contour). The
square data points in (d) and (e) represent measured precision/recall observations from the hypotheses in (a)-(c). The red square indicates the (ν, ρ) values
for the hypothesis containing only 1 object in (a), the blue square indicates the two-object hypothesis in (b), and the green square indicates the three-object
hypothesis in (c). Clearly, the two-object hypothesis, which agrees with the ground truth, fits the model better than the others. The binary observation model
will associate the highest likelihood to the hypothesis matching the actual number of objects (m = 2).

the number of objects may vary is problematic, as the number

of factors in the likelihood terms we wish to compare may be

different. This can eventually lead to observation likelihoods of

different magnitude orders reflecting a variation in number of

factors rather than an actual difference in the likelihood level.

To address this issue, we propose a global body observation

model which allows for a direct comparison of observations

containing different numbers of objects. Our model detects,

tracks, and maintains consistent identities of people, adding and

removing them from the scene when necessary. It is comprised

of a binary feature and a color feature.

Body Binary Feature

We introduced the binary feature in a previous work [32],

which relies on an adaptive foreground segmentation technique

described in [35]. At each time step, the image is segmented into

sets of foreground pixels F and background pixels B from the

images (I = F ∪B), which form the foreground and background

observations (Zbin,F and Z
bin,B).

For a given multi-person configuration and foreground seg-

mentation, the binary feature computes the distance between

the observed overlap (between the spatial support of the multi-

person configuration SX obtained by projecting X onto the

image plane and the segmented image) and a learned value.

Qualitatively, we are following the intuition of a statement such

as: “We have observed that two well-placed trackers (tracking two

people) should contain approximately 65% foreground and 35%

background.” The overlap is measured for F and B in terms of

precision and recall: νF = SX∩F
SX , ρF = SX∩F

F , νB = SX∩B
SX ,

and ρB = SX∩B
B . An incorrect location or person count will

result in ν and ρ values that do not match the learned values

well, resulting in a lower likelihood and encouraging the model

to choose better multi-person configurations.

The binary likelihood is computed for the foreground and

background case p(Zbin|X)
∆
= p(Zbin,F |X)p(Zbin,B|X) where

the definition of the binary foreground term, p(Zbin,F |X), for all

non-zero person counts (m 6= 0) is a single Gaussian distribution

in precision-recall space (νF ,ρF ). The binary background term,

p(Zbin,B |X), on the other hand, is defined as a set of Gaussian

mixture models (GMM) learned for each possible person count

(m ∈ M). For example, if the multi-person state hypothesizes

that two people are present in the scene, the binary background

likelihood term is the GMM density of the observed νB and ρB

values learned for m = 2. For details on the learning procedure,

see Section V.

In Figure 3, an example of the binary observation model trained

to recognize M = {1, 2, 3} objects is shown. Learning of the

GMM parameters was done using the Expectation Maximization

(EM) algorithm on 948 labeled images from the data set described

in Section V-B. As shown in Figures 3(a)-(c), two ground truth

people appear in the scene. The binary feature also encourages

the tracker to propose hypotheses with good spatial fitting in a

similar manner. For example, a poorly placed object might only

cover a small fraction of the foreground blob corresponding to a

person appearing in the image. In this case, the foreground ν and

ρ measurements will not match the learned values well, as the

learning has been done using tightly-fitting example data.

Body Color Feature

The color feature is responsible for maintaining the identities

of people over time, as well as assisting the binary feature

in localization of the body. The color feature uses HS color

observations from the segmented foreground and background

regions (Zcol,F and Z
col,B) . Assuming conditional independence
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between foreground and background, the color likelihood is writ-

ten p(Zcol|Zbin,X) = p(Zcol,F |Zbin,F ,X)p(Zcol,B |Zbin,B ,X).

The color foreground likelihood compares an adaptive 4-D

spatial-color model histogram, HC, with a 4-D spatial-color

observed histogram, H(Xt). The observation likelihood measures

the similarity of the 4-D histograms by p(Zcol,F |Zbin,F , X) ∝

exp(−λF d2
F (HC,H(Xt))), where dF (HC,H(Xt)) is the Bhat-

tacharya distance [6] between the histograms. The 4-D histograms

H(i, bp, h, s) are collected as follows. The first dimension corre-

sponds to the object i, and the remaining dimensions correspond

to an object color model proposed by Pérez et al. [26]. For the

object color model, the histogram is defined over 3 body parts

bp corresponding to the head, torso, and legs. For each body-

part region, a 2-D HS+V histogram is computed using the Hue-

Saturation-Value elements from the corresponding location in the

training image. The HS+V histogram is constructed by populating

an BH × BS HS histogram (where BH = 8 and BS = 8 are the

number of H and S bins) using only the pixels with H and S

greater than 0.15. The +V portion of the HS+V histogram contains

a BV ×1 (BV = 8) Value histogram comprised of the pixels with

Hue or Saturation lower or equal to 0.151.

The 4-D adaptive color model HC is selected from a set of

competing adaptive color models every frame. When an object

first appears, pixel values extracted from the initial frame are

used to initialize each competing color model. At the end of

each subsequent frame, the point estimate solution for the objects’

locations is used to extract a 4-D multi-person color histogram,

which is compared to each model. The nearest matching com-

peting model receives a vote, and is updated with the extracted

data by a running mean. When computing the foreground color

likelihood in the following frame, the model with the most votes

is used.

The background color likelihood helps reject configurations

containing untracked people by penalizing unexpected colors. The

background model is a static 2D HS color histogram, learned from

empty training images. The background color likelihood is defined

as p(Zcol,B
t |Zbin,B

t ,Xt) ∝ eλBd2
B , where λB and d2

B are defined

as in the foreground case but using the background images to

compute the histogram.
2) Head Model: The head model is responsible for localizing

the head and estimating the head-pose. The head likelihood is

defined as

p(Zh|X) =

2

4

Y

i∈I

p(Ztex
i |Xi)p(Zsk

i |Xi)p(Zsil
i |Xi).

3

5

1
m

. (10)

The overall head likelihood is composed of the geometric

mean of the individual head likelihood terms. The geometric

mean provides a pragmatic solution to the problem of comparing

likelihoods with a variable number of factors (corresponding to

varying numbers of people). However, note that it is not justifiable

in a probabilistic sense.

The head model consists of three features: texture Z
tex
t , skin

color Z
sk
t , and silhouette Z

sil
t . The silhouette feature, proposed in

this work, helps localize the head using foreground segmentation.

