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Abstract. Even though the Constraint Satisfaction Problem (CSP) is NP-complete,

many tractable classes of CSP instances have been identified. After discussing

different forms and uses of tractability, we describe some landmark tractable

classes and survey recent theoretical results. Although we concentrate on the

classical CSP, we also cover its important extensions to infinite domains and op-

timisation, as well as #CSP and QCSP.

1 What is tractability?

The idea that an algorithm is efficient if its time complexity is a polynomial function

of the size of its input can be traced back to pioneering work of Cobham [45] and

Edmonds [81], but the foundations of complexity theory are based on the seminal work

of Cook [52] and Karp [119]. A computational decision problem (such as the constraint

satisfaction problem or CSP) consists of a generic instance (in the case of the CSP, a

set of variables, their domains and a set of constraints) together with a yes-no question

(Is there an assignment of values to the variables which simultaneously satisfies all

the constraints?). A problem Q is NP-hard if all problems P in NP are polynomially

reducible to Q (and NP-complete if we also have Q ∈ NP). On the other hand, the class

P consists of all decision problems that can be decided in polynomial time. Although

P 6=NP is still an open question, it is generally assumed to be true, and hence proving that

a problem is NP-hard is universally accepted as a proof of computational hardness. The

CSP is NP-hard since it includes as a subproblem 3SAT which is a canonical example

of an NP-complete problem [52].

The essential property of a tractable class C of CSP instances is that there is a

polynomial-time algorithm to test the satisfiability of instances I ∈ C . However, de-

pending on the application in which the tractability of C is used, other properties may

be desirable or even required. For example, one such property is that the recognition

problem (Is I ∈ C ?) is solvable in polynomial time.

We can identify several distinct uses of tractable classes:

1. automatic recognition and resolution of easy instances within general-purpose solvers,
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2. as a target problem after instantiation of certain variables during exhaustive search,

3. construction of a polynomial-time solvable relaxation to prune exhaustive search,

where given an instance I, a relaxation (or lower-bound instance) Ilb is an instance

such that Ilb is unsatisfiable implies that I is unsatisfiable,

4. proof (by a human being) that a subproblem of CSP (for example, encountered in

a real application) can be solved in polynomial time.

To be useful, cases (1) and (2) require polynomial-time recognition, whereas (3) and (4)

do not. We therefore use the term tractable in its largest interpretation: we only require

that the class be solvable in polynomial time. It should be noted, however, that not re-

quiring that a tractable class be recognisable in polynomial time can lead to pathological

cases of no interest, such as the class of all satisfiable CSP instances [141].

An example of a particularly versatile tractable class is the class of instances whose

constraint graph has treewidth bounded by a constant k. This class can be recognized

in polynomial time (indeed, in theory, in linear time [21]), can provide a target class

after instantiation of some variables and lower-bound instances can easily be produced

in this class [71]. However, in the important case k = 1, a lower-bound instance Ilb with

a constraint graph in the form of a tree provides no more information than we would

obtain by applying arc consistency to the original instance I.

Many tractable classes of CSP are automatically solved in polynomial time by any

algorithm which maintains (generalised) arc consistency during search: we can notably

cite the class of instances with max-closed constraints [113], the class of instances

whose constraints are max-closed after independent permutations of each domain [93]

and the class of binary instances satisfying the broken-triangle property [58]. Simi-

larly, Valued CSPs with submodular constraints are automatically solved by establish-

ing OSAC (Optimal Soft Arc Consistency) [57]. Present-day solvers do not explicitly

look for tractable classes, but by analysis of the algorithms they use it is sometimes

possible to show that they automatically solve certain tractable classes. For instance,

translating CSP instances with max-closed constraints [113] or CSP instances with

connected row-convex constraints [75] into SAT instances using the order encoding

produces instances that fall into known tractable classes of SAT which are solved ef-

ficiently by modern clause-learning SAT-solvers [145,109]. Tractable classes that are

automatically solved by standard algorithms are nevertheless useful since proving that

the solver will always execute in polynomial time in a given application provides a

potentially important guarantee of efficiency.

The identification of certain interesting subproblems of CSP as tractable has led to

both practical and theoretical applications. For example, some of the results on tractable

constraint classes were used by British Telecom in the design of their Work Manager

scheduling package [132] and by Rank Xerox in the analysis of schedulers for printing

systems [147]. The tractability of the interpretation of line drawings of curved objects

follows from results on tractable constraint languages [53] and a novel relaxation of

planning problems follows from the tractability of simple temporal constraints [59].

Indeed, the tractability of classes of temporal constraints have found many applications,

including the scheduling of agile satellites [146].

A global constraint is a constraint on a non-fixed number of variables. A global

constraint often provides an expressive and concise way of modelling a condition which



could otherwise only be expressed by a large number of simpler constraints. Arguably

the most common and useful tractable classes of CSP instances consist of instances

comprising a single global constraint together with arbitrary unary constraints. The fact

that such instances are tractable for certain types of global constraints is the basis of

domain filtering methods for global constraints used in solvers [104]. Such filtering can

be viewed as the use of a polynomial-time solvable relaxation consisting of a single

global constraint together with the current domains of each variable.

A tractable class of a computational problem P is a set of instances of P for which

there exists a polynomial-time solution algorithm. Sets of CSP instances can be de-

scribed in different ways, including:

1. By restricting the language of constraint relations. Such classes are called language

classes and are discussed in Sections 2, 3 and 4.

2. By restricting the constraint (hyper)graph. Such classes are called structural classes

and are discussed in Section 5

3. By placing restrictions which are not exclusively language-based nor exclusively

structural. Such classes, sometimes called hybrid classes, are described in Sec-

tions 6 and 7.

The problem of identifying all tractable languages has been the inspiration for a

rich literature at the boundary of theoretical computer science and algebra. Indeed,

several surveys have already been published [51,102,65,39,114]. For the moment, the

Feder and Vardi dichotomy conjecture that all finitelanguages of constraint relations

either define a polynomial-time solvable class or an NP-complete class remains open.

On the other hand, the problem of identifying all structural tractable classes has been

solved in the case of bounded arity constraints, since it has been shown that bounded

treewidth is the only reason for tractability [96]. In the unbounded arity case, a fixed-

parameter tractability dichotomy has been given when the parameter is the number of

variables [138].

An algorithm is polynomial-time if its worst-case time complexity is bounded by

a polynomial function of the size of its input. This seemingly unambiguous defini-

tion can nevertheless lead to subtleties in the definition of a tractable class of CSP

instances. For example, Chen and Grohe study tractability under assumptions of suc-

cinct representations of the constraint relations, in the form of DNF formulas or (non-

deterministic) decision diagrams. With a more succinct representation it is more dif-

ficult to find polynomial-time algorithms, since complexity has to be a polynomial

function of a smaller input size, but interesting structural and language-based tractable

classes still exist [41].

In the rest of the paper we consider CSP instances I = (X ,D,C) consisting of a set

X of n variables X1, . . . ,Xn with domains D(Xi) ⊆ D and a set C of constraints of the

form 〈σ ,R〉, where σ ⊆ X is the scope of the constraint and R the relation containing

all allowed assignments to the variables in σ . A solution is an assignment to the n

variables such that, for each constraint 〈σ ,R〉, the corresponding partial assignment to

the variables σ belongs to R. The arity of a constraint 〈σ ,R〉 is |σ |. A CSP instance is

binary if all its constraints have arity at most two. We suppose that domains are finite.

The case of infinite domains is covered in Section 9.1. Unless stated otherwise, we

assume that the relations are given in the input as lists of tuples, every variable belongs



to at least one scope, and every domain value belongs to at least one tuple. The size of a

CSP instance I = (X ,D,C) is |I|= ∑〈σ ,R〉∈C |σ |× |R|, where |R| is the number of tuples

in R. We will use the following examples of tractable classes as illustrationsthroughout

the paper. The reasons for tractability will be given when the examples are referred to

in the following sections.

Example 1. Let Cmc be the class of binary CSP instances over the domain {1, . . . ,d} in

which unary constraints are arbitrary and all binary or ternary constraints are of one of

the following forms

1. a ≤ Xi −X j ≤ b,

2. Xi ≤ X j +Xk + c,

3. Xk < max(Xi,X j)

where a,b,c are arbitrary constants. The class Cmc contains some simple scheduling

problems over a discrete time axis.

Example 2. Let Caff2 be the class of binary CSP instances over the domain {0,1} in

which all constraints are linear equations modulo 2. A simple example of such a prob-

lem is the recovery of missing bits from a message using parity bits.

Example 3. Let Ctw1 be the class of binary CSP instances over the domain {1, . . . ,d}
with arbitrary unary and binary constraints except for the fact that the constraint graph

(i.e. the graph 〈X ,E〉, where X is the set of variables and E the set of scopes of the

binary constraints) is a forest.

