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I. INTRODUCTION

In this paper, we consider tracking in wide-area aerial
video, specifically, the Columbus Large Image Format
(CLIF) 2007 data set [1]. Tracking is a critical component
of many wide-area surveillance tasks, such as traffic
monitoring and automated video indexing.

While tracking is difficult in any real-world scenario,
wide-area surveillance video presents some unique
challenges. First, the frame rate is very low—typically 1 to
2 frames/s. Because of this, targets can move many times
their length and undergo significant appearance changes
between frames. Second, wide-area aerial imagery
typically suffers from fairly low resolution and blurring. In
the CLIF 2007 data set, for example, a vehicle in an image
typically has a size of about 15 pixels by 15 pixels. This
makes it difficult to distinguish targets based on
appearance. Finally, in aerial imagery, the camera is
constantly moving; hence, the simplifying assumption
of a static background is no longer valid.

A. Related Work

Much of the tracking work in aerial video has focused
on low altitude, high frame rate video, such as the Defense
Advanced Research Projects Agency Video Verification of
Identity data set [2]. Because of the low altitude, the
resolution of targets is high, making the tracking problem
much easier. Most of the challenge in tracking in these
data sets is in compensating for the aircraft motion [3] and
detecting targets of interest [4]. Once these problems are
addressed, the actual tracking is straightforward and can be
done with generic object trackers, such as the kernel-based
object tracking method of Comaniciu et al. [5].

The focus of this paper is on tracking in high altitude,
low frame rate video. Under this scenario, tracking
becomes much more difficult, and a specialized tracking
strategy is required. Reilly et al. consider detection and
tracking on the CLIF 2006 data set [6]. This data set has
much smaller targets compared with the CLIF 2007 data
set, on the order of just a few pixels. Because the targets
are too small to do appearance modeling, the authors focus
on solving the data association problem between detected
vehicles in subsequent frames. As a result, their method is
not able to handle significant occlusions, which are
common in the CLIF 2007 data set.

Dessauer and Dua developed an optical flow-based
tracker for the CLIF 2007 data set [7]. They focused
primarily on the best choice of feature for estimating the
flow and performing target matching between frames. As
with [6], their method does not account for significant
target occlusions and hence is limited to vehicles in
relatively open areas.

A common issue with the approaches in the existing
methods is that they work only for vehicles in open areas
with good visibility, such as vehicles on multilane
highways. However, for many surveillance applications,
vehicles of interest will also be driving on small side
streets with shadows and occlusions from trees and
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Fig. 1. Comparison of coarse and fine segmentation. Blue pixels

represent target with a semitransparent red overlay, indicating

segmentation (best viewed in color). (a) Target; (b) coarse segmentation

with extra and missing pixels; (c) fine segmentation.

buildings. Our approach addresses this problem by
combining tracking and segmentation.

B. Combined Tracking and Segmentation

Although the problem we are interested in solving is
tracking, there has been research over the last two decades
showing that combining tracking and segmentation can
improve tracking performance. Early approaches focused
on segmenting a video sequence based on regions of
similar motion [8, 9]. Recent work has focused on
appearance-based segmentation using a background
model [10, 11].

Solving both the tracking and segmentation problems
together has two main advantages. First, tracking with
segmentation is more robust against target appearance
changes because information in the background can be
used to aid tracking, e.g., pixels that do not match the
background are more likely to be part of the target
regardless of their appearance. This is particularly
important for our application because shadows cause the
target appearance to change dramatically. Second, by
finely segmenting the target from the background, we are
able to better update the appearance model of the target
compared with coarse segmentation, such as a bounding
box. With coarse segmentation, it is inevitable that some
background pixels are included in the target model, while
some target pixels are excluded (see Fig. 1). The included
background pixels cause drifting and possible loss of
tracking, while the excluded target pixels make the
tracking less robust against partial occlusions.

This paper has two main contributions. First, we show
how to build an accurate background model around each
target in a low frame rate aerial video, even with a moving
background. Second, we apply a modified form of the
simultaneous tracking and segmentation method of
Aeschliman et al. [10] using this background model and
evaluate the results.

II. CALIBRATING THE CAMERAS IN THE CLIF 2007
DATA SET

The CLIF 2007 data set consists of high-resolution
images captured from six cameras simultaneously along
with information from a global positioning system/inertial
measurement unit (GPS/IMU). Unfortunately, the intrinsic

and extrinsic calibration information for the cameras and
GPS/IMU is not provided.

Tracking of vehicles within a single camera is possible
without knowing the calibration information by
operating purely within the image space. However, to
hand off targets from one camera to the next, an accurate
calibration is needed. Furthermore, by performing an
extrinsic calibration to the GPS/IMU, it is possible to track
targets in a georeferenced world coordinate system. This
makes it possible to enforce meaningful constraints on
target motion, e.g., limits on speed and direction changes.

A. Calibration Overview

Camera calibration is traditionally done by capturing
images of a scene with some known structure or pattern
and then exploiting this structure to get the calibration
[12, 13]. An approach along these lines is taken in [14] to
calibrate one camera from the CLIF data set using known
world points collected from Google Maps. The downside
of this approach is that it is very time consuming to
identify and mark a large number of world points, which is
required to ensure an accurate calibration.

It is also possible to perform calibration using images
of a generic scene, if some properties of the camera itself
are known, e.g., the intrinsic parameters are the same for
all images, and there is zero skew and unit aspect ratio
[15]. We have used this latter approach to calibrate the
CLIF data set because it allows us to take advantage of the
huge number of images that are available. All necessary
information is extracted from the images and GPS/IMU
with only minimal human supervision. We used 660
frames from each camera for intrinsic calibration and 110
frames from each camera for extrinsic calibration.

We first calibrate the intrinsic parameters for each
camera separately. To do this, we need to determine
corresponding points between images taken from different
views, i.e., image points that represent the same physical
point in the world. To obtain corresponding points, we
perform pairwise matching from each frame to nearby
frames using the method described in Section II-B. In our
experiments, this gave 8–10 million matches from around
8000 image pairs for each camera.

