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Abstract  

Linear Dynamidly Varying (LDV) control is a tech- 
nique for getting a natural (nonlinear, possibly chaotic) 
trajectory and a perturbed trajectory asymptotically 
synchroni7ed given an initial condition offset. Proba- 
bly the best illustrative example, which motivates this 
paper, is tracking the natural (possibly quasi-periodic) 
molion of a Tkojan asteroid near the IA point of Jupiter 
with a spacecraft.that follows a trajectory perturbed by 
the non conservative propulsion forces. .The tracking 
error is linearized around the natural dynamics of the 
Trojan body, leading to an LDV niodel of the track- 
ing error. This in turn leads to a dynamically vary- 
ing c o n t r o h ,  itself given as the solution to a Partial 
Diffcrehial Riccati Equation, solved via the method 
of characteristics. It is shown that this technique d- 
lows for ;xcura,te tracking of the coniplicated dynamics 
around the L4 point. 

. 1  1 Introduct ion 

In this paper, we describe an astrodynamical applica- 
tian of a. general synchronization technique that was 
developed for "complicated," possibly chaotic, dynam- 
ics and that ca,n be described as follows: Let 

b( t )  = f ( H ( t ) )  

a@) = f ( 4 ( t ) > W )  

bo a natural dynaniics while 

is a perturbed dynamics, by which we mean that 
f(& 0) = f(r$), the two dynamics being subjected to an 
initial condition offset, viz., Q(0) # .b(O). The problem 
is to design a controller u(t)  such that 4(t)  - Q(t) -+ 0 
as 1 -+ CO. Probably the best illustrative example of 
this problem formulation is when B ( t )  is thought to be 
the state of such a light body as an asteroid, a Trojan 

body, or a comet, while 4(t) is the state'of a space- 
craft in a rendezvous mission with the body. In the 
case of a Trojan, the attractions of Jupiter and the 
sun are dominant compared with the mutual Trojan- 
spacecrafi'attraction, so that both the Trojan'and the 
spacecraft would be subject to the same dynamics- 
the restricted 3 body problem dynamics-provided the 
spacecraft does not use its nonconservative propulsion 
force u( t ) .  While this paper focuses on the Trojan body 
around the libration Lagrange L4 point, the same can 
be said about the Wirtanen comet. In fact,'witb a di- 
ameter of just a few miles (compared to a few hundred 
miles for a Trojan), the mutual attraction is so weak 
that the Rosetta lander will.have to be anchored to the 
Wirtanen cornet. 

The, proposed method of solution is of the Linear Dy- 
naniically Varying (LDV) type, that is, the tracking 
error dynamics is linearized around the nominal dy- 
namics as k ( t )  = Aqt)z(t) + Bqr)u(t). I t  is important 
to observe that the coefficient matrices depend on the 
state of the nominal dynamics and hence are dynami- 
cally varying. The controller is designed on the basis 
of the linearized error and is also of the dynamically 
varying type [I]. 

2 Conservative and Nonconservative 
Lagrangian Dynamics 

We briefly review the Hamiltonian dynamics of the nat- 
ural motion of a Trojan' asteroid, later to  be amended 
so as to incorporate the nonconservative dynamics of 
a spacecraft subject to  the same gravitational field as 
the Dojan. 

2.1 Conservative Dynamics 
The Hamiltonian function of a massless body in the 
Sun-Jupiter gravitational attraction in the ahsence of 
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nonconsorvative forces is given by [l] 

1 
2 

H = - (P;+Pf)+w(qP<-cP, , )  

where 

These equatio,ns are written in the _non-inertial frame 
centered at , the L4 point, with_ its i-axis aligned with 
the Sun-Jupiter axis and its j-axis orthogonal to the 
;-axis. ( c , ~ )  is the coordinate vect.or of the third body 
in the L1, z , ~  frame, and (P<,P,,) k the momentum 
vector associated with (<,q).  ( X L ~ , ~ ' ~ ~ )  are the coor- 
dinates of the L4 point in the: frame (C.C., c,?) cen- 
tered at the center ofgravity (C.G.) of the Ju_piJer-Sun 
system and with its axes aligned ,with the (i, j)-axes. 
The parameter w denotes the angnlw velocity of the 

