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Abstract. Tracking of a reference signal (assumed bounded with essentially bounded derivative)
is considered in the context of a class Σρ of multi-input, multi-output dynamical systems, modelled
by functional differential equations, affine in the control and satisfying the following structural as-
sumptions: (i) arbitrary – but known – relative degree ρ ≥ 1, (ii) the “high-frequency gain” is sign
definite – but possibly of unknown sign. The class encompasses a wide variety of nonlinear and
infinite-dimensional systems and contains (as a prototype subclass) all finite-dimensional, linear,
m-input, m-output, minimum-phase systems of known strict relative degree. The first control objec-
tive is tracking, by the output y, with prescribed accuracy: given λ > 0 (arbitrarily small), determine
a feedback strategy which ensures that, for every reference signal r and every system of class Σρ, the
tracking error e = y − r is ultimately bounded by λ (that is, ‖e(t)‖ < λ for all t sufficiently large).
The second objective is guaranteed output transient performance: the tracking error is required to
evolve within a prescribed performance funnel Fϕ (determined by a function ϕ). Both objectives are
achieved using a filter in conjunction with a feedback function of the tracking error, the filter states
and the funnel parameter ϕ.

Key words. Output feedback, nonlinear systems, functional differential equations, transient
behaviour, tracking, high relative degree.

AMS subject classifications. 93D15, 93C30, 34K20

1. Introduction. In [5], a class of infinite-dimensional, m-input (u(t) ∈ R
m),

m-output (y(t) ∈ R
m), nonlinear systems (with finite memory) given by a controlled

functional differential equation of the form ẏ(t) = g(p(t), (Ty)(t), u(t)) is considered,
where g is a continuous function, p represents a bounded disturbance and T is a
causal operator with a bounded-input bounded-output property: an output feedback
control structure is developed which ensures approximate asymptotic tracking, with
prescribed transient behaviour, of any absolutely continuous bounded reference signal
with essentially bounded derivative. Here, we extend these investigations to incorpo-
rate higher-order systems, affine in the control, of the form

y(ρ)(t) = R1 y(t) +R2 y
(1)(t) + · · · +Rρ y

(ρ−1)(t) + g(p(t), (Ty)(t)) + Γu(t) (1.1)

where ρ ∈ N is known, y(i) denotes the ith derivative of y and the matrix Γ is assumed
to be sign definite (equivalently, 〈v,Γv〉 = 0 ⇔ v = 0).

In an early contribution by Miller and Davison [12], the attainment of prescribed
transient behaviour is considered for a class of single-input, single-output, linear,
minimum-phase systems with known high-frequency gain: a controller is introduced
which guarantees the “error to be less than an (arbitrarily small) prespecified constant
after an (arbitrarily small) prespecified period of time, with an (arbitrarily small)
prespecified upper bound on the amount of overshoot.” However, the controller is
adaptive with non-decreasing gain k, invokes a piecewise-constant switching strategy,
and is less flexible in its scope for shaping transient behaviour (in particular, an a
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priori bound on the initial data is required) when compared to the non-adaptive
approach in [6].

The results of this paper generalize the main ideas in [6], where tracking with
prescribed transient behaviour is considered in a more restricted context of linear
systems of known relative degree, subject to “mild” nonlinear perturbations: the gen-
erality of the operator T in (1.1) allows for a considerable diversity of nonlinear and
infinite-dimensional effects, including delays and hysteresis phenomena. We imple-
ment a “backstepping” procedure in conjunction with a filter/pre-compensator in the
construction of a non-adaptive controller. The backstepping procedure is akin to that
of [17, 9, 12].

We briefly digress to review the literature on tracking and stabilization of high
relative degree systems. Unless otherwise stated, all results relate to single-input,
single-output systems. Bullinger and Allgöwer [1] introduce a high-gain observer in
conjunction with an adaptive controller to achieve tracking with prescribed asymptotic
accuracy λ > 0 (λ-tracking). This is achieved for a class of systems which are affine
in the control, of known relative degree, and with affine linearly bounded drift term.
Paper [17] considers linear minimum-phase systems with nonlinear perturbation; the
control objective is (continuous) adaptive λ-tracking with non-decreasing gain. The
class of allowable nonlinearities is considerably smaller than that of the present paper.
Stabilization for systems of maximum relative degree in the so-called parametric strict
feedback form is achieved in [18] via a piecewise constant adaptive switching strategy.
Both these contributions use a backstepping procedure. Non-adaptive contributions
are found in the work by Byrnes and Isidori [2] with extensions in [3]. They cover
stabilization and tracking for a class of relative-degree-one nonlinear systems, with an
exosystem, the positive orbits of which lie in a compact set: systems of higher relative
degree are also considered, see in particular [2, (33)], and the authors state (without
proof) that “these systems can reduced to systems of (relative degree 1) by means
of the semiglobal back-stepping Lemma”. The main result in [2, Proposition 7.1]
pertains to practical tracking and applies high-gain principles in conjunction with an
internal model: the multi-layered nature of the assumptions determining the system
class makes it difficult to assess the overlap with the class considered in the present
paper. Related investigations, based on high-gain properties and/or an internal model
principle, can be found in [10, 13, 9]: we will have occasion to comment further on
the latter in Section 3.1.3 below.

The paper is organized as follows. Sections 2 and 3 introduce the control objec-
tives and the system class: Section 3.1 highlights several particular sub-classes. In
Section 4, the control and feedback laws are constructed: an existence theorem for the
resulting closed-loop system is provided in Section 4.3. Our main results on transient
and asymptotic behaviour of the closed-loop are given in Section 5 and illustrated in
an example in Section 6. All proofs are relegated to the Appendix.

We close this introduction with remarks on notation. Throughout, R+ := [0,∞)
and C− denotes the open left half complex plane {λ ∈ C| Reλ < 0}. The Euclidean
inner product and induced norm on R

n are denoted by 〈 · , · 〉 and ‖ · ‖, respectively.
The open ball of radius δ > 0 centred at x ∈ R

n is denoted by Bδ(x). For an
interval I ⊂ R, C(I,Rn) is the space of continuous functions I → R

n, L∞(I,Rn)
is the space of essentially bounded measurable functions x : I → R

n with norm
‖x‖∞ := ess-supt∈I‖x(t)‖, L1(I,Rn) is the space of integrable functions x : I → R

n

with norm ‖x‖1 :=
∫

I
‖x(t)‖dt <∞, L∞

loc(I,R
n) (respectively, L1

loc(I,R
n)) is the space

of measurable, locally essentially bounded (respectively, locally integrable) functions
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I → R
n, and W 1,∞(I,Rn) is the space of absolutely continuous functions x : I → R

n

with x, ẋ ∈ L∞(I,Rn). The spectrum of A ∈ R
n×n is denoted by spec(A).

2. Control objectives and the performance funnel. There are two control
objectives: (i) approximate tracking, by the output, of reference signals r ∈ R :=
W 1,∞(R+,R

m). In particular, for arbitrary λ > 0, we seek an output feedback strat-
egy which ensures that, for every r ∈ R, the closed-loop system has bounded solution
and the tracking error e(t) = y(t)−r(t) is ultimately bounded by λ (that is, ‖e(t)‖ ≤ λ
for all t sufficiently large), and (ii) prescribed transient behaviour of the tracking error.

Both objectives are captured in the concept of a performance funnel

Fϕ :=
{
(t, e) ∈ R+ × R

m
∣∣ ϕ(t)‖e‖ < 1

}

associated with a function ϕ of the following class

Φ :=
{
ϕ ∈W 1,∞(R+,R)

∣∣ ϕ(0) = 0, ϕ(s) > 0 for all s > 0 and lim inf
s→∞

ϕ(s) > 0
}
.

