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Abstract— Intention recognition is an important topic in
human-robot cooperation that can be tackled using probabilistic
model-based methods. A popular instance of such methods are
Bayesian networks where the dependencies between random
variables are modeled by means of a directed graph. Bayesian
networks are very efficient for treating networks with condi-
tionally independent parts. Unfortunately, such independence
sometimes has to be constructed by introducing so called hidden
variables with an intractably large state space. An example
are human actions which depend on human intentions and
on other human actions. Our goal in this paper is to find
models for intention-action mapping with a reduced state space
in order to allow for tractable on-line evaluation. We present
a systematic derivation of the reduced model and experimental
results of recognizing the intention of a real human in a virtual
environment.

I. INTRODUCTION

The development of humanoid robots is a field of increas-
ing interest in robotics today [1]. An example for this is
the humanoid robot system ARMAR III of the Collaborative
Research Center 588 [2] “Humanoid Robots - Learning and
Cooperating Multimodal Robots”.

Creating humanoid robots is not limited to the resemblance
to the human body. An important topic is also the question
how a humanoid robot can cooperate with humans. This
problem is addressed in robotics as human-robot cooperation,
human-robot interaction, or social interactive robots [3].
Considering social aspects as a key issue in human-robot
cooperation has been pointed out by Breazeal in [4]. A
major challenge inherited from human-human cooperation
lies in predicting the cooperating counterpart. By anthropo-
morphising a robot, this becomes relevant in human-robot
cooperation as well [5]. Humans expect the robot to “read
their intentions” because they are used to this behavior from
human counterparts. A robotic system, on the other hand, can
gain a lot of information considering the human’s intentions
since it allows for a new quality of high-level task planning.
An example would be proactive behavior on the robot side
based on systematically minimizing the uncertainty about the
user’s intention [6].

The problem of intention recognition is tackled in various
fields of human-machine interaction [7]. In robotics, inten-
tion recognition has been addressed in several contexts like
mobile robotics [8] or programming by demonstration [9].

Since humans are used to deal with uncertainty and
ambiguities in everyday life it comes quite natural to use
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probabilistic methods for inferring the user’s intention. A
very popular example of probabilistic methods in intention
recognition is the Lumière project [10], where the goals of a
user were inferred from his actions in office computer appli-
cations. For this purpose Bayesian networks where applied.
Bayesian networks are a class of graph based probabilistic
models exploiting causal dependencies in order to reduce the
complexity of large systems [11].

In [12], we have developed a theory of a generic multi-
level model for intention recognition based on Bayesian
networks. This model provides a level of human intentions
a level for human actions and a level for resulting sensor
measurements.

In the construction of a Bayesian network for intention
recognition, it is often assumed, that actions depending on
intentions are conditionally independent in order to have
simple models. Unfortunately, this assumption is not always
valid and results in incorrect inferences. An exact model
that accounts for the dependencies on the other hand may
be very complex in its structure and is not tractable for
available inference algorithms. A common way to deal with
such complex models is to introduce so called hidden nodes,
which model the dependencies via joint state spaces [13].
A drawback of this approach is that the joint state space to
be considered may be extremely large which also leads to
intractability. Hence, methods are needed for reducing the
number of states in the hidden variable while maintaining
acceptable results in the inference. In general it’s not pos-
sible to define the cardinality and the adequate conditional
probabilities of hidden nodes without investing a lot of time
and effort. Hence, several publications address the problem.
If not previously known, the hidden nodes of a network have
to be discovered [14] [15]. The cardinality of the hidden
nodes has to be determined [16] [17] and the parameters of
the conditional densities have to be learned from data [18]
[19]. A general approach to state space reduction is given in
[20], but the focus is more on discrete states resulting from
quantization of continuous variables.

In this paper we present an alternative way to construct
a Bayesian network for intention recognition without us-
ing algorithms for learning the structure or the conditional
probabilities. This is accomplished by introducing a hidden
variable with a tractable state space, based on knowledge of
an expert.