Example 4. Let CAllDiff be the class of CSP instances over the domain {1, . . . ,d} con-

sisting of arbitrary unary constraints a binary constraint of the form Xi 6= X j on each

pair of distinct variables Xi,X j. The class CAllDiff contains some simple assignment

problems, including the problem of finding a bijection between employees and tasks to

be performed with the unary constraints coding the competences of each employee to

perform each task.

Example 5. Let C4Turan be the class of binary CSP instances over the Boolean domain in

which each constraint is equivalent to a 3SAT clause and for each quadruple of distinct

variables Xi, X j, Xk, Xl there is at least one ternary constraint whose scope is a subset

these variables.

The paper is structured as follows. Section 2 introduces the important theoreti-

cal notion of polymorphism and then discusses the two main algorithmic techniques

for solving language-based tractable classes. We give language-based tractable classes

which could be potentially important in terms of practical applications as illustrations of

these notions. Sections 3 and 4 cover the more theoretical problems of characterising all

tractable languages and the complexity of recognizing tractable languages. Sections 5

and 6 cover tractable classes defined by placing restrictions, respectively, on the con-

straint graph or the microstructure of the instance. Other tractable classes, which are not

defined by a restriction on the language, the constraint graph or the microstructure of

the instance, are covered in Section 7. Fixed-parameter tractability results are grouped



together in Section 8. Although this article is mainly concerned with the traditional

finite-domain decision-problem version of the constraint satisfaction problem, we also

briefly cover in Section 9 the case of infinite domains and other versions of the CSP,

such as the Valued CSP, Quantified CSP, Uncertain CSP and #QCSP.

2 Tractable languages

The potential importance of tractable languages of constraint relations is illustrated by

the importance of linear programming in Mathematical Programming or Horn clauses

in SAT.

If Γ is a set of relations, then CSP(Γ ) denotes the class of CSP instances all of

whose constraint relations belong to the language Γ . If CSP(Γ ′)∈P, for all finite sub-

sets of Γ ′ of Γ , then Γ is said to be a tractable language. An important consequence

of this definition in terms of finite subsets of Γ is that we can assume that the arity of

constraints is bounded by a constant, the maximum arity of relations in the finite sub-

set Γ ′. This constant bound on the arity of constraints ensures that tractability does not

depend on the way in which constraint relations are encoded: although, in practice, con-

straint relations are often stored implicitly, in this section, we can make the simplifying

assumption that all constraint relations are stored as an explicit list of tuples.

2.1 Polymorphisms

Initial research in the identification of language-based tractable classes uncovered inter-

esting but disparate examples of tractable languages. The algebraic approach provided

a unifying framework in which to study tractability of languages [108]. It also allowed

bridges to be built between the complexity of constraint languages and the mathematics

of clone theory and universal algebra, leading to important cross-fertilisation. Indeed,

this approach has helped to produce results which strongly support the longstanding

dichotomy conjecture of Feder and Vardi [84] that all such classes are either solvable in

polynomial time or else NP-hard.

A foundational theoretical result is that a necessary condition for tractability of Γ

is the existence of a (non-trivial) componentwise closure operation, known as a poly-

morphism [108,111]. For simplicity, it is usually assumed that there is a unique domain

D such that all variable-domains D(Xi) are subsets of D. A function f : Dk → D can

be extended to a function from Drk to Dr by applying it componentwise: given k tuples

x1, . . . ,xk ∈ Dr,

f (x1, . . . ,xk) = 〈 f (x1[1], . . . ,xk[1]), . . . , f (x1[r], . . . ,xk[r])〉,

where xi[ j] is the jth component of the tuple xi. Then f is a polymorphism of a language

Γ (and Γ is preserved by the operation f ) if for all relations R ∈ Γ , ∀x1, . . . ,xk ∈ R,

f (x1, . . . ,xk) ∈ R.

Thus all tractable languages have a nontrivial polymorphism f , where nontrivial

means that f is not a projection (i.e. f is not a function of the form f (x1, . . . ,xt) = xi

for some i). For example, any Boolean relation which is equivalent to a conjunctionof



Horn clauses has the polymorphism min, as does any arithmetical constraint of the form

a1x1+a2x2+ . . .+ar−1xr−1 ≤ arxr for any positive constants a1, . . . ,ar or any conjunc-

tion of disjunctions of the form (x1 < b1)∨ . . .∨ (xr < br)∨ (xi > c) where b1, . . . ,br,c
are constants [113]. As another example, the language of zero-one-all relations [55]

(a generalization of 2SAT clauses to multi-valued logics) has the dual discriminator

polymorphism given by f (x,y,y) = y, f (x,y,z) = x if y 6= z.

2.2 Language classes solved by local consistency

Local consistency methods are the most common and well-studied polynomial-time al-

gorithmic techniques for CSP. In general they are incomplete and thus only used to

prune inconsistent values, but in presence of some particular polymorphisms they may

become decision procedures. A CSP instance is k-consistent if every consistent assign-

ment to k−1 variables can be extended to a consistent assignment of any kth variable,

and strongly k-consistent if it is j-consistent for all j ≤ k. (Strong) k-consistency can

be easily enforced in polynomial time if k is fixed. If enforcing strong k-consistency

empties the domain of at least one variable for every unsatisfiable instance of CSP(Γ ),

we say that Γ has strict width k.

Some results are stated using a different form of local consistency, called relational

consistency. A CSP instance is (k, l)-minimal if for every subset L of l variables there

is a constraint with scope σ ⊇ L and for every set K of at most k variables, the pro-

jections of any two constraints whose scope contain K are identical. For instance, gen-

eralised arc-consistency (GAC) is equivalent to (1,1)-minimality. For fixed (k, l), en-

forcing (k, l)-minimality is polynomial time. We say that a language Γ has (relational)

width (k, l) if the (k, l)-minimality algorithm acts as a decision procedure for CSP(Γ ),

width k if it has width (k,k), and bounded width if it has width (k, l) for some fixed

(k, l).

Tractable classes, such as the min-closed class, can be generalised by determining

which properties of the polymorphism are required by the solution algorithm. A semi-

lattice operation f is a binary operation that is associative, commutative, and idem-

potent, i.e. ∀x,y,z, f (x, f (y,z)) = f ( f (x,y),z), f (x,y) = f (y,x) and f (x,x) = x). If Γ

has a semilattice polymorphism, then CSP(Γ ) has width 1 [108]. The unary, binary and

ternary constraint relations given in Example 1 all have the polymorphism max which

is a semilattice operation. It follows that all instances in the corresponding class Cmc

can be solved by GAC.

It was later shown that CSP(Γ ) has width 1 if and only if Γ has totally symmetric

(TS) polymorphisms of all arities, that is, polymorphisms fi such that fi(x1, . . . ,xr) =
fi(y1, . . . ,yr) whenever {x1, . . . ,xr}= {y1, . . . ,yr} [68].

Considering more powerful solution algorithms is another way to generalise tractable

classes. A near-unaminity (NU) polymorphism is a k-ary operation f , where k ≥ 3, sat-

isfying ∀x,y, f (y,x, . . . ,x) = f (x,y,x, . . . ,x) = . . .= f (x, . . . ,x,y) = x. It is known that a

language Γ has strict width k if and only if Γ has a k-ary NU polymorphism and for any

such language, strong k-consistency implies global consistency [112]. A majority oper-

ation is a ternary near-unanimity operation. The dual discriminator operation, defined

above, is an example of a majority operation. Connected row-convex constraints [75]



are closed under the ternary median operation which is another example of a major-

ity operation [112]. It has been recently shown that singleton arc-consistency solves

CSP(Γ ) when Γ admits a majority polymorphism [40].

A binary operation f is a 2-Semilattice if it is idempotent, commutative and satisfies

the identity ∀x,y, f (x, f (x,y)) = f (x,y). A language Γ that has a 2-Semilattice poly-

morphism is tractable since CSP(Γ ) has bounded width [22]. A k-ary (k ≥ 2) operation

f : Dk → D is a weak near-unanimity operation (WNU) if, ∀x,y ∈ D, f (y,x,x, . . . ,x) =
f (x,y,x, . . . ,x) = f (x,x, . . . ,x,y). Any language Γ preserved by WNU polymorphisms

of all arities greater than or equal to 3 has bounded width [9]; this class is extremely

large and encompasses all tractable classes discussed above. Finally, it has been shown

that every language with bounded width has width (2,3) [24,8], which allows for fairly

efficient solving.

2.3 Polynomial-sized representation of all solutions

Another standard algorithmic technique for solving tractable languages, apart from lo-

cal consistency operations, is based on the property of having a polynomial-sized repre-

sentation for the solution set of any instance. A Mal’tsev operation is a ternary operation

which satisfies ∀x,y, f (y,y,x) = f (x,y,y) = x. If Γ is preserved by a Mal’tsev operation,

then this property holds and CSP(Γ ) can be solved by an algorithm based on a general-

ization of Gaussian elimination [28]. More precisely, if a relation R admits a Mal’tsev

polymorphism f then there exists a relation Rc of arity r such that Rc has O(rd) tuples

and R is the closure of Rc under f [79]. Rc is called a frame for R. If I = (X ,D,C)
is a CSP instance with C = (Ci, . . . ,Cq), the algorithm for Mal’tsev languages itera-

tively computes a frame F for the solution set of (X ,D,C1, . . . ,Ci+1) from a frame for

(X ,D,C1, . . . ,Ci). Once i = q− 1 is reached, F is a frame for the set of solutions of I,

and F is empty if and only if the instance has no solution.