The aim is an output feedback strategy ensuring that, for every reference signal

Error evolution

Ball of radius 1/ϕ(t)

t

Fϕ

Fig. 2.1. Prescribed performance funnel Fϕ

r ∈ R, the tracking error e = y − r evolves within the funnel Fϕ. For example, if
lim inft→∞ ϕ(t) ≥ 1/λ, then evolution within the funnel ensures that the first control
objective is achieved. If ϕ is chosen as the function t 7→ min{t/τ, 1}/λ, then evolution
within the funnel ensures that the prescribed tracking accuracy λ > 0 is achieved
within the prescribed time τ > 0. The feedback structure incorporates a filter and
essentially exploits an intrinsic high-gain property of the system/filter interconnection
to ensure that, if (t, e(t)) approaches the funnel boundary, then an appropriately
generated gain attains values sufficiently large to preclude boundary contact.

3. Class of systems. We subsume (1.1) in the following

ẋ(t) = Ax(t) + f(p(t), (Ty)(t), x(t)) +Bu(t),

y(t) = Cx(t),

x|[−h,0] = x0 ∈ C([−h, 0],Rρm),





(3.1)

A =





0 I 0 · · · 0
0 0 I 0
...

. . .
. . .

...
0 0 · · · 0 I
R1 R2 · · · Rρ−1 Rρ




∈ R

ρm×ρm, B =





0
0
...
0
Γ




∈ R

ρm×m, (3.2)

C = [I
... 0

... · · ·
... 0

... 0] ∈ R
m×ρm, f : R

m × R
q × R

ρm → R
ρm continuous. (3.3)
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Observe that Γ = CAρ−1B. In the special case wherein f is given by

f(p,w, x) =





0
...
0

g(p,w)




, (3.4)

it is clear that (1.1) and (3.1) are equivalent. Next, we define the class of operators
T allowable in (3.1).

Definition 3.1. (Operator class Th)
Let h ≥ 0. An operator T is said to be of class Th if, and only if, for some l, q ∈ N,
the following hold.
(i) T : C([−h,∞),Rl) → L∞

loc(R+,R
q) .

(ii) For every δ > 0, there exists ∆ > 0 such that, for all ζ ∈ C([−h,∞),Rl),

sup
t∈[−h,∞)

‖ζ(t)‖ ≤ δ =⇒ ‖(Tζ)(t)‖ ≤ ∆ for almost all t ≥ 0 .

(iii) For all t ∈ R+, the following hold:
(a) for all ζ, ψ ∈ C([−h,∞),Rl),

ζ(·) ≡ ψ(·) on [−h, t] =⇒ (Tζ)(s) = (Tψ)(s) for almost all s ∈ [0, t];

(b) for all continuous functions β : [−h, t] → R
l, there exist τ, δ, c > 0 such that,

for all ζ, ψ ∈ C([−h,∞),Rl) with ζ|[−h,t] = β = ψ|[−h,t] and ζ(s), ψ(s) ∈
Bδ(β(t)) for all s ∈ [t, t+ τ ],

ess-sups∈[t,t+τ ]‖(Tζ)(s) − (Tψ)(s)‖ ≤ c sups∈[t,t+τ ]‖ζ(s) − ψ(s)‖ .

Remark 3.2. Property (ii) is a bounded-input, bounded-output assumption on
the operator T . Property (iii)(a) is a natural assumption of causality. Property (iii)(b)
is a technical assumption of local Lipschitz type which is used in establishing well-
posedness of the closed-loop system (defined later in Section 4.3).

We are now in a position to make precise the system class.
Definition 3.3. (System class Σρ)

For ρ ∈ N, Σρ is the class of m-input, m-output systems (A,B,C, f, p, T, h) of the form
(3.1), where h ≥ 0 quantifies the memory of the system, A, B and C are structured
as in (3.2)-(3.3) and satisfy
(A1) sign-definite high-frequency gain: Γ = CAρ−1B is either positive definite or

negative definite (equivalently, 〈v,Γv〉 = 0 ⇔ v = 0).
The functions f , p and operator T are such that
(A2) p ∈ L∞(R+,R

m),
(A3) for some q ∈ N, T : C([−h,∞),Rm) → L∞

loc(R+,R
q) is of class Th,

(A4) f : R
m × R

q × R
ρm → R

ρm is continuous and, for all non-empty compact sets
P ⊂ R

m, W ⊂ R
q and Y ⊂ R

m, there exists a constant c0 = c0(P,W, Y ) > 0
such that ‖f(p,w, x)‖ ≤ c0 for all (p,w, x) ∈ P ×W ×

{
v ∈ R

ρm | Cv ∈ Y
}
.

Remark 3.4.

(i) Due to the presence of the nonlinear function f , the (vector) relative degree of (3.1)
at some point x0 ∈ R

ρm may not be defined, see [7, pp. 137 and 220]. However, if
f ≡ 0, then it follows from Assumption (A1) that the vector relative degree of the
linear system (3.1) is (ρ, . . . , ρ) ∈ R

m at each point x0 ∈ R
ρm and, in particular,

CAiB = 0 for i = 1, ..., ρ− 2 and Γ = CAρ−1B is invertible. (3.5)
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The linear system (A,B,C) is said to have strict relative degree ρ if, and only if,
(3.5) holds. Note that Assumption (A1) requires the strengthened assumption that
CAρ−1B is either positive definite or negative definite. In the multi-input, multi-
output case, (A1) is rather restrictive. By contrast, in the single-input, single-output
case, the assumption of sign definiteness is redundant and (A1) is simply equivalent
to positing that the relative degree of the linear triple (A,B,C) is known.
(ii) Recall that a linear system (A,B,C) is said to be minimum phase if, and only if,

det

[
sI −A B
C 0

]
6= 0 for all s ∈ C with Re(s) ≥ 0. (3.6)

Due to the structure of the matrices A, B and C in (3.2)-(3.3) and Assumption (A1),
(A,B,C) is minimum phase.
(iii) Assumption (A4) constrains the nature of the dependence of f on its third ar-
gument: in particular, for compact sets P , W and Y , it posits boundedness of f
on P ×W × C−1(Y ). For example, (A4) holds if there exists a continuous function
π : R

m × R
q × R

m → R+ such that ‖f(p,w, x)‖ ≤ π(p,w,Cx) for all (p,w, x). As-
sumption (A4) plays a crucial role in the later analysis: in its absence (i.e. if f is
merely assumed to be continuous), it is not difficult to construct examples for which
the performance objectives cannot be achieved (indeed, finite escape times can occur).
(iv) With reference to Figure 3.1, the system (3.1) can be thought of as the inter-
connection of two blocks. The dynamical system represented by block Λ1, which can
be influenced directly by the system control u, is also driven by the output w from
the dynamic block Λ2, as shown in Figure 3.1. The block Λ2 can be considered as a
causal operator mapping the system output y to w (an internal quantity, unavailable
for feedback purposes); it allows for infinite-dimensional (e.g. delays, diffusions) and
hysteresis (e.g. backlash) effects, some examples of which are given in Section 3.1.

Λ2 : w = Ty

w
yΛ1 :

{
ẋ = Ax+ f(p,w, x) +Bu
y = Cx

u
p

Fig. 3.1. System of class Σρ.

3.1. Sub-classes of Σρ.

3.1.1. Finite-dimensional linear prototype. For motivational purposes, we
first examine a prototype linear system and show that all finite-dimensional linear
systems of this form are incorporated in the class Σρ. Consider an m-input, m-output
linear system of the form

ẇ(t) = Ã w(t) + B̃ u(t), w(0) = w0 ∈ R
n, y(t) = C̃ w(t), (3.7)

with strict relative degree ρ ≥ 1, Ã ∈ R
n×n, B̃ ∈ R

n×m, C̃ ∈ R
m×n, n ≥ ρm and

positive-definite or negative-definite high-frequency gain C̃Ãρ−1B̃. To show that the
system (3.7) belongs to the class Σρ, we present the following lemma, a proof of which
can be found in the Appendix.
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Lemma 3.5. Consider a linear system of the form (3.7) with strict relative degree
ρ ∈ N. Define

C :=





C̃

C̃Ã
...