For the evaluation of the proposed models we have devel-
oped a experimental platform based on a virtual environment
using extended range telepresence techniques [21]. This
allows for easily repeatable experiments focussing on real
humans without struggling to much with typical hardware
problems.

The remainder of the paper is organized as follows. We
first give a detailed problem formulation in Sec. II followed
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Fig. 1. Bayesian network models for intention/action relations. Human
intentions are modeled by the discrete random variable int and actions are
modeled by binary random variables ai. (a) shows the model for the joint
probability. (b) shows the decoupled model using a hidden random variable
h.

by the derivation of the reduced model in Sec. III. After that
we will present our experimental platform in Sec. IV and
some results in Sec. V. Conclusions are given in Sec. VI.

II. PROBLEM FORMULATION
When addressing the problem of intention recognition,

we can usually depend on the knowledge of human experts
providing models of the relationship between intentions
and human actions. Such models can easily be given as a
mapping from a certain intention to a set of actions that
are triggered by this intention. Based on such a mapping
we want to build a probabilistic model, where the intention
is modeled as a discrete random variable int having as
many states as there are intentions to be represented. The
actions are modeled by means of binary random variables ai,
i = 1, . . . , n, where n is the number of observable actions.
Uncertainty in the mapping can be represented by means of
a conditional probability P (a1, . . . , an|int).

Unfortunately, the actions cannot by be modeled indepen-
dently given the intention, which would allow for indepen-
dent models P (ai|int). Since there are dependencies between
the actions, we have to consider the joint state space of
the involved random variables. A joint state space model
of the considered problem is given in Fig. 1(a) by means
of a Bayesian network. A Bayesian network is a graphical
model, where random variables are represented by nodes in
a directed acyclic graph (DAG). Each edge in this graph
represents a dependency between the variables, which can
be modeled by means of conditional probabilities. The joint
state space model of the network in Fig. 1(a) is hence

P (int)P (a1|int)P (a2|a1, int) . . . P (an|int, a1, . . . , an−1) .

This representation has the drawback that it contains loops
in the DAG which renders it unusable for standard message
passing techniques that are applied for inferring the inten-
tion from observed actions. Although, there are successful
applications of loopy belief propagation for Turbo Codes, it
is not clear if this algorithm converges for arbitrary networks
containing loops [22].

A common approach for getting rid of the loops is to
introduce a so called hidden variable as depicted in Fig. 1(b).
This leads to a decoupling of the network and a less complex
model

P (int)P (h|int)P (a1|h) . . . P (an|h) .

The price to be paid for this less complex model is that in the
naive application of this approach, the full joint state space
has to be modeled as states of the hidden variable. In our
case, this leads to a hidden variable with |int| · 2n states,
where |int| is the number of known intentions and n is the
number of observable actions. In the following, we will refer
to this solution as the exact solution.

Dealing with such extremely large state spaces is an
intractable problem for real world applications. Hence, we
have to find an approximate solution which gets by with
fewer states in the hidden variable while yielding results
comparable to the exact solution, i.e., the inference of
the intention from observed actions using the approximate
solution must give comparable results to the inference using
the exact solution.

For the remainder of this paper we will write the con-
ditional models as P ( · | · ) in order to emphasize that we
deal with discrete random variables for which conditional
probabilities can be given by means of probability tables.

III. DECOUPLED MODEL
We will now derive an approximate solution to the de-

coupling problem given in the previous section that needs
remarkably fewer states in the hidden variable while main-
tining a performance comparable to the exact solution. The
derivation of the approximate solution will be accompanied
by an example. The example is very simple, in order to keep
it comprehensible. Furthermore, we want to start with the
exact solution which can only be given for small problems
and derive the approximate solution from it.

Example III.1 We consider a case with three known intentions
int1, int2, int3 and three possible actions a1, a2, a3 a human
can perform. From a human expert, we get a mapping that
says which actions can be triggered by which intention. In this
example we assume the following mapping:

int1 → a1, a2,
int2 → a2,
int3 → a3.

(1)

Note, that the first intention can trigger two actions. There
is no assumption, that these actions have to occur simultane-
ously. Note further, that the first and the second intention can
trigger the same action a2.