The texture and skin color features, which have appeared in

previous works including our own [3], [41], use appearance-

dependent observations to determine the head-pose of the subject.

1This extra 1D V histogram is appended as one extra row in the HS
histogram, resulting in a “2D” HS+V histogram.

(a) Euler angle decomposition.

(b) Exemplar discretization.

Fig. 4. The head-pose model. (a) The head pose represented by the angles
resulting from the Euler decomposition of the head rotation w.r.t. the head
frame, known as pan, tilt, and roll. (b) Left: set of discrete poses θh used to
represent out-of-plane rotation exemplars from the Prima-Pointing database.
Right: pointing vector zh (note zh only depends on the pan and tilt angles
when using the representation on the left).

Head-Pose Texture Feature

The head-pose texture feature reports how well the texture of an

extracted image patch matches the texture of the discrete head-

pose hypothesized by the tracker. Texture is represented using

responses from three filters: a coarse scale Gaussian filter, a fine

Gabor filter, and a coarse Gabor filter, as seen in Figure 5.

Texture models were learned for each discrete head-pose

θh. Training was done using several 64 × 64 images for each

head-pose taken from the Prima Pointing Database. Histogram

equalization was applied to the training images to reduce

variation in lighting, the filters were applied on a subsampled

grid to reduce computation, and the filter responses concatenated

into a single feature vector. Then, for each head-pose θ (θ = θh

here, for simplicity), the mean eθ = (eθ
j ) and diagonal covariance

matrix σθ = (σθ
j ), j = 1, . . . , Ntex of the corresponding training

feature vectors were computed and used to define the person

texture likelihood model from Eq.10 as

p(Ztex
i |Xi) =

1

Zθ
exp−λ

tex
θ dθ(Ztex

i , e
θi), (11)

where θi is the head pose associated with person i and dθ is the

normalized truncated Mahalanobis distance defined as:

dθ(u, v) =
1

Ntex

Ntex
X

j=1

max

0

@

 

uj − vj

σθ
j

!2

, T
2
tex

1

A , (12)

where Ttex = 3 is a threshold set to make the distance more

robust to outlier components. The normalization constant Zθ and

the parameter λtex
θ are learned from the training data using a

procedure proposed in [40].

Head-Pose Skin Feature

The texture feature is a powerful tool for modeling the head-

pose, but prone to confusion due to background clutter. To help

make our head model more robust, we have defined a skin color

binary model (or mask), Mθ, for each head-pose, θ, in which

the value at a given location indicates a skin pixel (1), or a non-

skin pixel (0). An example of a skin color mask can be seen in

Figure 5. The skin color binary models were learned from skin

color masks extracted from the same training images used in the
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(a) texture (b) skin color (c) silhouette

Fig. 5. Head-pose observation features. (a) Texture is used to estimate the
head-pose by applying three filters to the original image (upper left). These
filters include a coarse scale Gaussian filter (upper right), a fine scale Gabor
filter (lower left), and a coarse scale Gabor filter (lower right). (b) Skin color
models help to keep the head-pose robust in presence of background clutter.
(c) A silhouette model is responsible for localizing the head.

texture model using a Gaussian skin-color distribution modeled

in normalized RG space [2].

The head-pose skin color likelihood compares the learned

model with a measurement extracted from the image Z
sk
i (skin

color pixels are extracted from the image using a temporally

adaptive person-dependent skin color distribution model which

is updated with a MAP adaptation to the current person using

skin color pixels in the estimated head location). The skin color

likelihood of a measurement Z
sk
i belonging to the head of person

i is defined as

p(Zsk
i |Xi) ∝ exp−λsk||Z

sk
i − M

θi ||1, (13)

where ||.||1 denotes the L1 norm and λsk is a parameter tuned

on training data.

Head-Pose Silhouette Feature

In addition to the pose dependent head model, we propose to

use a head silhouette likelihood model to aid in localizing the head

by taking advantage of foreground segmentation information. A

head silhouette model is Hsil (see Figure 5) is constructed by av-

eraging head silhouette patches extracted from binary foreground

segmentation images re-sized to 64 × 64 (see Section V-B, note

that a single model is used unlike the pose-dependent models for

texture and skin color).

The silhouette likelihood works by comparing the model

Hsil to an extracted binary image patch (from the foreground

segmentation) corresponding to the hypothesized location of

the head, Z
sil
i . A poor match indicates foreground pixels

in unexpected locations, probably due to poor placement of

the head model. The head silhouette likelihood term is defined as:

p(Zsil
i |Xi) ∝ exp−λsil||Z

sil
i − H

sil||1, (14)

where λsil is an parameter tuned on training data.

In practice, we found that introducing this term (not defined in

our previous work [3] or in others’ like [41]) greatly improved

the head localization in the combined body-head optimization

process. Further details on the head-pose model can be found

in [2].

D. Component-wise Reversible-Jump MCMC

Having defined the components of Eq. 2 (state-space, dynamic

model, and observation model) we now define an RJMCMC sam-

pling scheme to efficiently generate a Markov Chain representing

the posterior distribution in Eq. 9.

As the state vector for a single person is ten-dimensional, the

multi-person state-space can quickly become very large when

allowing for an arbitrary number of people. Traditional Sequen-

tial Importance Resampling (SIR) particle filters are known to

be inefficient in such high-dimensional spaces [1]. The classic

Metropolis-Hastings (MH) based MCMC particle filter is more

efficient [17], but does not allow for the dimensionality of the

state-space to vary (the number of people must remain static). To

solve this problem, we have defined a type of RJMCMC sampling

scheme [11] based on a method we proposed previously [32]

which includes a set of reversible move types (or jumps) which

can change the dimension of the state-space (note that a different

RJMCMC model was originally used for tracking in [44]).

The RJMCMC algorithm starts in an arbitrary configuration X
0

sampled from the Markov chain belonging to the previous time

step, t−1. The first step is to select a move type υ from the set of

reversible moves Υ by sampling from a prior distribution on the

move types υ ∼ p(υ). The next step is to choose a target object

i∗ (or two objects i∗ and k∗ in the case of a swap move), and

apply the selected move type to form a proposal configuration

X
∗ . The proposal is evaluated in an acceptance test, and based

on this test either the previous state X
(n−1) or the proposed state

X
∗ is accepted and added to the Markov chain for time t.

