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Abstract The optimal solution of a geometric program (GP) can be sensitive to vari-
ations in the problem data. Robust geometric programming can systematically allevi-
ate the sensitivity problem by explicitly incorporating a model of data uncertainty in
a GP and optimizing for the worst-case scenario under this model. However, it is not
known whether a general robust GP can be reformulated as a tractable optimization
problem that interior-point or other algorithms can efficiently solve. In this paper we
propose an approximation method that seeks a compromise between solution accu-
racy and computational efficiency.

The method is based on approximating the robust GP as a robust linear program
(LP), by replacing each nonlinear constraint function with a piecewise-linear (PWL)
convex approximation. With a polyhedral or ellipsoidal description of the uncertain
data, the resulting robust LP can be formulated as a standard convex optimization
problem that interior-point methods can solve. The drawback of this basic method is
that the number of terms in the PWL approximations required to obtain an acceptable
approximation error can be very large. To overcome the “curse of dimensionality”
that arises in directly approximating the nonlinear constraint functions in the original
robust GP, we form a conservative approximation of the original robust GP, which
contains only bivariate constraint functions. We show how to find globally optimal
PWL approximations of these bivariate constraint functions.
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1 Introduction

1.1 Geometric programming

The convex function lse : Rk → R, defined as

lse(z1, . . . , zk) = log(ez1 + · · · + ezk ), (1)

is called the (k-term) log-sum-exp function. (We use the same notation, no matter
what k is; the context will always unambiguously determine the number of exponen-
tial terms.) When k = 1, the log-sum-exp function reduces to the identity.

A geometric program (in convex form) has the form

minimize cT y

subject to lse(Aiy + bi) ≤ 0, i = 1, . . . ,m,

Gy + h = 0,

(2)

where the optimization variable is y ∈ Rn and the problem data are Ai ∈ RKi×n, bi ∈
RKi , c ∈ Rn, G ∈ Rl×n, and h ∈ Rl . We call the inequality constraints in the GP (2)
log-sum-exp (inequality) constraints. In many applications, GPs arise in posynomial
form, and are then transformed by a standard change of coordinates and constraint
functions to the convex form (2); see Appendix 1. This transformation does not in
any way change the problem data, which are the same for the posynomial form and
convex form problems.

Geometric programming has been used in various fields since the late 1960s; early
applications of geometric programming can be found in the books Avriel (1980),
Duffin et al. (1967), Zener (1971) and the survey papers Ecker (1980), Peterson
(1976), Boyd et al. (2007). More recent applications can be found in various fields
including circuit design (Boyd et al. 2005; Chen et al. 2000; Dawson et al. 2001;
Daems et al. 2003; Hershenson 2002; Hershenson et al. 2001; Mohan et al. 2000;
Sapatnekar 1996; Singh et al. 2005; Sapatnekar et al. 1993; Young et al. 2001), chem-
ical process control (Wall et al. 1986), environment quality control (Greenberg 1995),
resource allocation in communication systems (Dutta and Rama 1992), information
theory (Chiang and Boyd 2004; Karlof and Chang 1997), power control of wireless
communication networks (Kandukuri and Boyd 2002; O’Neill et al. 2006), queue
proportional scheduling in fading broadcast channels (Seong et al. 2006), and statis-
tics (Mazumdar and Jefferson 1983).

Algorithms for solving geometric programs appeared in the late 1960s, and re-
search on this topic continued until the early 1990s; see, e.g., Avriel et al. (1975),
Rajpogal and Bricker (1990). A huge improvement in computational efficiency was
achieved in 1994, when Nesterov and Nemirovsky developed provably efficient
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interior-point methods for many nonlinear convex optimization problems, including
GPs (Nesterov and Nemirovsky 1994). A bit later, Kortanek, Xu, and Ye developed
a primal-dual interior-point method for geometric programming, with efficiency ap-
proaching that of interior-point linear programming solvers (Kortanek et al. 1997).

1.2 Robust geometric programming

In robust geometric programming (RGP), we include an explicit model of uncertainty
or variation in the data that defines the GP. We assume that the problem data (Ai, bi)

depend affinely on a vector of uncertain parameters u, that belongs to a set U ⊆ RL:

(Ãi(u), b̃i(u)) =
(

A0
i +

L∑
j=1

ujA
j
i , b

0
i +

L∑
j=1

ujb
j
i

)
, u ∈ U ⊆ RL. (3)

The data variation is described by A
j
i ∈ RKi×n, b

j
i ∈ RKi , and the uncertainty set U .

We assume that all of these are known.
We consider two types of uncertainty sets. One is polyhedral uncertainty, in

which U is a polyhedron, i.e., the intersection of a finite number of halfspaces:

U = {u ∈ RL | Du � d}, (4)

where d ∈ RK , D ∈ RK×L, and the symbol � denotes the componentwise inequality
between two vectors: w � v means wi ≤ vi for all i. The other is ellipsoidal uncer-
tainty, in which U is an ellipsoid:

U = {ū + Pρ | ‖ρ‖2 ≤ 1, ρ ∈ RL}, (5)

where ū ∈ RL and P ∈ RL×L. Here, the matrix P describes the variation in u and
can be singular, in order to model the situation when the variation in u is restricted
to a subspace. Note that due to the affine structure in (3), the ellipsoid uncertainty set
U can be transformed to a unit ball (i.e., P can be assumed to be an identity matrix)
without loss of generality.

A (worst-case) robust GP (RGP) has the form

minimize cT y

subject to sup
u∈U

lse(Ãi(u)y + b̃i (u)) ≤ 0, i = 1, . . . ,m,

Gy + h = 0.

(6)

The inequality constraints in the RGP (6) are called robust log-sum-exp (inequality)
constraints.