A. Exact Decoupling
Decoupling the model by adding a hidden variable h as

introduced in Sec. II leads to a representation of the joint
state space (int,a1, . . . ,an) as states of the hidden variable.
This makes |int|∗2n states in h, where each state represents
a possible combination of occurrence of ai together with a
particular intention.

The combination of intentions and joint action states
can also be modeled in the conditional probability table
P (a1, . . . , an|int). Hence, the |int| part can be omitted in h,
which leads to a variable with 2n states. This modification is
no approximation since the mapping from intention to joint
actions is just moved from the random variable h into the
conditional probability P (h|int) and we still have the exact
solution. Nevertheless, 2n is still a very large number of
states making the model intractable for non-toy examples.

Example III.2 (cont’d) We introduce a random variable h with
2n states, where n = 3. Each state hi, i = 0, . . . , 7 of h is



mapped to a corresponding joint action state. Each joint event
a1 ∧a2 ∧a3 is expressed by the binary number a1a2a3, e.g the
occurrence of all actions is indicated by 111. This leads to the
following mapping:

h0 ← 000 h1 ← 001 h2 ← 010 h3 ← 011
h4 ← 100 h5 ← 101 h6 ← 110 h7 ← 111

Having introduced the hidden variable h, we can now
derive the parameters of the conditional probability table
P (h|int) from the intention to actions mapping provided by
the human expert.

Before proceeding, we have to consider a case that is not
covered by the expert’s mapping – the human may have a
certain intention in his head, but is not performing any action
at all. This may be the case, when the human is in a transition
phase where he/she moves from one place to another where
the relevant action can be performed. In order to account for
this “idle” state, we have to consider it in the probability
table P (h|int).

Example III.3 (cont’d) The conditional table for the joint state
space for the probabilities P (h|int) can be derived from the
mapping of intentions to actions (1) provided by the expert.

In this example, we assume a ratio between the idle state
h0 and the other states of 1:9, which results in the conditional
probability P (h0|int) = 0.1. Hence, the remaining conditional
probabilities must sum up to 0.9.

P (h|int) P (h0) P (h1) P (h2) P (h3)
int1 1/10 0 3/10 0
int2 1/10 0 9/10 0
int3 1/10 9/10 0 0

P (h|int) P (h4) P (h5) P (h6) P (h7)
int1 3/10 0 3/10 0
int2 0 0 0 0
int3 0 0 0 0

Note, that for the first intention, the probability over ac-
tions is distributed over the exclusive and the simultaneous
occurrence of actions a1 and a2.

B. Reduction
Modeling the full joint state space in h is intractable for

large numbers of observable actions. Hence, we are looking
for a reduced state space. The key assumption that can
be made in order to gain this reduction is, that in general
actions occur exclusively. This means, that people usually
perform only one of the actions provided in the mapping
at a time. This assumption can be translated into a logical
OR-combination of the actions given a certain intention.

Hence, we can reduce the state space of h by combining
all states where a certain event ai is present, which is
equivalent to the OR-combination of all relevant events.
This leads to a random variable h′ with n + 1 states. The
probability P (h′|int) can be calculated from P (h|int) using
probability calculus. Here, we make use of the rule, that for
two events a and b

P (a ∨ b) = P (a) + P (b) − P (ab) . (2)

Example III.4 (cont’d) We introduce a random variable h′

with four states. The states represent the OR-combination of
the relevant states from h

h′
0 ← h0

h′
1 ← h4 ∨ h5 ∨ h6 ∨ h7

h′
2 ← h2 ∨ h3 ∨ h6 ∨ h7

h′
3 ← h1 ∨ h3 ∨ h5 ∨ h7.