A reversible move defines a transition from the current state

X and a proposed state X
∗ via a deterministic function hυ ,

and, when necessary, a generated random auxiliary variable U

[11]. This transition can involve changing the dimension between

X and X
∗. The transition function hυ is a diffeomorphism, or

an invertible function that maps one space to another. There is

flexibility in defining the transition hυ , so long as it meets the

following criteria: 1. it is a bijection, i.e. if hυ defines a one-to-

one correspondence between sets; 2. its derivative is invertible, i.e.

it has a non-zero Jacobian determinant; 3. it has a corresponding

reverse move hR
υ , which can be applied to recover the original

state of the system. The reverse move must also meet the first two

criteria. For move types that do not involve a dimension change

the reverse move is often the move type itself, in which case it

is possible to recover the original multi-object configuration by

reapplying the same move. Move types that involve a change in

dimension usually cannot revert to the previous state, and are

defined in reversible move pairs, where one move is the reverse

of the other.

Following [1], the general expression for the acceptance ratio

for a transition defined by hυ from the current state Xt to a

proposed state X
∗
t (allowing for jumps in dimension) is given

α(Xt,X
∗
t) = min

n

1,
p(X∗

t|Z1:t)
p(Xt|Z1:t)

× p(υR)
p(υ) ×

qR
υ (Xt,U|X∗

t,U
∗)

qυ(X∗
t,U∗|Xt,U) ×

˛

˛

˛

∂hυ(Xt,U)
∂(Xt,U)

˛

˛

˛

ff

,
(15)

where U is an auxiliary dimension-matching variable and U
∗ is

its reverse move counterpart, p(X∗
t|Z1:t) is the target distribution

evaluated at the proposed configuration X
∗
t, p(Xt|Z1:t) is the

target distribution evaluated at the current configuration Xt, p(υ)

is the probability of choosing move type υ, p(υR) is the proba-

bility of choosing the reverse move type υR, qυ(X∗
t,U

∗|Xt,U)

is the proposal for a move from (Xt,U) → (X∗
t,U

∗),

qR
υ (Xt,U|X∗

t,U
∗) is the proposal distribution for the reverse

move from (X∗
t,U

∗) → (Xt,U), and
∂hυ(Xt,U)

∂(Xt,U) is the Jacobian

determinant of the diffeomorphism from (Xt, U) → (X∗
t,U

∗).

The Jacobian determinant is the matrix of all first-order partial

derivatives of a vector-valued function, which reduces to one for

our selected moves (see [29] for further details).

Instead of updating the whole of an object Xi in a single move

as in [44] and [32], we propose to split Xi into components
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of differing dimension {Xb
i , Li, θi} for some move types, and

update these components one-by-one to increase the efficiency

of the sampling process. Haario et al. [12] showed that such

MCMC methods (which define proposal distributions that split

the dimension of the state-space) are often more efficient and less

sensitive to increasing dimension than those proposing moves over

the full dimension for high-dimensional spaces [12]. In previous

works using RJMCMC ([32] and [18]), a single update move was

defined in which all the parameters of a person were updated

simultaneously. This was sufficient for simple object models, but

we found it to be inefficient for our complex model representing

the body, head, and head pose.

E. Reversible Move Type Definitions

In this work, we define a set of six reversible move types below,

Υ = {birth, death, swap, body update, head update, pose update}.

The traditional update move is split into three component moves

for efficiency. The split was made such that the set of parameters

modified for each of the update move types only affect a few terms

in the observation likelihood: body update modifies the location

and size of the body (Xb
i ), head update modifies the location and

size of the head (Li), and pose update updates the head pose (θi).

(1) Birth. Birth adds a new object X
∗
i∗ with index i∗ to the multi-

object configuration Xt, while keeping all other objects fixed,

forming a proposed state X
∗
t. This move implies a dimension

change from mΓ → mΓ + Γ, where Γ denotes the dimension

of a single object within the multi-object configuration. The birth

move proposes the new multi-object configuration X
∗
t, generated

from the birth proposal distribution, X
∗
t ∼ qb(X

∗
t|Xt,U), by

applying the transition function hb and sampling a dimension-

matching auxiliary variable U, U ∼ q(U). The birth move

transition is given by X
∗
t = hb(Xt,U) where the specific objects

are defined as

X
∗
i,t =



Xi,t, i 6= i∗

U, i = i∗
. (16)

The auxiliary variable U is responsible for dimension matching in

the transition (Xt,U) → (X∗
t) (i.e., U acts as a placeholder for

the missing dimension in Xt). The proposal for the birth move,

qb(X
∗
t|Xt,U) is given by

qb(X
∗
t|Xt,U) =

X

i∈Dt∪{i+}

qb(i)qb(X
∗
t|Xt,U, i), (17)

where qb(i) selects the object to be added, i+ is the next available

unused object index and Dt is the set of currently dead objects.

The target object index sampled from qb(i) is denoted as i∗,

making the proposed set of objects indices a union of the current

set It and the target object index i∗, I∗
t = It∪{i∗}. The object-

specific proposal distribution for a birth move is given by

qb(X
∗
t|Xt,U, i) =

8

>

>

>

<

>

>

>

:

1
C(Xt)

1
N

PN
n=1 p(X∗

i∗,t|X
(n)
t−1)×

Q

j∈It
p(Xj,t|X

(n)
t−1)×

δ(X∗
j,t −Xj,t) if i = i∗

0 otherwise,
(18)

where in the case of i = i∗, the proposal can be rewritten as

qb(X
∗
t|Xt,U, i∗) = 1

C(Xt)

„

1
N

PN
n=1 ωnp(X∗

i∗,t|X
(n)
t−1)

«

×
Q

j∈It
δ(X∗

j,t − Xj,t),
(19)

where

ωn =
Q

j∈It
p(Xj,t|X

(n)
t−1),

C(Xt) = 1
N

PN
n=1 ωn = 1

N

PN
n=1 pV (Xt|X

(n)
t−1).

