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Abstract—This paper presents a new technique for high-ac-
curacy tracking of vocal-tract resonances (which coincide with
formants for nonnasalized vowels) in natural speech. The tech-
nique is based on a discretized nonlinear prediction function,
which is embedded in a temporal constraint on the quantized
input values over adjacent time frames as the prior knowledge for
their temporal behavior. The nonlinear prediction is constructed,
based on its analytical form derived in detail in this paper, as
a parameter-free, discrete mapping function that approximates
the “forward” relationship from the resonance frequencies and
bandwidths to the Linear Predictive Coding (LPC) cepstra of
real speech. Discretization of the function permits the “inversion”
of the function via a search operation. We further introduce the
nonlinear-prediction residual, characterized by a multivariate
Gaussian vector with trainable mean vectors and covariance
matrices, to account for the errors due to the functional approx-
imation. We develop and describe an expectation–maximization
(EM)-based algorithm for training the parameters of the residual,
and a dynamic programming-based algorithm for resonance
tracking. Details of the algorithm implementation for computation
speedup are provided. Experimental results are presented which
demonstrate the effectiveness of our new paradigm for tracking
vocal-tract resonances. In particular, we show the effectiveness of
training the prediction-residual parameters in obtaining high-ac-
curacy resonance estimates, especially during consonantal closure.

Index Terms—Continuity constraint, dynamic programming,
expectation–maximization (EM) optimization, formant, greedy
search, linear predictive coding (LPC) cepstrum, nonlinear pre-
diction, prediction residual, quantization, vocal-tract resonance
(VTR).

I. INTRODUCTION

R
ESONANCE frequencies of the human vocal tract are of

fundamental importance in speech production and percep-

tion [12], [24]. They are the natural frequencies, or eigenfre-

quencies, of the air path in the vocal tract from glottis to lips, and

the air path is shaped principally by the tongue, jaw, and other ar-

ticulators. Since such vocal tract resonances (VTRs) are defined

as characteristics of a physical system, they are required to exist

at some frequency values at all times, even if the mouth is closed

(and during any other consonantal constriction or closure) with

weak or no measurable emitting acoustic signals. VTR frequen-

cies are constrained to change continuously over time since they
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are a smooth function of the vocal tract’s airway shape, which

is determined by the continuously moving articulators. As such,

VTRs do not disappear, split, or merge during any portion of a

speech utterance, regardless of the acoustic evidence which may

suggest otherwise.

The VTRs defined above largely in articulatory terms are

sometimes called formants in the speech synthesis and anal-

ysis literature [2], [15], [19], [25]. However, the predominant

use of the term “formant” in the literature is based on the

acoustic definition: Formants are associated with peaks or

prominences in the smoothed power spectrum of the acoustic

signal of speech. With this acoustic definition, formants would

“disappear” during complete consonantal closure, and may

“split” or “merge” under other conditions when the peaks in the

acoustic spectrum become ambiguous [20], [21]. One extreme

example of equating formants with acoustic spectral peaks in

the literature is the use of a mixture of Gaussians to fit the

spectrum in order to identify the formant frequencies as the

Gaussian means [30]. Most of the auditory modeling studies

on formant extraction are also based on the similar concept

of formants as correlates of spectral prominences of speech

acoustics instead of the underlying vocal tract resonances [5],

[9]. For the vocalic sounds with no narrow local constrictions

in the vocal tract, the articulatorily defined “formants” (i.e.,

VTRs) and the acoustically defined formants coincide with

each other; indeed, the natural frequencies of the vocal tract are

evidenced by the energy concentration in the acoustic power

spectrum for such sounds. However, during typical consonant

production where narrow constriction or full closure in the

vocal tract is made, VTRs often deviate from the spectral

peaks. In this case, the VTRs are frequently unobservable due

to pole-zero cancellation, where sometimes simply no acoustic

signal is emitted to the air during the closure.