The state representing that no action has occurred stays
untouched as h′ = h′

0.
The probability P (h′

1|int) can be calculated from P (h|int)
by using probability calculus as

P (h′
1|int) = P (h4 ∨ h5 ∨ h6 ∨ h7 | int)

= P (h4 | int) + P (h5 | int)
+ P (h6 | int) + P (h7 | int)

We made here use of the fact, that the states of h always occur
exclusively. Hence, the last term in (2) is zero. Similar we have
for h′

2 and h′
3

P (h′
2|int) = P (h2 | int) + P (h3 | int)

+ P (h6 | int) + P (h7 | int)
P (h′

3|int) = P (h1 | int) + P (h3 | int)
+ P (h5 | int) + P (h7 | int)

The corresponding conditional probabilities P (h′|int) can now
be fully determined from P (h|int). The reduced conditional
probabilities have to be normalized to sum up to 0.9, which
results in

P (h′|int) P (h′
0) P (h′

1) P (h′
2) P (h′

3)
int1 1/10 9/20 9/20 0
int2 1/10 0 9/10 0
int3 1/10 0 0 9/10

We now have to consider the models describing how the
actions ai depend on the hidden variable. In the case of the
exact model this is straight-forward. The probability tables
P (ai|h) contain only 1 and 0 entries since they provide a
direct mapping from the joint state space to the variables
involved. We will show this in the next example.

In order to calculate the conditional probabilities P (ai|h′)
from P (ai|h) we have to remember, that the states of h′ are a
logical OR-combination of states from h. Hence, we can add
up all distributions over ai where the condition is relevant.
This is shown in the next example.

Example III.5 (cont’d) The probability tables P (ai|h) for the
exact model are given by

P (ai|h) P (a1) P (a1) P (a2) P (a2) P (a3) P (a3)
h0 1 0 1 0 1 0
h1 1 0 1 0 0 1
h2 1 0 0 1 1 0
h3 1 0 0 1 0 1
h4 0 1 1 0 1 0
h5 0 1 1 0 0 1
h6 0 1 0 1 1 0
h7 0 1 0 1 0 1

Since h′
0 is identical to h0 nothing has to be changed

here. For the other states of h′ we have to consider the
OR-combination. Since

h′
1 = h4 ∨ h5 ∨ h6 ∨ h7

we can calculate the conditional probabilities as

P (ai|h′
1) = P (ai|h4) + P (ai|h5) + P (ai|h6) + P (ai|h7)

and normalize. This leads to a uniform distribution for a2 and
a3.

The same holds for the other states of h′ where the
conditional probabilities can be calculated according to

P (ai|h′
2) = P (ai|h2) + P (ai|h3) + P (ai|h6) + P (ai|h7)

and

P (ai|h′
2) = P (ai|h1) + P (ai|h3) + P (ai|h5) + P (ai|h7) .



The resulting conditional probability tables P (ai|h′) are hence,

P (ai|h′) P (a1) P (a1) P (a2) P (a2) P (a3) P (a3)
h′
0 1 0 1 0 1 0

h′
1 0 1 1/2 1/2 1/2 1/2

h′
2 1/2 1/2 0 1 1/2 1/2

h′
3 1/2 1/2 1/2 1/2 0 1

C. Comparing the Models
We will now compare the approximate model to the exact

model derived from the mapping of actions to intentions
provided by a human expert. For this purpose, we compare
the estimated distribution over intentions given a set of
observed actions.

Example III.6 (cont’d) We start in this example with the ob-
servation of the actions as provided from the expert’s mapping
(1). The estimates using the exact model are given in Tab. I
and the estimates using the approximate model are given in
Tab. II.

TABLE I
INTENTION ESTIMATE USING THE EXACT MODEL

a1 a2 a3 P (int1) P (int2) P (int3)
0 0 0 0.3 0.3 0.3
1 0 0 1 0 0
0 1 0 0.25 0.75 0
0 0 1 0 0 1
1 1 0 1 0 0

TABLE II
INTENTION ESTIMATE USING THE APPROXIMATE MODEL

a1 a2 a3 P (int1) P (int2) P (int3)
0 0 0 0.3 0.3 0.3
1 0 0 1 0 0
0 1 0 0.3 0.6 0
0 0 1 0 0 1
1 1 0 0.5 0.5 0

It can be seen, that for the occurrence of no action as
well as for the occurrence of actions that are mapped to
only one intention, the estimate is identical in both models.
In the case of action a2 which is mapped to two intentions,
the uncertainty in the estimate using the approximate model is
slightly increased. In the case of the simultaneous occurrence
of actions a1 and a2 this is more apparent since the estimate
reflects our assumption in the approximate case, that actions
in general occur exclusively.