(20)

When i∗ = i+ a previously unused object index is chosen

and p(X∗
i∗,t|X

(n)
t−1) reduces to p(X∗

i∗,t) (Eq. 5). In this case,

initial size parameters of a new object are sampled from learned

Gaussian distributions. Location parameters are selected using

cluster sampling for efficiency (a hierarchical process in which

the image is broken into smaller regions, a region is randomly

selected based on the probability of selecting its contents, and

a point is sampled from the selected region) on a smoothed

foreground segmented image. If a previously dead object is

chosen to be reborn (i∗ 6= i+), the new object parameters are

taken from the dead object. Initial head and pose parameters are

chosen to maximize the head likelihood in both cases. Refer to

[29] for further details. After simplification, it can be shown that

αb reduces to

αb = min

„

1,
p(Zt|X

∗
t)

p(Zt|Xt)
×

Q

j∈Ci∗
φ(X∗

i∗,t,X
∗

j,t)

1 ×

p(υ=d)
p(υ=b) × qd(i∗)

qb(i∗)

”

.

(21)

(2) Death. The reverse of a birth move, hR
b = hd, the death

move is designed so that it may revert the state back to the

initial configuration after a birth, or (Xt,U) = hd(hb(Xt, U)).

The death move removes an existing object Xi∗,t with index i∗

from the state Xt, keeping all other objects fixed. This move

implies a dimension change from mΓ → mΓ − Γ. It proposes

a new state X
∗ and an auxiliary variable U

∗, generated from

the death proposal distribution, (X∗
t,U

∗) ∼ qd(X∗
t,U

∗|Xt), by

applying the transition function hdeath. The transition is given by

(X∗
t,U

∗) = hd(Xt), where the specific objects are defined as

X
∗
i,t = Xi,t, i 6= i∗ , U

∗ = Xi,t, i = i∗ . (22)

The proposal for the death move qd(X∗
t,U

∗|Xt) is given by

qd(X∗
t,U

∗|Xt) =
X

i∈It

qd(i) qd(X∗
t, U

∗|Xt, i), (23)

where qd(i) selects the object index i∗ to be removed and placed

in the set of dead objects Dt, and the object-specific proposal

distribution is

qd(X∗
t,U

∗|Xt, i) =

 Q

j∈It,j 6=i∗ δ(X∗
j,t − Xj,t) if i = i∗

0 otherwise .
(24)

In practice, the death move selects an object according to qd(i)

(which is uniform over the set of existing objects in our model)

and removes that object from the state-space. Refer to [29] for

further details. After simplification αd is expressed as

αd = min

„

1,
p(Zt|X

∗
t)

p(Zt|Xt)
× 1

Q

j∈Ci∗
φ(Xi∗,t,Xj,t)

×

p(υ=b)
p(υ=d) × qb(i

∗)
qd(i∗)

”

.

(25)

(3) Swap. Exchanges the parameters of a pair of objects with

indexes i∗ and k∗, allowing the tracker to recover from events

in which the identity of two people become confused (e.g. in

occlusion). The transition is given by X
∗
t = hs(Xt), where

specific objects are defined

X
∗
i,t =

8

<

:

Xi,t, i 6= i∗, i 6= k∗

Xk∗,t, i = i∗

Xi∗,t, i = k∗
(26)
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The proposal for the swap move qs(X
∗
t|Xt) is defined as

qs(X
∗
t|Xt)

∆
=
X

i,k∈It

qs(i, k) qs(X
∗
t|Xt, i, k), (27)

where the target object indices i∗ and k∗ are randomly sampled

from qs(i, k). The object-specific proposal distribution exchanges

the state values and histories (past state values) of objects i∗ and

k∗. It can be shown [29] that the expression for the αs reduces

to

αs = min

„

1,
p(X∗

t|Z1:t)

p(Xt|Z1:t)

«

. (28)

(4) Body update. Modifies the body parameters of a current

object X
∗b
i,t with index i = i∗ keeping the head of person i = i∗

and all other people fixed. The update move transition is given by

(X∗
t,U

∗) = hbody(Xt,U), where the specific objects are defined

as

(X∗b
i,t,X

∗h
i,t) =

(

(Xb
i,t,X

h
i,t) i 6= i∗

(U,Xh
i,t) i = i∗

, U
∗ = X

b
i∗,t.

(29)

The body update move proposal is defined as

qbody(X∗
t,U

∗|Xt,U) =
X

i∈It

qbody(i) qbody(X∗
t,U

∗|Xt,U, i).

(30)

The object-specific proposal distribution is defined as

qbody(X∗
t,U

∗|Xt, U, i) =
1
N

P

n p(X∗b
i∗,t|X

b,(n)
t−1 )p(X∗b

i∗,t|X
b,(n)
t−1 )δ(X∗b

i,t − Xb
i∗,t)

Q

j 6=i∗ p(Xj,t|X
(n)
t−1)δ(X

∗
j,t −Xj,t),

(31)

where X∗b
i∗,t denotes all state parameters except X

∗b
i∗,t, and

X
∗b
i,t denotes the proposed body configuration for target i∗. This

implies randomly selecting a person i∗ and sampling a new body

configuration for this person from p(X∗b
i∗,t|X

b,(n∗)
t−1 ), using an

appropriate sample n∗ from t − 1, leaving the other parameters

unchanged. Thus, αbody can then be shown to reduce to [29]:

αbody = min

 

1,
p(Zb

t |X
∗b
i∗,t)

Q

l∈Ci∗
φ(X∗

i∗,t,X
∗
l,t)

p(Zb
t |X

b
i∗,t)

Q

l∈Ci∗
φ(Xi∗,t,Xl,t)

!

.

(32)

(5) Head update. Modifies the head parameters of a current ob-

ject L∗h
i∗,t with index i∗. The transition is given by (X∗

t,U
∗) =

hhead(Xt,U), where the specific objects are defined as

(X∗b
i , L

∗
i, θ

∗
i ) =

(

(Xb
i,t, Li,t, θi,t) i 6= i∗

(Xb
i,t,U, θi,t) i = i∗

, U
∗ = Li,t.

(33)

The head update move proposal is defined as

qhead(X∗
t,U

∗|Xt,U) =
X

i∈It

qhead(i) qhead(X∗
t,U

∗|Xt,U, i),

(34)

where the object-specific proposal distribution is defined as

qhead(X∗
t,U

∗|Xt,U, i) =
1
N

P

n p(L∗
i∗,t|X

(n)
t−1)p(L∗

i∗,t|X
(n)
t−1)δ(L

∗
i∗,t − Li∗,t)×

Q

j 6=i∗ p(Xj,t|X
(n)
t−1)δ(X

∗
j,t − Xj,t),

(35)

where L∗
i∗,t denotes all state parameters except L∗

i∗,t. This

implies selecting a person i∗ and sampling a new head configura-

tion for this person from p(X∗h
i∗,t|X

h,(n∗)
t−1 ), using an appropriate

sample n∗ from the previous time leaving the other parameters

unchanged. αhead can then be shown to reduce to [29]:

αhead = min

 

1,
p(Zh

t |L
∗

i∗,t)

p(Zh
t |Li∗,t)

×
p(L∗

i∗,t|X
∗b

i∗,t)

p(Li∗,t|X
b
i∗,t)

!