Once we have matching points, we can use the
excellent Bundler tool to obtain an initial camera model
and three-dimensional structure [16]. Note that Bundler
makes some strong assumptions about the camera to
simplify the problem. Hence, we further refined the results
using a modified version of the Simple Sparse Bundle
Adjustment (SSBA) tool, which has a more flexible
camera model including lens distortion [17].

Once the intrinsic parameters are known, we repeated
the process with some small modifications to compute the
extrinsic calibration as well. First, corresponding pairs
were found between image pairs both between frames
from each camera and across cameras. Around 3300 image
pairs from the same camera were matched along with
approximately 18 000 pairs taken from different cameras.
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After feeding these matches into Bundler, we corrected the
result so that the camera centers would all coincide exactly
with the GPS/IMU reported location. This was done for
two reasons. First, it simplifies the extrinsic calibration
somewhat by reducing the number of parameters because
only rotation needs to be considered. Second, the actual
translation between the GPS/IMU and the cameras is
negligible compared with the distance scales in the rest of
the system, and so any computed translation would be
inaccurate. Once the camera centers had been corrected,
we again modified the SSBA tool to carry out a new
refinement of just the rotation parameters for the cameras.

The complete calibration results for all cameras are
given in Appendix A along with an explanation of the
camera model. Fig. 3 shows a georeferenced mosaic of the
six cameras from the data set, which is obtained by
projecting each image to the ground plane. A Google
Maps image, taken from the same region, is also shown
for comparison.

B. Determining Corresponding Pairs in Aerial Images

Corresponding pairs are sets of image points in two
images that correspond to the same real-world location.
The first step is to find feature points in each image that
should be identifiable in the other image as well. We
extracted ≈ 3500 speeded-up robust features (SURF)
features from each frame [18].

The next step is to determine pairwise matches
between the extracted features. We simply matched each
feature in the first image to the best match in the other.
This approach for determining correspondences is very
fast, but results in a huge number of outliers (typically
50%–90% of the matches are incorrect). Fig. 2a shows
two frames that are to be matched, while Fig. 2b shows the
initial matches based on SURF features. Attempting to
calibrate the cameras based on very poor matches such as
these would result in a very inaccurate calibration.

Fortunately, we are able to use the fundamental matrix
to constrain the set of possible correct matches and thus
prune out most of the outliers. We use the well-known
random sample consensus (RANSAC) algorithm to do this
except that we replace the random sampling with a
similarity-based sampling described later in this section,
which greatly speeds up the computation, while still
giving good results in high-altitude aerial images.

Estimating the fundamental matrix in a fully general
sense requires at least seven corresponding pairs [19].
Thus, in each iteration of the RANSAC algorithm, we
need to select seven corresponding pairs from the initial
matches [20]. The RANSAC algorithm will only give a
good solution if at least one of the randomly selected
subsets consists entirely of correspondences that agree
with the true fundamental matrix between the images.
With completely random sampling, the probability of
getting at least one sample with all inliers in N trials is
given by

p = 1 −
(

1 − wn
)N

, (1)

Fig. 2. Frame matching process. Out of 1018 initial matches, only 162

are selected as inliers (16%).

where w is the fraction of inliers and n = 7 because seven
random pairs are selected. Hence, the number of random
samples required to ensure at least one good set with
probability p is given by

N =
log(1 − p)

log(1 − wn)
. (2)
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Fig. 3. Top image: georeferenced mosaic of six cameras in CLIF 2007

data set at timestamp 101110. Bottom image: aerial view of same region

taken from Google Maps.

The problem is that as w decreases, N increases very
rapidly. Columns 2 and 3 of Table I show the required
number of iterations and estimated processing time. Note
that these times are for a single image pair. With 20%
inliers, this method would take approximately 12 wk to
process all of the image pairs for intrinsic calibration of
the CLIF data set. Matching images between images from
different cameras have an average of only 6.5% inliers,
and so the time required to match all of the image pairs for
extrinsic calibration would be over 6 y!

We can greatly reduce the number of iterations
required to obtain a good solution by exploiting the nature
of high-altitude aerial imagery. Specifically, we assume
that the transformation of a small patch of one image to
another is close to a similarity transform, i.e., dominated
by a rotation and translation with only minor scaling and
perspective effects. Based on this assumption, if x1 and
x2 are the coordinates of corresponding points in two

TABLE I

N and Processing Time as a Function of w for Matching

One Image Using RANSAC for Both Random

Sampling and Similarity Sampling

Random Sampling Similarity Sampling

w N Time N Time

0.5 587 0.235 s 36 0.014 s

0.2 3.60 × 105 144 s 689 0.276 s

0.1 4.61 × 107 5.11 h 6.87 × 103 2.75 s

0.05 5.89 × 109 27.3 d 8.23 × 104 32.9 s

Note: p = 0.99 and R = 200, pixels. Processing times are esti-

mated based on a measured time of 0.4 ms per iteration.

frames and ‖x̂1 − x1‖ ≤ R for an additional point x̂1 in
frame 1, then ‖x̂2 − x2‖ ≤ R, where x̂2 is the correct
correspondence to x̂1 in frame 2. Based on this property,
we use the following procedure to sample the seven-point
correspondences needed to estimate the fundamental
matrix:

1) Select three-point correspondences completely
randomly from the set of all initial correspondences.

2) For each selected correspondence, randomly
choose an additional corresponding pair from those pairs
that lie within a radius R in both images.

3) For one of the selected correspondences, choose
one more corresponding pairs as in Step 2 to give seven
total correspondences.

Fig. 4 shows these steps for an example pair of images.
Note that if either Step 2 or 3 fails because there are no
other correspondences satisfying the criteria, we simply go
back to Step 1. We call this procedure similarity sampling.