This paper addresses the issue of automatic tracking of con-

tinuous VTRs in natural speech utterances. In particular, we

note that estimation of VTRs during consonantal closure has

not been adequately dealt with in the existing literature on for-

mant tracking, and this will hence be the major focus of the re-

search presented in this paper. Our approach is to use a tem-

poral smoothness constraint, together with the local quantized

VTR matching function, to obtain an optimal track of the VTR

sequence for all segments of speech utterances including all

types of consonantal constriction and closure. The local VTR

matching function is established via a novel analytical nonlinear

predictor characterizing the relationship between the VTR vari-

ables (resonance frequencies and bandwidths) and the linear
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predictive coding (LPC) cepstral coefficients. To implement op-

timal VTR tracking algorithms, we quantize the VTR space, and

search for all possible (quantized) VTR candidates in order to

locally match the observed acoustic observation represented in

the same LPC cepstral space.

The estimation technique for the VTR variables via the quan-

tized nonlinear function presented in this paper differs from pre-

vious published work on formant estimation in several ways.

Most formant estimation methods rely on some type of LPC

spectral analysis, followed by peak picking or root finding [1],

[21], [27], which may then be further combined with temporal

continuity constraints. More recent work exploits dynamic pro-

gramming along the frequency axis to optimize the locations of

these formant candidates [28]. In contrast, the new technique

presented in this paper explores all possible candidates, via the

full-space search of all frequency values (subject only to the

quantization error), for fitting the measured acoustic data to both

the nonlinear prediction function and the temporal constraint si-

multaneously. No explicit spectral analysis and error-prone peak

picking or root finding are needed.

The aspect of quantizing the VTR space in our technique

is similar to the hidden Markov model (HMM) state-space

construction in an earlier HMM approach to formant tracking

[20]. That HMM approach uses state-dependent discrete distri-

butions on the vector-quantized LPC spectra to map from the

formants to the LPC spectra, and the distributions require exten-

sive training with labeled data. In contrast, our new technique

is based on direct, analytical mapping from the VTR variables

to LPC cepstra, and no training data or process is required.

(In our technique, the use of LPC cepstra is advantageous

over LPC spectra because the former provides a much simpler

form of the analytical function.) Further, the earlier HMM

approach requires a special “null” state to represent “missing”

formants during consonantal closure. Our new approach, how-

ever, is able to track continuous time-varying VTR variables

including those during the closure, eliminating the “missing

formant” problem entirely. The ability to produce VTRs for

each time frame without any missing values is important for

applications to speech recognition based on standard statistical

pattern-matching approaches that require consistent front-end

features over time and over the feature dimension. The concept

of providing continuity constraints across difficult speech

regions to avoid the “missing formant” problem has been

explored in other related work (e.g., [17] and [29]). The new

approach presented in this paper, however, is the only one that

integrates this concept with the use of a quantized analytical

function that enables an efficient search over the full VTR

space. A number of successful signal processing techniques,

including parameter quantization, expectation–maximization

(EM)-based parameter training, constrained search, and dy-

namic programming, are embedded within a unified discretized

dynamic-system framework for estimating VTR sequences

without explicit hand-labeling of training data. This integrated

approach gives our method its novelty.

The organization of this paper is as follows. In Section II, we

derive and present an approximate nonlinear mapping or pre-

diction function from the VTR variables to the speech acous-

tics represented in terms of LPC cepstra. Graphical illustrations

of the components of the function are provided. We also de-

scribe details of a quantization scheme on the VTR variables as

input to the function, permitting direct inversion of this func-

tion to give a crude VTR estimate. In Section III, we intro-

duce the nonlinear-prediction residual, characterized by a mul-

tivariate Gaussian vector with the trainable mean vector and

covariance matrix, to account for errors due to the functional

approximation. We further introduce a simplified constraint on

the quantized VTR values over adjacent time frames as the prior

knowledge for the VTRs temporal behavior. A combination of

the constraint and the mapping function with trainable resid-

uals constitutes a dynamic system model of speech. Then, in

Sections IV and V, respectively, we present algorithms for EM

training of the residual’s parameters and for dynamic program-

ming based VTR tracking. In Section VI, some implementation

details for computation speedup and experimental results are

presented. The experimental results demonstrate the effective-

ness of our new paradigm for VTR training and of the related

algorithms with their efficient implementation.