, (36)

(6) Pose update. Modifies the pose parameter θt,i∗ of a person

with index i∗. Like the previous update moves it is self-reversible

and does not change the dimension of the state. The move

transition is given by (X∗, U∗) = hθ(X,U), where

(X∗b
i , L

∗
i, θ

∗
i ) =

(

(Xb
i , Li, θi) i 6= i∗

(Xb
i , Li,U) i = i∗,

, U
∗ = θi∗ .

(37)

The head-pose update move proposal is defined as

qθ(X∗
t,U

∗|Xt,U) =
X

i∈It

qθ(i) qθ(X∗
t,U

∗|Xt, U, i), (38)

where the object-specific proposal distribution is defined as

qθ(X∗
t, U

∗|Xt,U, i) = 1
N

P

n p(θ∗i∗,t|θ
(n)
t−1)p(θ∗i∗,t|θ∗

(n)
t−1)×

δ(θ∗i∗,t − θi∗,t)
Q

j 6=i∗ p(Xj,t|X
(n)
t−1)δ(X

∗
j,t − Xj,t),

(39)

where θ∗i∗,t denotes the proposed head-pose configuration for

target i∗ and θ∗i∗,t denotes all state parameters except θ∗i∗,t.

This implies selecting a person index, i∗, and sampling a new

head-pose for this person from p(θ∗i∗,t|θ
(n∗)
t−1 ), using an appro-

priate sample n∗ from the previous time step, leaving the other

parameters unchanged. αθ can then be shown [29] to reduce to

αθ = min

 

1,
p(Zh

t |X
∗h
i∗,t)

p(Zh
t |X

h
i∗,t)

!

. (40)

F. Inferring a Solution

The first Nb samples added to the Markov Chain are part of

the burn-in period, which allows the Markov Chain to reach

the target density. The chain after this point approximates the

filtering distribution, which represents a belief distribution of

the current state of the objects given the observations. It does

not, however, provide a single answer to the tracking problem.

To find this, we compute a point estimate solution, which is a

single state computed from the filtering distribution which serves

as the tracking output. To determine the set of objects in the

scene, we compute the mode of the object configurations in the

Markov Chain (each sample contains a set of object indices; we

select the set that is repeated most often accounting for identity

changes resulting from swap moves). Using these samples, we

find the mean configuration of each of the body and head spatial

configuration parameters (Xb
i,t, L

h
i,t). For the out-of-plane head

rotations represented by the discrete exemplar θi, we compute

the mean of the corresponding Euler angles for pan and tilt. The

detailed steps of our joint multi-person body-head tracking and

VFOA-W estimation model are summarized in Figure 6.

IV. MODELING THE VFOA FOR A VARYING NUMBER OF

WANDERING PEOPLE

The VFOA-W task is to automatically detect and track a

varying number of people able to move about freely, and to

estimate their VFOA. The VFOA-W problem is significantly more

complex than the traditional VFOA problem because it allows for

the number of people in the video to vary and it allows for the
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At each time step, t, the posterior distribution of Eq. 9 for the previous time step is represented by a set of N unweighted samples

p(Xt−1|Z1:t−1) ≈ {X(n)
t−1}

N
n=1. The approximation of the current distribution p(Xt|Z1:t) is constructed according to steps 1 and

2, from which a point estimate solution for head and body parameters is determined in step 3. The values of these parameters are
used in step 4 to determine if a person’s attention is directed at the advertisement (focused) or not (unfocused).

1) Initialize the Markov Chain by choosing a sample from the t− 1 Markov Chain with the mode configuration (mmode
t−1 ).

Apply the motion model to each object,
Q

i∈It
p(Xt,i|X

(n)
t−1,i), and accept as sample n = 0.

2) RJMCMC Sampling. Draw N + NB samples according to the following schedule.

• Begin with the state of the previous sample X
(n)
t = X

(n−1)
t .

• Choose Move Type by sampling from the set of moves Υ = {birth, death, swap,
body update, head update, pose update} with prior probability pυ∗ .

• Select a Target i∗ ( or set of targets i∗, k∗ for swap) according to the target proposal qv(i) for chosen move type.
• Sample New Configuration X

∗
t from the move-specific proposal distribution qυ∗ . For move type υ, this implies:

– Birth - add a new person i∗ according to Eq. 17, m
(n)∗
t = m

(n)
t + 1.

– Death - remove an existing person i∗ according to Eq. 23, m
(n)∗
t = m

(n)
t − 1.

– Swap - swap the parameters of two existing people i∗,k∗
X

(n)
i,t → X

(n)∗
k,t , X

(n)
k,t → X

(n)∗
i,t .

– Body Update - update the body parameters X
b,(n)∗
i,t of an existing person i∗ (Eq. 30).

– Head Update - update the head parameters L
h,(n)∗
i,t of an existing person i∗.

– Pose Update - update the pose parameter θ
(n)∗
i,t of an existing person i∗.

• Compute Acceptance Ratio α according to Equation 21, 25, 28, 32, 36, or 40.
• Accept/Reject. Accept the proposal X

∗
t if α ≥ 1, otherwise accept with probability α. If accepted, add it to

the Markov Chain X
(n)
t = X

∗(n)
t . If rejected, add the previous sample in the Markov Chain to the current position

X
(n)
t = X

(n−1)
t .

3) Compute a Point Estimate Solution from the Markov Chain (as in Section III-F):

• to avoid bias in the Markov Chain, discard the first NB burn-in samples. The sample set {X
(n)
t }NB+N

n=NB+1 represents an
approximation of the filtering distribution.

• form a sample set W from the mode configuration X̂t as described in Section III-F. Compute the point estimate body

X̂b
t and head X̂h

t parameters from their mean value in W .

4) Determine the VFOA-W for each person in the scene according to Section IV.