C.G., i , j  frame associated with the primaries. The 
physical units are normalized so that the semi-major 
axis of the Sun-Jupiter orbit is set to 1, the total mass 
of the Sun-Jupiter system is eet to 1, with p the mass 
of the smaller primary body, and the universal gravita- 
tion constant is also set to 1. The latter implies that, 
if the eccentricity e = 0, w is set to 1, equivalently, the 
period of Jupiter is set to ZT.  With these conventions, 
n a n d  ~2 are the distance functions hetween the third 
body and the massive bodies, ml and m2, respectively 

( '3 

( ~ -3 

121. 

The zmpertiirbed Hamiltonian, Ha, that is, that part of 
the Hamiltonian quadratic in E, q, Pc, P,, and evaluated 
for e = 0, is examined first and transformed as 

where the Jk's are the action variables, that is, the con- 
jugate momenta associated with the coordinates angle 
variables &'S. This unperturbed Hamiltonian, which 
is a function of the action variables only, is in its into 
gable  form. 

To investigate t.he Hamiltonian motion associated with 
the perturbed Eq.(l), first, the and 1 terms of the 
Hamiltonian are expanded up to the ax tb  power of 

A, $ and w is also approximated up to the third 
power 01 the eccentricity. Then several canonical trans- 
formations are performed [l]. It follows that, in the 
natural motion of the Trojan body, there is a 1:1 res- 
onance between the natural frequency of the motion 
of the third body and the mean motion of Jupiter [l]. 
The final form of the Hamiltonian function un@ the 
1:l iesonance condition is 

H ( I , O i )  = Ho(C + C H k ( I , & )  (3) 
k 

where H I ,  is that part of the Hamiltonian of the kth or- 
der in the eccentricity and the 1,'s and the &'s are the 
new action and the angle variables, respectively. These 
variables include, in addition to those of the unper- 
turbed motion, the mean anomaly e and the conjugate 
mean anomaly of the primaries. In the spirit of small 
perturbation theory, the overall, perturbed, Hamilt- 
nian is nearly integrable. The corresponding equations 
of motion are 

From Eq.(4), I2 and 13  are constant along the motion. 
Therefore, the equations of motion of the thud body in 
the Sun:Jupiter gravitational field involve the variables 
TI and &only. 

2.1.1 Periodic 'and Quasi-periodic Orbits: 
The parameters of the Sun-Jupiter system in physically 
meaningful units are the following: 

p = 0.000954726, e = 0.048, = W O  = 1. (5) 

Phase plane plots for the averaged perturbed system 
show existence of a point enclosed by several closed 
curves, which are obtained for specific initial condi- 
tions. This point corresponds to a periodic orbit, and 
the closed curves correspond to quasi-periodic motions 
around Le. Solving Equations4 reveals periodic and 
quasi-periodic orbits around L4. The periodic orbits 
have a period of T = 1847.72, which is equal to 3666.75 
Earth's years or 308.13 Jupiter's years. The quasi- 
periodic orbits appear Lyapunov stable for that period 
of time [3]. Furthermore, computer simulations reveal 
that there exists a compact inwiant  set 0 2 Lq. 

2.2 Nonconservative Hamil tonian Dynamics 
In the problem of steering a spacecraft to a pursuit of a 
Trojan body in one of its known orbits, the spacecraft 
is considered as another third body in the Sun-Jupiter 
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system, but this one is under the influence of a noncon- 
servative propulsion force. This nonconservative force 
is used lo direct the spacecraft towards the desired tra- 
jectory. 