An affine operation is an example of a Mal’tsev operation and is of the form f (x,y,z)=
x− y+ z where (D,+,−) is an Abelian group [108]. Any constraint satisfaction prob-

lem over a prime domain of size d, with constraint relations that are closed under an

affine operation, corresponds to a set of simultaneous linear equations over the integers

modulo d [107]. In the case d = 2, as illustrated by the class Caff2 given in Example 2,

the affine operation is equivalent to f (x,y,z) = x+ y+ z and is known as the minority

operation, since ∀x,y ∈ {0,1} f (x,x,y) = f (x,y,x) = f (y,x,x) = y.

A generalized majority-minority operation is such that for all pairs of domain ele-

ments a,b either f (x,y, . . . ,y) = f (y,x,y, . . . ,y) = . . . = f (y, . . . ,y,x) = y for all x,y ∈
{a,b} or f (x,y, . . . ,y) = f (y, . . . ,y,x) = x for allx,y ∈ {a,b}. Generalized majority-

minority (GMM) operations are a tractable generalization of both near-unanimity op-

erations and Mal’tsev operations [67]. Finally, it was shown by Idziak et al. [105]

that a necessary and sufficient condition for Gaussian-like algorithms to solve CSP(Γ )

is that Γ has an edge polymorphism, which is an operation f such that ∀x,y ∈ D,

f (y,y,x,x, . . . ,x) = f (y,x,y,x,x, . . . ,x) = x and f (x,x,x,y,x, . . . ,x) = f (x,x,x,x,y,x, . . . ,x)
= f (x, . . . ,x,y) = x. The solution algorithm is usually referred to as the few subpowers

algorithm. Note that a k-edge operation has arity k+ 1, so Mal’tsev operations corre-

spond to 2-edge operations.



3 On characterizing tractable languages

This section covers the theoretical problem of characterizing those tractable classes

defined by a language of relations. We begin by surveying the progress that has been

made towards a proof of Feder and Vardi’s dichotomy conjecture [84] which can be

stated in the following form:

Conjecture 1 (Feder and Vardi). For every finite language Γ , either Γ is tractable or

CSP(Γ ) is NP-complete.

A landmark result is Schaefer’s characterization of tractable languages for the special

case of CSP instances over the Boolean domain [151]: a language Γ is tractable if

Γ is 0-valid, 1-valid, Horn, dual Horn, affine or bijunctive; otherwise CSP(Γ ) is NP-

complete. A language is c-valid if it has the constant unary polymorphism f (x) = c.

This is a trivial case, since assigning the value c to all variables necessarily satisfies all

constraints. A Boolean language Γ is Horn (dual Horn) if all relations in Γ are logically

equivalent to a conjunction of (dual) Horn clauses, which is equivalent to Γ having

the polymorphism min (max) [113]. A Boolean language Γ is affine if all relations in

Γ are equivalent to a system of linear equations (modulo 2), which is equivalent to

Γ having the ternary affine polymorphism f (x,y,z) = x+ y− z. Recall that over the

Boolean domain, the affine polymorphism is also known as the minority polymorphism

since ∀x,y ∈ {0,1}, f (x,x,y) = f (x,y,x) = f (y,x,x) = y and f (x,x,x) = x. A Boolean

language Γ is bijunctive if all relations in Γ are equivalent to a set of 2SAT clauses,

which is equivalent to Γ having the unique Boolean majority polymorphism given by

∀x,y ∈ {0,1}, f (x,x,y) = f (x,y,x) = f (y,x,x) = x. If the solution to the CSP instance

must be surjective, in the sense that each domain value appears at least once, then the

tractable languages are Horn, dual Horn, affine or bijunctive [64].

In section 2 we saw that the existence of a non-trivial polymorphism is a necessary

condition for a language Γ to be tractable. This can be refined if we restrict attention

to reduced languages, known as cores, which we now define. A squashing function

is a unary polymorphism f : D → D′ ⊂ D. If Γ has a squashing function then if an

instance I ∈ CSP(Γ ) has a solution over D, then it has a solution over D′ (obtained by

applying f component-wise to the solution). A language Γ over a domain D is a core

if it has no squashing function. A necessary (but not sufficient) condition for a reduced

language (a core) to be tractable is that it has a polymorphism which is a constant

function, a majority function, an idempotent binary function (which is not a projection),

a Malt’sev function, or a semi-projection [51]. A language Γ is a rigid core if its only

unary polymorphism is identity. It is known that the search for tractable languages can

be restricted to languages that are rigid cores [32].

3.1 Dichotomies

Although the Feder and Vardi conjecture is still open, several dichotomies have been

found under special conditions:

– languages containing a single binary symmetric relation [101],

– languages closed under all domain permutations [55,66],



– languages closed under disjunctions [103],

– maximal languages (where a language Γ is maximal if there is a relation R /∈ 〈Γ 〉
and each proper extension of 〈Γ 〉 contains all relations on D) [33],

– languages over a size-3 domain [23],

– conservative languages (i.e. languages containing all unary relations) [25,6,27],

A binary relation over a domain D can be viewed as a graph 〈D,R〉. In the case of

languages Γ containing a single binary symmetric relation R, the Hell-Nešetřil theorem

shows that Γ is tractable if R viewed as a graph is bipartite or contains a loop, and is

NP-complete otherwise [101].

The tractable class of languages preserved by WNU operations of all arities greater

than or equal to 3 characterizes precisely the languages that can be solved by local con-

sistency [9]. Recall that the existence of an edge polymorphism is a necessary and suf-

ficient condition for CSP(Γ ) to be solved by the few subpowers algorithm [105]. Thus,

the languages Γ such that CSP(Γ ) can be solved by either of the two most important al-

gorithmic techniques (namely, consistency methods and Gaussian-like algorithms) have

been completely characterised by the polymorphisms of Γ .

3.2 More specific conjectures

Feder and Vardi showed that the CSP dichotomy conjecture is equivalent to the CSP

dichotomy conjecture restricted to digraphs (i.e languages consisting of a single binary

relation) [84]. Therefore constraint satisfaction problems can be reduced to (di)graph

homomorphism problems studied in graph theory for over thirty years. It has been

shown that the CSP dichotomy holds for digraphs with no sources and no sinks [10]. It

has also been shown that the truth of the following conjecture implies the truth of that

of Feder and Vardi: If Γ has a Siggers operation as a polymorphism, then CSP(Γ ) is

tractable, where a Siggers operation f is an arity-4 operation satisfying the following

identities: ∀x,y,z, f (x,x,x,x) = x and f (y,x,y,z) = f (x,y,z,x) [36]. The hierarchy of the

main tractable classes discussed in section 2 (plus the class of languages with a Siggers

polymorphism which is conjectured to be tractable) is summarized in Figure 1 for the

special case of rigid cores, whose polymorphisms are all idempotent. This hierarchy is

no longer correct if we consider arbitrary languages instead.

Given a language Γ , 〈Γ 〉 is the language of relations that can be generated from

Γ by combinations of equality, join and project operations (and is known as the rela-

tional clone generated by Γ ). Since for any finite set Γ ′ ⊆ 〈Γ 〉 there is a polynomial

reduction from CSP(Γ ′) to CSP(Γ ), Γ is tractable if and only if 〈Γ 〉 is tractable [108].

A set of operations containing all projections and closed under composition is known

as a clone. Since Γ and 〈Γ 〉 have the same clone of polymorphisms, it is possible to

establish a Galois connection between relational clones (of relations) and clones (of

polymorphisms) [111]. Indeed, by going beyond clones to finite algebras and varieties

of algebras it has been shown that the complexity of a language is determined by the

identities satisfied by its polymorphisms [32].

Bulatov et al. [32] have given a more specific version of the Feder and Vardi con-

jecture from the perspective of universal algebra (the field of mathematics that studies



algebras themselves). An algebra is a set of operations on some fixed set. For each alge-

bra A , there is a corresponding language consisting of the set of relations closed under

the operations of A . An algebra is defined as tractable if its corresponding language is

tractable. The algebraic dichotomy conjecture is that a finite idempotent algebra A is

NP-complete if it has a nontrivial factor B (a homomorphic image of a sub-algebra of

A ) all of whose operations are projections, otherwise it is tractable. This conjecture,

if true, would completely solve the question of the complexity of any constraint lan-

guage. Kun and Szegedy [128] have linked the dichotomy conjecture to the theory of

Probabilistically Checkable Proofs.

3.3 Related problems

In a probabilistic analysis of Feder and Vardi’s dichotomy conjecture, Luczak and

Nešetřil showed that for a randomly chosen language Γ the probability that CSP(Γ )

is tractable tends to zero as either the domain size or the maximum relation arity tends

to infinity (under the assumption that all relations R are loop-free, i.e. for all domain

values a, (a, . . . ,a) /∈ R) [134].