C̃Ãρ−1




∈ R

ρm×n, B := [B̃
... ÃB̃

... · · ·
... Ãρ−1B̃] ∈ R

n×ρm

and let V ∈ R
n×(n−ρm) be such that im V = ker C. Then

(i) R
n = ker C ⊕ imB ;

(ii) the matrix

U =

[
C
N

]
∈ R

n×n, where N = (VTV)−1VT [I − B(CB)−1C] ∈ R
(n−ρm)×n,

is invertible, with inverse U−1 = [B(CB)−1
...V], and the triple

(Â , B̂ , Ĉ) :=
(
UÃU−1, UB̃ , C̃U−1

)
(3.8)

has the following structure (wherein I and 0 denote the m ×m identity matrix and
zero matrix, respectively)

Â =





0 I 0 · · · 0 0
0 0 I 0
...

. . .
. . .

...
0 0 · · · 0 I 0
R1 R2 · · · Rρ−1 Rρ S
P 0 · · · 0 0 Q





, B̂ =





0
0
...
0
Γ
0





, Ĉ = [I
... 0

... · · ·
... 0

... 0
... 0 ], (3.9)

with [R1

... · · ·
...Rρ

...S] = C̃ÃρU−1, Γ = C̃Ãρ−1B̃, P = N ÃρB̃Γ−1, and Q = N ÃV;

(iii) if the system (3.7) is minimum phase, then spec(Q) ⊂ C− .

We remark that, in the case ρ = 1, (3.9) is to be interpreted as

Â =

[
R1 S
P Q

]
, B̂ =

[
Γ
0

]
, Ĉ = [I

... 0 ]. (3.10)

Invoking the similarity transformation (3.8)-(3.9) and writing x0 := Cw0, z0 := Nw0,
x(t) := Cw(t), it is readily verified that system (3.7) is equivalent to

ẋ(t) = Ax(t) + f(p(t), (Ty)(t), x(t)) +Bu(t), x(0) = x0, y(t) = Cx(t), (3.11)

where A, B and C are as in (3.2)-(3.3), p : t 7→ S(exp Qt)z0, T is the linear operator
given by

(Ty)(t) = S

( ∫ t

0

exp(Q(t− s))Py(s)ds

)
, t ≥ 0,

and the function f takes the special form (3.4) with g : R
m × R

m → R
m given by

g(p,w) := p+ w.
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If (3.7) has sign definite high-frequency gain, then C̃Ãρ−1B̃ = Γ = CAρ−1B is
either positive definite or negative definite and hence Assumption (A1) is satisfied.
If we assume that (3.7) has the minimum-phase property, then by Lemma 3.5 (iii),
Q has spectrum in C−: it follows that p ∈ L∞(R+,R

m) and T belongs to the class
of operators T0 and so Assumptions (A2) and (A3) are satisfied. Assumption (A4)
is trivially satisfied. Therefore, the system class Σρ contains all m-input, m-output,
finite-dimensional, linear, minimum-phase systems of strict relative degree ρ with
sign-definite high-frequency gain.

3.1.2. Infinite-dimensional linear systems. The finite-dimensional class of
systems of the form (3.8) can be extended to infinite dimensions by reinterpreting the
operators Q, P and S as the generating operators of a regular linear system (regular in
the sense of [16]). In the infinite-dimensional setting, Q is assumed to be the generator
of a strongly continuous semigroup S = (St)t∈R+

of bounded linear operators and a
Hilbert space X with norm ‖ · ‖X . Let X1 denote the space dom(Q) endowed with
the graph norm and let X−1 denote the completion of X with respect to the norm
‖z‖−1 = ‖(s0I − Q)−1z||X , where s0 is any fixed element of the resolvent set of Q.
Then P is assumed to be a bounded linear operator from R

m to X−1 and S is assumed
to be a bounded linear operator from X1 to R

m. Assuming that the semigroup S is
exponentially stable and that S extends to a bounded linear operator (again denoted
by S) from X to R

m, then the operator T given by

(Ty)(t) := S

(∫ t

0

St−sPy(s) ds

)

is of class T0 (see [14] for details) and, writing p(t) := S Stz
0, we again arrive at

structure of (3.11).

3.1.3. Nonlinear systems. In [9, eqn. (1)] the following class of systems is
studied

ẋ1(t) = x2(t) + f1(w(t), y(t))
...

ẋρ−1(t) = xρ(t) + fρ−1(w(t), y(t))
ẋρ(t) = γ u(t) + fρ(w(t), y(t))
ẇ(t) = q(w(t), y(t))
y(t) = x1(t)

(x1(0), . . . , xρ(0), w(0)) = (x0
1, . . . , x

0
ρ, w

0)






(3.12)

where γ ∈ R \ {0}, q : R
p × R → R

p and fi : R
p × R → R, i = 1, . . . , ρ, are locally

Lipschitz functions. Denote, by T , the mapping y 7→ w induced by the subsystem
ẇ = q(w, y) with initial condition w(0) = w0. Then (3.12) is equivalent to (3.1) (with
h = 0 and m = 1). Moreover, if we assume that the subsystem ẇ = q(w, y) is input-
to-state stable (ISS), then, as shown in [4, Section 2.3], the operator T is of class T0,
in which case system (3.12), interpreted in its equivalent form (3.1), is of class Σρ.

We remark that, in [9, eqn. (1)], an assumption of integral input-to-state stabil-
ity (iISS) (strictly weaker than our assumption of ISS) is imposed on the subsystem
ẇ = q(w, y). In this respect, the full generality of the system class in [9] is not
captured by the class considered in the present paper.

3.1.4. Nonlinear delay systems. Let functions Gi : R × R
l → R

q : (t, ζ) 7→
Gi(t, ζ), i = 0, ..., n be measurable in t and locally Lipschitz in ζ uniformly with
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respect to t: precisely, (i) for each fixed ζ, Gi(·, ζ) is measurable and (ii) for every
compact K ⊂ R

l there exists a constant c such that

‖Gi(t, ζ) − Gi(t, ψ)‖ ≤ c ‖ζ − ψ‖ for almost all t and for all ζ, ψ ∈ K .

For i = 0, ...n, let hi ∈ R+ and define h := maxi hi. For ζ ∈ C([−h,∞),Rl), let

(Tζ)(t) :=

∫ 0

−h0

G0(s, ζ(t+ s)) ds+

n∑

i=1

Gi(t, ζ(t− hi)) for all t ≥ 0 .

The operator T , so defined, is of class Th: for details see [14].

3.1.5. Systems with hysteresis. A general class of hysteresis operators, which
includes many physically motivated hysteretic effects, is discussed in [11]. Examples
of such operators include backlash hysteresis, elastic-plastic hysteresis and Preisach
operators. In [5], it is pointed out that these operators are of class T0. For illustration,
we describe a particular example of a hysteresis operator.

Backlash hysteresis: Consider a one-dimensional mechanical link consisting of two
components, denoted I and II (of width 2a) and illustrated in Figure 3.2a. The

ζ

ψ

−a a

(b)

ζ

ψ

2a

I

II

(a)
Fig. 3.2. Backlash hysteresis

displacements of each part (with respect to some fixed datum) at time t ≥ 0 are
given by ζ(t) and ψ(t) with |ζ(t) − ψ(t)| ≤ a for all t, and ψ(0) := ζ(0) + b for
some pre-specified b ∈ [−a, a]. Within the link there is mechanical play: that is to
say the position ψ(t) of II remains constant as long as the position ζ(t) of I remains
within the interior of II. Thus, assuming continuity of ζ, we have ψ̇(t) = 0 whenever
|ζ(t)−ψ(t)| < a. Given a continuous input ζ ∈ C(R+,R), describing the evolution of
the position of I, denote the corresponding position of II by ψ = Tζ. The operator T ,
(in effect we define a family Ta,b of operators parameterized by a > 0 and b ∈ [−a, a])
so defined, is known as backlash or play and is of class T0.

4. The control. Let ϕ ∈ Φ determine a performance funnel Fϕ. We proceed
to construct a feedback structure which ensures that, for every reference r ∈ R and
when applied to any system of class Σρ, the tracking error e = y − r evolves within
Fϕ. We initially assume ρ ≥ 2; the case of systems with strict relative degree ρ = 1
will be treated separately in due course.