The Lagrange equations of motion, in the case of non- 
conservative forces, can be written as follows: 

where F is the nonconservative force, L = T -  U is the 
Lagrange function, that is, the sum of the kinetic en- 
ergy and the potential energy of the conservative force, 
T = r(q) = r(q3, qz, ..., qn) is the body position vector, 
and the y,s are the generalized coordinates. Hamilton's 
equations of motion are 

P.  == -(a)9, ,+.-(~) aH , 

Q, i= (%I 0 

BH 
QPt 

(7 )  

In case there is a need for a'canonical transformation on 
this system, it can be shown that the new Hamiltonian 
in the new canonical variables {&, P }  is ils follows: 

dG 
K(Q,.P,tt) = 5 PiQi - L(Q,&, P,P, t )  + (8) 

where G = G(q, Q, t )  is the generaling function that 
transforms the old canonical variables, { q , p } ,  to the 
new ones, {Q, P ) .  (Observe that our choice of gener- 
ating function is independent of F ) .  It can be shown 
that the transformed Hamiltonian K does not either 
directly incorporate the force F [4j. Therefore, via the 
Lagrange modified equations, the Hamilton modified 
equations can be oblained as 

i=l 

2.2.1 Non-conserwtive Spacecraft in Re- 
stricted Third Body Dynamics: Now, consider 
Fig,(l), in which the third body, as it is called in the 
threebody problem, is a spacecraft influenced by non- 
conservative propulsion forces. These forces are applied 
in the < and TI directions to control th? _spacecraft to 
trlxk the desired orbit in the (C.G., i ; j )  coordinate 
system. The nonconservative force and the position of 
the third body can be rewritten, respectively, as: 

F =  F ~ ; + F , , ~  (10) 

7-= (E-Xl,*)~t-(l~+~i~).~ ' (11) 

X 

Figure 1: The elliptic restricted threebody problem. 

Therefore, using Eq.(7), the nonconservative Hamilton 
equations of motion of the spacecraft, in the physically 
motivated coordinates, can be obtained, respectively, 
'as 

€I is the Hamiltonian [unction for the perturbed Hamil- 
tonian system of the three bodies 

As for the conservative case, the restricted threebody 
problem cannot be easily solved using the above equa- 
tions of motion. Therefore, as in the conservative case, 
several canonical transformations are applied to sim- 
plify the Hamiltonian function, H ,  to its nearly inte- 
grable form 111. Finally, using Eq.(9), the Hamilton 
equations of motion for the spacecraft, which is influ- 
enced by the gravitational forces of the sun and Jupiter 
and the nonconservative force F ,  can be obtained as 
follows: 

where H' is the transformed Hamiltonian in the action- 
angle variables (iy,, I,), where 

r =r(E(I1,~z,r3,291,192,~3),~(r1,r2,13,Q1,~2,293)). 
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3 B a c k i n g  a Trojan As te ro i j  Using LDV 
C.ontro1 

3.1 LDV Systenis '. 
The tracking error is defined as z( t ) :  

.x( t )  = 4(t)  - O ( t )  (14) 

and the rate of change of the error is: 

?it)  = i ( t j  - ~ ( t )  . . 
. = f(wm - f@(t),o) (15) 

Taylor series expansion around the p&t ( O ( t ) ,  0) is now 
applied to the of equation. Thereford the linear part of 
the expansion is as follows [SI: 

= As(t)X(i)  + . & ( t ) J j ( t )  

Definition 1 The LDV system %zit)  = Ae(t)z( t )  is 
said to be exponentially stable (along the pow o f f )  i f  
there cxist functions CY(&) E ( 0 ,  m) dnd p(0") E [0, m) 
such th.at, for e v e v  5 0  E 0, 

l lZ( t ) l l  5 @(Oo)E-"('U'lt k(0)l l  

where llzil = &. The system is .i+d to be uniformly 
exponentially stable iff there are numbers a E (0, m), 
p E [O, m) such that, JOT every O E 0, 

IW)ll <.~e-"tllx(o)~ll 

Finally, the system is said to be a:;ymptotically stable 
ilf, for e o e q  0 E 0, .. 

lim.l\z(t)ll = 0 
t-m 

Remark  1 Observe that stability an1 exponential sta- 
bility o.re properties of the various trnljectories, whereos 
irni fonn asymptotic stability i s  a proaerty OJ the flow. 