Fig. 6. Algorithm for joint multi-person body and head tracking and VFOA-W estimation with RJMCMC.

people in the video to freely walk about the scene, whereas in

previous works [36] the number of people appearing in a single

video was fixed and they were constrained to remain seated (for

their VFOA to be estimated). The advertising application chosen

as an introduction to VFOA-W represents a relatively simple

instance of the problem as we only attempt to measure VFOA for

a single target, though it is straightforward to extend this model

for multiple targets.

At each time t a person’s VFOA-W is defined as being in one

of two states ft:

• focused: ft = 1, looking at the advertisement, or

• unfocused: ft = 0, not looking at the advertisement.

Note that this is just one of many ways in which the VFOA-W

can be represented, but it is sufficient to solve the tasks set forth

in Section I. A person’s state of focus depends both on their

location and on their head-pose as seen in Figure 7. For head

location and head-pose information, we rely on the output of the

RJMCMC tracker described in Section III.

VFOA-W Modeling with a Gaussian mixture Model (GMM)

Estimating the VFOA-W can be posed in a probabilistic

framework as finding the focus state maximizing the a posteriori

probability f̂ = arg maxf p(f |zh) ∝ p(zh|f)p(f), where

zh = (pan, tilt) is the head pointing vector of the person

parametrized by a pan and tilt angle (see Fig. 4). We assume the

prior on the VFOA-W state p(f) to be uniform thus, it has no

effect on the VFOA-W estimation. To model the probability of

being in a focused state we consider the horizontal head position

xh and head pointing vector (see Figure 7). Because the target

is stationary, the ranges of zh corresponding to the focused state

are directly dependent on the location of the head in the image.

For this reason, we chose to split the image into Kvfoa−w = 5

horizontal regions Ik, k = {1, ..., 5}, and modeled the probability

of a focused state as

p(zh|f = 1) =
PK

k=1 p(xh ∈ Ik, zh|f = 1)

=
PK

k=1 p(xh ∈ Ik)p(zh|xh ∈ Ik, f = 1)
(41)

where the first term p(xh ∈ Ik) models the probability of a

person’s head location belonging to region Ik, and the second

term p(zh|xh ∈ Ik, f = 1) models the probability of focused

head-pose given the region the head belongs to. The inclusion of

the head location in modeling the VFOA-W allowed us to solve

an issue not previously addressed in [24], [34], [38]: resolving

the VFOA-W of a person whose focus state depends on their

location.

The terms of the VFOA-W model in Equation 41 are defined as

follows. Each region is defined by its center and width, denoted by

xIk
and σIk

, resp. The probability of a head location xh belonging

to region Ik is modeled by a Gaussian distribution p(xh ∈
Ik) = N (xh; xIk

, σIk
). For each region, the distribution of

pointing vectors representing a focused state was modeled using

a Gaussian distribution p(zh|xk ∈ Ik, f = 1) = N (zh; zh
Ik

, Σz
Ik

)

where zh
Ik

are the mean pointing vectors and Σz
Ik

is the full

covariance matrix learned from training data. 2D projections of

typical pointing vectors for each region are seen in Figure 7.

The probability of being unfocused is modeled as a uniform

distribution p(zh|f = 0) = Tvfoa−w.

The parameters of the VFOA-W model (Gaussian mean and

covariance matrix) and the uniform distribution modeling the

unfocused state distribution were learned from training data

described in Section V. Though our VFOA-W model does not

make use of the vertical head location, it is straightforward
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Fig. 7. VFOA-W modeling. Top: VFOA-W is determined by head-pose and
horizontal position in the image. The horizontal axis is split into Kvfoa−w =
5 regions (I1, ..., I5), and a VFOA-W model is defined for each of these
regions. Yellow, green, cyan, black, and blue data points represent focused

head locations used for training and red arrows represent 2D projections of
typical samples of focused pointing vectors zh. Note that the advertisement
is affixed to a window and appears just above the image frame. Bottom: over
9400 training points representing a person in a focused state (also seen in the
left pane) were split into the Kvfoa−w regions and used to train a model for
each region.

to generalize the model to do this. To reduce noisy VFOA-W

estimations, a smoothing filter with an 10-frame window was

applied to the GMM output.

VFOA-W Modeling with a hidden Markov model (HMM)

The VFOA-W GMM does not take into account the temporal

dependencies between the focus states. Such dependencies can

be modeled using an HMM. If we denote a sequence of focus

states by f1:T and a sequence of head pose observations as zh
1:T ,

the joint posterior probability of the observation and the states

can be written as:

p(f1:T , z
h
1:T ) = p(f0)

T
Y

t=1

p(zh
t |ft)p(ft|ft−1). (42)

In this equation, the emission probabilities p(zh
t |ft) are modeled

as before (GMM for focused and uniform for unfocused). But, in

the HMM case, a transition matrix is used to model the tempo-

ral VFOA-W state transition p(ft|ft−1). Given zh
1:T , VFOA-W

recognition is done by finding the optimal sequence maximizing

p(f1:T |zh
1:T ) using the Viterbi algorithm [27].

TABLE I

SYMBOLS, VALUES, AND DESCRIPTIONS FOR KEY PARAMETERS.

Parameter Value Set by Description

αscale 0.01 learned body and head scale variance

αposition 2.4 learned body and head position variance

Kbf 1 learned body binary model mixture comps. (fore)

Kbb 4 learned body binary model mixture comps. (back)

λF 20 hand-tuned body color foreground parameter

λsil 200 hand-tuned head silhouette parameter

Zθ , λtex
θ

- learned head texture parameters

Ttex exp(−9
2

) untuned head texture threshold

λsk 0.5 hand-tuned head skin color parameter

pbirth 0.05 untuned prior prob. of choosing a birth move

pdeath 0.05 untuned prior prob. of choosing a death move

pswap 0.05 untuned prior prob. of choosing a swap move

pupdate 0.283 untuned prior prob. of body, head, pose moves

N 300,600,800 hand-tuned num. samples in chain for 1,2,3 people

NB 0.25*N hand-tuned number of burn-in samples

Kvfoa−w 5 untuned VFOA-W model number of mixture comps.

Tvfoa−w 0.00095 learned VFOA-W model likelihood threshold

p(f |ft−1) .2 (change) hand-tuned HMM model transition prob. for focus state

V. TRAINING AND PARAMETER SELECTION

A. Experimental Setup

To simulate the advertising application described in the intro-

duction, a home-made advertisement was placed in an exposed

window with a camera set behind. Several actors were instructed

to pass in front of the window and allowed to look at the

advertisement (or not) as they would naturally (actors were used

due to privacy concerns for actual passers-by). A recording of 10-

minute duration (360×288 resolution, 25 fps) was made in which

a maximum of three people appear in the scene simultaneously.