Tab. III presents the estimate using the approximate model
given observed actions combination that were not provided
in the expert’s mapping. In the exact model, these observa-
tions yield an undefined estimate, i.e., all probabilities in the
estimate are zero.

TABLE III
INTENTION ESTIMATE USING THE APPROXIMATE MODEL

a1 a2 a3 P (int1) P (int2) P (int3)
0 1 1 0.2 0.4 0.4
1 0 1 0.3 0 0.6
1 1 1 0.3 0.3 0.3

The example shows, that the approximate model yields re-
sults similar to the results of the exact model. Furthermore, it
allows for estimates based on observations that are undefined
in the exact model.

Deriving the approximate model from the exact model as
presented in this section is only possible for small examples,
since the exact model in general cannot be given for a large
number of actions. Hence, it is desired to derive the ap-
proximate model directly from the expert’s mapping. Taking
a closer look at the approximate model shows, that this is
very easy, since the states of h′ (except for h′

0) represent the
occurrence of one action. This allows for easily distributing
the probability mass over the actions given in the mapping.
At first the probability P (h0) has to be determined. We then
use the fact, that each state h′

i with i > 0 is associated
with exactly one action ai. Given a certain intention inti
we have to find P (h′|inti). A value 1 is assigned to every
P (h′

i|inti) which is mapped to this intention by the expert.
Then the values are normalized to sum up to 1 − P (h0).
Hence, building the approximate model is straight-forward.
This is the method, which we will apply in Sec. V.

D. Further Improvement
In practice, we cannot say that an action occured with

100% certainty, since this occurrence is also estimated from
sensor observations available to the robot. Due to sensor
noise and ambiguities in the action recognition models,
the action estimates in general bear uncertainties. These
uncertainties have a large impact on the intention estimate,
which is mainly caused by the uniform distributions in the
conditional probabilities P (ai|h′).

There is room for further improvement of the estimate by
adding some knowledge about the simultaneous occurrence
of the actions to the models by means of probability distri-
bution over the relevant states of h. The idea is shown in the
next example.

Example III.7 (cont’d) The knowledge that it is unlikely (but
not impossible) that relevant actions occur together can be
modeled by a probability distribution like

P (h = h4) P (h = h5) P (h = h6) P (h = h7)
5/10 2/10 2/10 1/10

for h′
1, and similar for h′

2 and h′
3. This leads to a weighted sum

in the derivation of the reduced models P (ai|h′) as can be
seen in the next table.

P (ai|h′) P (a1) P (a1) P (a2) P (a2) P (a3) P (a3)
h′
0 1 0 1 0 1 0

h′
1 0 1 7/10 3/10 7/10 3/10

h′
2 7/10 3/10 0 1 7/10 3/10

h′
3 7/10 3/10 7/10 3/10 0 1

IV. EXPERIMENTAL PLATFORM
In order to evaluate the proposed reduced models for

intention recognition we have built a setup using extended
range telepresence techniques together with a virtual user
environment. The benefit of this setup is, that we can
focus on the evaluation of the models while minimizing the
hardware effort. Nevertheless, the models are built in a way,
that they can be applied to a real robot at any time, given
the necessary action recognizers are available.

To support natural interaction with the virtual environment
the user’s head and hand motion are tracked and reproduced
in the virtual environment as described in [21]. The illustra-
tion of the virtual world is transferred back and presented to



the user via a head mounted display. Furthermore a motion
compression technique [23] allows the user to move around
in a larger target environment while the size of the user
environment is limited. By using a data-glove the user is
able to interact with objects. In order to gain a more natural
appearance of the environment a physics simulation engine
is applied.

The environment we use for testing our algorithms re-
sembles a kitchen scenario, where the human operator can
carry around items, open or close a dishwasher, a fridge or
cupboards. In addition he can cooperate with a simulated
robot. Furthermore we can easily repeat test runs. Fig. 2
shows the human operator using the telepresence system and
Fig. 3 shows the virtual environment from the perspective of
the human user who is carrying an apple. Note, that only
the hand of the user is modelled but not the full arm, so the
hand and the apple are hovering in front of the user.