4.1. Filter. Fix µ > 0 (arbitrarily) and introduce the filter

ξ̇i(t) = −µ ξi(t) + ξi+1, ξi(0) = ξ0i ∈ R
m , i = 1, . . . , ρ− 2,

ξ̇ρ−1(t) = −µ ξρ−1(t) + u(t), ξρ−1(0) = ξ0ρ−1 ∈ R
m ,
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which, on writing (wherein I and 0 denote the m×m identity and zero matrices)

ξ(t) =





ξ1(t)
ξ2(t)
ξ3(t)

...
ξρ−2(t)
ξρ−1(t)





, F =





−µI I 0 · · · 0 0
0 −µI I · · · 0 0
0 0 −µI · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −µI I
0 0 0 · · · 0 −µI





, G =





0
0
0
...
0
I





,

may be expressed as

ξ̇(t) = Fξ(t) +Gu(t), ξ(0) = ξ0 ∈ R
(ρ−1)m,

ξ1(t) = Hξ(t), H :=
[
I

... 0
... 0

... · · ·
... 0

... 0
]
.

}
(4.1)

4.2. Feedback. Define

s(Γ) :=

{
+1 , Γ positive definite,
−1 , Γ negative definite.

Let ν : R → R be any C∞ function with the property:

there exists a strictly increasing unbounded sequence (kj) such that
the sequence

(
s(Γ)ν(kj)

)
is strictly decreasing and unbounded.

}
(4.2)

Introduce the projections

πi : R
(ρ−1)m → R

im, ξ = (ξ1, . . . , ξρ−1) 7→ (ξ1, . . . , ξi), i = 1, . . . , ρ− 1,

and define the C∞ function

γ1 : R × R
m → R

m, (k, e) 7→ γ1(k, e) := −ν(k)e , (4.3)

with derivative (Jacobian matrix function) Dγ1. Next, for i = 2, . . . , ρ− 1, define the
C∞ function γi : R × R

m × R
(i−1)m → R

m by the recursion

γi(k, e, πi−1ξ) :=γi−1(k, e, πi−2ξ) + ‖Dγi−1(k, e, πi−2ξ)‖2 k4 (1 + ‖πi−1ξ‖2)

×
(
µ2−iξi−1 + γi−1(k, e, πi−2ξ)

)
, (4.4)

wherein we adopt the notational convention γ1(k, e, π0ξ) := γ1(k, e). Define the C∞

function γρ : R × R
m × R

(ρ−1)m → R
m as follows

γρ(k, e, ξ) :=µρ−1γρ−1(k, e, πρ−2ξ) + µρ−1‖Dγρ−1(k, e, πρ−2ξ)‖2k4 (1 + ‖ξ‖2)

×
(
µ2−ρξρ−1 + γρ−1(k, e, πρ−2ξ)

)
. (4.5)

Finally, we introduce the bijection

α : [0, 1) → [1,∞), s 7→ 1/(1 − s). (4.6)

For arbitrary r ∈ R, the control strategy is given by

u(t) = −γρ

(
k(t), Cx(t) − r(t), ξ(t)

)
, k(t) = α

(
ϕ2(t)‖Cx(t) − r(t)‖2

)
. (4.7)
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Remark 4.1.

(i) If s(Γ) is known a priori, then the function ν : k 7→ −s(Γ)k is sufficient to ensure
property (4.2); if s(Γ) is unknown, then the function ν : k 7→ k cos k suffices. In the
latter case, the role of the function ν is similar to that of a “Nussbaum” function
in adaptive control. Note, however, that the requisite property (4.2) is less restric-
tive than (a) the “Nussbaum properties” as required in [17], for example, or (b) the
stronger “scaling invariant Nussbaum properties”, as required in [9], for example.
(ii) The function α in (4.6) may be generalized to any C∞ bijection α : [0, 1) → [1,∞)
with the property that α′ = d(α) for some function d: the particular choice d(·) = (·)2
yields the specific function adopted in (4.6) for simplicity of presentation. In the case
of general α, the term k4 in (4.4) and (4.5) should be replaced by d2(k).
(iii) In the specific case of a system of relative degree ρ = 2, writing e(t) = Cx(t)−r(t)
and omitting the argument t for simplicity, the control strategy takes the explicit form

u = µ ν(k)e− µ
[
(ν′(k)‖e‖)2 + (ν(k))2

]
k4 [1 + ‖ξ‖2]θ

k = α
(
ϕ2‖e‖2

)
, θ = ξ − ν(k)e ,

ξ̇ = −µ ξ + u, ξ(0) = ξ0.




 (4.8)

We will adopt this controller in the example in Section 6.

4.3. Well-posedness of the closed-loop system. The conjunction of the fil-
ter (4.1) and the feedback (4.7) applied to (3.1) yields the initial-value problem

ẋ(t) = Ax(t) + f(p(t), (TCx)(t), x(t)) −Bγρ(k(t), Cx(t) − r(t), ξ(t)),

ξ̇(t) = Fξ(t) −Gγρ(k(t), Cx(t) − r(t), ξ(t)),
k(t) = α

(
ϕ2(t)‖Cx(t) − r(t)‖2

)
,

x|[−h,0] = x0 ∈ C([−h, 0],Rρm), ξ(s) = ξ0 ∈ R
(ρ−1)m ∀s ∈ [−h, 0] .





(4.9)

By a solution of (4.9) on [−h, ω) we mean a function (x, ξ) ∈ C([−h, ω),Rρm ×
R

(ρ−1)m), with 0 < ω ≤ ∞, x|[−h,0] = x0 and ξ(s) = ξ0 for all s ∈ [−h, 0], such
that (x, ξ)|[0,ω) is absolutely continuous, satisfies the differential equations in (4.9) for
almost all t ∈ [0, ω) and avoids the singularity in α in the sense that ϕ(t)‖Cx(t) −
r(t)‖ < 1 for all t ∈ [0, ω). To answer affirmatively the question of well-posedness of
the closed-loop, we provide an existence theorem for a class of initial-value problems of
sufficient generality to incorporate (4.9). For h ≥ 0, consider the initial-value problem

ζ̇(t) = Z(t, (T̂ ζ)(t), ζ(t)), ζ(t) ∈ D,
ζ|[−h,0] = ζ0 ∈ C([−h, 0],RN ), ζ0(0) ∈ D,

}
(4.10)

where D ⊂ R
N is a non-empty, open set, Z : [−h,∞)×R

q×D → R
N is a Carathéodory

function and T̂ is a causal operator of class Th. By a solution of (4.10) on [−h, ω)
we mean a function ζ ∈ C([−h, ω),RN ), with 0 < ω ≤ ∞, and ζ|[−h,0] = ζ0 such
that ζ|[0,ω) is absolutely continuous and satisfies the differential equations in (4.10)
for almost all t ∈ [0, ω) and ζ(t) ∈ D for all t ∈ [0, ω). A solution of (4.9) or of (4.10)
is maximal if, and only if, it has no proper right extension that is also a solution.

Theorem 4.2. Let D ⊂ R
N be non-empty and open, let T̂ be an operator of

class T and let Z : [−h,∞) × R
q × D → R

N be a Carathéodory function. Then, for
each ζ0 ∈ C([−h, 0],RN ) with ζ(0) ∈ D, there exists a solution ζ : [−h, ω) → R

N ,
ζ([0, ω)) ⊂ D, of the initial-value problem (4.10) and every solution can be extended
to a maximal solution. Moreover, if Z is locally essentially bounded and ζ : [−h, ω) →
R

N , ζ([0, ω)) ⊂ D, is a maximal solution with ω < ∞, then, for every compact set
K ⊂ D, there exists t̂ ∈ [0, ω) such that ζ(t̂) 6∈ K.
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Proof. The proof is a straightforward modification of that of [5, Theorem 5].
We apply this result to our closed-loop system (4.9).