II. NONLINEAR FUNCTION FROM VTR TO LPC

CEPSTRUM AND ITS QUANTIZATION

A. Derivation of the Nonlinear Function

Denote the VTR vector, which consists of a set of resonant

frequencies and bandwidths , as

where

...
...

As a basis for local, frame-level VTR estimates based on the

match between the observed and predicted speech acoustics, we

in this section present an approximate, vector-valued, nonlinear

mapping function

from the VTR vector, , to the observed speech acoustics, .

Depending on the type of the acoustic measurements as the

output in the mapping function, closed-form computation for

may be impossible, or its in-line computation may be too

expensive. To overcome these difficulties, we quantize each di-

mension of over a range of frequencies or bandwidths, and

then compute for every quantized value of . In the earlier

work reported in [3], we described a procedure for constructing

a function when the output acoustic measurements are

the Mel-frequency cepstral coefficients (MFCCs). This proce-

dure incurred very high costs of computation and memory due

to the interaction of several resonances in determining the output

MFCC values and also due to a lack of closed-form expres-

sions of the nonlinear function. In this section of the paper, we

present a new scheme where the closed form of the function can

be easily derived when the output of the nonlinear function be-

comes LPC cepstra instead of MFCCs. The use of the new, an-

alytical function from VTRs to LPC cepstra offers a significant
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advantage of computation efficiency due to the decomposition

property which we derive and describe below.

Consider an all-pole model of speech, with each of its poles

represented as a frequency-bandwidth pair . Then the

corresponding complex root is given by [1]

(1)

where is the sampling frequency. The transfer function with

poles and a gain of is

(2)

Taking logarithm on both sides of (2), we obtain

(3)

Now using the well-known infinite series expansion formula

and with , we obtain

(4)

Comparing (4) with the definition of the one-sided -transform

we immediately see that the inverse -transform of in

(4), which by definition is the LPC cepstrum, is

(5)

and .

Using (1) to expand and simplify (5), we obtain the final form

of the nonlinear function (for )

(6)

Fig. 1. First-order cepstral value of a one-pole (single-resonance) filter as a
function of the resonance frequency and bandwidth. This plots the value of one
term in (6) versus f and b with fixed n = 1 and f = 8000 Hz.

Fig. 2. Second-order cepstral value of a one-pole (single-resonance) filter as a
function of the resonance frequency and bandwidth (n = 1 and f = 8000Hz).

B. Discussion and Illustration

Equation (6) gives the decomposition property of the LPC cep-

strum—each of the LPC cepstral coefficients is a sum of the con-

tributions fromseparate resonanceswithout interactingwitheach

other. This contrasts the use of the MFCC as the output of the non-

linear function studied in [3], which is a function of all interacting

VTRs, instead of in a simple additive form as in (6). (Also, the

nonlinear function in [3] can only be determined in a tabulated

formusinganumericalprocedurerather thaninananalyticalform

developed here.) The key advantage of the decomposition prop-

erty is that it makes the optimization procedure highly efficient

for inverting the nonlinear function from the acoustic measure-

ment to the VTR which we will detail in Section VI-A.

As an illustration, in Figs. 1–3, we plot the value of one term,

, in (6) as a function of the resonance

frequency and bandwidth , for the first-order , second-

order ,andthefifth-order cepstrum,respectively.

(The sampling frequency Hz is used in all the plots.)
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Fig. 3. Fifth-order cepstral value of a one-pole (single-resonance) filter as a
function of the resonance frequency and bandwidth n = 5 and f = 8000 Hz.

These are the cepstra corresponding to the transfer function of a

single-resonance (i.e., one pole with no zeros) linear system. Due

to the decomposition property of the LPC cepstrum, for multiple-

resonance systems, the corresponding cepstrum is simply a sum

of those for the single-resonance systems.

