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Abstract— This paper presents a joint clustering-and-tracking
framework to identify time-variant cluster parameters for
geometry-based stochastic MIMO channel models.

The method uses a Kalman filter for tracking and predicting
cluster positions, a novel consistent initial guess procedure that
accounts for predicted cluster centroids, and the well-known
KPowerMeans algorithm for cluster identification.

We tested the framework by applying it to two different
sets of MIMO channel measurement data, indoor measurements
conducted at 2.55 GHz and outdoor measurements at 300 MHz.
The results from our joint clustering-and-tracking algorithm
provide a good match with the physical propagation mechanisms
observed in the measured scenarios.

I. INTRODUCTION

In order to validate algorithms that exploit the opportunities

offered by MIMO systems, MIMO channel models that are

accurate, yet tractable are in high need. A promising approach

involves cluster-based MIMO channel models [1]. As a matter

of fact, the majority of standardized MIMO channel models,

like 3GPP-SCM [2], IEEE 802.11n [3], COST 259 DCM, and

COST 273 [4] are cluster based.

In measured MIMO channels the multipath components

(MPCs) tend to occur in clusters, i.e., groups of MPCs with

similar parameter values such as delay, directions of arrival

(DoA) and directions of departure (DoD) [5], [6], [7]. It was

shown in [8], [9] that channel models disregarding clustering

effects overestimate the channel capacity.

In order to consistently parameterize recent cluster-based

MIMO channel models [10], the clusters must be identified

and parameterized from measurements. Initially, cluster iden-

tification was done visually [11], [6], [7], but this procedure

is cumbersome and tiring for a large amount of measurement

data, for multi-dimensional parametric data it becomes im-

possible. Moreover, visual clustering lacks a clear definition

of what is a cluster. Thus, automatic cluster identification

algorithms for parametric MIMO channels were developed

[12], [13], [14]. These algorithms were all designed to identify

clusters in individual time instants, and did not address the

issue of cluster tracking over time. Since clusters can be used

to model time-variant scenarios as well, a consistent approach

is required for joint cluster identification-and-tracking over

time. A simple cluster tracking algorithm was presented in

[15], but it did not take joint clustering and tracking into

account. An alternative method is to track individual paths

directly in the impulse response [16].

In the present work we develop a joint clustering-and-

tracking framework that uses (i) a Kalman filter [17] to track

and predict cluster positions together with (ii) a new initial-

guess procedure allowing to include the prediction of the

Kalman filter, and (iii) the KPowerMeans clustering algorithm

using the MCD distance metric [13] to identify clusters.

To test the framework we used two different sets of time-

variant MIMO channel measurements, one indoor environment

showing rich scattering, and an outdoor environment showing

few, very distinct propagation paths and many weak scattered

paths. We found that this framework enabled to extract the

cluster characteristics from time-variant MIMO channel mea-

surements consistently.

The paper is organized as follows: Section II will describe

the problem and introduce the parameters used. In Section III

we provide a comprehensive description of the joint clustering-

and-tracking framework. Results from applying the framework

to the measurement data are presented in Section IV. Finally,

we conclude the paper in Section V.

II. PROBLEM DESCRIPTION

Like in existing clustering applications, the starting point

is a large number of measurements with a MIMO channel

sounder. The parameters of the MPCs are estimated from the

measured impulse responses using a high-resolution algorithm,

e.g. SAGE, for each snapshot, individually.

In standard clustering, each snapshot is clustered indepen-

dently [18], [13], and the clusters might be tracked afterwards

[14]. The problem to solve is how to combine clustering and

tracking in order to improve the clustering performance and

to consistently track clusters.