We now turn to the question of how many iterations
are required with this sampling methodology. We first
need to compute p̄, the probability that any one choice of
seven samples will consist of all inliers. If the assumption
of a local similarity transform holds, then the probability
of getting at least one sample with all inliers is given by

p = 1 −
(

1 − ŵ4w3
)

,N (3)

where

ŵ =
w

w + πR2

A
(1 − w)

, (4)

with A denoting the image area (see Appendix B for
derivation). Hence, to obtain a given value for p we need

N =
log(1 − p)

log(1 − ŵ4w3)
. (5)

Note that the number of iterations depends on ŵ, which, in
turn, depends on R. The value of ŵ varies between w and
1, depending on the value of R. In general, ŵ increases as
R decreases, resulting in a smaller value for N. However,
there is a trade-off here because for small values of R, it
may not be possible to find other corresponding pairs
meeting the requirements. Also, small values of R may
reduce the quality of the solution, because corresponding
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Fig. 4. Similarity sampling process.

pairs, which are very close together, provide less
information about the fundamental matrix. We found that
setting R to 200 pixels gave good results, while still being
computationally very efficient.

Columns 4 and 5 of Table I show the required number
of iterations and estimated processing time for the
similarity sampling procedure. Compared with random
sampling, substantially fewer iterations are required for the
same percentage of inliers. Using this method, for images
taken from the same camera, the average time to find the
fundamental matrix and prune the outliers for the CLIF
data set was 0.066 s per image pair. This was substantially
faster than the SURF feature extraction and initial
matching, which took an average of 3.8 s per image pair.

III. GENERATING A BACKGROUND MODEL IN
AERIAL VIDEO SEQUENCES

Many tracking algorithms, and in particular the
combined tracking and segmentation algorithm presented
in Section IV, require a static background model. In this
section, we tackle the problem of generating a model for a
small area of the background around a desired world
location xw. For vehicles on highways moving at high
speed, a simple approach to forming a background model

is to take the pixelwise median of three consecutive frames
[21]. This approach works because the target moves more
than its length from frame to frame; hence, there is a good
chance that two of the three frames will contain the
background. However, because we are interested in
tracking on side streets with slow moving or stationary
targets, this approach will not work. A vehicle may stop at
a stoplight for dozens of frames in which case the median
of three (or more) frames will still include the target.
Instead, an approach, which is able to reasonably estimate
the background even when it has never been visible, is
needed.

Our approach to generating a static background model
consists of two steps:

1) Obtain image patches from the previous and
current frames around the predicted location of the target
and register.

2) Replace the pixels in the current frame patch that
correspond to moving and stationary targets using
information from both the current and previous frames
based on an inpainting algorithm.

The first step in the process is straightforward because
the cameras are calibrated, and we have GPS information.
Figs. 5a, 5b show two example image patches taken from
consecutive frames at the same world coordinate. Their
absolute difference is shown in Fig. 5c. Note that there is a
small amount of residual error in the registration due to
inaccuracies in the GPS/IMU information that shows up at
sharp edges in the image, e.g., the edges of the roadway
and markings on the road. Hence, the first step is to register
the images by solving for the optimal translation to bring
the previous frame into alignment with the current frame.
The results are shown in Figs. 5d, 5e. Note that stationary
objects no longer show up in the difference image.

The second step in the process is much more difficult.
Our basic model for the background is the patch extracted
from the current frame. For the most part, this is an
accurate model because most of the patch will consist of
stationary background objects. However, any pixels
associated with moving or stationary targets of interest in
the current frame will be included in the background
model. The goal of the second step is to replace these
pixels with accurate background pixels. Trivially, given
the previous and current frame, there are four possibilities
for a given pixel location:

1) The previous frame contains the background.
2) The current frame contains the background.
3) Both frames contain the background.
4) Neither frame contains the background.

Our approach is to attempt to classify each pixel into one
of these four categories and then fill in the background
model accordingly.

The first step is to determine which pixels in the
current frame may not be accurate background pixels and
hence need to be classified. An initial mask M of
candidate pixels is obtained by simply thresholding the
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Fig. 5. Example of shifting previous frame to account for minor errors in localization.

Fig. 6. Comparison of inpainting and inpainting-2 algorithms.

absolute difference between the previous and current
frame. We then add to M the pixels that are predicted to
belong to the target in the current frame based on the
segmentation of the target in the previous frame, which
needs to be done to account for stationary or slow-moving
targets that may appear at the same location in both the
previous and current frames. In this way, the tracking
results are used to create a better model of the background.
The current frame is used as the background model for all
pixels not in M. The question is how to determine the
classification of the pixels in M.

To classify and replace the pixels in M, we use an
inpainting algorithm based on [22]. In the original
inpainting algorithm, one pixel at a time is replaced based
on directional and smoothness constraints until the
background model is complete. This generally produces
an accurate background model, particularly in areas of
constant appearance such as roadways.

Starting from this algorithm, we modify the
replacement of each pixel as follows. Let vg denote the
value computed by this algorithm for a particular pixel.
Under the assumption that this value is a reasonably
accurate estimate of the background at this pixel, we can

use this value to determine which of the four possible cases
identified above is applicable. Let v1 and v2 denote the
value of this pixel in the previous and current frames. We
define the probability that vi contains the background to be

pi = exp

{

−
(vi − vg)2

2σ 2

}

× fi, (6)

where fi is the fraction of surrounding pixels that were
identified as being background pixels and σ is a
user-defined constant. We have used σ = 20 in our
implementation. Based on these definitions, we set the
value of the output pixel to

v =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

v1, (p1 ≥ T ) ∩ (p2 < T )
v2, (p1 < T ) ∩ (p2 ≥ T )
v1p1+v2p2

p1+p2
, (p1 ≥ T ) ∩ (p2 ≥ T )

vg, otherwise

, (7)

where T is a threshold that controls how large the
probability needs to be for a pixel to be considered a
background pixel. We have used T = 1/3 in our
implementation. We call this method inpainting-2.