The RGP (6) is a special type of robust convex optimization problem; see, e.g.,
Ben-Tal and Nemirovski (1998) for more on robust convex optimization. Unlike
the various types of robust convex optimization problems that have been stud-
ied in the literature (e.g., Ben-Tal and Nemirovski 1999; Ben-Tal et al. 2002;
Ghaoui and Lebret 1997, 1998; Goldfarb and Iyengar 2003; Boni et al. 2007), the
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computational tractability of the RGP (6) is not clear; it is not yet known whether one
can reformulate a general RGP as a tractable optimization problem that interior-point
or other algorithms can efficiently solve.

1.3 Brief overview and outline

We first observe that a log-sum-exp function can be approximated arbitrarily well
by a piecewise-linear (PWL) convex function. Using these approximations, the RGP
can be approximated arbitrarily well as a robust LP, with polyhedral or ellipsoidal
data uncertainty. Since robust LPs, with polyhedral or ellipsoidal uncertainty, can be
tractably solved (see Appendix 2), this gives us an approximation method for the
RGP. In fact, this general approach can be used for any robust convex optimization
problem with polyhderal or ellipsoidal uncertainty. Piecewise-linear approximation
has been used in prior work on approximation methods for nonlinear convex op-
timization problems, since it allows us to approximately solve a nonlinear convex
problem by solving a linear program; see, e.g., Ben-Tal and Nemirovski (2001), Fei-
joo and Meyer (1988), Glineur (2000), Thakur (1978).

The problem with the basic PWL approach is that the number of terms needed in
a PWL approximation of the log-sum-exp function (1), to obtain a given level of ac-
curacy, grows rapidly with the dimension k. Thus, the size of the resulting robust LP
is prohibitively large, unless all Ki are small. To overcome this “curse of dimension-
ality”, we propose the following approach. We first replace the RGP with a new RGP,
in which each log-sum-exp function has only one or two terms. This transformation
to a two-term GP is exact for a nonrobust GP, and conservative for a RGP. We then
use the PWL approximation method on the reduced RGP.

In Sect. 2, we show how PWL approximation of the constraint functions in the
RGP (6) leads to a robust LP. We also describe how to approximate a general RGP
with a more tractable RGP which contains only bivariate constraint functions.

In Sect. 3, we develop a constructive algorithm to solve the best PWL convex lower
and upper approximation problems for the bivariate log-sum-exp function. Some nu-
merical examples are presented in Sect. 4. Our conclusions are given in Sect. 5. Sup-
plementary material is collected in the appendices.

2 Solving robust GPs via PWL approximation

2.1 Robust LP approximation

Suppose we have PWL lower and upper bounds on the log-sum-exp function in the
ith constraint of the RGP (6),

max
j=1,...,Ii

{f T

ij
y + g

ij
} ≤ lse(y) ≤ max

j=1,...,Ji

{f T

ij y + gij }, ∀y ∈ RKi ,
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where f
ij
, f ij ∈ RKi and g

ij
, gij ∈ R. Replacing the log-sum-exp functions in the

RGP (6) with the PWL bounds above, we obtain the two problems

minimize cT y

subject to sup
u∈U

max
j=1,...,Ji

{f T

ij Ãi(u)y + f
T

ij b̃i(u) + gij } ≤ 0, i = 1, . . . ,m,

Gy + h = 0,

(7)

and

minimize cT y

subject to sup
u∈U

max
j=1,...,Ii

{f T

ij
Ãi(u)y + f T

ij
b̃i(u) + g

ij
} ≤ 0, i = 1, . . . ,m,

Gy + h = 0.

(8)

These problems can be reformulated as the robust LPs

minimize cT y

subject to sup
u∈U

{f T

ij Ãi(u)y + f
T

ij b̃i(u) + gij } ≤ 0, i = 1, . . . ,m, j = 1, . . . , Ji,

Gy + h = 0, (9)

and

minimize cT y

subject to sup
u∈U

{f T

ij
Ãi(u)y + f T

ij
b̃i(u) + g

ij
} ≤ 0, i = 1, . . . ,m, j = 1, . . . , Ii ,

Gy + h = 0. (10)

With a polyhedral uncertainty set, these can be cast as (larger) LPs, and for ellipsoidal
uncertainty sets, they can be cast as SOCPs; see Appendix 2.

Note that an optimal solution, say y, of the robust LP (9) is also a feasible solution
to the RGP (6). In other words, the robust LP (9) gives a conservative approximation
of the RGP (6). The robust LP (10) has the opposite property: its feasible set covers
the feasible set of the RGP (6). Therefore, the optimal value of the robust LP (10),
say, cT y, gives a lower bound on the optimal value of the original RGP (6), and in
particular, allows us to bound the error in the feasible, suboptimal point y, for the
RGP. In other words, we have

0 ≤ cT (y − y�) ≤ cT (y − y), (11)

where y� is an optimal solution of the RGP. Finally, it is not difficult to see that as
the PWL convex approximations of the log-sum-exp functions are made finer, the
optimal values of the robust LPs (9) and (10) get closer to that of the RGP (6).
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2.2 Tractable robust GP approximation

The RGP (6) can be reformulated as another RGP

minimize c̄T η

subject to sup
u∈U

lse((āi1 + B̄i1u)T η, . . . , (āiKi
+ B̄iKi

u)T η) ≤ 0, i = 1, . . . ,m,

Ḡη + h̄ = 0 (12)

with the optimization variables η = (y, t) ∈ Rn × R. Here the problem data

c̄ ∈ Rn+1, Ḡ ∈ R(l+1)×(n+1), h̄ ∈ Rl+1,

āis ∈ Rn+1, B̄is ∈ R(n+1)×L

can be readily obtained from the problem data of the RGP (6); see Appendix 3 for
the details. The RGPs (6) and (12) are equivalent: ȳ ∈ Rn is feasible to (6) if and
only if (ȳ, t̄) ∈ Rn+1 is feasible to (12) for some t̄ ∈ R. In the following we form
a conservative approximation of the RGP (12), in which all the nonlinear constraint
functions are bivariate.