Corollary 4.3. Let (A,B,C, f, p, T, h) ∈ Σρ with ρ ≥ 1 and let ϕ ∈ Φ. For ev-
ery r ∈ R and (x0, ξ0) ∈ C([−h, 0],Rρm × R

(ρ−1)m), application of the feedback (4.7)
in conjunction with the filter (4.1) to the system (3.1) yields the initial-value prob-
lem (4.9) which has a solution and every solution can be extended to a maximal solu-
tion. If a maximal solution of (4.9) on [−h, ω) is bounded and such that the associated
gain function k is also bounded, then ω = ∞.

The proof is in the Appendix.

5. Main Results.

5.1. Preliminary lemmas. Let (A,B,C, f, p, T, h) ∈ Σρ with ρ ≥ 2. Rewriting
the conjunction of the nonlinear system (3.1) and the filter (4.1) as

[
ẋ(t)

ξ̇(t)

]
=

[
A 0
0 F

] [
x(t)
ξ(t)

]
+

[
I
0

]
f(p(t), (Ty)(t), x(t)) +

[
B
G

]
u(t),

y(t) = [C
... 0 ]

[
x(t)
ξ(t)

]
,





(5.1)

we have the following technicality, a proof of which can be found in the Appendix.
Lemma 5.1. For system (5.1), there exist K ∈ R

ρm×(ρ−1)m and N ∈ R
(ρ−1)m×ρm

such that

L :=




C 0
N −NK
0 I



 ∈ R
(2ρ−1)m×(2ρ−1)m

is invertible and

L

[
A 0
0 F

]
L−1 =




A1 A2 Γ̃
A3 A4 0
0 0 F



 , L

[
B
G

]
=

[
0
G

]
, [C

... 0 ]L−1 = [ I
... 0

... 0 ],

where Γ̃ :=
[
Γ

... 0
]
∈ R

m×(ρ−1)m, Γ := CAρ−1B and A4 ∈ R
(ρ−1)m×(ρ−1)m is such

that spec(A4) ⊂ C−.

In view of Lemma 5.1, there exist K and N such that, under the coordinate change



y(t)
z(t)
ξ(t)



 = L

[
x(t)
ξ(t)

]
,




y0

z0

ξ0



 = L

[
x0

ξ0

]
, L :=




C 0
N −NK
0 I



 , (5.2)

the conjunction (5.1) of system (3.1) and filter (4.1) can be represented by

ẏ(t) = A1y(t) +A2z(t) + Cf(p(t), (Ty)(t), x(t)) + Γξ1(t),
ż(t) = A3y(t) +A4z(t) +Nf(p(t), (Ty)(t), x(t)),

ξ̇(t) = Fξ(t) +Gu(t),
(y, z, ξ)|[−h,0] = (y0, z0, ξ0) ∈ C([−h, 0],Rm × R

(ρ−1)m × R
(ρ−1)m),





(5.3)

where A4 ∈ R
(ρ−1)m×(ρ−1)m has spectrum in C−. If (x, ξ) : [0, ω) → R

ρm × R
(ρ−1)m

is a maximal solution of the nonlinearly-perturbed closed-loop system (4.9), then, in
view of (5.3) and writing

y(t) = Cx(t), e(t) = y(t) − r(t), e|[−h,0] = e0(·) = y0(·) − r(0) , (5.4)
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we arrive at the following equivalent to (4.9)

ė(t) = A1e(t) +A2z(t) + f1(t) + Γξ1(t),
ż(t) = A3e(t) +A4z(t) + f2(t),

ξ̇(t) = Fξ(t) −Gγρ(k(t), e(t), ξ(t)),
k(t) = α

(
ϕ2(t)‖e(t)‖2

)
,

(e, z, ξ)|[−h,0] = (e0, z0, ξ0) ∈ C([−h, 0],Rm × R
(ρ−1)m × R

(ρ−1)m),






(5.5)

where the functions f1 and f2 are given by

f1(t) := A1r(t) + Cf(p(t), (Ty)(t), x(t)) − ṙ(t),
f2(t) := A3r(t) +Nf(p(t), (Ty)(t), x(t)).

}
(5.6)

Since (ϕ(t)‖e(t)‖)2 < 1 for all t ∈ [0, ω), the properties of ϕ ∈ Φ yield boundedness
of the function e which, together with boundedness of r, implies boundedness of y.
Since T is of class Th and y is bounded, Ty is essentially bounded. By boundedness
of r, essential boundedness of ṙ and p, and Assumption (A4), we may now conclude
(essential) boundedness of the functions f1 and f2. Observing that A4 is Hurwitz and
f2 bounded, the second of the differential equations in (5.5) yields boundedness of z.
These observations are recorded in the following lemma.

Lemma 5.2. Let (A,B,C, f, p, T, h) ∈ Σρ with ρ ≥ 2. Let ϕ ∈ Φ, r ∈ R
and (x0, ξ0) ∈ C([−h, 0],Rρm × R

(ρ−1)m). If (x, ξ) : [−h, ω) → R
ρm × R

(ρ−1)m is a
maximal solution of (4.9), then the functions y, z and e, given by (5.2) and (5.4),
are bounded. Furthermore, the functions f1 and f2, given by (5.6), are essentially
bounded and bounded, respectively.

The proofs of our main results (Theorems 5.4 and 5.5 below) rely crucially on
a further technicality: the signals θi = µ1−iξi + γi(k, e, πi−1ξ), i = 1, ..., ρ − 1, are
bounded. More precisely, we have the following (with proof in the Appendix).

Lemma 5.3. Let (A,B,C, f, p, T, h) ∈ Σρ with ρ ≥ 2. Let ϕ ∈ Φ, r ∈ R and
(x0, ξ0) ∈ C([−h, 0],Rρm×R

(ρ−1)m). If (x, ξ) : [−h, ω) → R
ρm×R

(ρ−1)m is a maximal
solution of (4.9), then the function θ = (θ1, . . . , θρ−1) : [0, ω) → R

(ρ−1)m is bounded,
where

θi(t) := µ1−i ξi(t) + γi(k(t), e(t), πi−1ξ(t)) , i = 1, . . . , ρ− 1, (5.7)

with the notational convention γ1(k, e, π0ξ) := γ1(k, e).

5.2. Relative degree 1 case. We are now in a position to state our main result
for the case when the system has strict relative degree 1; in this case, a filter is not
necessary and the controller (4.7) simplifies to

u(t) = ν(k(t))(Cx(t) − r(t)), k(t) = α
(
ϕ2(t)‖Cx(t) − r(t)‖2

)
. (5.8)

The closed-loop initial-value problem then becomes

ẋ(t) = Ax(t) +Bν(k(t))(Cx(t) − r(t)) + f(p(t), T (Cx)(t), x(t)),
k(t) = α

(
ϕ2(t)‖Cx(t) − r(t)‖2

)
,

x|[−h,0] = x0 ∈ C([−h, 0],Rm).




 (5.9)

Theorem 5.4. Let (A,B,C, f, p, T, h) ∈ Σ1 and ϕ ∈ Φ with associated per-
formance funnel Fϕ. For each reference signal r ∈ R, and initial data (x0, ξ0) ∈
C([−h, 0],Rρm ×R

(ρ−1)m), application of the feedback (5.8) to (3.1) yields the initial-
value problem (5.9) which has a solution and every solution can be maximally extended.
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Every maximal solution x : [−h, ω) → R
m has the properties:

(i) ω = ∞;
(ii) x, k and u are bounded;
(iii) the tracking error evolves within the funnel Fϕ and is bounded away from the fun-
nel boundary, i.e. there exists ε > 0 such that, for all t ≥ 0, ϕ(t)‖Cx(t)−r(t)‖ ≤ 1−ε.
The proof of Theorem 5.4 follows easily by modifying (all vestiges of the filter equa-
tions are excised) the proof of Theorem 5.5 below. The latter proof is in the Appendix.