Fig. 6g shows the resulting background patch after
applying inpainting-2 to the current and previous frames.
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Fig. 6a is the current frame, Fig. 6b the previous frame
shifted, and Fig. 6c the initial mask M alluded to earlier.
Fig. 6i shows the classification of each pixel based on (7):
Red pixels were copied from the previous frame, blue
pixels from the current frame, magenta pixels are a
weighted average of the previous and current frame, and
green pixels were kept at the inpainted value. The ground
truth pixel classifications are shown in Fig. 6d. The
classifications mostly agree, indicating that using the
proposed inpainting-2 algorithm, we are able to correctly
identify which pixels from each frame belong to the
background.

Qualitatively, the primary difference between
inpainting and inpainting-2 is that inpainting-2 is better
able to preserve fine details. Comparing the detail images
in Figs. 6f, 6h, we see that the road markings are better
preserved with less smoothing, resulting in a more
accurate background. Fig. 6e is obtained with inpainting
and Fig. 6g with inpainting-2. Figs. 6f and 6h are for
comparing fine detail with the two inpainting schemes.

A possible failure mode of the inpainting-2 algorithm
is that false positives in the classification background
pixels can result in targets not being removed from the
background model. An example of this can be seen in the
bottom of Fig. 6g in which a stopped van is not entirely
removed (compare Fig. 6e). Nonetheless, we find that the
improvement in accuracy from attempting to classify the
pixels instead of simply inpainting all of them greatly
outweighs the potential errors it introduces. We back up
this statement quantitatively in Section V-A.

IV. COMBINED TRACKING AND SEGMENTATION

Our basic tracking strategy is based on a combined
tracking and segmentation algorithm we presented in [10].
Given a possible set of target locations, we first compute a
soft assignment for each pixel in the image to one or more
targets or the background. The appearance probabilities
for each target and the background are then computed, and
the results combined to obtain an overall score. This is
repeated for several sets of target locations and the set
with highest probability is retained as the final tracking
solution.

The primary advantage of using combined
segmentation and tracking is that it provides a principled
way to incorporate information about the background and
other targets into the tracking. Shadows from trees and
buildings can dramatically change the appearance of the
target. As a result, often the best model for the target is
whatever remains after accounting for everything else, i.e.,
whatever does not match the background or another target.

Another advantage of incorporating segmentation into
tracking is that it allows much more flexibility in the shape
of the target compared with the standard rectangular
bounding box. This flexibility is important because it
makes it possible to exclude background pixels from the
target model, reducing drift.

Mathematically, the goal of the tracking algorithm is to
solve the optimization problem

X(k) = arg max
X∈F

P {I |X}P {X|X(k−1)}, (8)

where X(k) denotes the locations of all of the targets in
frame k, I denotes the input image, and F denotes the set
of feasible target locations. F is used to constrain the
solution to be physically meaningful, i.e., no targets can
overlap and the range of motion of each target is limited.
Although (8) is a standard optimization problem solved by
nearly all probabilistic trackers, the constraints and
challenges of tracking vehicles in wide-area aerial video
require some special consideration, which will be
discussed in the following sections.

A. Generating Temporary Targets

Implicit in our tracking and segmentation algorithm is
the assumption that every pixel was generated by either
one of the known targets or the background. However,
in a road environment, there will often be other moving
vehicles near the known targets. These vehicles generate
pixels that do not belong to any of the targets or the
background. This can result in the known targets jumping
to other moving objects.

A solution to this problem is to automatically detect all
of the moving objects near the known targets and initialize
them as temporary targets, i.e., targets that are used only
for one frame. Detecting moving targets is fairly easy
because we have an accurate background model. We, first,
threshold the absolute difference between the previous
image patch and the background model to produce a mask
of pixels that belong to moving objects in the scene. After
applying morphological operations to smooth the mask,
we find connected components to determine possible
temporary targets. The final step is to filter out any
components that are too small or correspond to a known
target in the previous frame. Those components that
remain are used as temporary targets.

Fig. 7 shows the absolute difference and the
thresholded mask for an example set of image patches.
In this case, there are five connected components of which
three are large enough to be targets. One of these
corresponds to a known target (the white car) from the
previous frame, but the other two become temporary
targets. Fig. 7a is the current frame, Fig. 7b the previous
frame, Fig. 7c the background model, Fig. 7d the absolute
difference of the background and the previous frame, and
Fig. 7e the final result that shows three likely targets.

B. Computing Individual Probabilities

To optimize (8), we need to specify two distributions,
the appearance distribution P{I|X} and the prior
distribution P{X|X(k−1)}. For both distributions, we
simplify the problem by treating all targets as
independent. Hence, for N targets, the appearance
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Fig. 7. Absolute difference between background model and previous frame and mask of those pixels exceeding threshold.

distribution can be decomposed into

P {I|X} =
N
∏

i=0

P {I|xi}, (9)

where xi is the location of the ith target and i = 0
corresponds to the background. Similarly, the prior
distribution can be decomposed into

P {X|X(k−1)} =
N
∏

i=0

P {xi |x(k−1)
i }, (10)

where the prior for the background target is defined to be
1. Hence, we can rewite (8) as

X(k) = arg max
X∈F

N
∏

i=0

P {I |xi}P {xi |X(k−1)
i }. (11)

Note that we can evaluate the probabilities for each target
independently, which greatly improves the efficiency over
evaluating the probabilities together. However, the
optimization itself must consider all targets together
because X must be drawn from the feasible set F . In this
section, we explain how to evaluate the individual
probabilities, while the next section will explain the
optimization.