Consider a k-term robust log-sum-exp constraint in the following generic form:

sup
u∈U

lse((a1 + B1u)T η, . . . , (ak + Bku)T η) ≤ 0, (13)

where ai ∈ Rn+1, Bi ∈ R(n+1)×L. An approximate reduction procedure, described in
Appendix 4, shows that η ∈ Rn+1 satisfies (13) if there exists z = (z1, . . . , zk−2) ∈
Rk−2 such that (η, z) satisfies the following system of k − 1 two-term robust log-
sum-exp constraints:

sup
u∈U

lse((a1 + B1u)T η, z1) ≤ 0,

sup
u∈U

lse((as+1 + Bs+1u)T η − zs, zs+1 − zs) ≤ 0, s = 1, . . . , k − 3, (14)

sup
u∈U

lse((ak−1 + Bk−1u)T η − zk−2, (ak + Bku)T η − zk−2) ≤ 0,

in which all the constraint functions are bivariate. We will call (14) a “two-term (con-
servative) approximation” of the k-term robust log-sum-exp constraint (13).

The idea of tractable RGP approximation is simple: we replace every robust log-
sum-exp constraint (with more than two terms) by its two-term conservative approx-
imation to obtain a “two-term RGP”, which gives a conservative approximation of
the original RGP. Although with more variables and constraints, the two-term RGP is
much more tractable, in the sense that we can approximate the bivariate log-sum-exp
function well with a small number of hyperplanes, as described in Sect. 3. Then
the two-term RGP can be further solved via robust LP approximation, as shown
in Sect. 2.1.

Now we give an exact expression of the two-term RGP approximation. First note
that a one-term robust log-sum-exp constraint is simply a robust linear inequality.
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Since no PWL approximation for a one-term constraint is necessary, we can simply
keep all the one-term constraints of a RGP in its two-term RGP approximation (and
the consequent robust LP approximation). Therefore for simplicity, in the following
we assume all the robust log-sum-exp constraints in RGP (12) have at least two terms,
i.e., Ki ≥ 2, i = 1, . . . ,m. The two-term RGP has the form

minimize ĉT x

subject to sup
u∈U

lse((â1
i + B̂1

i u)T x, (â2
i + B̂2

i u)T x) ≤ 0, i = 1, . . . ,Kc,

Ĝx + ĥ = 0,

(15)

where the optimization variables are x = (y, t, z) ∈ Rn × R × RKv , and the problem
data are

â
j
i ∈ Rn+Kv+1, B̂

j
i ∈ R(n+Kv+1)×L, i = 1, . . . ,Kc, j = 1,2,

ĉ = (c̄,0) ∈ Rn+Kv+1, Ĝ = [Ḡ 0] ∈ R(l+1)×(n+Kv+1), ĥ = h̄ ∈ Rl+1.

Here Kv = ∑m
i=1(Ki −2) is the number of additional variables and Kc = ∑m

i=1(Ki −
1) is the number of two-term log-sum-exp constraints.

With general uncertainty structures, the RGP (15) is a conservative approximation
of the original RGP (6). In other words, if x̂ = (ŷ, t̂ , ẑ) ∈ Rn × R × RKv is feasible
to (15), ŷ is feasible to (6). Hence the optimal value of the two-term RGP (15), if
feasible, is an upper bound on that of the RGP (6).

3 PWL approximation of two-term log-sum-exp function

There has been growing interest in approximation and interpolation with convexity
constraints (Beatson 1981, 1982; Gao et al. 1995; Hu 1991; McAllister and Roullier
1978). However, relatively little attention has been paid to the best PWL convex ap-
proximation problem for multivariate, or even bivariate, convex functions. (A heuris-
tic method, based on the K-means clustering algorithm, is developed in Magnani
and Boyd (2006).) In this section, the problem of finding the best PWL convex ap-
proximation of the two-term (i.e., bivariate) log-sum-exp function is solved and a
constructive algorithm is provided.

3.1 Definitions

Let intX denote the interior of X ⊆ Rm. A function h : Rm → R is called (r-term)
piecewise-linear if there exists a partition of Rm as

Rm = X1 ∪ X2 ∪ · · · ∪ Xr,

where intXi �= ∅ and intXi ∩ intXj = ∅ for i �= j , and a family of affine func-
tions aT

1 x + b1, . . . , aT
r x + br such that h(x) = aT

i x + bi for x ∈ Xi . If an r-term
PWL function h is convex, it can be expressed as the maximum of r affine functions:
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h(x) = max{aT
1 x + b1, . . . , a

T
r x + br}. (See, e.g., Boyd and Vandenberghe (2004).)

Let Pm
r denote the set of r-term PWL convex functions from Rm into R. Note that

h ∈ P1
r if and only if there exist xi, i = 1, . . . , r − 1 and ai, bi, i = 1, . . . , r with

x1 < · · · < xr−1 and a1 < · · · < ar such that h can be expressed as

h(x) =
⎧⎨
⎩

a1x + b1, x ∈ (−∞, x1],
aix + bi, x ∈ [xi−1, xi], i = 2, . . . , r − 1,

arx + br, x ∈ [xr−1,∞).

The points x1, . . . , xr−1 are called the break points of h, and the affine functions
aix + bi, i = 1, . . . , r are called the segments.

Let f be a continuous function from Rm into R. A function h : Rm → R is called
an r-term PWL convex lower (respectively, upper) approximation to f if h ∈ Pm

r

and h(x) ≤ f (x) (respectively, h(x) ≥ f (x)) for all x ∈ Rm. An r-term PWL convex
lower (respectively, upper) approximation f

r
∈ Pm

r (respectively, f r ∈ Pm
r ) to f

is called a best r-term PWL convex lower (respectively, upper) approximation if it
has the minimum approximation error in the uniform norm among all r-term PWL
convex lower (respectively, upper) approximations to f , which is denoted by εf (r)

(respectively, εf (r)):

εf (r) = sup
x∈Rm

(f (x) − f
r
(x))

= inf
h∈Pm

r

{
sup

x∈Rm

(f (x) − h(x))

∣∣∣ h(x) ≤ f (x), ∀x ∈ Rm
}
,

εf (r) = sup
x∈Rm

(f r(x) − f (x))

= inf
h∈Pm

r

{
sup

x∈Rm

(h(x) − f (x))

∣∣∣ h(x) ≥ f (x), ∀x ∈ Rm
}
.