Larose and Zadori studied the tractability of determining whether a system of poly-

nomial equations over a finite algebra admits a solution [131]. They characterized,

within various families of algebras, which of them give rise to an NP-complete prob-

lem and which yield a problem solvable in polynomial time. In particular, they prove

a dichotomy result which encompasses the cases of lattices, rings, modules and quasi-

groups.

Feder and Hell studied the tractability of languages on W -full structures CSPW (Γ )
(where W is any set of positive integers), representing the set of CSP instances in

CSP(Γ ) in which ∀w ∈ W , any w variables are involved in a w-ary constraint. For ex-

ample, if 2 ∈ W , then there is a binary constraint between each pair of variables. For

conservative languages Γ (and, indeed, for the more general case of languages con-

taining all unary relations of size 3), the W -full problem CSPW (Γ ) is NP-complete or

solvable in quasi-polynomial time nO(logn) (where n is the number of variables) [82].

4 The recognition problem for tractable languages

In this section we detail the complexity of the recognition problem for the most impor-

tant tractable languages, assuming we are given a finite language Γ as input. For any

particular operation f : Dk → D, such as min (for a given domain ordering) or the dual

discriminator operation, we can exhaustively test in polynomial-time that f preserves

every relation in Γ . We therefore study the recognition of classes of tractable languages

defined by the identities satisfied by their polymorphisms, for example, the class of

languages with a semilattice polymorphism or the class of languages with a majority

polymorphism.

4.1 Recognition of different families of polymorphisms

In the literature on tractable languages, the recognition problem is often considered

under the assumption that the domain size, the maximum number of tuples or the max-
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imum arity is bounded [24,25]. Here we only detail the complexity of the basic recog-

nition problem which has no restriction on the input language.

It was observed in [84] that fixed-arity near-unanimity polymorphisms can be de-

tected in polynomial time. When the arity is not fixed, the problem is still decidable but

the exact complexity is unknown [7]. Interestingly, deciding whether a language admits

the median polymorphism (which is a particular case of majority polymorphism) with

respect to an unknown ordering of the domain is NP-hard [93]. This highlights the fact

that more general polymorphisms are not necessarily harder to detect.

In the case of rigid cores, the class of languages with WNU polymorphisms of all

arities greater than or equal to 3 can be recognized in polynomial time [8] by combin-

ing an alternative characterization involving only two WNU polymorphisms of fixed

arity [125] and a variant of the recognition algorithm used for near-unanimity poly-

morphisms. However, deciding whether an arbitrary language has bounded width is

NP-hard [34]. Deciding whether a language has width 1 is also NP-hard in the general

case [130], and membership in NP is unknown. A result of [93] implies that semilattices

are NP-hard to detect even in the special case of conservative languages.

The complexity of detecting edge and Mal’tsev polymorphisms is an interesting

open problem, although Mal’tsev polymorphisms can be detected in polynomial time

in digraphs (languages consisting of a single binary relation) [38] and conservative bi-

nary languages [14]. Finally, it was shown in [120] that all tractable binary conservative

languages have bounded width, thus in this case the dichotomy is polynomially de-

cidable; however, if the algebraic dichotomy conjecture holds, deciding if an arbitrary

language is tractable is NP-hard [31].

4.2 Expressibility

A related computational problem is the expressibility problem: given a finite language

Γ over a finite domain and a relation R, is R ∈ 〈Γ 〉? This problem is decidable using

an indicator problem which either provides a gadget for expressing the relation R using

relations from Γ or a polymorphism of Γ that does not preserve R (which is a proof of

inexpressibility) [110]. Unfortunately, Willard proved the co-NEXPTIME-hardness of

deciding expressibility. Indeed, not only gadgets demonstrating expressibility but also

polymorphisms demonstrating inexpressibility may be required to be of exponential

size [158]. Kozik proved the EXPTIME-completeness of the expressibility problem for

operations: is the operation f in the clone generated by operations f1, . . . , fk? [124].

5 Structural tractable classes

Recall that a constraint is a pair 〈σ ,R〉, where σ is a set of variables (the scope of the

constraint) and R is the relation containing all allowed assignments to the variables in

the scope. The constraint hypergraph of a CSP instance I is HI = 〈X ,S〉, where X is

the set of variables of I and S is the set of constraint scopes of I. The constraint graph

of I is the primal graph of HI (i.e. the graph with vertices X and an edge joining a pair

of variables if the two variables occur together in the scope of a constraint). A graph

G1 = 〈V1,E1〉 is a subgraph of graph G2 = 〈V2,E2〉 if V1 ⊆V2 and E1 ⊆ E2. The graph



G1 is an induced subgraph of G2 if V1 ⊆ V2 and E1 is the set of edges of E2 that have

both endpoints in V1. Given a total order < on the vertices of a graph G = 〈V,E〉, we use

Parents(v) to denote the set of vertices u < v such that {u,v} ∈ E. A k-tree is a graph G

such that for some order on the vertices (without loss of generality v1 < .. . < vn): for

each i = k+ 1, . . . ,n, the induced subgraph of G on Parents(vi) ∪ {vi} is the complete

graph Kk+1. Trees are 1-trees.

It is well known that the class of instances whose constraint graph has bounded

treewidth is tractable [85]. (Graphs with treewidth bounded by k are also known as

partial k-trees, because they are exactly the subgraphs of k-trees [4]). In fact, this general

phenomenon of structural tractability is also true for a number of problems in PSPACE,

including all properties expressible in Monadic Second-Order logic [63]. Constraint-

based problems that can be solved in polynomial time when the constraint graph has

bounded treewidth include the Valued CSP [13], #CSP (the problem of counting the

number of solutions), calculating partition functions and the Polynomial CSP (in which,

by replacing complex numbers in the partition function by generalised polynomials over

a small number of formal variables, it is possible to express problems such as finding a

maximum balanced cut of a graph) [152].

In the bounded-arity case, bounded treewidth is the only possible reason for struc-

tural tractability of CSPs, under the very reasonable assumptions that FPT 6=W[1] and

that the class of structures is recursively enumerable [96,95]. Determining the treewidth

and a corresponding tree decomposition of an arbitrary graph is NP-hard [5]. Further-

more, in random problems treewidth is unlikely to be small [87]. Nevertheless, finding

a suboptimal, but still useful order can be practical in real applications [73,91].

In the unbounded-arity case, new tractable classes appear compared to the bounded-

arity case. As a trivial example, any CSP instance which contains at least one constraint

with scope of size Ω(n), given in extension, together with other arbitrary constraints,

can be solved in time which is a polynomial function of its input (which may already

be exponential in the number of variables). A fractional edge cover of a hypergraph is

a weight assignment to its hyperedges such that every vertex is covered by hyperedges

of total weight at least 1. The fractional edge cover number is the smallest total weight

of a fractional edge cover. Using Shearer’s lemma, Grohe and Marx [98] showed that if

the hypergraph HI of a CSP instance I has fractional edge cover number w, then there

are at most |I|w satisfying assignments. Thus a simplebacktracking algorithm applied

to an instance with bounded fractional edge cover number will find all solutions in

polynomial time.

Several notions of bounded hypertree width have been shown to define equivalent

tractable classes [2]. These tractable classes have been strictly generalised by Grohe and

Marx [98] who combined the notion of fractional edge cover with hypertree decompo-

sition [92] to define a fractional hypertree decomposition of weight w. This is identical

to a hypertree decomposition (bags of vertices arranged in a tree structure such that

(1) if two vertices are connected by a hyperedge then there is a bag containing both of

them and (2) for every vertex v, the bags containing v form a connected subtree) ex-

cept that instead of there being, for each bag, w hyperedges covering that bag, there is

now a fractional edge cover ofweight w for each bag. The fractional hypertree width of

HI is defined to be the width w of its best decomposition. Marx [136] has shown that



for any constant w, if HI has fractional hypertree width w then it is possible to find in

polynomial time a fractional hypertree decomposition of width O(w3).
Marx [137] introduced the notion of adaptive width (a strict generalisation of the

notion of fractional hypertree width [98]) and showed that it is the only reason for

structural tractability if the constraints are stored as truth tables, unless CSP instances

with bounded arity and treewidth bounded by t can be solved in time which is subexpo-

nential in t. Note that the size of a truth table constraint of arity r over a domain of size

d is always O(dr) regardless of its number of tuples.