1) Appearance Distribution P{I|x}: Many applications
in computer vision use the Gaussian distribution to model
appearance because of its simplicity and familiarity.
However, it tends to underestimate the probability of rare
events occurring which is unrealistic and can have a
profound negative impact on performance [23–26]. For
this reason, we model each pixel with a standard
t-distribution that has probability density function

t(z|μ, s, ν) =
Ŵ
(

ν+1
2

)

Ŵ
(

v
2

)√
πνs

[

1 +
1

ν

(z − μ)2

s

]− ν+1
2

,

(12)

where μ is the location parameter specifying the median
of the distribution, s is the scale parameter, which is
similar to variance, and ν is the degree-of-freedom
parameter, which controls the heaviness of the tails [27].
In all of our experiments, we estimate μ and s online from
the data but fix ν at 5.

For simplicity, we treat each pixel belonging to the
target as coming from independent distributions with

separate means but shared scale and degree-of-freedom
parameters. Thus, the appearance distribution is given by

P {I|x} �=
∏

xi∈DI

t (I (xi)|μ(xi − x), s, ν) , (13)

where DI is the domain of the image, μ(x) is the mean
image of the target, and s and ν are the common scale and
degree-of-freedom parameters.

The segmentation of the target is denoted z(xi |x) and
specifies the probability that the pixel at location xi was
generated by the target given that the target is centered at
x. z(xi |x) can easily be computed using Bayes’ rule

z(xi |x) =
pt

pt + pb

, (14)

where pt and pb are the appearance probabilities of the
target of interest and the background for the pixel at
location xi . Note that only the target of interest and the
background need to be considered because we enforce the
constraint that no targets can overlap.

Given the segmentation, we wish to modify the
appearance distribution given above so that pixels that are
not likely to belong to the target have only a small impact
on the overall probability, while pixels, which are
definitely from the target, have a large impact on the
overall probability. We can achieve this by weighting the
scale factor for each pixel based on the segmentation so
that (13) becomes

P {I|x} �=
∏

xi∈DI

t (I(xi)|μ(xi − x), sw(xi, x), ν) , (15)

with

w(xi, x) = exp {k(1 − z(xi |x))} , (16)

where k > 0 is a weighting factor that controls the
importance of the segmentation. The idea behind (16)
is that for segmentation probabilities close to 1,
w(xi, x) ≈ 1, and so the scale factor is unchanged.
However, for segmentation probabilities close to 0,
w(xi, x) ≈ exp{k}, which is a large number causing these
pixels to have a large scale factor (which corresponds
to a large variance) and thus limiting their impact on the
overall probability. Note that the form of (16) was selected
to ensure that the product of the normalizing scale factors
of the probability distributions in (9) remains constant
regardless of the segmentation.
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2) Prior Distribution P {x|x(k−1)}: The full state for
each target is given by y = [x y v θ a ω]T , where (x, y) is
the position, v is the velocity, θ is the direction of travel, a

is the acceleration, and ω is the angular rate. Our
continuous time model for the target is given by

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẋ

ẏ

v̇

θ̇

ȧ

ω̇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

v cos(θ)
v sin(θ)

a

ω

0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (17)

After discretizing the system, we use an extended
Kalman filter to estimate the target state and covariance at
each frame. The process and measurement covariances
were determined through maximum likelihood fitting of
several manually marked vehicle tracks. A Kalman filter
was used because of its simplicity, although more
advanced techniques, such as the generative maneuvering
target model [28] may yield better results.

The prediction step of the Kalman filter gives an
estimated mean and covariance for the state in the next
frame. By marginalizing out the position variables, we can
use this as the prior P {x|x(k − 1)}.

C. Solving for the Optimal Positions

Recall that our goal is to optimize (11), which is
equivalent to

X(k) = arg max
X∈F

N
∑

i=0

log
(

P {I|xi}P {xi |x(k−1)
i }

)

. (18)

To optimize this equation, we first compute the individual
log probabilities for each target on a dense
grid over the feasible positions. In our case, the feasible
positions for a target are taken to be all locations with a
prior probability above some threshold, up to a maximum
distance R from the predicted location.

If our feasible set F was given by R
2N , then we could

optimize (18) by simply maximizing the individual terms
of the sum, i.e., by choosing the maximum individual
probabilities for each target. However, this would ignore
the physical reality that targets in wide-area aerial video
cannot overlap.

We can enforce the constraint that targets cannot
overlap by treating (18) as a maximum-weighted
assignment problem. As a simplifying assumption, we first
determine the locations of local maxima of the log
probabilities for each target. We next merge the locations
of the maxima from different targets, with locations that
are sufficiently close treated as the same. These merged
locations represent the candidate locations where there
could be targets.

We next create a bipartite graph connecting the targets
to the maxima locations with the edge weights given by
the log probabilities. Note that we also add nil maps to the
graph so that a target does not need to correspond to any
of the locations and not every location needs to have a

target. We can now use the Hungarian algorithm to
efficiently find the assignment between the targets and
locations that maximizes the sum of the log probabilities,
while ensuring that each location maps to at most one
target and vice versa. This is precisely the optimization
problem (18). Note that any target that was mapped to a
nil location is assumed to be missing in the current frame.

D. Updating the Target Models

After tracking is completed for each frame, we update
the target models of all successfully tracked targets. In all
of the model parameter updates, we make use of the
segmentation of the target in such a way as to ensure that
pixels that were probably not generated by the target do
not influence the model. This is important to avoid
common tracking problems, such as drift, which occur
when background objects become part of the target model.

Given the optimal location for a target x, the nominal
scale parameter s is updated using a weighted variance

s=αs+(1 − α)

(

ν − 2

ν

)
∑

z(xi |x) (I (xi) − μ(xi − x))2

∑

z(xi |x)
,

(19)

where α is a weighting factor that controls the importance
of the previous estimate, z(xi |x) is the segmentation
computed using (14), and the sums are taken over all
pixels with nonzero segmentation. In our experiments, we
have used α = 0.75. Note that the ratio (ν − 2)/ν corrects
for the difference between the variance and scale factor of
a univariate t-distribution; a t-distribution with scale factor
s has variance s × ν/(ν − 2).