The recorded data includes challenging events such as people

occluding each other and people entering/exiting the scene.

B. Training and Parameter Selection

The recorded video data was organized into a disjoint training

and test set of equal size. The training set, consisting of nine

sequences (for a total of 1929 frames), was manually annotated

for body location, head location, and focused/unfocused state.

Table I provides a list of the key parameters of our model.

Parameters were either learned automatically from training data

(learned), tuned by hand (hand-tuned), or selected without ex-

haustive tuning (untuned). The parameters for the foreground

segmentation were hand-tuned by observing results on the train-

ing set. The binary body model was trained using background

subtraction and training set annotations. Using this information,

GMMs were trained for the foreground and background models

(parameters were selected through cross-validation). Head anno-

tations were used to learn the parameters of the Gaussian skin-

color distribution in the head-pose skin feature. The silhouette

mask was also trained using the head annotations by averaging

the binary patches corresponding to head annotations. Parameters

for the VFOA-W model, including Tvfoa−w , were optimized on

the training data (bootstrapped to 9400 training points, see Figure

7) to achieve the highest VFOA-W event recognition performance

(see Section VI for details). The transition probability of the

HMM p(f |ft−1) is defined as a 0.8 for a transition to the same

state and 0.2 to change state. The training set was also used to

learn prior size models (scale and eccentricity) for the person

models. Texture models and the skin color masks were learned

from the Prima-Pointing Database, which consists of 30 sets of
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TABLE II

TEST SET DATA SUMMARY.

sequence a b c d e f g h i j

length (s) 15 13 12 10 5 6 4 4 4 11
# people (simultaneous / total) (1 / 3) (2 / 2) (3 / 3)
# looks at advertisement 2 3 0 3 2 2 2 1 2 4

images of 15 people, each containing 93 frontal images of the

same person in a different pose ranging from -90 degrees to 90

degrees (see Figure 4). The texture parameters Zθ and λtex
θ were

learned according to the method described in [40].

VI. EVALUATION

In order to evaluate the performance of our application, the

test set was annotated similarly to the training set. The test set

consists of ten sequences summarized in Table II. Sequences a–

d contain three people (appearing sequentially) passing in front

of the window. Sequences e–i contain two people; sequence j

contains three people appearing simultaneously. We compared our

results with the ground truth over 200 experiments on the 10 test

sequences (corresponding to 20 full runs of the DBN model per

sequence). The length of the Markov Chain was chosen such that

there was a sufficient number of samples for good quality tracking

(see Table I). Experimental results are illustrated in Figure 9 and

fully shown in companion videos [14].

A. Multi-Person Body and Head Tracking Performance

To evaluate the tracking performance we adopt a set of mea-

sures proposed in [31], with some minor changes to names and

notation. These measures evaluate three tracking qualities: the

ability to estimate the number and placement of people in the

scene (detection), how tightly the estimated bounding boxes fit

the ground truth (spatial fit), and the ability to persistently track

a particular person over time (tracking). Overall results are given

in Table III, with illustrations for sequences b, e, h, and i in Fig.

9 and further details available at [14].

To evaluate detection, we rely on the rates of False Positive

and False Negative errors (normalized per person, per frame)

denoted by FP and FN . As indicated in Tab. III, for a given

person in a given frame there is a 1.8% chance of our method

producing a false positive error and 1.1% chance of producing a

false negative error. The Counting Distance CD measures how

close the estimated number of people is to the actual number

(normalized per person per frame). A CD value of zero indicates

a perfect match. As shown in Tab. III, the CD is near zero,

indicating good performance.

Spatial fitting between the ground truth region and the tracker

output is measured for the body and the head using the f-measure

F = 2νρ
ν+ρ , where ρ is recall and ν is precision. A perfect fit is

indicated by F = 1, no overlap by F = 0. Tab. III indicates that

the spatial fitting for both the head and body were quite good,

above 80%.

To evaluate tracking performance we rely on the purity mea-

sure, which estimates the degree of consistency with which the

estimates and ground truths were properly identified (P near 1

indicates well maintained identity and P near 0 indicates poor

performance, see [31] for details) Tab. III shows that our model

had good tracking quality (.93), though it dropped to .81 in

sequence h where two people occlude one another as they cross

paths.

TABLE III

MULTI-PERSON TRACKING RESULTS AVERAGED OVER THE ENTIRE TEST

SET.
Tracking Quality Measured Measure Value

False positive rate FP = .0183 ± .0031
detection False negative rate FN = .0107 ± .0038

Counting distance CD = .0344 ± .0078

spatial fit Body fit fit = .8655 ± .0075

Head fit fit = .8484 ± .0078

tracking Tracking purity P = .9280 ± .0171

B. Advertisement Application Performance

To evaluate the performance of the advertisement application,

the results from our model were compared with ground truth

annotations. Results appear in Fig. 8 (summarized in Tab. IV)

and the companion videos [14]. For evaluation, we considered six

criteria defined below, and report results for the GMM and HMM

models for each. To reduce errors caused by people partially

appearing in the image, VFOA-W results are computed on a

region-of-interest defined from 8 frames after a person appears

until 8 frames before they exit the scene.

1. The number of people exposed to the advertisement. Over

the entire test set, 25 people passed the advertisement, while our

RJMCMC tracking model estimated 25.15 people appeared, on

average (over 20 runs, std dev = .17) which results in 3.4% error

for both models. In Figure 8a we can see that the number of

people was correctly estimated for every sequence except a, c,

and i.

2. The number of people who looked the advertisement. 20

of the 25 people actually focused on the advertisement at some

point. The GMM model estimated 22.95 people looked at the ad,

while 21.2 did so for the HMM resulting in 6.0% (HMM) and

14.75% (GMM) error rates.

3. The number of events where someone looked the ad-

vertisement. The VFOA-W recognition sequences were broken

into continuous segments, or events, where a look-event is a

focused state for t ≥ 3 frames. 21 look-events actually occurred

over the test set. The GMM model estimated 28.5 look-events

occurred while the HMM model estimated 21.45 giving error

rates of 2.14% (HMM) and 35.45% (GMM). These results were

determined through a standard symbol-matching technique.