Proposition 1, If the LDV system,$x(t)  = Aqtyz( t )  
is continuous and'O(t) runs ouer 4 compact set 0, 
lhen asymptotic stability, exponentic.1 !stability, and uni- 
Jomly exponential stability are equ2ublent. 

Definition I The LDV,system $9: + A o ( ~ ) x +  B ~ ( ~ l u  
is said to be stabilizable ifl there kds ts  a fun.ction 
K : 0 x E t k  + Rp such that $b(t) = (As(t)  + 
B,,(t)Ka(t)(t))x(t) is (uniJownly) asli*ptotically stable. 

Definition 3 The LDV system &z(t)  = A q t ) ( t ) z ( t ) ,  
z ,( t)  = Co(,)z(t) ZS said to be detectable iJ there exists 
an output injection feedback L : 0 x R+ - R,' such 
that$p(t) = (Ae(t) + L e ( t ) ( t ) C e ( t ) ) ~ ( t )  is (uniJomlyl 
asymptotiully stable. 

Remark  2 Obserue that stabilizability and detectabil- 
ity are weak conditions; continuity in 0 of the feedback 
matrices K ,  L is not ~ e g ~ i ~ e d  and furthermore they are 
allowed to be explicit Junctions of the time t .  I t  is a 
nontrivial result that, despite the weakness of the sta- 
bilizability wndition, it is suficient to guarantee that 
LQ control yields. a continuous feedback, not explic- 
itly depending on the time. Regarding detectability, 
it is because a continuous-time dynamics is reversible 
that strch a weak form of detectability is suficient. In 
contrast, because discrete-time dynamics need not be 
reversible, a more stringent detectability condition is 
needed in that case. See p .  842 of 1.51 

3.2 LDV Control  

Now, we are in a position to state the main theorem. 

Theorem 2 Assume that the functions Ae, Be, &e = 
CTCs, are continuous and such that ( A ,  C )  is de- 
tectable and R > 0. Then (A,  B )  is stabilizable iff there 
emsk a continuous map 

X : ~ + W " ~ " , X ~ > O ,  ' 

differentiable alung the trajectbries of f ,  that satisfies 
the Partial Differential Riccati Epat ion . (PDRE), 

Proof: The proof follows from a continuous-time 
adaptation of the argument of Th. 1 of [5 ] ,  except for 
one issue: Continuity of Xe defined as the cost matrix 
follows the same argument as in the discretetime case, 
but the fact that it satisfies the PDRE stems from the 
observation that E:=, s P ( 8 )  is &Xqt) evaluated 
along trajectories, from which it is obvious that X s  is 
differentiable along trajectories. (We conjecture that 
it is differentiable across trajectories, but the proof has 
eluded us.) 
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Remark 3 Some systems, like the :&jam, ham sen- 
sitive dependence on initial conditions. Despite the 
sensitive dependence of the trajectuy on B O ,  the cost 
to stabilize the trajectonj remains continuous. This ZS 
the cvunterintuitive fact of this theorem; see Remark 2 
01 i51. 

The PDRE is numerically solved by what amounts to 
the method of characteristics. Again, from the obser- 
vation that Cy=l w p ( B ( t ) )  = $Xg,,), we solve the 
pnrtial differential equation along the trajectories of J 
as the diiferential equation $ X q t )  = -A&lXq l )  - 

specifically, assume we want to evaluate X,, somewhere 
along a trajectory to be tracked. Let 00 = 0(0) .  An- 
ticipate the motion of the trajectory over [O,T]. Set 
the terminal condition X ( T , T ) ,  integrate backward the 
Riccati diflerential equation 

d. - x(4 = -(A?t+(t, T )  + X ( t ,  T)Ao(t)  + Qe( t l !  dt . 