6 Microstructure-based tractable classes

A binary CSP instance on variables X1, . . . ,Xn can be represented by the domain D(Xi)
of each variable Xi and a binary relation Ri j for each pair of variables Xi,X j (i 6= j)

consisting of all possible consistent assignments to this pair of variables. If I is a binary

CSP instance, then its microstructure is a graph 〈A,E〉 where A = {(Xi,a) | a ∈ D(Xi)}
is the set of possible variable-value assignments and E = {{(Xi,a),(X j,b)} | (a,b) ∈
Ri j} [115]. The microstructure relies on both the structure and the relations of the in-

stance I and so is a natural place to look for tractable classes which are neither purely

structural nor purely language-based. The complement of a graphG= 〈V,E〉 is the graph

with vertices V and whose edges arethe non-edges of G. The microstructure comple-

ment is the complement of the microstructure. Solutions to I are in one-to-one corre-

spondence with the n-cliques of the microstructure of I and with the size-n independent

sets of the microstructure complement of I.

The chromatic number of a graph is the smallest number of colours required to

colour its vertices so that no two adjacent vertices have the same colour. A graph G is

perfect if for every induced subgraph H of G, the chromatic number of H is equal to

the size of the largest clique contained in H. Since a maximum clique in a perfect graph

can be found in polynomial time [99], the class of binary CSP instances with a perfect

microstructure is tractable [149]. Perfect graphs can also be recognized in polynomial

time [43].

For a class of graphs C , a graph G is C -free if no induced subgraph of G is iso-

morphic to any graph in C . The cycle of order k is the graph with vertices v1, . . . ,vk

and edges {vk,v1} and {vi,vi+1} for i = 1, . . . ,k−1. A hole is a cycle of length k ≥ 5.

An antihole is the complement of a hole. An alternative definition of perfect graphs is

that a graph is perfect if and only if it is (odd-hole,odd-antihole)-free [44]. Interesting

examples of binary CSP instances whose microstructure is perfect are

– instances with arbitrary domains and a constraint Xi 6= X j between each pair of vari-

ables (or, alternatively, unary constraints together with a global ALL-DIFFERENT(X1, . . . ,Xn)

constraint) [149],

– instances which are arc consistent and max-closed after independent (and possibly

unknown) permutations of each domain [93].

In the coloured microstructure, the vertices of the microstructure representing an as-

signment to variable Xi are labelled by a colour representing variable Xi, thus maintain-

ing the distinction between assignments to different variables. Indeed, since it retains all



the information contained in the original instance, we can identify a binary CSP instance

with its coloured microstructure. A pattern is a CSP instance except that it has three

types of tuple in its constraint relations, tuples which are explicitly allowed/disallowed

and tuples which are labelled as unknown. It can be identified with its coloured mi-

crostructure which can be viewed as a graph over a three-valued logic in which each

pair of vertices is an edge, a non-edge or unknown. A pattern P occurs in a binary in-

stance I if there is a homomorphism from P to an induced subgraph of the coloured

microstructure which preserves edges and non-edges [47]. A class of binary CSP in-

stance can be defined by forbidding a pattern P: CSP(P) is the set of instances in which

P does not occur. Any class of instances defined by a forbidden pattern is necessarily

recognisable in polynomial time by a simple exhaustive search for the pattern.

One simple example of a forbidden pattern P which defines a tractable classes of

binary CSP instances is shown in Figure 2(a): it is based on the transitivity of non-

edges [62]. The class CSP(P) consists of all binary CSP instances in which for all

triples of assignments a1 = 〈Xi,a〉, a2 = 〈X j,b〉, a3 = 〈Xk,c〉 to three distinct variables,

whenever the pairs (a1,a2), (a2,a3) are both disallowed (〈a,b〉 /∈ Ri j and 〈b,c〉 /∈ R jk),

the third pair (a1,a3) is also disallowed (〈a,c〉 /∈ Rik). This property is satisfied, for

example, by instances consisting of unary constraints and AllDifferent constraints on

non-overlapping subsets of the variables, and in particular by the class CAllDiff given in

Example 4. The class of binary CSP instances satisfying this negative-transitivity prop-

erty has been generalised to a large tractable class of optimisation problems involving

cost functions of arbitrary arity [61,62]. Figure 2(b) shows another example of a pattern

Q defining a tractable class. The class CSP(Q) includes as a proper subset all instances

with zero-one-all constraints [55].

Dichotomies for tractable classes of binary CSP instances defined by forbidding a

pattern P have been discovered in the following special cases:

– negative patterns P (i.e. patterns in which all tuples are either disallowed or un-

known) [47],

– 2-constraint patterns [56].
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Fig. 2. (a) A binary CSP instance I satisfies the negative transitive property if this pattern P does

not occur in I. (b) A pattern Q. (c) The broken triangle pattern BTP.



Recently, the notion of forbidding patterns has been extended to rules based on ap-

plying a sequence of quantifiers to the variables and values in a pattern. As an example,

consider the pattern BTP shown in Figure 2(c), known as a broken-triangle. It is known

that forbidding this pattern for all triples of variables Xi,X j < Xk (according to some

variable ordering <) defines a tractable class which includes all binary CSP instances

whose constraint graph is a forest (the class Ctw1 given in Example 3) [58]. If such

a variable ordering exists, then it can be found in polynomial time: it suffices to es-

tablish arc consistency and then successively eliminate variables Xk which are not the

right-hand variable of a broken triangle. This variable-elimination rule can be strictly

generalised to the following rule: Xk can be eliminated without changing the satisfi-

ability of the instance if ∀i 6= k, ∀a ∈ D(Xi), ∃b ∈ D(Xk) with (a,b) ∈ Rik such that

no broken triangle exists including the edge {〈Xi,a〉,〈Xk,b〉} [54]. The class of binary

CSP instances which are such that all variables can be eliminated according to this rule

strictly generalises the tractable class CSP(BTP).

Most work on microstructure-based tractability has been restricted to binary CSPs,

for the simple reason that the traditional definition of microstructure assumes binary

constraints. It is well known that any general-arity CSP instance can be coded (indeed

in several different ways) as a binary instance, for example via the dual encoding. It is

then possible to define tractable classes of general-arity CSPs as those instances whose

equivalent binary instance have a microstructure satisfying certain conditions guaran-

teeing tractability [139]. A direct generalisation of the broken-triangle class CSP(BTP)

to general-arity CSPs has also recently been given [60], but the definition of tractable

classes by forbidden patterns in general-arity CSPs is an area which remains largely

unexplored.

7 Other tractable classes

Some tractable classes have been defined which guarantee global consistency if some

local property holds after establishing a certain level of local consistency. One example

is that the constraint relations of a binary CSP instance are row-convex after establishing

strong 3-consistency [11]. The class of binary CSP instances which are min-of-max ex-

tendable after establishing arc consistency is another example (which actually includes

all strong 3-consistent row-convex instances) [58]. Another example is that the con-

straints can be decomposed into the join of arity-r constraints after establishing strong

d(r−1)+1 consistency, where d is the maximum domain size [70]. Of course, in gen-

eral, establishing this level of consistency introduces constraints of order d(r−1), so the

assumption that constraints are of arity r is very strong. This class has been generalised

to the class of arity-r CSP instances which are strongly ((m+1)(r−1)+1)-consistent,

where given an r-ary constraint and an instantiation of r−1 of the variables that partic-

ipate in the constraint, the parameter m (called the tightness) is an upper bound on the

number of instantiations of the rth variable that satisfy the constraint in the case that

this is not the whole domain [12].

Naanaa [140] has proposed a generalisation of m-tightness. Let E be a finite set and

let {Ei}i∈I be a finite family of subsets of E. The family {Ei}i∈I is said to be independent



if and only if for all J ⊂ I,
⋂

i∈I

Ei ⊂
⋂

j∈J

E j.

In particular, observe that {Ei}i∈I cannot be independent if ∃ j 6= j′ ∈ I such that E j ⊆
E j′ , since in this case and with J = I \{ j′} we would have

⋂

i∈I

Ei =
⋂

j∈J

E j.

Let I be a CSP instance whose variables are totally ordered by <. let 〈σ ,R〉 be an r-ary

constraint whose scope σ contains a variable x and let t be a tuple that instantiates the

r−1 remaining variables of σ . Denote by Rx(t) the set of values in D(x) that can extend

t to form a tuple in the relation R. The directional extension of tuple t to variable x w.r.t.

R and < is defined to be Rx(t) if x is the last (w.r.t. the order <) variable in σ , and D(x)
otherwise. A family of extentions of tuples t ∈ T is said to be consistent if and only if the

tuple formed by the join ⊲⊳t∈T t of the corresponding tuples is consistent. With respect

to the ordering <, the directional rank of x in I is the size of the largest independent

and consistent family of directional extensions to x, and the directional rank κ of I is

the maximum directional rank over all its variables. If I is a CSP instance which has

directional rank no greater than κ and is directional strong (κ(r − 1) + 1)-consistent

then I is globally consistent [140].

Two other ways to guarantee tractability are to have so few disallowed tuples that

the instance is necessarily satisfiable, or, on the contrary, to have so many disallowed

tuples that any subproblem necessarily has at most a polynomial number of solutions.

If each variable is in the scope of at most t constraints and in each constraint relation

the proportion of tuples that are disallowed is strictly less than 1/e(r(t −1)+1), where

e is the base of natural logarithms and r the arity of the constraint, then the instance is

necessarily satisfiable [144].