We consider N data windows, n = 1 . . . N , each with a

number of L(n) MPCs, where every single MPC is represented

by its power P
(n)
l , l = 1 . . . L(n), and a parameter vector

x
(n)
l = [τ

(n)
l ϕ

(n)
AoA,l ϕ

(n)
AoD,l]

T containing the delay, azimuth

AoA and azimuth AoD, respectively. The data for all paths

are collected in the power vector P(n) = [P
(n)
1 . . . P

(n)
L ]T and

the matrix X(n) = [x
(n)
1 . . .x

(n)
L ]T .
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Fig. 1. Clustering framework: Clusters with parameters θ
(n)
c are identified and tracked in the input data (X(n)

,P
(n)), the Kalman filter updates the cluster

parameters, the prediction provides an input to the initial guess.

Each cluster is determined by following parameters:

1. A unique cluster-ID c.

2. The cluster power at time n. Denoting the set of path

indices belonging to cluster c at time snapshot n by I
(n)
c ,

the cluster power is calculated as γ
(n)
c =

∑

l∈I
(n)
c

P
(n)
l .

3. The number of paths within the clusters L
(n)
c = |I

(n)
c |,

where every path is assumed to belong to one cluster,

uniquely.

4. The cluster centroid position in the angle-angle-delay

domain µ
(n)
c . The cluster centroid position can be cal-

culated as

µ(n)
c = [τ (n)

c ϕ
(n)
Rx,c ϕ

(n)
Tx,c]

T =

=
1

γ
(n)
c

·







angle(
∑

l∈I
(n)
c

P
(n)
l exp(j · ϕ

(n)
Rx,l))

angle(
∑

l∈I
(n)
c

P
(n)
l exp(j · ϕ

(n)
Tx,l))

∑

l∈I
(n)
c

P
(n)
l τ

(n)
l






,

(1)

where the mean angle is calculated by averaging angles

over their respective complex representation.

For tracking, also the centroid speed is of in-

terest, so we combine the position and speed

in the cluster tracking parameter vector θ(n)
c =

[τ
(n)
c ∆τ

(n)
c ϕ

(n)
Rx,c ∆ϕ

(n)
Rx,c ϕ

(n)
Tx,c ∆ϕ

(n)
Tx,c]

T.

5. The cluster’s joint spread C
(n)
c , which is the power-

weighted covariance matrix of the path parameters

within one cluster at time n. The main diagonal contains

the cluster spreads of the individual dimensions, i.e. the

cluster delay spread, the cluster AoA spread and the

cluster AoD spread. The off-diagonal elements describe

the correlation between these spreads.

The cluster spread matrix is calculated by

C(n)
c =

∑

l∈I
(n)
c

P
(n)
l (x

(n)
l − µ

(n)
c )(x

(n)
l − µ

(n)
c )T

γ
(n)
c

.

(2)

Note that in this equation, whenever adding or subtract-

ing angles, the result must be mapped to the principal

value in the interval of (−π, π], which can be achieved

easily by the operation

pv(ϕ) = angle(exp(jϕ)). (3)

Based on this cluster data model, we will now introduce the

clustering-and-tracking framework.

III. FRAMEWORK

For each time snapshot, the following steps are performed

(see Figure 1):

1. A Kalman filter [17] both tracks the cluster position

over time, and predicts the cluster position in the next

snapshot.

2. The initial-guess routine provides a trustworthy initial

guess of the cluster centroids, taking the predicted

cluster centroids into account.

3. The clustering algorithm identifies clusters in the mea-

surement data based on the initial guess.

A. Kalman cluster tracking

1) State-space model: For the Kalman tracking [17], only

the cluster centroid position θc is used. We use the following

state equation

θ(n)
c = Φθ(n−1)

c + w(n), (4)

where w(n) denotes the state-noise with covariance matrix Q,

and Φ is the state-transition matrix given by

Φ = I3 ⊗

[

1 1
0 1

]

,

where identity matrices are denoted by Id with d denoting the

dimension, and ⊗ denotes the Kronecker matrix product.

Since we can observe only the cluster centroids and not

their speed, we use following observation model

µ(n)
c = Hθ(n)

c + v(n), (5)

where µ
(n)
c describes the observed cluster centroid position,

thus H is given by

H = I3 ⊗ [ 1 0 ], (6)

and v(n) denotes the observation noise with covariance matrix

R.