3.2 Best PWL approximation of two-term log-sum-exp function

3.2.1 Equivalent univariate best approximation problem

Finding the best r-term PWL convex approximation to the two-term log-sum-exp
function is a “bivariate” best approximation problem over P2

r . In the following we
show that this bivariate best approximation problem can be simplified as an equivalent
“univariate” best approximation problem over P1

r .
We define the function φ : R → R as

φ(x) = log(1 + ex). (16)

Note that φ satisfies

lim
x→−∞φ(x) = lim

x→∞(φ(x) − x) = 0. (17)

Thus,

εφ(1) = inf
(a,b)∈R2

sup
x∈R

(φ(x) − ax − b) = ∞, (18)
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εφ(2) = sup
x∈R

(φ(x) − max{0, x}) = log 2. (19)

Now, note that the two-term log-sum-exp function can be expressed as

lse(y1, y2) = y1 + φ(y2 − y1) = y2 + φ(y1 − y2), ∀(y1, y2) ∈ R2. (20)

Therefore it follows from (18–20) that the two-term log-sum-exp function cannot be
approximated by a single affine function with a finite approximation error over R2,
but has the unique best two-term PWL convex lower approximation h2 : R2 → R
and upper approximation h2 : R2 → R defined as h2(y1, y2) = max{y1, y2} and
h2(y1, y2) = max{y1 + log 2, y2 + log 2} respectively.

From now on, we restrict our discussion to the case r ≥ 3. The following propo-
sition establishes the uniqueness and some useful properties of the best r-term PWL
convex lower approximation φ

r
to φ for r ≥ 3.

Proposition 1 For r ≥ 3, there exist x1, . . . , xr−1 and (a�
i , b

�
i ) ∈ R2, i = 1, . . . , r − 2

with

x1 < · · · < xr−1, 0 < a�
1 < a�

2 < · · · < a�
r−2 < 1, (21)

a�
i + a�

r−i−1 = 1, b�
i = b�

r−i−1, i = 1, . . . , r − 2, (22)

such that the function φ has the unique best r-term PWL convex lower approxima-
tion φ

r
defined as

φ
r
(x) =

⎧⎪⎨
⎪⎩

0, x ∈ (−∞, x1],
a�

i x + b�
i , x ∈ [xi, xi+1], i = 1, . . . , r − 2,

x, x ∈ [xr−1,∞).

(23)

Moreover, there exist x̃1, . . . , x̃r−2 ∈ R which satisfy

x1 < x̃1 < x2 < x̃2 < · · · < xr−2 < x̃r−2 < xr−1

such that the segments a�
1x + b�

1, . . . , a
�
r−2x + b�

r−2 are tangent to φ at the
points x̃1, . . . , x̃r−2 respectively. Finally, the maximum approximation error occurs
only at the break points of φ

r
:

φ(x) − φ
r
(x) < εφ(r), x �∈ {x1, . . . , xr−1},

φ(xi) − φ
r
(xi) = εφ(r), i = 1, . . . , r − 1.

The proof of Proposition 1 is straightforward but lengthy, due to many cases and sub-
cases that have to be probed. The reader interested in the complete proof is referred
to Hsiung et al. (2006).

As a consequence of Proposition 1 and (20), we have the following corollary.
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Corollary 1 For r ≥ 3, the unique best r-term PWL convex lower approxima-
tion hr : R2 → R of the two-term log-sum-exp function is

hr(y1, y2) = max{y1, a
�
r−2y1 + a�

1y2 + b�
1, a

�
r−3y1 + a�

2y2 + b�
2, . . . ,

a�
1y1 + a�

r−2y2 + b�
r−2, y2} (24)

and the unique best r-term PWL convex upper approximation hr : R2 → R is

hr(y1, y2) = hr(y1, y2) + εφ(r), (25)

where a�
i , b

�
i , i = 1, . . . , r −2 are the coefficients of the segments of φ

r
defined in (23).

The proof is given in Appendix 5.
This corollary shows that both the best r-term PWL convex upper and lower ap-

proximations to the two-term log-sum-exp function can be readily obtained, provided
that φ

r
is given. Hence we can restrict our attention on solving the best PWL convex

lower approximation problem for the univariate function φ.

3.2.2 Constructive algorithm

Proposition 1 implies that a function h ∈ P1
r (r ≥ 3) with r − 1 break points x1 <

· · · < xr−1 solves the best PWL convex lower approximation problem for φ with
approximation error ε ∈ (0, log 2) (i.e., h ≡ φ

r
and ε = εφ(r)) if and only if

h(x) ≤ φ(x), ∀x ∈ R, (26)

lim
x→−∞h(x) − φ(x) = 0, lim

x→∞h(x) − φ(x) = 0, (27)

h(xi) − φ(xi) = ε, i = 2, . . . , r − 2, (28)

x1 = log(eε − 1), (29)

xr−1 = − log(eε − 1), (30)

and there exist x̃1, . . . , x̃r−2 ∈ R such that

h(x̃i) − φ(x̃i) = 0, i = 1, . . . , r − 2, (31)

x1 < x̃1 < x2 < x̃2 < · · · < xr−2 < x̃r−2 < xr−1. (32)

Using these properties of the best r-term best PWL convex lower approximation,
for any given ε ∈ (0, log 2) and r ≥ 3, the following algorithm can verify if ε = εφ(r)

holds.

given ε ∈ (0, log 2), r ≥ 3
define xε = log(eε − 1) and xε = − log(eε − 1)

k := 1, xε
1 := xε

repeat

1. find the line y = aε
kx +bε

k passing through the point (xε
k ,φ(xε

k )−ε) and tangent
to the curve y = φ(x) at a point (x̃ε

k , φ(x̃ε
k )) with x̃ε

k > xε
k



Tractable approximate robust geometric programming 105

Fig. 1 An illustration of the algorithm which checks if ε = εφ(r) holds for given ε ∈ (0, log 2) and r ≥ 3.
In this example we let ε = 0.3 and r = 3. Since xε