A simple example of a condition that guarantees a polynomial number of solutions

is functionality. A constraint 〈σ ,R〉 is functional on variable Xi ∈ σ if the relation R

contains no two assignments differing only at variable Xi. A CSP instance is functional

with root set of size k if there exists a variable ordering X1 < .. . < Xn such that, for

all i ∈ {k+1, . . . ,n}, there is some constraint 〈σ ,R〉 with Xi ∈ σ ⊆ {X1, . . . ,Xi} that is

functional on Xi. In the case of binary CSP instances, a minimum root set can be found

in polynomial time [69]. Unfortunately, determining the size of a minimum root set is

NP-hard for ternary CSP instances [48].

Another condition that guarantees a backtracking search tree of polynomial size

is the k-Turan property [48]. Indeed, this property is very strong since it guarantees a

polynomial-size search tree for all variable orderings. A subset of variables S represents

another set T if S ⊆ T . An (n,k)-Turan system is a pair 〈X ,B〉 where B is a collection

of subsets of the n-element set X such that every k-element subset of X is represented

by some set in B. For example, in the class C4Turan given in Example 5, every 4-element

subset of the set of n variables X is represented of the scope of some ternary constraint,

and hence 〈X ,S〉, where S is the set of constraint scopes, is an (n,4)-Turan system. An

n-variable CSP instance over domain D and variables X is k-Turan if 〈X ,B〉 forms an



(n,k)-Turan system where B is the set of the scopes of the constraints 〈σ ,R〉 for which

∀a,b ∈ D, {a,b}|σ | * R

This condition says that at least one tuple is disallowed by the constraint over each

Boolean subdomain {a,b} of D. In the class C4Turan, all constraints satisfy this condi-

tion and hence C4Turan is tractable since all instances in this class satisfy the 4-Turan

property.

8 Parameterized and subexponential complexity

8.1 Parameterized complexity of CSP

The framework of parameterized complexity was introduced by Downey and Fellows [77]

to allow a more fine-grained analysis of computational hardness than classical complex-

ity theory [88]. This area of research has been very successful in the last two decades

and several attempts have been made to study the complexity of CSP from this angle.

A problem is parameterized if each instance is paired with a nonnegative parame-

ter k. A parameterized problem is fixed-parameter tractable (FPT) if it can be solved in

time O( f (k)|x|O(1)), where |x| is the size of the instance x and f is any computable func-

tion of the parameter. For instance, k-Vertex Cover (the problem of deciding whether

a graph with n vertices contains a set S of at most k vertices such that each edge is

incident to at least one vertex in S) parameterized by k is FPT as it can be solved in

time O(1.2738k + kn) [42]. FPT is a strict subset of XP, which contains all parameter-

ized problems solvable in time O(|x|g(k)). Note that for a fixed k any problem in XP (or

FPT) is polynomial-time solvable; however the asymptotic complexity of FPT prob-

lems is independent of the value to which k is fixed, while this is not the case in general

for XP. Between FPT and XP, Downey and Fellows [76] proposed a hierarchy FPT =

W[0] ⊆ W[1] ⊆ W[2] ⊆ . . .⊆ XP. These classes are closed under fpt-reductions, which

map each instance (x,k) of a parameterized problem P to an instance φ(x,k) = (x′,k′)
of a parameterized problem Q such that: (i) x′ is a yes-instance if and only if x is, (ii)
there exists a computable function g such that k′ ≤ g(k) and (iii) x′ can be computed

from x in time O( f (k)xO(1)) for some computable function f . For every t, W[t + 1] is

believed to be strictly larger than W[t]; in particular, no W[1]-hard problem can be FPT

unless the Exponential Time Hypothesis (ETH) fails [1].

A large number of parameters have been considered for the CSP. When the param-

eter is the number of variables n, the CSP is in general W[1]-complete [143]. However,

Marx has identified the structural restrictions which ensure FPT tractability when the

parameter is n: these are exactly the classes of hypergraphs with bounded submodular

width, under the assumptions that the ETH holds and the class is recursively enumer-

able [138]. Bounded submodular width is equivalent to bounded adaptive width, dis-

cussed in section 5. A similar result holds when the parameter is the length l of the

instance (that is, the sum of the sizes of the constraint scopes): the problem is W[1]-

complete [143], but if G is a recursively enumerable set of graphs and CSP(G , ) denotes

the set of all instances whose primal graph is in G , CSP(G , ) is FPT for the parameter

l (and in fact in P) if and only if G has bounded treewidth, unless FPT = W[1] [96].



If we consider the case when the primal graph of the language of relations is re-

stricted instead of the constraint graph, some FPT results about CSP can be inferred

from the recent progress in the parameterized complexity of first-order logic. Given

a language Γ of relations, the first-order formulas over Γ are built from the atoms

R(x1, . . . ,xr) for every R ∈ Γ and x = y by using the logical connectives ¬, ∧, ∨ and

the quantifiers ∀ and ∃. It follows that a CSP instance of length l over a language Γ is

described by a first-order formula φ over Γ , with |φ |= O(l). It has been recently shown

that if a class of graphs G is effectively nowhere dense, then the evaluation of first-order

formulas on languages whose primal is in G is FPT when the parameter is the size of

the formula [97]. Nowhere dense classes of graphs include many sparse graph classes;

in particular, all minor-closed classes of graphs and graphs of bounded expansion are

nowhere dense. As a direct consequence, CSP( ,G ) (the restriction of CSP to instances

such that the primal of the language of relations is in G ) is FPT when the parameter

is l if G is nowhere dense. Another well-known result about first-order logic [94] im-

plies that CSP( ,G ) is FPT when the parameter is l if there is a computable function

f : N → N such that f (x) = o(xε) for all fixed ε > 0 and every G = (V,E) ∈ G has

degree at most f (|V |). An example of such a function is f (x) = ⌈log(x)⌉.

A set S of parameters dominates S′ = (p1, . . . , ps) if there is a function f which is

monotonically increasing in each argument such that ∀p ∈ S and each instance I, p(I)≤
f (p1(I), . . . , ps(I)). In [150], Samer and Szeider considered 11 parameters (treewidth

of the primal/dual/incidence graph tw/twd /tw∗, number of variables n, domain size d,

number of constraints c, maximum arity r, maximum relation size t, maximum number

of occurences of a variable deg, and the maximum overlap/difference between scopes

ovl/diff) and classified the complexity of CSP with respect to any subset of these param-

eters: it is FPT if the subset is dominated by either {tw∗, t}, {tw∗,d,diff} or {d,c,ovl}
and W[1]-hard otherwise.

Bulatov and Marx have studied the complexity of OCSP (CSP in which an assign-

ment must have exactly k nonzero variables to be a valid solution) and the more general

CCSP (CSP in which each value vi ∈D must appear exactly ki times in the solution) with

respect to the language of constraint relations Γ . The parameters considered are k for

OCSP and ∑i ki for CCSP. Generalizing previous results in the Boolean domain [135],

they have shown that assuming Γ contains all constants (unary relations with a single

tuple), both OCSP and CCSP exhibit a dichotomy as they are either FPT or W[1]-

hard [35,133].

8.2 Backdoors

The notion of backdoor, introduced in [159] in the context of SAT, is closely related to

parameterized complexity. If I = (X ,D,C) is an instance of CSP, S ⊆ X is a subset of

the variables and φ : S → D is an assignment to S, the residual instance produced by

φ is the instance Iφ = (X\S,D′,C′) obtained from I by removing from the constraints

the tuples inconsistent with the assignment φ and then removing the variables in S from

every constraint scope. Given a CSP instance I and a subproblem T of CSP, a strong

T -backdoor is a subset B of the variables of I such that every complete assignment to B

is guaranteed to produce a residual instance in T . In some sense, a strong backdoor is

a measure of the distance between I and the target class T : if a small strong backdoor



exists, then I can be decomposed into a small number of instances in T . It follows

that CSP parameterized by domain size and strong backdoor size (with respect to an

arbitrary tractable subproblem) is FPT, provided the strong backdoor is known.

The parameterized complexity of strong backdoor detection when the target class is

only defined by restrictions on the constraint language is W[2]-hard for every tractable

class defined by idempotent polymorphisms even if the parameter is d + k, where d is

the domain size and k is the size of the strong backdoor [89]. Nonetheless, if r is the

arity of the instance, the problem becomes FPT for the parameter d+k+r [89] and even

k+r if the tractable class is defined by finitely many polymorphisms [37]. However, the

classes for which strong backdoor detection is FPT in k+ r are quite small and for all

tractable classes represented in Figure 1 the problem is W[2]-hard for k+ r [37].

A particular form of backdoor, called partition backdoor, was recently introduced [14]

in the case where the target tractable class T is conservative. The construction is based

on the observation that if we have a partition (C1,C2) of the constraints such that C1 ∈ T ,

then the vertex cover of the primal graph of C2 is a strong backdoor to T ; the minimum-

size partition backdoor is then defined as the minimum-size such backdoor over every

possible partition of the constraints. This kind of backdoor is easier to compute (FPT

in k+ l, where k is the size of the partition backdoor and l is the size of the language

of the input instance), but can be arbitrarily larger than the minimum-size strong back-

door [89].