Examining Figs. 1–3, we easily observe some key properties

of the (single-resonance) cepstrum. First, the mapping function

from the VTR frequency and bandwidth variables to the cep-

strum, while nonlinear, is well behaved. That is, the relation-

ship is smooth, and there is no sharp discontinuity. Second, for

a fixed resonance bandwidth, the frequency of the sinusoidal

relation between the cepstrum and the resonance frequency in-

creases as the cepstral order increases. The implication is that

when piecewise linear functions are to be used to approximate

the nonlinear function of (6), more “pieces” will be needed

for the higher order than for the lower order cepstra. Third,

for a fixed resonance frequency, the dependence of the low-

order cepstral values on the resonance bandwidth is relatively

weak. The cause of this weak dependence is the low ratio of

the bandwidth (up to 800 Hz) to the sampling frequency (e.g.,

16 000 Hz) in the exponent of the cepstral expression in (6).

For example, as shown in Fig. 1 for the first-order cepstrum,

the extreme values of bandwidths from 20–800 Hz reduce the

peak cepstral values only from 1.9844 to 1.4608 (computed

by and , respectively).

The corresponding reduction for the second-order cepstrum is

from 0.9844 to 0.5335 (computed by and

, respectively). In general, the exponen-

tial decay of the cepstral value, as the resonance bandwidth in-

creases, becomes only slightly more rapid for the higher order

than for the lower order cepstra (see Fig. 3). This weak depen-

dence is desirable since the VTR bandwidths are known to be

highly variable with respect to the acoustic environment [18],

and to be less correlated with the phonetic content of speech

and with human speech perception than the VTR frequencies

[12], [24].

In the earlier literature, a special case of (6), with the ex-

pression for only a single resonance (i.e., ), was shown

in [4] (with no derivation). However, the tentative conclusion

made in [4] that the resonance frequency can be approximated

by a weighted sum of LPC cepstra seems questionable. Based

on (6) and its components’ illustration in Figs. 1–3, the inver-

sion from LPC cepstra to resonance frequencies is clearly a non-

linear process. The empirical plots [4, Fig. 1] which show a

gross linear trend between linearly combined cepstra and mea-

sured formants may be somewhat misleading in two ways. First,

the plots were made over a wide frequency range, e.g., F2 or

is ranged from 700–2600 Hz. If a smaller frequency range were

to be examined, the deviation from linear regression, which can

be as large as 600 Hz for F2 (the middle plot of Fig. 1 in [4]),

would give a rather poor linear fit. For example, Fig. 1(b) of

[4] used the entire frequency range from 700–2600 Hz for the

F2 variation, which gave an artificially high correlation coeffi-

cient of 0.971. If the range of the F2 variation is limited to only

that for each speech sound in context (e.g., 1800–2400 Hz for

sound/i/), then the correlation coefficient would be much lower,

likely to be of a similar value to what the (mildly) nonlinear re-

lationship of (6) can predict. Second, the weights of combining

LPC cepstra reported in [4] were trained using multiple linear

regression with the same data as given in the plots. It is not clear

whether the gross linear trend over a wide frequency range can

still hold for different data sets.

C. Quantization of VTR Variables as Input to the

Nonlinear Function

Due to the definitive nonlinearity, analytically derived as (6)

and graphically shown in Figs. 1–3, accurate inversion from

LPC cepstra to VTR variables (resonance frequencies and band-

widths) requires nonlinear techniques. In our current work, we

adopt a novel quantization and search technique to accomplish

the purpose of nonlinear function inversion.

In our implementation and experimental work, we choose to

use four poles in the LPC model of speech [i.e., using in

(6)], since these lowest VTRs carry the most important phonetic

information of the speech signal. That is, an eight-dimensional

vector is used as the input to

the nonlinear function . For the output of the nonlinear

function, up to 15 orders of LPC cepstra are used. The zeroth

order cepstrum, , is excluded from the output vector, making

the nonlinear mapping from VTRs to cepstra independent of the

energy level in the speech signal. This corresponds to setting the

gain in the all-pole model of (2). (In the earlier work

of [3], a six-dimensional input vector of

and a 12-dimensional output vector of MFCCs were used. We

found that using the additional VTR improves the overall VTR

tracking accuracy, and using the LPC cepstra instead of MFCCs

improves computational efficiency.)

For each of the eight dimensions in the VTR vector, we use

scalar quantization in our current VTR tracker implementation.