5.3. Relative degree ρ ≥ 2 case. We now arrive at the main result of the
paper (with proof in the Appendix).

Theorem 5.5. Let (A,B,C, f, p, T, h) ∈ Σρ with ρ ≥ 2 and let ϕ ∈ Φ with
associated performance funnel Fϕ. For each reference signal r ∈ R and initial data
(x0, ξ0) ∈ C([−h, 0],Rρm × R

(ρ−1)m), application of the feedback (4.7), in conjunc-
tion with the filter (4.1), to (3.1) yields the initial-value problem (4.9) which has
a solution and every solution can be maximally extended. Every maximal solution
(x, ξ) : [−h, ω) → R

ρm × R
(ρ−1)m has the properties:

(i) ω = ∞;
(ii) x, ξ, k and u are bounded;
(iii) the tracking error evolves within the funnel Fϕ and is bounded away from the fun-
nel boundary, i.e. there exists ε > 0 such that, for all t ≥ 0, ϕ(t)‖Cx(t)−r(t)‖ ≤ 1−ε.

6. Example. We illustrate the controller strategy (4.7) applied to the following
single-input, single-output system of relative degree ρ = 2:

ÿ(t) + b0 sin y(t) + b1y(t)|y(t)| + (Ta,b y)(t) = b2 u(t) , (6.1)

where b0, b1 and b2 6= 0 are unknown real parameters and Ta,b represents the back-
lash operator, as defined in Section 3.1.5, with parameters a > 0 and b ∈ [−a, a].
Equation (6.1) is equivalent to (3.1) with

x(t) =

[
y(t)
ẏ(t)

]
, A =

[
0 1
0 0

]
, B =

[
0
b2

]
, C = [1

... 0], f(p,w, x) =

[
0
1

]
w,

and the operator T given by (Ty)(t) = b0 sin y(t) + b1y(t)|y(t)| + (Ta,by)(t), t ∈ R+.
Setting h = 0 and p = 0, the resulting system (A,B,C, f, 0, T, 0) is of class Σ2.

Fix τ > 0 arbitrarily and define ϕ ∈ Φ by

t 7→ ϕ(t) =

{
20(1 − ( t

τ
− 1)2), 0 ≤ t < τ,

20, t ≥ τ.
(6.2)

Evolution within the associated performance funnel Fϕ ensures a tracking accuracy
|e(t)| < 0.05 for all t ≥ τ . Choosing ν : k 7→ k cos k, ξ0 = 0, writing e(t) = y(t) − r(t)
and suppressing the argument t for simplicity, the control strategy (4.8) is

u = µ(k cos k)e− µ
[
(cos k − k sin k)2 e2 + k2 cos2 k

]
k4 [1 + ξ2]θ ,

k =
[
1 − ϕ2e2

]−1
, θ = ξ − (k cos k)e ,

ξ̇ = −µ ξ + u, ξ(0) = 0.




 (6.3)

For purposes of illustration, as reference signal r ∈ R, we take the first component ζ1
of the solution (chaotic and bounded, see [15, Appendix C]) of the following Lorenz
system of equations:

ζ̇1(t) = 1
2ζ2(t) − ζ1(t), ζ1(0) = 1

2 ,

ζ̇2(t) = 28
5 ζ1(t) − 1

10ζ2(t) − 2ζ1(t)ζ3(t), ζ2(0) = 0,

ζ̇3(t) = 2ζ1(t)ζ2(t) − 8
30ζ3(t), ζ3(0) = 3.




 (6.4)
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Setting b0 = 1
2 , b1 = 1 = b2, µ = 10, τ = 50 and adopting backlash hysteresis with

parameters a = 1/2, b = 0 and initial data (y(0), ẏ(0)) = (0, 0), the behaviour of the
closed-loop system (6.1)–(6.3) is depicted in Figure 6.1.

7. Appendix.

7.1. Proof of Lemma 3.5.
Parts of the following proof are implicit in the proofs of [7, Lemma 4.1.1] and [8,
Propositions 11.5.1 and 11.5.2] (in a general context of nonlinear systems); here, we
provide a simple, self-contained proof in the restricted context of linear systems.

Step (i): First note that

CB =




0 Γ

. .
.

Γ ∗



 ,

and, since Γ is invertible, we see that CB ∈ GLρm(R). Furthermore, NB = 0.
Assertion (i) then follows from the observation that, for any x ∈ R

n, we have
v := (I − B(CB)−1C)x ∈ ker C and w := B(CB)−1Cx ∈ im B, and so x = v + w.

Step (ii): We now prove Assertion (ii). It is clear that U−1 = [B(CB)−1
...V]. It

is also immediate that B̂ := UB̃ and Ĉ := C̃U−1 have the structure given in (3.9).
Furthermore ,

U Ã = ÂU (7.1)

for some Â of the form:

Â =





0 I 0 . . . 0 0
0 0 I 0
...

. . .
. . .

...
0 0 . . . 0 I 0
R1 R2 . . . Rρ−1 Rρ S
P1 P2 . . . Pρ−1 Pρ Q





,

with Ri ∈ R
m×m, Pi ∈ R

(n−ρm)×m, i = 1, ..., ρ, S ∈ R
m×(n−ρm), Q = N ÃV ∈

R
(n−ρm)×(n−ρm) and [R1

... · · ·
...Rρ

...S] = C̃ÃρU−1. If ρ = 1, then Â takes the form
shown in (3.10).

Recalling that NB = 0, we see that

[P1

... · · ·
...Pρ] = N ÃB(CB)−1 = [0

... · · ·
... 0

...N ÃρB̃]




∗ Γ−1

. .
.

Γ−1 0



 ,

hence Pi = 0 for i = 2, . . . , ρ. Writing P = P1, it follows that Â takes the form in
(3.9) and P = N ÃρB̃Γ−1.

Step (iii): Finally we prove part (iii) of the lemma. Writing

M1(s) =

[
sI − Ã B̃

C̃ 0

]
, M2(s) =

[
U 0
0 I

]
M1(s)

[
U−1 0
0 I

]
=

[
sI − Â B̂

Ĉ 0

]
,
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Fig. 6.1. Tracking of a Lorenz component reference signal; system (6.1) with unknown sign

b2 6= 0 and control strategy (6.3).
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and

M3(s) =

[
Ĉ 0

Â− sI −B̂

]
=





I 0 0 . . . 0 0 0
−sI I 0 . . . 0 0 0
0 −sI I 0 0 0
...

. . .
. . .

...
...

0 0 . . . −sI I 0 0
R1 R2 . . . Rρ−1 Rρ − sI S −Γ
P 0 . . . 0 0 Q− sI 0





,

we see that |detM1(s)| = |detM2(s)| = |detM3(s)| = |det Γ det(sI −Q)|.
By the minimum-phase property of (Ã, B̃, C̃), we have det(M1(s)) 6= 0 for all s ∈
C \ C− and so det(sI −Q) 6= 0 for all s ∈ C \ C−. It follows that spec(Q) ⊂ C− and
hence Assertion (iii) holds. 2

7.2. Proof of Corollary 4.3. Introducing the open set

D :=
{

(x, ξ, η) ∈ R
ρm × R

(ρ−1)m × R

∣∣∣ ϕ(|η|) ‖Cx− r(|η|)‖ < 1
}
,

and defining, on D,

γ∗ρ : (x, ξ, η) 7→ γρ

(
α(ϕ2(|η|) ‖Cx− r(|η|)‖2) , Cx− r(|η|) , ξ

)
,

the initial-value problem (4.9) may be recast on D as

ẋ(t) = Ax(t) + f(p(t), T (Cx)(t), x(t)) −Bγ∗ρ(x(t), ξ(t), η(t)),

ξ̇(t) = Fξ(t) −Gγ∗ρ(x(t), ξ(t), η(t)),
η̇(t) = 1,
(x, ξ, η)|[−h,0] = (x0, ξ0, 0) ∈ C([−h, 0],Rρm × R

(ρ−1)m × R).