4. Time spent looking at the advertisement. Over the entire test

set, people spent 37.28s looking at the advertisement. The GMM

model estimated that people looked at the ad for 38.59s while

the HMM estimated 37.89s, yielding 1.63% (HMM) and 3.51%

(GMM) error rates.

5 and 6. VFOA-W recognition rate estimation. The VFOA-W

recognition rate is computed with respect to frames as well as

events (continuous segments of frames with a similar VFOA-W

state). The frame-based recognition rate is computed directly as

the number of frames in which the estimate and ground truth agree

over the number of frames. The overall frame-based recognition

rates are 83.90% (mean GMM) and 92.53% (mean HMM). The

aforementioned F-measure, F = 2ρν
ρ+ν , is used to compute the

event-base recognition rate [16] where ρ is the event-based recall

(the number of segments where the ground truth and estimate

agree, normalized by the number of segments in the ground truth)

and ν is the precision (the number of segments where the ground

truth and estimate agree, normalized by the number of segments

in the estimate). The overall event-based recognition rates are

90.37% (GMM) and 93.85% (HMM). Results for each sequence

appear in Fig. 8(e) and (f).
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TABLE IV

VFOA-W ESTIMATION SUMMARY FOR GMM AND HMM MODELS.
error rates (in %)

# people # people looked # look events time focused

hmm 3.40 6.00 2.14 1.63
gmm 3.40 14.75 35.45 3.51

VFOA-W recognition rates
event-based frame-based

hmm 93.95 92.53
gmm 90.37 83.90

C. Varying the Number of Particles

To study the model’s dependency on the number of samples,

we conducted a series of experiments on sequence i which is

omitted for space reasons. In summary, N = 600 samples were

required for good performance in Matlab between < 1 and 5

seconds processing time per frame on an Intel Pentium IV 3.2

GHz processor. We refer the reader to [14] for details.

VII. DISCUSSION AND LIMITATIONS

While our proposed model yielded convincing results on the

preceding experiments, there exist some limitations to the models

and data set. In this section we discuss some of these limitations

and how they might be addressed in future work.

1. Multi-Person Tracking.

Separability of classes in the binary background observation

model limits the number of people that the model can track

simultaneously. As the number of people increases, the learned

background model loses ability to discriminate between different

numbers of objects (i.e. the fewer objects in the scene, the

more confident our estimation). In independent experiments, the

binary observation model was found to be robust for up to

five simultaneous objects, though this limitation depends on the

typical size of the objects with respect to the scene and the

variability of object size. An alternative approach to the binary

observation model proposed in [33] addresses this limitation.

Our observation model is also limited in its ability to handle

occlusion. Though it performs well for full occlusion in our exper-

iments (with a relatively small number of people), our approach

would be less robust in situations where a monocular camera

view is insufficient to resolve the occlusion due to the camera

placement or multiple occlusions This is a common problem

to monocular tracking algorithms. A multi-view approach such

as that proposed by in [5] may better address these types of

situations, which can occur in realistic environments.

Finally, because it models relative size and overlap of the

foreground and background, the binary observation model is

not robust in situations where the typical size of a person

varies dramatically (e.g. if a person appears much smaller in the

background than in the foreground).

2. Head Tracking and Pose Estimation.

The head pose estimation is principally limited by performance

of the texture and skin color models. The performance of these

models is dependent on the resolution of the head in the image.

Lower resolution leads to greater error in the head pose estimation

(and thus the VFOA-W estimation). In our experiments, the head

was typically approximately 40× 60 pixels. In [4], the head pose

model presented in this work was shown to yield good tracking

results for head sizes of 20×30 pixels, though data from multiple

cameras were used.

The performance of the texture and skin color models also

depends on the placement of the camera relative to the head.

Experiments in [3] show that our head pose model performs better

for near frontal faces (12◦ mean error) than for faces near profile

poses (18◦ mean error).

3. VFOA-W Modeling.

The relatively simple x-axis positional model used for VFOA-

W is sufficient to yield good results to estimate VFOA for

moving people. A more complex scenario may require a more

geometrically complex VFOA-W model which takes into account

the observed head pose and the locations of the advertisement,

person and camera.

4. Data Set.

Although the designed data set was useful to demonstrate the

ability of our VFOA-W algorithm to perform in a realistic

situation, it does contain some limitations. First, only four actors

appeared throughout the data set. Second, the actors did not

walk into the far background, and thus their size did not vary

appreciably. Third, the maximum number of actors appearing

simultaneously did not exceed three, and the actors only crossed

paths in one test sequence and one training sequence (causing an

occlusion). Finally, though tested outdoors, the lighting conditions

were relatively stable. The design of a future VFOA-W data set

should take these issues into account.

VIII. CONCLUSION

In this article, we have introduced the problem of estimating the

visual focus of attention for a varying number of wandering peo-

ple and presented a principled probabilistic approach to solving

it. Our approach expands on state-of-the-art RJMCMC tracking

models, with novel contributions to object modeling, observa-

tion modeling, and inference through sampling. It is a general

model that can be easily adapted to similar tasks. We applied

our model to a realistic advertising application and provided a

rigorous objective evaluation of its performance in this context.

We compared two VFOA-W models (GMMs and HMMs) and

found the temporal dependencies of the HMM to yield superior

performance. From these results we have shown that our proposed

model is able to track a varying number of moving people and

determine their VFOA-W with good quality (exhibiting only a

6% error rate in determining the number of people who looked at

the ad). Finally, through the detailed evaluation of the current

strengths and limitations of our approach, we have identified

several lines of research for future work.
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Fig. 9. Tracking and VFOA-W results for sequences b, e, h, and i. Tracking results appear as boxes around the body and head. A yellow pointing
vector/head border indicates a focused state, a white pointing vector/head border indicates an unfocused state. The ground truth appears as shaded boxes for
the head and the body (the head area is shaded yellow when labeled as focused and gray when labeled as unfocused). VFOA-W results for the GMM model
appear at the bottom. The yellow bars represent the ground truth (raised indicates a focused state, lowered indicates unfocused, and no yellow bar indicates the
person is not present in the scene). GMM VFOA-W estimates appears as colored lines. VFOA-W performance was nearly perfect for b, with good event-based
recognition in all sequences. Mild frame-based VFOA-W recognition errors occurred in e, h, and i. Frame 162 of sequence i shows a FP error generated
as a tracker was placed where no ground truth was present.
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