Since is relevant to all possible phones in speech, we

select the appropriate range for each VTR frequency and its

corresponding bandwidth to cover all phones according to

the considerations discussed in [2] and [7]. Table I lists the

range, from minimal to maximal frequencies in hertz, for each

of the four VTR frequencies and bandwidths. It also lists the

corresponding number of quantization levels used. Bandwidths

are quantized uniformly with five levels while frequencies are
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TABLE I
QUANTIZATION SCHEME FOR THE VTR VARIABLES, INCLUDING THE

RANGES OF THE FOUR VTR FREQUENCIES AND BANDWIDTHS AND

THE CORRESPONDING NUMBERS OF QUANTIZATION LEVELS

mapped to the Mel-frequency scale and then uniformly quan-

tized with 20 levels. The total number of quantization levels

shown in Table I yields a total of 100 million entries

for , but because of the constraint ,

the resulting number is reduced by about 25%. This is still

a very large space to do exhaustive search in order to find

the optimal fit to the observed acoustics and to accomplish

the optimal function inversion. To overcome this difficulty, in

Section VI-A, we will discuss a greedy search technique we

have implemented exploiting the decomposition property of the

nonlinear function.

Quantization of the VTR variables discussed above gives rise

to the discrete nature in the “codebook” construction for the

nonlinear function expressed in (6). In this work, we use

a precomputed, tabulated form to represent this nonlinear func-

tion. As a notation, we denote the VTR vector value of at the

th level of quantization as . When the VTR vector occurs

at time frame , we denote the value of at the th level of

quantization as , or simply . That is, the index to the

codebook, , is used interchangeably with the value stored at

that index, . When the index is used alone, it is intended to

represent the value stored at that index.

III. NONLINEAR-PREDICTION RESIDUAL

AND TEMPORAL CONSTRAINT

Inpractical implementationoftheVTRtracker,computationof

the LPC cepstrum from VTRs according to (6) can necessarily

include only a finite number of poles. As mentioned above, in

our implementation and experiments, we chose to use .

The remaining (higher order) poles and possible zeros (as well as

their possible interactions with poles) in actual speech are known

to affect acoustics and to create prediction errors using the non-

linear mapping function of (6) based on the all-pole filter model

of speech with low orders.One way to improve the mapping func-

tion is to introduce the trainable prediction residuals in order to

(blindly) compensate for all sources of errors.

Let us denote the residual from the nonlinear prediction func-

tion of (6) by , which we assume is a Gaussian random vector

with mean vector and covariance matrix . That is

After accounting for the approximation error by the IID

residual for each time frame , the exact relationship be-

tween the VTR vector and the LPC cepstral vector now

becomes

or

(7)

where is a zero-mean Gaussian random vector:

. This forms the observation equation of a dynamic

system model with the state-space formulation [7].

We can further improve the prediction from the VTR se-

quence to the LPC cepstrum sequence by exploiting the prior

knowledge about the VTRs temporal behavior. This prior

knowledge is expressed as the temporal smoothness constraint

using the following discretized state equation in the dynamic

system model

(8)

where the state noise at frame is assumed to be an IID, zero-

mean Gaussian random variable

with the covariance matrix of .

IV. ALGORITHM FOR ESTIMATING RESIDUAL PARAMETERS

A. Reestimation Formulae

Following the general spirit of the EM algorithm [6], we have

derived reestimation formulae (M-step) for the parameters in

the state-space model consisting of (7) and (8). In particular,

the mean vector in the nonlinear prediction residual of (7) is

reestimated in each EM iteration by

(9)

where is the total number of frames in the training data,

is the total number of quantization levels for the VTRs, and the

posterior

is computed efficiently using a novel forward-backward recur-

sion (E-step) described below.

The reestimation formula for the covariance matrix in the

prediction residual is

(10)

B. Forward–Backward Recursion for Computing

Posterior Probability

We now derive and describe a novel efficient algorithm we

have developed, based on the quantized state-space model of (7)
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and (8), for computing the posterior probability, , required

in the reestimation formulae in (9) and (10).

First, define the forward probability of

The forward recursive formula is established using the fol-

lowing derivation:

(11)

In (11), is determined by the observation equation

according to

where and were estimated from the previous EM iter-

ation. And is determined by the state equation ac-

cording to

(12)

Next, we establish the following backward recursion to effi-

ciently compute the posterior probability:

(13)

where and on the right-hand side of the above

have been computed already in the forward recursion. Initializa-

tion for the above recursion is .