On the structural side, it is known that in the binary case finding a minimum-size

strong backdoor to acyclic CSP (i.e. Ctw1 the class of binary CSP instances whose con-

straint graph is a forest) is NP-hard in general but FPT when the parameter is k [74].

This type of backdoor is usually referred to as a cycle cutset [71] in the CSP literature.

More generally, for every constant c, finding a minimum-size strong backdoor to CSPs

whose constraint graph has treewidth at most c is FPT. This can be seen by observing

that the class of graphs obtained by adding at most k vertices to a graph of treewidth

at most c is minor-closed and hence can be recognized in cubic time [148]. The corre-

sponding algorithm is however very impractical.

For microstructure-based classes, if the target class T is defined by a finite set of for-

bidden patterns of size (in terms of the number of variables covered) bounded by some

constant s then finding a minimum-size strong backdoor to T is FPT with respect to

the size of the backdoor: the algorithm would simply generate a list of all minimal sub-

sets of variables on which a pattern occurs (in time O(ns)) and return the minimum-size

HITTING SET over these sets (which is FPT when the size of each set is bounded [77]).

Finally, it is worth noting that the notion of root set discussed in Section 7 in the context

of functional networks is a particular case of strong backdoor.

8.3 Subexponential complexity of CSP

A subproblem of CSP is solvable in uniform subexponential time if it can be solved in

time do(n)|I|O(1), where d is the domain size, n is the number of variables and |I| is the

instance size. The yet unproven Exponential Time Hypothesis (ETH) states that 3-SAT

cannot be solved in subexponential time.

If both d and the maximum arity r are bounded, CSP is solvable in subexponential

time if and only if the ETH does not hold. Furthermore, if either d or r is bounded but



not the other, the subexponential time solvability of the corresponding subproblem of

CSP implies the falsity of the ETH but the converse is not believed to be true [100].

Aside from the restrictions on d and r, de Haan, Kanj and Szeider have provided a more

fine-grained analysis of the subexponential time complexity of CSP by considering re-

strictions on the number of tuples t, the number of constraints c, the treewidth of the

constraint graph tw and the treewidth of the incidence graph tw∗ [100]. An overview

of their results can be found in Figure 3. Their results are complemented by a study of

the subexponential complexity of CSP when all constraints are global constraints of the

same type T , where T ∈ {AllDiff, NValue, AtMostNValue, AtLeastNValue, cTable}.

Solvable in subexponential time Not solvable in subexponential time (assuming the ETH)

t = o(n) t = Ω(n)

c = O(1) c = ω(1)

tw = o(n) tw = Ω(n)

tw∗ = O(1) tw∗ = ω(1)

Fig. 3. Subexponential time complexity of CSP under restrictions on the number of tuples, num-

ber of constraints, treewidth of the primal of the constraint graph and incidence treewidth of the

constraint graph.

9 Tractable classes of other constraint-based problems

9.1 CSPs over infinite domains

Ladner’s theorem tells us that there are problems in NP that are neither in P nor NP-

complete, assuming P6=NP [129]. Bodirsky and Grohe showed that every computa-

tional decision problem is polynomial-time equivalent to a problem CSP(Γ ) where Γ

is an infinite language over an infinite domain, and adapted the proof of Ladner’s theo-

rem to show that no dichotomy can exist for infinite constraint languages over infinite

domains [18].

It is nevertheless possible to characterise the complexity of certain restricted ver-

sions of infinite-domain CSPs. For example, Bodirsky and Kára studied the computa-

tional complexity of CSPs over countably infinite domains in which all constraint rela-

tions can be defined by a Boolean combination of the equality relation (e.g. (X1 = X2)∨
(X2 6= X3)) [19]. They proved a dichotomy theorem for the problems CSP(Γ ), the set

of CSP instances in which all relations belong to a set Γ . The only non-trivial tractable

classes Γ (assuming P6=NP) consist of Horn =-formulas: those formulas which are de-

fined by a Boolean formula in conjunctive normal form in which each clause contains

at most one positive literal (i.e. Xi = X j rather than Xi 6= X j). A necessary condition

has also been given for tractability of maximal constraint languages over infinite do-

mains [17].

Infinite and continuous domains, such as the real numbers or the rationals, are of-

ten used to model time in temporal reasoning problems or space in spatial reasoning

problems. A landmark tractable class of temporal problems are the so-called simple



temporal problems (STP). An STP consists of a set of real-valued variables and a set of

simple temporal constraints, that is constraints of the form c ≤ Xi−X j ≤ d for constants

c,d. An STP can be solved in O(n3) time by using Floyd-Warshall’s all-pairs shortest

paths algorithm [72]. A simple temporal problem with difference constraints (in which

we may also have constraints of the form Xi −X j 6= d) can be solved in O(n3 + k) time

and O(n2 +k) space, where n is the number of variables and k the number of difference

constraints [90]. In another generalisation, simple temporal constraints have been ex-

tended to shift monotonic constraints: Xi−X j ∈ [ f (X j,Xi),g(X j,Xi)], where both f (x,y)
and g(x,y) are monotone increasing functions of x and monotone decreasing functions

of y. The consistency of a set of shift-monotonic constraints can again be tested in cubic

time [146].

Simple temporal constraints have been generalised to the larger tractable class of

linear Horn constraints (also known as Horn DLR or Horn disjunctive linear relations).

A linear Horn relation is a disjunction of linear relations in which all but at most one of

the disjuncts is of the form pi(X1, . . . ,Xn) 6= qi(X1, . . . ,Xn) and at most one disjunct is of

the form pi(X1, . . . ,Xn) R qi(X1, . . . ,Xn) where R is <, ≤ or = and the polynomials pi,

qi are all linear [123]. The satisfiability of a set of linear Horn constraints can be tested

in polynomial time using an algorithm based on linear programming [116]. Linear Horn

constraints generalise several previously-published tractable classes [78] and are an ex-

ample of a general method of building tractable languages using disjunctions [50].

Given that no dichotomy can exist for constraint languages over infinite domains, it

is natural to restrict attention to classes of constraints which commonly occur in real ap-

plications. A temporal relation is a relation R ⊆Qk, for some finite k, with a first-order

definition in (Q;<), the ordered rational numbers. A temporal constraint language is a

set of temporal relations. Bodirsky and Kára showed that there are exactly nine tractable

temporal constraint languages [20]. Allen’s interval algebra consists of binary relations

between intervals which are disjunctions of 13 basic interval relations (such as before,

meets, includes, overlaps, starts, finishes or equals) [3]. For the problem of deciding

whether there exist intervals on the real line satisfying a set of relations, a dichotomy

has been given for all tractable subalgebras of Allen’s algebra [126,127]. In the Region

Containment Calculus (RCC-5) used in spatial reasoning, variables denote non-empty

regions and the basic relations in the calculus express containment, disjointness, over-

lap or equality of pairs of regions. A complete classification of all tractable fragments

of the region connection calculus RCC-5 has been given [117].

9.2 Optimisation versions of the CSP

In optimisation versions of the CSP, constraints are replaced by soft constraints 〈σ ,φ〉,
where φ is a function from the cartesian product of the domains of the variables in

the scope σ to a set of costs. This set of costs is totally ordered in the case of Valued

CSPs and partially-ordered in the case of semi-ring CSPs [15]. The objective function

to minimise is the aggregation of the cost functions. For example, whereas financial

costs or log-probabilities are usually added, fuzzy values may be aggregated using an

idempotent operator or, in the leximin model, by multiset union of costs [15]. Since

many applications can be modelled by minimising the sum of costs in Q≥0 ∪{∞}, we

will only cover this important special case. Cost functions which only take values in



{c,∞}, for some finite constant c are known as crisp and are equivalent to classical

constraints.

State-of-the-art results concerning the tractability of languages of cost functions are

covered in detail in a recent comprehensive survey article [114]. A complete dichotomy

is impossible without resolving the Feder-Vardi conjecture since the general-valued

VCSP exhibits a dichotomy if and only if the CSP does [121]. However, tractable lan-

guages have been characterised in the following important cases:

– Boolean domain [49],

– finite-valued cost functions (including MAX-CSP as a special case) [154],

– conservative languages of cost functions (i.e. languages of cost functions containing

all finite-valued unary cost functions) [122].

Furthermore, an algebraic theory has recently been developed for soft constraints which

generalises polymorphisms to weighted polymorphisms, relational clones to weighted

relational clones and clones to weighted clones [46]. The expressibility of a language

Γ of cost functions is precisely characterised by its weighted polymorphisms. The in-

dicator problem for languages of relations (see Section 3) has been generalised to the

weighted indicator problem for languages of cost functions [155].