2) Tracking equations: The derivation of the Kalman filter

is straight-forward and leads to following prediction and



update equations1

Prediction:

θ(n|n−1)
c = Φθ(n−1|n−1)

c (7)

M(n|n−1) = ΦM(n−1|n−1)ΦT + Q (8)

Update:

K(n|n) = M(n|n−1)HT(HM(n|n−1)HT + R)−1(9)

θ(n|n)
c = θ(n|n−1)

c + K(n|n)(µc − Hθ(n|n−1)
c )(10)

M(n|n) = (I − K(n|n)H)M(n|n−1) (11)

3) Cluster association: A major problem in multi-target

tracking is how to associate the predicted with the identified

cluster centroids. Usually, such an association is based on the

Euclidean distance in parameter space. Since we are tracking

clusters that show a certain extent in parameter space, we use

following probability-based method:

• The distance between a cluster with parameters (µc, Cc)
and a cluster centroid µ̃ is defined by

Gc(µ̃|µc,Cc) =
1

(2π)3/2 |Cc|
1/2

·

· exp

(

−
1

2
(µ̃ − µc)

TC−1
c (µ̃ − µc)

)

.

(12)

Since a small distance between the two centroids now

corresponds to a large value of this function, we refer to

it as the closeness function.

• The closeness function is evaluated between all predicted

and all new cluster centroids in both directions, i.e.

between the old and the new centroids using the old

covariance matrix, and between the new and old cluster

centroids using the new covariance matrix.

• For each old cluster we determine the closest new cluster

by finding the maximum value of the closeness function,

and vice versa, for each new cluster we determine the

closest old cluster in the same way.

• Whenever these two clusters are closest mutually, these

two clusters are associated and being considered as the

tracked cluster.

• Clusters that were not associated from the old snapshot

stop to exist, clusters that were not associated from the

new snapshot are considered as new clusters.

B. Cluster initial guess

A crucial point in any iterative clustering algorithm is the

initial guess of the cluster centroids. Our new method chooses

the centroids by maximizing the distances between them. In

the following we will present how to choose the initial-guess

centroids µ̂c.

1. Initialization:

• No cluster prediction available:

The first centroid µ̂1 is chosen as the path having

strongest power.

1Note that the principal-value calculation rules apply for the angular
dimensions

• Cluster Prediction available:

Copy the initial-guess centroids from the predicted

values

2. Calculate a weighted distance between any path and all

(initial-guess) centroids using the multipath component

distance (MCD) [19] by

D(x
(n)
l , µ̂c) = log10(P

(n)
l ) · MCD(x

(n)
l , µ̂c).

This leads to an l × c distance matrix D for every

snapshot n. Here, the MCD is log-power weighted.

3. From these paths we select the one which has the

maximum minimum distance to any centroid, i.e. l =
arg max[min

c
D], where arg max[·] returns the index of

the maximum element.

4. Reallocate all paths to their closest centroid (as in

the KPowerMeans algorithm) and calculate the cluster

power. Note that, in this case, the power-weighted MCD

is also used but the powers contribute linearly.

5. If the maximum number of clusters was not reached,

and all centroid powers are larger then 1% of the total

snapshot power, then repeat from Step 2.

Else discard the last centroid and stop. This algorithm

leads to a trustworthy identification of the number of

clusters.

C. Clustering algorithm

We use the KPowerMeans clustering algorithm presented

in [13] with following modifications: (i) we apply the initial

guess as described above, (ii) since the initial guess is deter-

ministic, the algorithm is performed only once.

Should the outcome result in clusters carrying less than 1%
of the snapshot power, the result is discarded and the procedure

is restarted with the initial guess, but reducing the maximum

number of clusters by one. Note that in this algorithm the

existence of singletone clusters is possible, as long as they

show enough power. In this way we can also account for

strong, far reflections.