2 > xε , we can conclude that εφ(3) < 0.3

2. find xε
k+1 > x̃ε

k such that aε
kx

ε
k+1 + bε

k = φ(xε
k+1) − ε

3. k := k + 1

until k ≥ r − 1

This algorithm is illustrated in Fig. 1.
Now, define an r-term PWL convex function hε : R → R as

hε(x) = max{0, aε
1x + bε

1, . . . , a
ε
r−2x + bε

r−2, x}.
Note that xε

1 < · · · < xε
r−1 and hε satisfy (26–29), and x̃ε

1 < · · · < x̃ε
r−2 satisfies (31–

32). Thus hε ≡ φ
r

if and only if (30) holds, which further implies

ε = εφ(r) ⇐⇒ xε
r−1 = xε. (33)

Moreover, (30) implies

ε < εφ(r) ⇐⇒ xε
r−1 < xε, (34)

ε > εφ(r) ⇐⇒ xε
r−1 > xε. (35)

Observing (33–35), we can see that the following simple bisection algorithm finds
εφ(r) and φ

r
for any given r ≥ 3.

given r ≥ 3 and δ > 0
ε := 0 and ε := log 2
repeat
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1. ε := (ε + ε)/2
2. find the points xε, xε , the segments aε

kx + bε
k, k = 1, . . . , r − 1, and the break

points xε
k , k = 1, . . . , r − 1 by the algorithm described above

3. if xε
r−1 > xε , ε := ε; otherwise, ε := ε

until |xε
r−1 − xε | ≤ δ

let εδ = ε and define an r-term PWL convex function φδ
r
: R → R as

φδ

r
(x) = max{0, aε

1x + bε
1, . . . , a

ε
r−2x + bε

r−2, x}

Here, it is easy to see that

lim
δ→0

sup
x∈R

|φδ

r
(x) − φ

r
(x)| = 0, lim

δ→0
εδ = εφ(r),

i.e., δ > 0 controls the tolerance.

3.2.3 Some approximation results

Table 1 shows the best r-term PWL convex lower approximation to the two-term log-
sum-exp function for r = 2, . . . ,5 and the corresponding approximation error εφ(r).
As will be shown in Sect. 4, the approximation method described in Sect. 2.2 with the
five-term PWL convex lower approximation provides a quite accurate approximate
solution for the RGP (6). In practical applications we are usually interested in r in the
range 5 ≤ r ≤ 10, but we can estimate the error decay rate for large r . Figure 2 shows
the optimal error εφ(r) for 2 ≤ r ≤ 1000. We observe that the curve is almost linear
in log-log scale, and using a least-squares fit to the data points (log r, log εφ(r)), r =
2, . . . ,1000, we obtain

log εφ(r) ≈ −2.0215 log r + 0.3457.

In normal scale,

εφ(r) ≈ 1.4130

r2.0215
≤

√
2

r2
.

4 Numerical examples

In the following we use some simple RGP numerical examples to demonstrate the
robust LP approximation method described in Sect. 2.1. Practical engineering ap-
plications, such as power control in lognormal shadowing channels (Hsiung et al.
2005) and robust analog/RF circuit design (Yang et al. 2005), have been reported to
reveal the effectiveness of the tractable robust GP approximation method proposed
in Sect. 2.2.
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Table 1 Some best PWL convex lower approximations to the two-term log-sum-exp function

r Approximation Error ε φ(r) Best r-Term PWL Convex Lower Approximation φ
r

2 0.693 max{ y1, y2 }

3 0.223

max{ y1,

0.500y1 + 0.500y2 + 0.693,

y2 }

4 0.109

max{ y1,

0.271y1 + 0.729y2 + 0.584,

0.729y1 + 0.271y2 + 0.584,

y2 }

5 0.065

max{ y1,

0.167y1 + 0.833y2 + 0.450,

0.500y1 + 0.500y2 + 0.693,

0.833y1 + 0.167y2 + 0.450,

y2 }

Fig. 2 Approximation error εφ(r) vs. the degree of PWL approximation r in log-log
scale: r = 2, . . . ,1000
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4.1 Two random families

We consider the following RGP, with 500 optimization variables, 500 two-term log-
sum-exp inequality constraints, and no equality constraints:

RL: minimize cT y
(36)

subject to sup
u∈U

lse((a1
i + B1

i u)T y, (a2
i + B2

i u)T y) ≤ 0, i = 1, . . . ,500.

The optimization variable is y ∈ R500, u ∈ RL represents the uncertain problem
data, B1

i and B2
i are sparse matrices in R500×L, and

c = 1 ∈ R500, a1
i = a2

i = −1 ∈ R500.

Here, 1 is the vector with all entries one. The uncertainty set U ⊆ RL is given by the
box in RL:

U = {u ∈ RL | ‖u‖∞ ≤ 1}, (37)

where ‖u‖∞ denotes the �∞-norm of u.
We generated 20 feasible instances, R1

5, . . . ,R20
5 , of the RGP (36) with L = 5,

by randomly generating the sparse matrices B1
i ,B2

i ∈ R500×5, i = 1, . . . ,500 with
sparsity density 0.1 and nonzero entries independently uniformly distributed on the
interval [−1,1]. The family {R1

5, . . . ,R20
5 } is denoted by F5. With L = 20, we also

generated a family F20 of 20 feasible instances, R1
20, . . . ,R

20
20 , in a similar way.

4.2 Approximation results

Before presenting the approximation results for the two random families F5 and F20,
we describe the error measure associated with the approximation method described
in this paper.