If z(xi |x) is 1 for all pixels, then the second term in
(19) is just the sample variance of all the pixels assigned to
this target. By weighting the samples using z(xi |x), pixels
that are not likely to be part of the target (i.e., z(xi |x) ≈ 0)
have no impact on the variance computation. Note that the
scale factor is updated for both the background and the
targets.

The mean image for the targets is also updated using a
weighted average in which the segmentation z(xi |x),
computed using (14), provides the weighting. This case is
slightly more complicated than the scale factor because we
wish to keep track of a separate mean for each pixel that
makes up the target. The idea is to use a weighted mean
for the appearance of each pixel over time, where the
weight again comes from the segmentation to limit the
impact of pixels that were not likely to be from the target

μ(xi − x) = I(xi)

(

z(xi |x)

min(β, z̄(xi − x)) + z(xi |x)

)

,

+ μ(xi − x)

(

min(β, z̄(xi − x))

min(β, z̄(xi − x)) + z(xi |x)

)

(20)

where z̄(xi − x) is the sum of the segmentation at the pixel
location xi − x over all previous frames. The constant
term β is used to limit the weight on the previous mean.
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Fig. 8. Example image from background sequence used to objectively evaluate background models along with manually generated vehicle mask.

This is important because the target appearance changes
over time, and so the target appearance needs to be able to
change over long tracks. We have used β = 10 in our
experiments.

The final step in updating the model is to add and
remove pixels from the target mask. For each target, we
have a pixel mask relative to the center coordinate that
indicates pixels that could possibly be part of the target.
These pixels are updated as part of the scale and mean
updates above, with all other pixels assumed to have
segmentation 0. Initially, the mask for each target is a
square box. However, many of these initial pixels are
actually part of the background, not the target. Although
these pixels should have a segmentation of approximately
0, they add to the computational complexity and may
occasionally falsely match part of the background.
Furthermore, some of the target pixels are likely to be
missing from the initial mask. Also, the set of pixels that
make up the target can change over time as the orientation
of the vehicle changes.

To compensate for these changes, we update the mask
after each successful track. First, we smooth the
segmentation over several frames and then threshold the
result. The set of pixels that are above the threshold are
assumed to definitely be part of the target and are used as
an initial mask for the target. Starting from the initial
mask, we then iterate twice over the mask, adding all
bordering pixels. By adding these bordering pixels to the
mask, we allow for new pixels to be added to the target
model over time. Together, these two operations, first
limiting to just the definite target pixels and then adding
bordering pixels, allow the tracker to compensate for slow
changes in scale and orientation and also make the tracker
faster and more robust compared with a fixed square mask.

V. RESULTS

In this section, we present results for both the
background generation procedure from Section III and the
combined tracking and segmentation algorithm from
Section IV.

A. Background Generation

It is difficult to objectively evaluate the algorithm for
generating a static background because there is no ground
truth available. Although much of the difference between
subsequent frames is due to object motion, tall buildings
also exhibit substantial parallax with an apparent motion
of up to a few meters per frame. It is difficult to say what
the ground truth is in this case. There are also differences
due to occasional blurring and contrast changes that
further complicate the issue.

In an attempt to obtain some sort of an objective
measure, we captured 30 consecutive stabilized image
patches with dimensions 400 × 500 of the same location
showing a busy intersection. We then manually segmented
the vehicles on the roadways in each image (note that
parked vehicles were not included, but temporarily
stopped vehicles were). These segmented regions
represent the areas that are definitely not the background.
We assumed that the rest of the image was a reasonable
estimate of the background. Fig. 8 shows an example
image from this set along with the manually generated
vehicle mask.

We next considered each pair of consecutive images
from the set of 30 and evaluated various algorithm for
generating a background. The ground truth for each pixel
was taken from the most recent frame in which the pixel
was not marked as belonging to a vehicle. In all, we tested
four methods. First, we considered simply using the mean
of the pair of images as the background. This gives a
very crude model that represents the baseline worst-case
performance. Second, we considered the algorithm given
in [21] in which the background is given by the median
over sets of three images (an additional previous image
was used in this case). Third, we evaluated the basic
inpainting algorithm of Telea [22]. Finally, we considered
our proposed inpainting-2 algorithm.

Table II gives the average absolute pixel error between
the generated background and the ground truth for all four
methods. Only pixels that were marked as belonging to a
vehicle in the current or previous frame were used in
computing the average to highlight the differences
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TABLE II

Mean Absolute Pixel Error in Either the Whole Image or Just

the Regions with Moving Objects for Four Different

Background Modeling Methods

Model

All Vehicle

Pixels

Limited

Vehicle Pixels

Mean 33.21 29.41

Median [21] 15.33 10.14

Inpainting 12.33 11.48

Inpainting-2 7.15 5.15

between the methods. The second column shows results
for all pixels associated with vehicles in the current or
previous frame, including vehicles, which were moving
slowly or stopped. In the third column, we further
restricted the average to only those pixels that
corresponded to the background in either the current or the
previous frame. By doing this, we are able to focus on the
results for moving vehicles as opposed to both moving and
stopped vehicles. In both cases, the proposed inpainting-2
algorithm gives the best performance by a wide margin.

B. Tracking

In this section, we present both qualitative and
quantitative results for the tracking algorithm presented in
Section IV. Fig. 9 shows an example tracking result in
which a vehicle is successfully tracked for 151 frames
across five of the cameras before leaving the field of view.
This sequence is particularly difficult because the vehicle
is tracked down small side streets that have overhanging
trees and shadows. The vehicle also turns at two
intersections, resulting in large changes in the vehicle
orientation. Because of these difficulties, the appearance
of the vehicle changes dramatically over the course of the
sequence, and so it is very unlikely that a tracker based
only on the object appearance could successfully track the
vehicle. However, by including the background
information, it is possible to track the vehicle even under
these difficult circumstances.