Xo(t)Aqt)  - Qw) + Xs(t)Bs(t)Rq:lB~tfX~(t). More 

+X(t, T ! B i ( t ) R ~ ~ , B ~ t ) X ( t ,  T )  

and set X S ,  = X ( 0 , T ) .  This numerical scheme some- 
how provides a test of the stabilizability condition, 
which is hard to check in practice. Should the backward 
integration reveal .a solution growing without bound, 
then there is ovidence that the stabilizability (or d e  
teclability) condition fails. 

With the I.DV gain at hynd, we can state the following: 

, . . : i f  

Theorem 3 linder the same condztions as the pre- 
cedi.riy theorenk, there m ' s t s  a neigbohorhood U 
of the natuml trajectory such that, iJ $(t) = 

1J.then @(t)  .- @(t) i 0 as t +CO. 

f ( W ,  -Ro(:)B&)Xo(t) (W -Wi! and d(O) E 

3.3 Three Body Tracking by LDV Method  
Tracking a desired orbit around the libration point, La, 
in the Sun-Jupiter-nojan system, is achieved by the 
LDV method. For this system, the controller generates 
a nonconservative force, F ,  applied to  the spacecraft 
to correct its position and to direct it toward the de- 
sired trajectory. The natural trajectory of the Trojan 
is given by Eq.(4) and the motion of the spacecraft, 
perturbed under the force F, is given by Eq.(13). Since 
the equations of motion of the third body in the three 
body problem is highly nonlinear, a numerical method, 
Rurye-Kutka 4, is applied for finding the solution of 
the Hamilton equations of niotion. 

3.3.1 Tracking the Periodic Orbi t s  of the 
Trojan Asteroid: The unperturbed Hamiltonian in 
the physically motivated coordinak is obtained as fol- 

lows [I]: 

1 
Ho = 2(P$ +pi) +wo(qPe - Wt,) 

+AS2 i BEq + Cq2 (18) 

where thecoefficients A ,  Band  Care  set to 0.125, 1.296 
and -0.65, respectively. Using Eq.(12), the Hamilto- 
nian equations of motion of the spacecraft are obtained 
as follows: 

The tracking error of the periodic orbit of the Trojan 
asteroid is obtained as the solution to: 

o w 0 1 0  

-2A -B 0 '  WO 

-E -2C -WO 0 

After solving the partial differential Riccati equation, 
Eq.(17), and simulating the motion, the tracking tra- 
jectories and tkie control inputs are obtained as those 
shown in Fig(2), Fig(3) and Fig(4). 

F 

.2 ' -1 0 1 
-2 

-3 
5 x 10  

Figure 2: Periodic orbit of the Trojan and the spiicccraft's 
tracking trajectory. . 

. 3.3.2 Tracking the Quasi-Periodic Orbi t s  of 
Because the full perturbed the Trojan Asteroid: 
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lime 

Figure 3: Desired (solid line) and trnciing (dashed line) 
trajectories in xi-eta directions. 

equatio,m in the canonical variables are complicated, 
we focused on the decoupled (191 ,  I,) equations. Fnr- 
ther, we average the natural motion of the nojan. 
However, we cannot average the nonconservative mo- 
tion of the spaecraft because the fast variables of 

ar a- 
a81i ail I 

- _- 
happen to vanish. Despite the discrepmcy between the 
natural and the forced trajectories, computer simula- 
tions seem to indicate that the spacecraft tracks the 
’hojan. Whether or not the tracking will ultimately 
be proved to happen, the previous observation is defi- 
nitely in agreement with the pi:oved robustness of LDV 
design against dynamics uncertainty [6]. 

4 Conc1u:iions 

It has been shown that t r d i n g  the, possibly coinpli- 
cated, dynamics of a niassless body in the gravitational 
lield of other, massive bodies with a sptcecraft is proba- 
bly the most natural application of Linear Dynamically 
Varying (LDV) control [SI, the key point of which is 
to  achieve synchronization between a natural dynam- 
ics and a perturbed dynamic:i subject to an offset of 
initial conditions. 

.. 

time 

Figure 4 The control inputs of the spacecraft in xi-eta 
directions. 
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