V. ALGORITHM FOR VTR TRACKING

After the parameters of the quantized state-space model are

trained using a speech utterance as just described, the model can

be used for optimal VTR sequence estimation (i.e., tracking)

for the same speech utterance. The dynamic programming al-

gorithm described in this section is aimed to find the best single

quantized VTR sequence for a given

acoustic observation sequence .

Let us define the optimal partial score of

(14)

Each defined in (14) is associated with a node in the trellis

diagram. Each increment of time corresponds to reaching a new

stage in dynamic programming. At the final stage , we

have the objective function of , which is accomplished via

all the previous stages of computation for . Based

on the optimality principle, the optimal partial likelihood at the

processing stage of can be computed using the following

dynamic programming (Viterbi) recursion:

�t+1(i)=max
j

�t(j)p(it+1= i j it = j)p(ot+1 j it+1= i): (15)

In the above, the “transition probability” is computed by

(16)

and the “observation probability” is computed by

(17)

Back tracing of the optimal VTR quantization index in (15)

gives the optimally estimated VTR sequence in terms of the

quantized values at each time frame.

VI. VTR TRACKING EXPERIMENTS

In this section, we first present some implementation detail

of the algorithms for residual parameter training and for VTR

tracking presented so far, aimed to overcome computational dif-

ficulties associated with the large quantization space on the VTR

variables. We then present experimental results demonstrating

the effectiveness of the algorithms in accurate tracking of VTRs

for conversational speech. In particular, we demonstrate the cru-

cial role of the use of trainable residual parameters in enhancing

the VTR tracking accuracy.

A. Computation Speedup

One principal implementation difficulty for the training and

tracking algorithms presented in the preceding sections is the

high computational cost in summing and in searching over the

huge space in the quantized VTR variables. The sum is required

in the reestimation formulae of (9)–(11) and (13), and the search
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is required in dynamic programming recursion of (15). To over-

come this difficulty, we have successfully developed and im-

plemented a suboptimal, greedy technique capitalizing on the

decomposition property of the nonlinear mapping function pre-

sented in Section II. We describe this technique now.

Let us consider an objective function , to be optimized with

respect to noninteracting variables that determine the func-

tion’s value. An example is the following decomposable func-

tion consisting of terms , each of

which contains independent variables to be searched for

The greedy optimization technique proceeds as follows. First,

initialize to reasonable values. Then, fix

all except one, say , and optimize with respect to the

new objective function of

Next, after the low-dimensional, inexpensive search problem

for is solved, fix it and optimize a new . Repeat

this for all . Finally, iterate the above process until all opti-

mized become stabilized.

In our implementation of this technique for VTR tracking and

parameter estimation, each of the resonances is treated as

a separate, noninteractive variable to optimize. We found that

only two to three overall iterations above are already sufficient

to stabilize the parameter estimates.1 Further, surprisingly, in our

experiments we found that initialization of all VTR variables to

zero gives virtually the same estimates as those that are obtained

by more carefully thought-out initialization schemes.

With the use of the above greedy, suboptimal technique

instead of full optimal search, the computation cost of VTR

tracking is reduced by over 4000-fold compared with the

brute-force implementation of the algorithms presented in the

preceding sections. As a result, the VTR tracker as currently

implemented in Matlab runs close to real time on a P-III

machine.

B. Experimental Results and Analysis on VTR Tracking

The above greedy technique has been incorporated into the

VTR tracking algorithm and into the EM training algorithm

for the nonlinear-prediction residual parameters. We have com-

pared the results obtained by the rigorous algorithms with those

obtained by the computationally intensive, brute-force search.

No qualitative differences in the results are found, and hence all

the results described in this section have been obtained with the

use of the greedy technique for optimization.

We first demonstrate the effectiveness of the EM training.

Note that the training does not require any data labeling

and is fully unsupervised. Fig. 4 shows the VTR tracking

results, superimposed on the spectrogram of a

1During the training of the residual parameters, these (inner) iterations are
embedded in each of the (outer) EM iterations.