Suppose the r-term PWL approximation of the two-term log-sum-exp function is
used to obtain approximate solutions of the RGP (36). We call r the degree of PWL
approximation, and call the solution yr of the robust LP (7) corresponding to the
RGP (36) the r-term upper approximate solution and the solution y

r
of the robust

LP (8) the r-term lower approximate solution. Let yr and y� be an r-term upper
approximate solution and an exact optimal solution of the RGP (36) respectively.
Then, ecT y�

is the optimal value of the corresponding RGP in posynomial form. To
express the difference between ecT y�

and ecT yr , we use the fractional difference in
percentage α, given by

α = 100

(
ecT yr

ecT y�
− 1

)
= 100(ecT (yr−y�) − 1).

We call the value α the r-term PWL approximation error (in percentage) of the
RGP (36).
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Fig. 3 Approximation results for the random family F5: the degree of PWL approximation r vs. the mean
αr (F5) of the r-term PWL approximation errors in log-log scale. The upper solid line is obtained from
linear least-squares fitting of the data points (log r, logαr (F5)), r = 3,5,7,9 (shown as circles), while the
lower one is obtained from linear least-squares fitting of the data points (log r, logαr (F5)), r = 4,6,8,10

We first describe the approximation results for F5. For each r = 3, . . . ,10,
we found the r-term upper approximate solutions yr(1), . . . , yr (20) of the ran-
domly generated instances R1

5, . . . ,R20
5 . We also found the exact optimal solu-

tions y�(1), . . . , y�(20) of the instances, by solving the equivalent GPs with 16,000
inequality constraints obtained by replicating the inequality constraints for all ver-
tices of the uncertainty box U in (37).

Figure 3 shows the degree of PWL approximation r vs. the mean αr(F5) of the
r-term PWL approximation errors 100(ecT (yr (i)−y�(i)) − 1), i = 1, . . . ,20, where

αr(F5) = 1

20

20∑
i=1

100(ecT (yr (i)−y�(i)) − 1).

This figure shows that, in the region of interest, αr(F5) decreases faster than quadrati-
cally with increasing r , since αr(F5), r = 3,5,7,9 decrease faster than quadratically.
The variance of the r-term PWL approximation errors 100(ecT (yr (i)−y�(i)) − 1), i =
1, . . . ,20 was found to be less than 10−6, regardless of r . The four-term PWL convex
upper approximation therefore provides an approximate solution with less than 1%
approximation error quite consistently for each of the randomly generated instances
R1

5, . . . ,R20
5 .

Note that αr(F5) does not decrease monotonically with increasing r . This is
mainly because it does not necessarily hold that

r1 ≥ r2 �⇒ hr2(y1, y2) ≥ hr1(y1, y2) ≥ lse(y1, y2), ∀(y1, y2) ∈ R2,
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Fig. 4 Approximation results for the random family F20: the degree of PWL approximation r

vs. the upper bound αr (F20) on the mean αr (F20) of the r-term PWL approximation errors
in log-log scale. The solid line is obtained from linear least-squares fitting of the data points
(log r, logαr (F20)), r = 3,4, . . . ,10, shown as circles

although

r1 ≥ r2 �⇒
sup

(y1,y2)∈R2
(hr1(y1, y2) − lse(y1, y2)) < sup

(y1,y2)∈R2
(hr2(y1, y2) − lse(y1, y2)),

where hr denotes the best r-term PWL convex upper approximation to the two-term
log-sum-exp function.

We next describe the approximation results for F20. For each r = 3, . . . ,10, we
found the r-term upper approximate solutions yr(1), . . . , yr (20) of the randomly gen-
erated instances R1

20, . . . ,R
20
20 . Replicating the inequality constraints for all the ver-

tices was not possible for the random family F20, since the corresponding uncertainty
box U has approximately 106 vertices. Thus, it is too expensive to find the optimal
solutions y�(1), . . . , y�(20) of the instances R1

20, . . . ,R
20
20 . Instead, we found the r-

term lower approximate solutions y
r
(1), . . . , y

r
(20) of the instances R1

20, . . . ,R
20
20 for

each r = 3, . . . ,10.
Note from (11) that

0 ≤ ecT (yr (i)−y�(i)) − 1 ≤ e
cT (yr (i)−y

r
(i)) − 1, i = 1, . . . ,20.

The mean αr(F20) of the r-term approximation errors e
cT (yr (i)−y

r
(i)) − 1, i =

1, . . . ,20 is therefore an upper bound on the mean αr(F20) of the r-term approxi-
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mation errors ecT (yr (i)−y�(i)) − 1, i = 1, . . . ,20:

αr(F20) = 1

20

20∑
i=1

100(e
cT (yr (i)−y

r
(i)) − 1) ≥ αr(F20)

= 1

20

20∑
i=1

100(ecT (yr (i)−y�(i)) − 1).

Figure 4 shows the degree of PWL approximation r vs. αr(F20). This figure shows
that, in the region of interest, αr(F20) decreases faster than quadratically with in-

creasing r . The variance of the upper bounds 100(e
cT (yr (i)−y

r
(i)) − 1), i = 1, . . . ,20

was found to be less than 10−4, regardless of r . The seven-term PWL convex upper
approximation therefore provides an approximate solution with less than 5% approx-
imation error consistently for each of the instances R1

20, . . . ,R
20
20 .

5 Conclusions

We have described an approximation method for a RGP with polyhedral or ellipsoidal
uncertainty. The approximation method is based on conservatively approximating the
original RGP (6) with a more tractable robust two-term GP in which every nonlinear
function in the constraints is bivariate. The idea can be extended to a (small) k-term
RGP approximation in which every nonlinear function in the constraints has at most
k exponential terms. The extension relies on accurate PWL approximations of k-term
log-sum-exp functions. We are currently working on the extension using the heuristic
for PWL approximation of convex functions developed in Magnani and Boyd (2006).
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Appendix 1: Convex formulation of GP

Let Rn++ denote the set of real n-vectors whose components are positive. Let
x1, . . . , xn be n real positive variables. A function f : Rn++ → R, defined as

f (x) = d

n∏
j=1

x
aj

j , (38)

where d > 0 and aj ∈ R, is called a monomial. A sum of monomials, i.e., a function
of the form

f (x) =
K∑

k=1

dk

n∏
j=1

x
ajk

j , (39)



112 K.-L. Hsiung et al.

where dk > 0 and ajk ∈ R, is called a posynomial (with K terms).
An optimization problem of the form

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m,

hi(x) = 1, i = 1, . . . , l,

(40)

where f0, . . . , fm are posynomials and h1, . . . , hl are monomials, is called a geo-
metric program in posynomial form. Here, the constraints xi > 0, i = 1, . . . , n are
implicit. The corresponding robust convex optimization problem is called a RGP in
posynomial form.