To objectively evaluate the tracking performance, we
also computed two standard measures of tracking
performance, which are often used to evaluate multitarget
tracking algorithms. The first measure is a simplified
version of the multiple object tracking accuracy (MOTA)
from which is given by

MOTA = 1 −

n
∑

t=1

Nt
∑

i=1

[

overlap(Ti,t , Gi,t ) < 0.25
]

n
∑

t=1

Nt

, (21)

where n is the number of frames, Nt is the number of
targets specified in the ground truth for the tth frame, and
Ti,t and Gi,t are the bounding boxes based on the tracker
and ground truth, respectively, for the ith target in the tth
frame, and overlap computes the overlap between these

bounding boxes given by

overlap(Ti,t , Gi,t ) =
∣

∣Ti,t ∩ Gi,t

∣

∣

∣

∣Ti,t ∪ Gi,t

∣

∣

. (22)

The second objective measure we used is called the
multiple object tracking precision (MOTP) and is just the
average overlap for all targets given by

MOTP =

n
∑

t=1

Nt
∑

i=1

overlap(Ti,t , Gi,t )

n
∑

t=1

Nt

.

For the single target example from Fig. 9, we obtained a
MOTA of 1 because the vehicle is successfully tracked in
every frame in which it is visible. The MOTP for this
sequence is 0.58. The precision is fairly low because the
tracker makes use of the vehicle shadow, which causes
the bounding box to be shifted somewhat compared
with the ground truth. To verify the advantages of
combining tracking and segmentation, we also attempted
to track the same vehicle assuming a rectangular bounding
box for the target instead of per pixel segmentation. This
method was able to track the target as long as it remains in
the open with minimal changes in appearance. However,
when the target enters a small side road with heavy tree
shadows, the tracker latches onto the background and the
target is lost (see Fig. 1). This occurs about halfway
through the sequence resulting in a MOTA of only 0.49 if
segmentation is not used.

To further evaluate the algorithm, we also tested it on a
much larger set of vehicles consisting of 17 vehicles. In
this case, we tracked all vehicles that crossed a particular
intersection heading west on a busy road. Tracking
vehicles on this road was challenging due to several large
building shadows. Fig. 11 shows the resulting vehicle
tracks. Most of the vehicles simply continued on the road
for the length of the sequence; however, three of the 17
vehicles turned into parking lots. Of these, the two shown
in magenta and green in Fig. 11 were successfully tracked,
while the third was lost.

For this sequence, the MOTA is 0.86, and the MOTP is
0.45. Fig. 12 shows a typical tracking failure from this
sequence. In this case, a gray-colored vehicle nearly
disappears when it enters a building shadow. The vehicle
then turns; however, the tracker expects it to continue
straight. By the time the vehicle re-emerges from the
building shadow, it is too far from the predicted location to
be reacquired.

VI. CONCLUSIONS

In this paper, we have presented a complete framework
for tracking vehicles in wide-area aerial video. While
other research has focused on tracking vehicles in
wide-open areas such as highways, we have focused on
small side streets. This brings additional challenges such
has shadows from buildings and occlusion by trees.
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Fig. 9. Tracking single vehicle on side street with significant shadows/occlusion. Top figure shows map of entire tracking sequence starting from

upper right corner. Bottom figures shows results for every fifteenth frame, with corresponding locations marked in red on map.
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Fig. 10. Comparison of tracking with and without segmentation. Green result is with segmentation. Red result is without segmentation.

Fig. 11. Tracking multiple targets on busy road.

Fig. 12. Tracking failure in which vehicle turns while obscured by building shadow. Magenta “ + ” shows ground truth location, while black circles

show predicted target location.

To address these challenges, we present a method for
simultaneously segmenting and tracking vehicles. The
segmentation depends on an accurate background model
that we obtain via a novel inpainting algorithm. By
incorporating segmentation into the tracking, we are able
to track the vehicle without drifting even when the
appearance of the target changes dramatically.

Future work will focus on two areas. First, we would
like to automatically detect moving vehicles and track
them without user input. We believe the method described
in Section IV-A for generating temporary targets could be
adapted to this purpose. Special care will be needed to
avoid starting tracks on the tops of tall buildings, which
undergo significant parallax. Second, we would like to
improve the computational efficiency of the proposed
algorithm. This is important to use this method for
tracking the huge number of vehicles that may be present
in wide-area aerial video.

APPENDIX A. CALIBRATION RESULTS FOR THE CLIF
2007 DATA SET

Our camera model is of the form

P = K[Rcg tcg], (23)

where K is the matrix of intrinsic parameters and Rcg and
tcg capture the rotation and translation between the camera
and GPS/IMU. Hence, the image of world point xw is
given by the image point

xi = Pxw. (24)

Furthermore, it is assumed that the measured coordinate
xd = {xd, yd} differs from the true image coordinate
xi = {xi, yi} due to lens distortion with the transformation
given by

xd = krxi + 2p1xiyi + p2(r2 + 2x2
i ), (25)

yd = kryi + 2p2xiyi + p1(r2 + 2y2
i ), (26)

where r =
√

x2
i + y2

i and

kr = 1 + k1r
2 + k2r

4 + k3r
6. (27)

The matrix K can be written as

K =

⎡

⎣

fx 0 cx

0 fy cy

0 0 1

⎤

⎦ .