Fig. 4. VTR tracking by setting the residual mean vector to zero.

Fig. 5. VTR tracking with one iteration of residual training.

telephone speech utterance (excised from Switchboard data-

base [14]) of “the way you dress” by a male speaker, when the

residual mean vector in (7) is set to zero and the covariance

matrix is set to be diagonal with empirically determined

diagonal values.2 Setting to zero corresponds to the assump-

tion that the nonlinear function of (6) is an unbiased predictor

of the real speech data in the form of LPC cepstra. Under this

assumption we observe from Fig. 4 that while and are

accurately tracked through the entire utterance, and are

incorrectly tracked during the later half of the utterance.3 One

iteration of the EM training on the residual mean vector and

covariance matrix does not correct the errors (see Fig. 5), but

two iterations are able to correct the errors in the utterance for

2The initialized variances are those computed from the codebook entries
that are constructed from quantizing the nonlinear function discussed in
Section II-C.

3Note that the many step jumps in the VTR estimates are due to the quanti-
zation of the VTR frequencies discussed in Section II-C.
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Fig. 6. VTR tracking with two iterations of residual training.

Fig. 7. VTR tracking with three iterations of residual training.

about 20 frames (after time mark of 0.6 s in Fig. 6). One further

iteration is able to correct almost all errors as shown in Fig. 7.

To examine the quantitative behavior of the residual param-

eter training, we list the log-likelihood score as a function of the

EM iteration number in Table II. Three iterations of the training

appear to have reached the EM convergence. When we examine

the VTR tracking results after five and 20 iterations, they are

found to be identical to Fig. 7, consistent with the near constant

converging log-likelihood score reached after three iterations of

training. Note that the regions in the utterance where the speech

energy is relatively low are where consonantal constriction or

closure is formed, e.g., near time mark of 0.1 s for/w/constric-

tion and near time mark of 0.4 s for/d/closure). The VTR tracker

gives almost as accurate estimates for the resonance frequencies

in these regions as for the vowel regions.

In Figs. 8 and 9, we show two typical long conversational

speech utterances randomly selected from the Switchboard

database. As is typical for all the utterances that we have exam-

ined, the VTR tracker is able to correctly identify all formants

TABLE II
LOG-LIKELIHOOD SCORE AS A FUNCTION OF THE EM ITERATION NUMBER

IN TRAINING THE NONLINEAR-PREDICTION RESIDUAL PARAMETERS

Fig. 8. VTR tracking results for a typical Switchboard utterance: And the,
cause I notice that. . .uh. . . like even going to church huh things like people
really dress up a lot more. . .huh. . . is going to church.

Fig. 9. VTR tracking for another typical Switchboard sentence: And the
church was a lot more casual huh rather than. . .uh. . . you know here it is like
going to a fashion show almost.

for vowels and glides, which coincide with VTR frequencies.

No obvious errors are found where a lower formant or VTR is

missed to cause all higher formants to be misidentified, which

is a common problem for many conventional formant tracking
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methods. For the regions corresponding to consonantal con-

striction and closure where relatively weak signal energies are

present, we observe the general desirable behavior of the VTR

tracker—the estimated VTR frequencies tend to be smoothing

through these weak-energy regions, based on the adjacent

vowel formant estimates, while maintaining correct VTR tracks

in the vowel-consonant or consonant-vowel transitions. No

clear cases are found where the weak or null energies around

a VTR frequency region (e.g., in the region for/k/closure,

around the 1-s time in Fig. 8) cause missing of VTR identifica-

tion and shifts of higher VTR frequencies. For example, during

the above/k/closure, although virtually no signal is present, the

VTR tracker provides appropriate values for all , and

throughout the closure. This contrasts with other methods

where the estimated “formant” values during such closure are

either treated as “missing” [20], [21], or they are shifted up

inappropriately to high-frequency values [28], [30], deviating

substantially from the resonances that are physically present

even if no acoustic evidence is available when full closure in

the vocal tract is made.