In the case of the Boolean domain [49], the eight maximal tractable languages

include the six tractable languages in Schaefer’s dichotomy for Boolean crisp con-

straints given in Section 3. One of the other two languages is almost trivial since it

consists of crisp bijective binary constraints together with arbitrary unary cost func-

tions. The remaining tractable language is the set of submodular functions which are

well-known to be tractable in the Operations Research community [106]. A cost func-

tion φ : Dr → R≥0 ∪{∞} is submodular if

∀x,y ∈ Dr, φ(min(x,y))+φ(max(x,y)) ≤ φ(x)+φ(y).

where min and max are applied componentwise. Examples of submodular functions

include all unary functions, binary functions such as
√

x2 + y2, the cut function of a

graph, the rank function of a matroid and the function η
ρ
a : Ds →R≥0∪{∞} (for ρ > 0),

where

ηρ
a (x) =

{

0 if (x1 < a1 ∧ . . .∧ xr < ar)∨ (xr+1 > ar+1 ∧ . . .∧ xs > as)
ρ otherwise.

If G= 〈V,E〉 is an undirected graph with non-negative weighted edges, then a cut S∈ 2V

is a partition of the vertices of G into two disjoint subsets, the corresponding cut-set is

the set of edges that have one endpoint in each subset of the partition and the cut function

fG(S) is the sum of the weights of the edges in the cut-set of S. The cut function of a

graph can be expressed as the sum of functions of the form η
ρ
a , as can generalisations

such as the cut function of a hypergraph or a directed graph.

In the case of finite-valued cost functions, the tractable languages Γ which are cores

are exactly those that have a binary symmetric weighted polymorphism [154]. Such lan-

guages Γ , which include submodular functions, are solvable by linear programming.

The VCSP can be coded as as an integer programming problem (whose variables in-

clude via ∈{0,1} which is equal to 1 iff Xi = a in the original VCSP instance). The linear



relaxation of this integer programming problem (in which via is now a real number in

the interval [0,1]) has integer solutions for such languages Γ , meaning that VCSP(Γ )

can be solved by linear programming. The dual of this relaxation is the linear program

used by OSAC [57] to transform the original instances into an equivalent instance with

an explicit lower bound on cost [157]; for instances in VCSP(Γ ) this explicit lower

bound is thus equal to the cost of an optimal solution. Indeed, even if the language Γ of

finite-valued cost functions is not a core, Γ is still tractable if and only if VCSP(Γ ) is

solved by this linear program [154].

We now consider the more general case of cost functions which are not necessarily

finite-valued. A conservative language Γ contains all {0,1}-valued unary cost func-

tions. Assuming P 6=NP, for all tractable conservative languages Γ , VCSP(Γ ) can be

solved by first establishing local consistency and then solving the linear relaxation,

mentioned above, of the resulting instance [122]. Thapper and Živný [153] have ob-

tained a precise algebraic characterisation of (not necessarily conservative) languages

Γ for which VCSP(Γ ) can be solved exactly by the linear programming relaxation. This

notably includes languages of cost functions that are submodular on arbitrary lattices.

9.3 Quantified CSP, Uncertain CSP, #CSP and related problems

In this section we briefly consider tractability of extensions of the CSP to quantified

variables, uncertainty or counting the number of solutions.

In the Quantified CSP (QCSP) variables are existentially or universally quantified.

This is therefore a generalisation of the classical CSP, which can be viewed as a QCSP

in which the question of the existence of a solution corresponds to placing an existential

quantifier on each variable. QCSP is PSPACE-complete.

There is a dichotomy for the complexity of constraint languages for the relatively

quantified CSP (RQCSP), the version of the CSP in which variables may be universally

and existentially quantified over arbitrary subsets of the finite domain: RQCSP(Γ ) is

either in P or is PSPACE-complete. In fact, RQCSP(Γ ) ∈ P if and only if for every 2-

element subset B of the domain D, Γ has a polymorphism f such that the restriction f |B
of f to B is a semilattice, majority or minority operation. This result was discovered in-

dependently by two different groups of researchers [83,16]. Recall that over the Boolean

domain, relations equivalent to Horn clauses, relations equivalent to 2SAT clauses and

affine constraints have, respectively, semilattice, majority and minority polymorphisms.

The tractable class defined by forbidding the broken-triangle pattern shown in Fig-

ure 2(c) for a given variable order can be extended to a tractable class of QCSP [86].

The corresponding property is called the broken-angle property.

The Uncertain CSP (UCSP) is a general framework allowing either discrete or con-

tinuous domains and which does not impose any particular representation of uncertainty

(which can be, for example, sets, intervals, ellipsoids). It is a nonprobabilistic frame-

work which extends the CSP to allow incomplete or erroneous data. Known tractable

classes of the UCSP include linear, monotone and simple temporal constraints [160].

In the #CSP the aim is to count the number of solutions to a classical CSP. As

we have already pointed out, bounded treewidth leads to a structural tractable class

for #CSP. It is again the polymorphisms of a language Γ which determine tractabil-

ity of #CSP(Γ ). Bulatov has characterised all languages for which #CSP(Γ ) can be



solved in polynomial time and proved that for all other languages the problem is #P-

complete [26]. All tractable languages have a Mal’tsev polymorphism. This includes

the important tractable problem of counting the number of solutions to a system of lin-

ear equations. The criterion of Bulatov’s dichotomy involves finding a defect in any of

a potentially infinite class of structures built on Γ and it was unclear whether this cri-

terion is algorithmically checkable. It was recently shown that this criterion is not only

decidable, but actually in NP and unlikely to be NP-complete since it can be reduced to

graph isomorphism [79].

An important tool in the study of the complexity of classical CSPs is the notion

of a relational clone, which is the set 〈Γ 〉 of all relations expressible using primitive

positive formulas over a particular set of relations Γ . An analogous notion of functional

clones has been developed to study the expressibility and computational complexity

of languages for the (weighted) #CSP [30]. The problem of computing the partition

function (the sum of the weights of all possible variable assignments) is a generalisation

of #CSP which has applications in statistical physics [156]. Complexity dichotomies

are known for different versions of the problem of computing the partition function of

a weighted CSP, in the case of the Boolean domain [80,29].

10 Discussion

This survey of tractable classes has allowed us to highlight certain long-standing open

theoretical questions:

1. Is there a dichotomy for tractable languages, as conjectured by Feder and Vardi [84]?

This is equivalent to determining the tractablity of Siggers operations.

2. Which classes of tractable languages can be recognised in polynomial time? In

particular, it is presently not known whether the class of languages with a Mal’tsev

polymorphism (and, more generally, a k-edge polymorphism) is recognisable in

polynomial time.

3. The finite-infinite question: is CSP(Γ ) ∈ P for all tractable languages Γ ? Recall

that Γ is tractable if CSP(Γ ′) ∈ P for all finite Γ ′ ⊆ Γ . For a finite language Γ ′, we

can consider the maximum arity and the domain size as constants. Relaxing these

strong assumptions may lead to the identification of tractable languages involving

so-called global constraints and/or unbounded domains (as commonly encountered

in database and genetic applications [161]).

Looking beyond the problem of determining the exact borderline between P and NP-

complete, it is also possible to study the relative complexity of NP-complete problems.

For example, over the Boolean domain, the language Γ consisting of the single relation

R
6=6= 6=
1/3

containing the three tuples 〈1,0,0,0,1,1〉, 〈0,1,0,1,0,1〉 and 〈0,0,1,1,1,0〉, has

been shown to be the computationally easiest NP-complete language [118]. Computa-

tionally easiest means that if any NP-complete CSP(Γ ′) can be solved in O(cn) time,

then CSP(Γ ) can also be solved in O(cn) time. We also note that while the parameter-

ized complexity of CSPs has been relatively well studied, the fixed-parameter tractabil-

ity results obtained have yet to be used in practical applications. It would be interesting



to see if this approach can provide competitive tools to improve the efficiency of con-

straint solvers.

In Section 1 we highlighted the possible use of tractable classes as lower bound

instances (relaxations). It is always possible, by eliminating constraints, to find a lower-

bound instance with treewidth bounded by any given constant k. For a given polymor-

phism f which defines a tractable language, we can always obtain a lower-bound in-

stance of an instance I in this language by successively adding tuples to each constraint

relation R in I until the resulting relation satisfies the polymorphism f . The resulting

relation is simply the closure of R under componentwise application of f to sets of

tuples until convergence, and can be calculated in polynomial time for constraints of

arity bounded by a constant. For a given forbidden pattern defining a tractable class, we

can again find a lower-bound instance using a similar technique of successively adding

tuples to relations until the relaxed instance falls in the class.

There is a danger that the concentration of effort on identifying language-based and

structural tractable classes may deflect attention from the possibility of alternative def-

initions of tractable classes. We are convinced that there remain many useful tractable

classes to be discovered by exploring different definitions of sets of instances. It is also

interesting to note that two very important relaxations, namely local consistency in the

case of the CSP and linear relaxation in the case of the VCSP, are obtained not by re-

stricting the set of instances but rather by changing the problem statement. An interest-

ing open question is whether there exist other useful tractable relaxations of constraint

problems that can be obtained by changing the problem statement.
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