(7.2)

Setting ζ = (x, ξ, η) and defining the Carathéodory function

Z : [−h,∞) × R
q × R

2(ρ−1)m+1 → R
(2ρ−1)m+1

(t, w, ζ) 7→ Z(t, w, ζ) :=




A 0 0
0 F 0
0 0 0



 ζ +




I
0
0



 f(p(t), w, x) −




B
G
0



 γ∗ρ(ζ) +




0
0
1





we can rewrite (7.2) as follows

ζ̇(t) = Z(t, (T̂ ζ)(t), ζ(t)) ζ|[−h,0] = ζ0 ∈ C([−h, 0],R(2ρ−1)m+1), (7.3)

where the operator T̂ , given by (T̂ ζ)(t) = (TCx)(t), is of class Th. We then apply the
existence result, Theorem 4.2, to conclude: (i) the existence of a solution t 7→ ζ(t) ∈ D
to (7.2) and (ii) every solution can be extended to a maximal solution ζ : [−h, ω) → D.
Furthermore, if there exists a compact set C ⊂ D such that (x(t), ξ(t), η(t)) ∈ C for
all t ∈ [0, ω), then ω = ∞.

Clearly, if ζ = (x, ξ, η) : [−h, ω) → D is a solution of (7.3), then (x, ξ) : [−h, ω) →
R

ρm ×R
(ρ−1)m is a solution of (4.9); conversely, if (x, ξ) : [−h, ω) → R

ρm ×R
(ρ−1)m is

a solution of (4.9), then ζ = (x, ξ, η) : [−h, ω) → R
ρm ×R

(ρ−1)m ×R, with component
η given by η(t) = t, is a solution of (7.3). We may now conclude that, for each
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(x0, ξ0) ∈ C([−h, 0],Rρm × R
(ρ−1)m), (4.9) has a solution and every solution can be

maximally extended.
Let (x, ξ) : [−h, ω) → R

ρm × R
(ρ−1)m be a maximal solution of (4.9) (and so t 7→

ζ(t) = (x(t), ξ(t), t) is a maximal solution of (4.10)). Assume that (x, ξ) is bounded
and that the gain function t 7→ k(t) = α

(
ϕ2(t)‖Cx(t)− r(t)‖2

)
is also bounded. Then

there exist c > 0 and ε > 0 such that ‖(x(t), ξ(t))‖ ≤ c and ϕ(t)‖Cx(t)−r(t)‖ ≤ 1−ε
for all t ∈ [0, ω). Seeking a contradiction, suppose that ω < ∞. It then follows that

K :=
{
(x̂, ξ̂, η̂) ∈ D

∣∣ ϕ(|η̂|)‖Cx̂ − r(|η̂|)‖ ≤ 1 − ε, ‖(x̂, ξ̂)‖ ≤ c, η̂ ∈ [−h, ω]
}

is a
compact subset of D which contains the trajectory ζ([−h, ω)) of the maximal solution
ζ of (4.10). This contradicts the last assertion of Theorem 4.2, and so ω = ∞. 2

7.3. Proof of Lemma 5.1. Define

K :=
[
[µ I +A]ρ−2B

... [µ I +A]ρ−3B
... · · ·

... [µ I +A]B
... B

]
∈ R

ρm×(ρ−1)m

and note that

AK −KF =
[
[µ I +A]ρ−1B

... 0
... · · ·

... 0
]
, KG = B and CK = 0.

Writing B̃ := (µI +A)ρ−1B, we have CB̃ = CAρ−1B = Γ and so the triple (A, B̃, C)
defines a linear system of relative degree one. Let V ∈ R

ρm×(ρ−1)m be such that
imV = kerC. By Lemma 3.5 applied in the context of the system (A, B̃, C), the ma-

trix

[
C
N

]
, with N := (V TV )−1V T [I− B̃Γ−1C], is invertible, with inverse

[
B̃Γ−1

...V
]
.

Writing

L =




C 0
N −NK
0 I



 with L−1 =

[
B̃Γ−1 V K

0 0 I

]

and recalling that KG = B, CB = 0 and CK = 0, we have

L

[
B
G

]
=

[
0
G

]
and

[
C

... 0
]
L−1 =

[
I

... 0
]
.

Moreover, noting that CAK =
[
Γ

... 0
... · · ·

... 0
]

=: Γ̃ and N [AK −KF ] = 0, we have

L

[
A 0
0 F

]
L−1 =




CAB̃Γ−1 CAV CAK

NAB̃Γ−1 NAV N [AK −KF ]
0 0 F



 =




A1 A2 Γ̃
A3 A4 0
0 0 F



 ,

where Γ̃ = [Γ
... 0

... · · ·
... 0]. It remains to show that A4 has spectrum in C−. Writing

M4(s) =

[
sI −A B
C 0

]
and M5(s) =




sI −A 0 B

0 sI − F −G
C 0 0



 ,

we have

M6(s) :=




I K 0
0 I 0
0 0 I



M5(s)




I K 0
0 I 0
0 0 I




−1

=




sI −A AK −KF 0

0 sI − F −G
C 0 0



 .
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In view of the particular structure of F , G and AK −KF , it is readily verified that

|detM6(s)| = |detM7(s)|, where M7(s) =

[
sI −A [µ I +A]ρ−1B
C 0

]
. Define

M8(s) :=




C 0
N 0
0 I



M7(s)

[
B̃Γ−1 V 0

0 0 I

]
=




sI −A1 −A2 Γ
−A3 sI −A4 0
I 0 0



 .

By the minimum-phase property of the triple (A,B,C) (recall Remark 3.4(ii)), for all
s ∈ C \ C−, we have detM4(s) 6= 0. We may now conclude that, for all s ∈ C \ C−,

|det Γ det(sI −A4)| = |detM8(s)| = |detM7(s)|
= |detM6(s)| = |detM5(s)| = |det(sI − F ) detM4(s)| 6= 0,

and so spec(A4) ⊂ C−. This completes the proof. 2

7.4. Proof of Lemma 5.3. Assume that (x, ξ) : [−h, ω) → R
ρm × R

(ρ−1)m is a
maximal solution of (4.9). Write y(t) = Cx(t) and e(t) = y(t)−r(t) for all t ∈ [−h, ω).
By Lemma 5.1, there exists an invertible linear transformation L under which the
closed-loop system (4.9) may be expressed in the form (5.5), wherein, by Lemma 5.2,
e and z are bounded and the functions f1 and f2 given by (5.6) are essentially bounded
and bounded respectively. By boundedness of z, essential boundedness of f1 and the
first of equations (5.5), we may infer the existence of c1 > 0 such that

‖ė(t)‖ ≤ c1
(
1 + ‖ξ1(t)‖

)
for a.a. t ∈ [0, ω).

By boundedness of ϕ, e, essential boundedness of ϕ̇ and recalling that α′(s) = α2(s) ≥
1 for all s ∈ [0, 1), there exists a constant c2 > 0 such that

|k̇(t)| = 2α′(ϕ2(t)‖e(t)‖2)
∣∣ϕ2(t)〈e(t), ė(t)〉 + ϕ(t)ϕ̇(t)‖e(t)‖2

∣∣

≤ c2k
2(t) (1 + ‖ξ1(t)‖) for a.a. t ∈ [0, ω).

Since k(t) ≥ 1 for all t ∈ [0, ω), we may now conclude the existence of a constant
c3 > 0 such that

‖(k̇(t), ė(t))‖2 ≤ c3 ∆(t) for a.a. t ∈ [0, ω), where ∆(t) := k4(t)
(
1 + ‖ξ1(t)‖2

)
.

Then, invoking (4.4), (5.7), and writing c4,1 := c3/µ > 0, we have,

〈θ1(t), θ̇1(t)〉 ≤ 〈θ1(t) , −µξ1(t) + ξ2(t)〉 + ‖θ1(t)‖‖Dγ1(k(t), e(t))‖‖(k̇(t), ė(t))‖
≤ 〈θ1(t) , −µθ1(t) + µγ1(k(t), e(t))〉 + 〈θ1(t), ξ2(t)〉

+
√
µ ‖θ1(t)‖ ‖Dγ1(k(t), e(t))‖

√
(c3/µ)∆(t)

≤ c4,1 − µ‖θ1(t)‖2 + 〈θ1(t), ξ2(t)〉 + µ〈θ1(t), γ1(k(t), e(t))〉
+µ‖θ1(t)‖2 ‖Dγ1(k(t), e(t))‖2 ∆(t)

= c4,1 − µ‖θ1(t)‖2 +
〈
θ1(t), ξ2(t) + µγ2(k(t), e(t), ξ1(t))

〉

= c4,1 − µ‖θ1(t)‖2 + µ〈θ1(t), θ2(t)〉 for a.a. t ∈ [0, ω).