We assume without loss of generality that the objective function f0 is a monomial
whose coefficient is one:

f0(x) =
n∏

j=1

x
cj

j .

If f0 is not a monomial, we can equivalently reformulate the GP (40) as the following
GP whose objective function is a monomial:

minimize t

subject to f0(x)t−1 ≤ 1,

fi(x) ≤ 1, i = 1, . . . ,m,

hi(x) = 1, i = 1, . . . , l,

where (x, t) ∈ Rn++ × R++ are the optimization variables.
GPs in posynomial form are not (in general) convex optimization problems, but

they can be reformulated as convex problems by a change of variables and a trans-
formation of the objective and constraint functions. To show this, we define new
variables yi = logxi , and take the logarithm of the posynomial f of x given in (39)
to get

f̃ (y) = log(f (ey1, . . . , eyn)) = log

(
K∑

i=1

eaT
k y+bk

)
= lse(aT

1 y + b1, . . . , a
T
Ky + bK),

where ak = (a1k, . . . , ank) ∈ Rn and bk = logdk , i.e., a posynomial becomes a sum
of exponentials of affine functions after the change of variables. (Note that if the
posynomial f is a monomial, then the transformed function f̃ is an affine function.)
This converts the original GP (40) into a GP:

minimize cT y

subject to lse(aT
i1y + bi1, . . . , a

T
iKi

y + biKi
) ≤ 0, i = 1, . . . ,m,

gT
i y + hi = 0, i = 1, . . . , l,

(41)
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where aij ∈ Rn, i = 1, . . . ,m, j = 1, . . . ,Ki contain the exponents of the posyno-
mial inequality constraints, c ∈ Rn contains the exponents of the monomial objective
function of the original GP, and gi ∈ Rn, i = 1, . . . , l contain the exponents of the
monomial equality constraints of the original GP.

Appendix 2: Robust linear programming

Consider the robust LP

minimize cT x

subject to sup
u∈U

(āi + Biu)T x + bi ≤ 0, i = 1, . . . ,m,
(42)

where the optimization variable is x ∈ Rn, u ∈ RL represents the uncertain problem
data, the set U ⊆ RL describes the uncertainty in u, and c ∈ Rn, āi ∈ Rn, Bi ∈ Rn×L,
b ∈ Rm. When the uncertainty set U is given by a bounded polyhedron or an ellipsoid,
the robust LP (42) can be cast as a standard convex optimization problem, as shown
below.

7.1 Polyhedral uncertainty

Let the uncertainty set U be a polyhedron:

U = {u ∈ RL | Du � d},
where D ∈ RK×L and d ∈ RK . We assume that U is non-empty and bounded.

Using the duality theorem for linear programming, we can equivalently reformu-
late the robust LP (42) as the following LP:

minimize cT x

subject to DT zi = BT
i x, i = 1, . . . ,m,

āT
i x + dT zi + bi ≤ 0, i = 1, . . . ,m,

zi ≥ 0, i = 1, . . . ,m,

(43)

where the optimization variables are (x, z1, . . . , zm) ∈ Rn × RK × · · · × RK .

7.2 Ellipsoidal uncertainty

Without loss of generality, we assume that the uncertainty set U is a unit ball:

U = {u ∈ RL | ‖u‖2 ≤ 1}.
Then, the robust LP (42) can be cast as the second-order cone program

minimize cT x

subject to aT
i x + ‖BT

i x‖2 + bi ≤ 0, i = 1, . . . ,m.

See, e.g., Lobo et al. (1998) for details.
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Appendix 3: Reformulation of the robust GP

We start with reformulating the RGP (6) as the equivalent RGP

minimize c̄T

[
y

t

]

subject to sup
u∈U

lse

((
Ã0

i +
L∑

j=1

uj Ã
j
i

)[
y

t

])
≤ 0, i = 1, . . . ,m,

Ḡ

[
y

t

]
+ h̄ = 0,

(44)

where (y, t) ∈ Rn × R are the optimization variables, and the problem data are

c̄ = (c,0) ∈ Rn+1, Ḡ =
[
G 0
0 1

]
∈ R(l+1)×(n+1), h̄ =

[
h

−1

]
∈ Rl+1,

Ã
j
i =

[
A

j
i b

j
i

]
∈ RKi×(n+1), i = 1, . . . ,m, j = 0,1, . . . ,L.

Denote the sth row of Ã
j
i as ã

jT
is , s = 1, . . . ,Ki , i.e.,

Ã
j
i =

⎡
⎢⎢⎣

ã
jT

i1
...

ã
jT
iKi

⎤
⎥⎥⎦ ∈ RKi×(n+1), i = 1, . . . ,m, j = 0,1, . . . ,L.

Then the RGP (44) can be readily rewritten as the equivalent RGP (12) with the
optimization variables η = (y, t) ∈ Rn × R and the problem data

āis = ã0
is ∈ Rn+1,

B̄is = [ã1
is · · · ãL

is] ∈ R(n+1)×L, s = 1, . . . ,Ki, i = 1, . . . ,m.