Using this form for the matrix K, Table III gives the
intrinsic calibration results for all six cameras. For the
extrinsic calibration, we set tcg = 0 for all six cameras
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TABLE III

Intrinsic Calibration Results

Camera 0 1 2 3 4 5

fx 14842.6 14832.0 14891.2 14799.1 14866.1 14825.0

fy 14794.1 14837.8 14853.2 14789.1 14864.2 14834.6

cx 1304.67 1396.33 1355.56 1339.13 1358.86 1284.32

cy 1943.50 2027.40 1979.65 1981.63 1973.12 1933.06

k1 0.369541 0.368353 0.351070 0.379073 0.336898 0.382780

k2 −2.97691 −2.89313 −2.97542 −3.53149 −1.68117 −3.23134

k3 0 0 0 0 0 0

ρ1 −0.002689 0.001948 −0.000062 0.000901 −0.001372 −0.003216

ρ2 0.000767 0.002364 0.001031 −0.000213 0.001554 −0.002103

TABLE IV

Extrinsic Calibration Results

Camera Rcg

0 −0.003056 0.999994 −0.001514

−0.992290 −0.003221 −0.123895

−0.123899 0.001124 0.992294

1 0.005981 0.999974 −0.004125

−0.992494 0.006440 0.122127

0.122150 0.003363 0.992506

2 −0.002183 0.985095 −0.171997

−0.991783 −0.024133 −0.125634

−0.127912 0.170309 0.977053

3 0.001986 0.985428 −0.170079

−0.992039 0.023357 0.123748

0.125918 0.168479 0.977630

4 −0.000729 0.986122 0.166018

−0.991915 0.020355 −0.125263

−0.126904 −0.164767 0.978135

5 0.013562 0.985288 0.170362

−0.991413 −0.008912 0.130467

0.130066 −0.170668 0.976706

because the distance between the cameras and the
GPS/IMU is negligible. The rotation matrices Rcg are
given in Table IV. Note that cameras one to five are
delayed by one time-step relative to the GPS/IMU and
camera 0, e.g., timestamp 101000 of the GPS/IMU
corresponds to timestamp 101000 for camera 0 but
timestamp 101001 for cameras one to five.

APPENDIX B. DERIVATION OF INLIER PROBABILITY
FOR MODIFIED RANSAC ALGORITHM

Recall that we choose three pairs from the initial
correspondences completely randomly, followed by four
more pairs that are also selected randomly but with a
constraint on their proximity to the initial three pairs.
Denote by xi, i = {1, 2, 3}, the initial three pairs and
yi, i = {1, 2, 3, 4}, the additional four pairs. Let S∗ denote
the event that the pair ∗ is an inlier, e.g., Sx2

means that x2

is an inlier. Furthermore, assume that the fraction of inliers
in the initial set of correspondences is given by w. We are
first interested in computing the probability that all the
selected points are inliers for a single random

selection, i.e.,

p̂ = P

{(

3
⋂

i=1

Sxi

)

⋂

(

4
⋂

i=1

Syi

)}

. (28)

We first split (28) using Bayes’ rule to obtain

p̂ = P

{

4
⋂

i=1

Syi

∣

∣

∣

∣

∣

3
⋂

i=1

Sxi

}

P

{

3
⋂

i=1

Sxi

}

. (29)

Note that the xi’s are independent of each other and that
the yi’s are independent given the xi’s. Hence, we can
rewrite (29) as

p̂ =
4
∏

i=1

P

{

Syi

∣

∣

∣

∣

∣

3
⋂

i=1

Sxi

}

×
3
∏

i=1

P
{

Sxi

}

, (30)

=
(

P
{

Sy

∣

∣Sx∗

})4
(P {Sx})3 , (31)

where Sy and Sx are shorthand for any Syi
and Sxi

respectively, and Sx∗ =
⋂3

i=1 Sxi
.

It is clear that P {Sx} = w, because these samples are
drawn from the initial set of correspondences. Computing
P {Sy|Sx∗} is more complicated and requires us to rephrase
the problem slightly. Let z be a randomly selected
correspondence form the initial set and let Rx,z denote the
event that two corresponding pairs x and z are within a
radius R in both images. Then, P {Sy|Sx∗} is equivalent to

P {Sz|Rx,z ∩ Sx}. (32)

Note that rather than constraining the selection of the
second point based on the first (as we did when selecting
y) and then asking if it is an inlier, we are now considering
an additional randomly selected point and asking whether
or not this point is an inlier given that it is within a certain
radius of the first point. Both events have equal probability
but the latter is easier to manipulate.

We can now use Bayes’ rule to rewrite (32) as

P {Sz|Rx,z ∩ Sx}

=
P {Rx,z|Sz ∩ Sx}P {Sz}

P {Rx,z|Sz ∩ Sx}P {Sz} + P {Rx,z|S̄z ∩ Sx}P {S̄z}
,

(33)
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where we have made use of the fact that Sx and Sz

are independent. Trivially, P {Sz} = w and P {S̄z} =
1 − w. Hence, the only remaining probabilities are
P {Rx,z|Sz ∩ Sx} and .P {Rx,z|S̄z ∩ Sx}. To compute these
probabilities, we need to know something about the spatial
distribution of the corresponding pairs in the images. We
assume that both the inliers and outliers are uniformly
distributed. Furthermore, we assume that the coordinates
of the matching pair in the two images are independent.

For P {Rx,z|Sz ∩ Sx}, if x and z are within radius R in
one image than the must be in the other as well by the
assumption of a local similarity transform. Hence,
P {Rx,z|Sz ∩ Sx} is just the probability that two randomly
selected inliers are within a radius R in one image, which

is given by πR2

A
, where A is the image area.

For P {Rx,z|S̄z ∩ Sx}, knowing that x and z are within
radius R in one image tells us nothing about their
relationship in the other image by assumption. Hence, Rx,z

is true only if x and z happen to be within a radius R in
both images independently. This probability is given by

πR2

A
× πR2

A
=
(

πR2

A

)2

. Putting everything together,

we have

P {Sz|Rx,z ∩ Sx} =
πR2

A
w

πR2

A
w +

(

πR2

A

)2

(1 − w)

(34)

=
w

w + πR2

A
(1 − w)

. (35)

Thus, (30) can be rewritten as

p̂ = ŵ4w3, (36)

where

ŵ =
w

w + πR2

A
(1 − w)

. (37)

Finally, we need to compute the probability p of getting at
least one success in N independent trials. We note that the
probability of the complement, i.e. of no successes in N

trials is given by (1 − p̂)N . Hence, the probability of at
least one success is given by

p = 1 − (1 − p̂)N . (38)
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