IV. RESULTS

We applied this joint clustering-and-tracking framework to

two sets of channel measurements performed in to completely

different scenarios.

The first set of measurements was conducted in an indoor

scenario at 2.55 GHz using an Elektrobit PropsoundTM CS

MIMO channel sounder. We will present results for a measure-

ment route in a students lab. More details on this measurement

campaign and a floor plan of the scenario is presented in [14].

The measured impulse responses were post-processed using

the ISIS high-resolution algorithm [20] to obtain propagation

paths for each snapshot of the channel.

The second set of measurements were conducted in an

outdoor scenario in the 300 MHz band using the RUSK Lund

MIMO channel sounder. A description of the measurement

campaign can be found in [21]. The measured impulse re-

sponses were post-processed by a SAGE algorithm to obtain

propagation paths for each snapshot of the channel.
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Fig. 2. Tracked clusters from indoor scenario; (a)-(c) show the clusters’ evolution over time

(a) (b) (c)

Fig. 3. Tracked clusters from outdoor scenario; (a)-(c) show the clusters’ evolution over time
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Fig. 4. Tracked centroid of exemplary moving cluster

We applied our joint clustering-and-tracking framework

to both sets of measurements and found that the algorithm

provides clusters that well-match the time-varying physical

propagation mechanisms observed in the measured scenarios.

Exemplary plots from both measurements are shown in Fig-

ures 2 and 3. The individual plots show the evolution over

time. Propagation paths are marked by dots, their power is

colour coded from red (strong power) to blue (weak power).

Clusters are shown by ellipsoids (capturing 99.9% of the

power of the included paths), where the colour describes the

mean power of the included paths, and the numbers indicate

the cluster IDs placed at the cluster centroid.

In the indoor scenario in Figure 2 we observe up to 14

clusters, which can be well tracked over time. Cluster 3

shows strongest power, but many other clusters show rather

high power, too. Cluster 2 is very narrow indicating a strong

reflection with larger delay. When following cluster 14 over

time, one can see that it vanishes slowly. The same holds true

for cluster 15. Also note the movement of both clusters 12

and 13 toward larger AoDs.

The trajectory of the centroid of one exemplary strongly

moving clusters is provided in Figure 4. The cluster is rapidly

moving toward increasing AoD and smaller delay, while it

shows only slow movement in the AoA.

In total, 218 clusters were tracked in 393 snapshots, where

59 clusters existed for just one snapshot and could not be

tracked. A histogram of the (logarithmic) lifetimes of the other

159 clusters is provided in Figure 5. This histogram does not

indicate a good fit to any analytical distribution.

The outdoor scenario in Figure 3 shows few very distinct

small cluster with high powers (clusters 1 and 2) and a large

number of clusters with very low power. The strong clusters

stem from the LOS path and a strong specular reflection,

whereas the weak clusters are due to scattering on trees and

rough surfaces. Also in this scenario the clusters can be tracked

very well.

In this scenario, 169 clusters were tracked in 197 snapshots,

where 132 clusters existed for more than one snapshot. The

histogram in Figure 6 would indicate an exponential distribu-
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Fig. 5. Histogram of cluster lifetimes (snapshots) in indoor scenario
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Fig. 6. Histogram of cluster lifetimes (snapshots) in outdoor scenario

tion of the cluster lifetimes.

V. CONCLUSIONS

This paper presented a novel joint clustering-and-tracking

algorithm in order to identify time-variant cluster parameters

for geometry-based stochastic MIMO channel models.

Using a Kalman filter to track the clusters and to predict the

cluster position for the next time instant significantly improves

the ability to track clusters.

For tracking multiple clusters, we introduced a novel

method for cluster association of predicted and identified

clusters. By using the cluster spreads we could improve the

cluster association considerably.

Applying the framework on two highly different types of

MIMO channel measurements led to consistent results. The

combination of tracking and clustering allows to identify the

time-variant properties of clusters coherently.
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