Appendix 4: Details of the two-term robust GP approximation

Consider a k-term log-sum-exp constraint:

sup
u∈U

lse((a1 + B1u)T η, . . . , (ak + Bku)T η) ≤ 0,

where ai ∈ Rn+1, Bi ∈ R(n+1)×L. It is easy to see that

sup
u∈U

lse((a1 + B1u)T η, . . . , (ak + Bku)T η)

= sup
u∈U

lse((a1 + B1u)T η, lse((a2 + B2u)T η, . . . , (ak + Bku)T ))

≤ sup
u∈U

lse
(
(a1 + B1u)T η, sup

u∈U
lse((a2 + B2u)T η, . . . , (ak + Bku)T η)

)
.
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Therefore a sufficient condition for the k-term robust log-sum-exp constraint (13) is
that there exists z1 ∈ R such that

sup
u∈U

lse((a1 + B1u)T η, z1) ≤ 0, sup
u∈U

lse((a2 + B2u)T η, . . . , (ak + Bku)T η) ≤ z1.

(45)
Similarly, since

sup
u∈U

lse((a2 + B2u)T η, . . . , (ak + Bku)T η)

≤ sup
u∈U

lse
(
(a2 + B2u)T η, sup

u∈U
lse((a3 + B3u)T η, . . . , (ak + Bku)T η)

)
,

a sufficient condition for (45) is that there exist z1, z2 ∈ R such that

sup
u∈U

lse((a1 + B1u)T η, z1) ≤ 0,

sup
u∈U

lse((a2 + B2u)T η, z2) ≤ z1,

sup
u∈U

lse((a3 + B3u)T η, . . . , (ak + Bku)T η) ≤ z2.

Now it is easy to see that η satisfies (13) if there exists z = (z1, . . . , zk−2) ∈ Rk−2

such that (η, z) satisfies the system of k − 1 two-term robust log-sum-exp con-
straints:

sup
u∈U

lse((a1 + B1u)T η, z1) ≤ 0,

sup
u∈U

lse((as+1 + Bs+1u)T η, zs+1) ≤ zs, s = 1, . . . , k − 3,

sup
u∈U

lse((ak−1 + Bk−1u)T η, (ak + Bku)T η) ≤ zk−2,

which is obviously equivalent to (14).

Appendix 5: Proof of Corollary 1

The best PWL convex lower approximation problem for the two-term log-sum-exp
function can be formulated as

minimize sup
(y1,y2)∈R2

(
lse(y1, y2) − max

i=1,...,r
{fi1y1 + fi2y2 + gi}

)

subject to lse(y1, y2) ≥ max
i=1,...,r

{fi1y1 + fi2y2 + gi}, ∀(y1, y2) ∈ R2,

(46)

where fi1, fi2, gi ∈ R, i = 1, . . . , r are the optimization variables. Here, note
from (20) that
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lse(y1, y2) − max
i=1,...,r

{fi1y1 + fi2y2 + gi}
= y1 + φ(y2 − y1) − max

i=1,...,r
{fi1y1 + fi2y2 + gi}

= φ(y2 − y1) − max
i=1,...,r

{(fi1 + fi2 − 1)y1 + fi2(y2 − y1) + gi}.

Obviously, if

sup
(y1,y2)∈R2

(
lse(y1, y2) − max

i=1,...,r
{fi1y1 + fi2y2 + gi}

)
< ∞,

then fi1 + fi2 = 1, i = 1, . . . , r . Hence (46) is equivalent to

minimize sup
(y1,y2)∈R2

(
y1 + φ(y2 − y1) − max

i=1,...,r
{fi1y1 + fi2y2 + gi}

)

subject to y1 + φ(y2 − y1) ≥ max
i=1,...,r

{fi1y1 + fi2y2 + gi}, ∀(y1, y2) ∈ R2,

fi1 + fi2 = 1, i = 1, . . . , r.

(47)

This optimization problem is further equivalent to

minimize sup
x∈R

(φ(x) − max
i=1,...,r

{cix + di})

subject to φ(x) ≥ max
i=1,...,r

{cix + di}, ∀x ∈ R
(48)

in which ci, di ∈ R, i = 1, . . . , r are the optimization variables. If c�
i , d

�
i ∈ R, i =

1, . . . , r solve (48), then f �
i1 = 1 − c�

i , f �
i2 = c�

i , g�
i = d�

i , i = 1, . . . , r solve (47).
Conversely, if f �

i1, f
�
i2, g

�
i ∈ R, i = 1, . . . , r solve (47), then c�

i = 1−f �
i1 = f �

i2, d�
i =

g�
i , i = 1, . . . , r solve (48). Moreover, (47) and (48) have the same optimal value.

Hence it is obvious from Proposition 1 that the two-term log-sum-exp function has
the unique best r-term PWL convex lower approximation hr , given by (24).

We next show that the best r-term PWL convex upper approximation hr to the
two-term log-sum-exp function can be obtained from (25). To see this, we cast the
optimization problem (46) as

minimize ε

subject to max
i=1,...,r

{fi1y1 + fi2y2 + gi} ≤ lse(y1, y2), ∀(y1, y2) ∈ R2,

lse(y1, y2) ≤ max
i=1,...,r

{fi1y1 + fi2y2 + gi} + ε, ∀(y1, y2) ∈ R2,

(49)

which is obviously equivalent to

minimize ε

subject to max
i=1,...,r

{f̃i1y1 + f̃i2y2 + g̃i} − ε ≤ lse(y1, y2), ∀(y1, y2) ∈ R2,

lse(y1, y2) ≤ max
i=1,...,r

{f̃i1y1 + f̃i2y2 + g̃i}, ∀(y1, y2) ∈ R2.

(50)
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If ε, f
i1

, f
i2

, g
i
, i = 1, . . . , r solve (49) and ε, f i1, f i2, gi, i = 1, . . . , r solve (50)

respectively, then ε = ε = εφ(r), f
i1

= f i1, f i2
= f i2, gi = g

i
+ ε, i = 1, . . . , r .

Here, note that the best PWL convex upper approximation problem for the two-term
log-sum-exp function can be formulated exactly as (50). Finally, it is easy to see
from the uniqueness of the best r-term PWL convex lower approximation to φ that
the two-term log-sum-exp function has the unique best r-term PWL convex upper
approximation hr , given by (25).
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