Analogous calculations yield the existence of constants c4,2, . . . , c4,ρ−1 > 0, such that

〈θi(t), θ̇i(t)〉 ≤ c4,i − µ‖θi(t)‖2 + µ〈θi(t), θi+1(t)〉 a.a. t ∈ [0, ω), i = 2, . . . , ρ− 2

and, using (4.5), 〈θρ−1(t), θ̇ρ−1(t)〉 ≤ c4,ρ−1 − µ‖θρ−1(t)‖2 for almost all t ∈ [0, ω).
Writing c4 = c4,1 + · · · + c4,ρ−1, we have

1
2

d
dt

‖θ(t)‖2 ≤ c4 − µ‖θ(t)‖2 + µ〈θ1(t), θ2(t)〉 + · · · + µ〈θρ−2(t), θρ−1(t)〉
= c4 − µ〈θ(t), P θ(t)〉 for a.a. t ∈ [0, ω),
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where P is a positive-definite, symmetric, tridiagonal matrix with all diagonal entries
equal to 1 and all sub- and superdiagonal entries equal to -1/2. By positivity of P , it
follows that θ is bounded. This completes the proof of the lemma. 2

7.5. Proof of Theorem 5.5. Let (x0, ξ0) be arbitrary. By Corollary 4.3, (4.9)
has a solution and every solution can be maximally extended. Let (x, ξ) be a maximal
solution of (4.9) with interval of existence [−h, ω). Writing y(t) = Cx(t), e(t) =
y(t) − r(t) for all t ∈ [0, ω) and invoking Lemma 5.1, there exists an invertible linear
transformation L which takes (4.9) into the equivalent form (5.5)–(5.6). Introducing
θ1 : [0, ω) → R

m given by (5.7), viz. θ1(t) = ξ1(t) − ν(k(t))e(t), then the first of
equations (5.5) yields

ė(t) = f3(t) + ν(k(t)) Γ e(t) for a.a. t ∈ [0, ω), (7.4)

with f3(t) := A1e(t)+A2z(t)+Γθ1(t)+f1(t). By Lemmas 5.2 and 5.3, the functions y,
z, e and θ = (θ1, ..., θρ−1), given by (5.7), are bounded which, together with essential
boundedness of f1, implies essential boundedness of f3. Therefore, there exists c5 > 0
such that

〈e(t), ė(t)〉 ≤ c5 + ν(k(t)) 〈e(t),Γe(t)〉 for a.a. t ∈ [0, ω). (7.5)

We are now in a position to prove boundedness of k. Recalling that Γ is either positive
definite or negative definite, there exist constants β0, β1 > 0 such that

β0‖e‖2 ≤ |〈e,Γe〉| ≤ β1‖e‖2 ∀ e ∈ R
m.

Define the continuous function ν̃ : R → R as follows

ν̃(k) :=

{
−β1ν(k), s(Γ)ν(k) ≥ 0 ,
−β0ν(k), s(Γ)ν(k) < 0 .

Observe that

ν(k)〈e,Γe〉 ≤ −s(Γ)ν̃(k)‖e‖2 ∀ e ∈ R
m , ∀ k ≥ 0 ,

which, together with boundedness of e, ϕ, essential boundedness of ϕ̇ and (7.5),
implies the existence of c6 > 0 such that

d
dt

(ϕ(t)‖e(t)‖)2 ≤ c6 − 2s(Γ) ν̃(k(t))
(
ϕ(t)‖e(t)‖

)2
for a.a. t ∈ [0, ω).

In view of property (4.2) of ν, there exists a strictly increasing unbounded sequence
(kj) in (1,∞) such that the sequence

(
s(Γ)ν̃(kj)

)
is also strictly increasing, unbounded

and such that s(Γ)ν̃(kj) > 0 for all j ∈ N. Seeking a contradiction, suppose k is
unbounded on [0, ω). For each j ∈ N, define τj := inf{t ∈ [0, ω)| k(t) = kj+1}
and σj := sup{t ∈ [0, τj ]| ν̃(k(t)) = ν̃(kj)}. It is readily verified that σj < τj and
k(σj) < k(τj); moreover, for all j ∈ N and all t ∈ [σj , τj ], k(t) ≥ kj and s(Γ)ν̃(k(t)) ≥
s(Γ)ν̃(kj). Therefore,

(ϕ(t)‖e(t)‖)2 ≥ α−1(kj) ≥ α−1(k1) = 1 − 1

k1
=: c7 > 0 ∀ t ∈ [σj , τj ] ∀ j ∈ N,

where α−1 : [1,∞) → [0, 1) is the inverse of the bijection α. Thus,

d
dt

(ϕ(t)‖e(t)‖)2 ≤ c6 − 2c7s(Γ)ν̃(k(t)) ∀ t ∈ [σj , τj ] ∀ j ∈ N.
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Let j∗ ∈ N be sufficiently large so that c6 − 2c7s(Γ)ν̃(kj∗) < 0. Then,

(
ϕ(τj∗)‖e(τj∗)‖

)2
<

(
ϕ(σj∗)‖e(σj∗)‖

)2
,

whence the contradiction

0 > α
(
ϕ2(τj∗)‖e(τj∗)‖2

)
− α

(
ϕ2(σj∗)‖e(σj∗)‖2

)
= k(τj∗) − k(σj∗) > 0.

This proves boundedness of k. Therefore, there exists ε > 0 such that ϕ(t)‖e(t)‖ ≤
1 − ε for all t ∈ [0, ω). By boundedness of θ, e and k, together with continuity of the
functions γi, it follows from the recursive construction in (5.7) that, for i = 1, ..., ρ−1,
ξi is bounded. We may now deduce that x and ξ are bounded and, by (4.3), (4.4),
(4.5) and (4.7), we may also infer boundedness of u. Finally, by boundedness of x, ξ
and k, together with Corollary 4.3, we conclude that ω = ∞. 2
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[1] E. Bullinger and F. Allgöwer, Adaptive λ-tracking for nonlinear higher relative degree systems,
Automatica 41 (2005), 1191–1200.

[2] C.I. Byrnes and A. Isidori, Limit sets, zero dynamics and internal models in the problem of

nonlinear output regulation, IEEE Trans. Aut. Control 48 (2003), no. 10, 1712–1723.
[3] , Nonlinear internal models for output regulation, IEEE Trans. Aut. Control 49 (2004),

no. 12, 2244–2247.
[4] A. Ilchmann, E.P. Ryan, and C.J. Sangwin, Systems of controlled functional differential equa-

tions and adaptive tracking, SIAM J. of Control and Optim. 40 (2002), 1746–1764.
[5] , Tracking with prescribed transient behaviour, ESAIM Control, Opt. and Calculus of

Variations 7 (2002), 471–493.
[6] A. Ilchmann, E.P. Ryan, and P.N. Townsend, Tracking control with prescribed transient be-

haviour for systems of known relative degree, Sys. Control Lett. 55 (2006), 396–406.
[7] A. Isidori, Nonlinear control systems, 3 ed., Springer-Verlag, London, 1995.
[8] , Nonlinear control systems II, 1 ed., Springer-Verlag, London, 1999.
[9] Z.-P. Jiang, I. Mareels, D.J. Hill, and J. Huang, A unifying framework for global regulation via

nonlinear output feedback: from ISS to iISS, IEEE Trans. Aut. Control 49 (2004), no. 4,
549–562.

[10] P. Krishnamurthy and F. Khorrami, Dynamic high-gain scaling: State and output feedback

with application to systems with ISS appended dynamics driven by all states, IEEE Trans.
Aut. Control 49 (2004), no. 12, 2219–2239.

[11] H. Logemann and A.D. Mawby, Low-gain integral control of infinite dimensional regular linear

systems subject to input hysteresis, Advances in Mathematical Systems Theory (F. Colo-
nius, U. Helmke, D. Prätzel-Wolters, and F. Wirth, eds.), Birkhäuser Verlag, 2000, pp. 255–
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