VII. DISCUSSION AND SUMMARY

In recent years, there has been a growing interest in devel-

oping accurate, efficient, and compact representations, as well

as related statistical models, of speech dynamics. Such repre-

sentations include articulatory variables [22], [26], vocal tract

shapes [11], and formants or vocal tract resonances [3], [10],

[13], [17], [23], [28]. In this paper, we present a novel tech-

nique of tracking vocal tract resonances (VTRs) as a compact

representation for time-varying characteristics of speech. VTRs

share some common, desirable temporal properties with articu-

latory variables and yet have a lower dimensionality and more

intuitive acoustic interpretation. The VTRs defined as natural

frequencies of the vocal tract from glottis to lips (rather than

spectral prominences in acoustics) are related to but are also dif-

ferent from formants. The VTRs exist at all times, even when the

mouth is closed, just as articulatory variables exist at all times.

Since VTRs correspond to natural frequencies of the physical

system, they cannot “disappear” even if the acoustic signal does

not directly reveal them. Importantly, VTRs are a smooth func-

tion of the articulatory variables, whose movement uniquely de-

termines the time-varying vocal tract area function shaping the

dynamics of the acoustic resonances. This “noninterrupted” se-

quence of dynamic, physically meaningful VTR variables is ex-

pected to benefit speech recognition, and its automatic extrac-

tion from acoustic signals of speech forms the main subject of

this study.

While VTRs may not correspond to spectral prominences

where zeros in the vocal tract transfer function exist in fricatives,

stops, and nasals, they coincide with formants for nonnasalized

vowels where no vocal tract side branches and no supra-glottal

excitation sources are involved in speech production. In con-

trast to all the existing formant tracking techniques (e.g., [20],

[21], [27], [28], and [30]) that rely, directly or indirectly, on the

spectral prominence information from speech acoustics only,

the new technique presented in this paper exploits additional

dynamic prior information, which we call hidden dynamics ex-

pressed in terms of the temporal constraint. This prior captures

general smoothness properties of VTR trajectories even if supra-

glottal excitation may eliminate acoustic spectral prominences

(e.g., during consonantal closure). The joint use of the VTR tem-

poral constraint and the speech acoustics forms a discretized

state-space model that enables accurate tracking of VTR tra-

jectories at all times and for all manner and voicing classes of

speech.

In this paper, we first present the construction and use of a

quantized VTR space in an analytical nonlinear prediction func-

tion from the VTR variables to the LPC cepstra. We note that

this function has been recently used in the work of [29] for for-

mant tracking, where a very different approximation technique

(i.e., particle filtering) was explored in dealing with nonlinearity

from the quantization scheme that we presented in this paper.

The tracking results we present in this paper are significantly

more accurate than those in the very limited examples shown in

[29]. Also, as discussed in Section II-B, we note that the work of

[4] was inspired by the relationship between the VTR variables

and the LPC cepstra which we develop and report in this paper.

The more recent study described in [16] extends the ideas pro-

posed in [4] and uses a piece-wise linear model where the entire

frequency range of each formant is divided into four bands. The

success of this extension adds support to the nonlinearity in the

analytical relationship between the formant frequency and cep-

strum. Instead of using piece-wise linearization in [16], we in

the current study deal with the nonlinearity in a very different

way—by quantization and by systematically exploiting the en-

tire quantized input-VTR space.

Another innovation in the work presented in this paper is

the introduction of the prediction-residual parameters, which

are optimally trained by a novel EM algorithm, to effectively

compensate for the prediction error. Further, the quantized pre-

diction function with the trained residuals is embedded into a

temporal constraint to establish a discretized nonlinear dynamic

system model, enabling high-accuracy VTR tracking using a

novel dynamic-programming based algorithm. We outline in

this paper the development of a greedy technique that exploits

the decomposition property of the nonlinear function to drasti-

cally reduce the training and tracking algorithms’ computational

costs. The experimental results on VTR tracking presented in

this paper provide evidence that the discretized nonlinear dy-

namic system approach is effective in modeling the hidden dy-

namics of speech, as represented by VTR trajectories, and its

causal relationship to measurable speech acoustics, as repre-

sented by LPC cepstra. Our new work is aimed to expand the

current implementation of the dynamic system model so as to

include discrete phonological states and its phonetic correlates

of speaker-normalized VTR targets for the purpose of speech

recognition.
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