V. EXPERIMENTAL RESULTS
We will now present some results for intention recognition

using a model with a reduced hidden variable as presented
above. The relevant intentions to be recognized are

Load dishwasher Wash dishes
Cook Lay table
Get drink from robot Get object from robot

and they are mutual exclusive. With regard to the latter we
consider the following 16 actions:

Open/Close dishwasher Open/Close cupboard
Open/Close fridge Take food
Take item from cupboard Put item into cupboard
Put item into sink Place item onto sink
Place item onto table Put food onto table
Place item onto workspace Take item from workspace
Put item into dishwasher Take item out of dishwasher
Take item from sink Take item out of sink

The mapping from these intentions to these actions is pro-
vided by an expert. From this mapping, we derived the
reduced intention recognition model. The exact model for
this configuration would have 216 = 65536 states in the
hidden variable. The approximate model needs only 17 states
in the hidden variable.

Fig. 2. User working in the virtual kitchen using the extended range
telepresence system.

Fig. 3. View of the human operator carrying an apple using the telepresence
system.

Since the actions are hidden and cannot be observed
directly, we have to extend the model in order to estimate
the occurrence of actions from directly observable data. This
extension contains continuous as well as discrete random
variables an considers temporal dependencies. Hence, we
have a hybrid dynamic Bayesian network (HDBN) [24] [25].

Observable inputs to the HDBN are the position of the
human hand, the information about an existing hand grasp,
as well as the positions of the objects in the virtual kitchen.
This includes plates, mugs, and food objects like an apple, as
well as positions of door handles. Furthermore, the positions
of relevant places in the kitchen like workspaces, a table,
the sink and several cupboards are considered. We further
observe the distance between the human and the robot
in order to distinguish intentions dealing with the robot
directly, like “Get drink from robot” from other intentions
like “Cook”. The full network for recognizing six intentions
via sixteen known actions from directly observable data
contains more than 300 nodes, which is quite large.

In an experiment, a human performed common actions in
the virtual kitchen. First he started cooking. While the food
was at the cooker he laid the table. After that he fetched
the food from the cooker and moved it to the table. Then
he put the dishes into the dishwasher. Finally he wanted to
get a drink from the robot. Fig. 4 shows the estimate of the
intentions over time. The upper six plots show the estimated
probability of the according intention. The plot in the lowest
line shows the entropy of the estimate over time as a measure
of uncertainty.

VI. CONCLUSIONS

In this paper, we presented probabilistic models for recog-
nizing human intentions based on the observation of actions.
We derived a tractable model by reducing the state space of
hidden variables while maintaining the relevant parts of the
model.

The derivation of the reduced model mainly relies on the
assumption that actions in general do not occur simultane-
ously. Our observations have shown, that the assumption is
valid in many cases. From this assumption, the reduction is
derived in a mathematically rigorous way.



0 50 100 150 200 250
0

0.5
1

Load dishwasher (LD)

P
(L

D
)

0 50 100 150 200 250
0

0.5
1

Wash dishes (WD)

P
(W

D
)

0 50 100 150 200 250
0

0.5
1

Cook (C)

P
(C

)

0 50 100 150 200 250
0

0.5
1

Lay table (LT)

P
(L

T
)

0 50 100 150 200 250
0

0.5
1

Get drink from robot (GD)

P
(G

D
)

0 50 100 150 200 250
0

0.5
1

Get object from robot (GO)

P
(G

O
)

0 50 100 150 200 250
0
1
2

Entropy

H
(in

t)

t/s

Fig. 4. Estimated probabilities for each possible intention over time. In
addition the entropy is presented as a measurement for the uncertainty in
the estimate. The intentions of the observed human were cook (C), lay the
table (LT), cook, load dishwasher (LD), and get drink from robot (GD)

A key benefit of the proposed reduced model is, that it can
be derived directly from an expert’s mapping of intentions
to actions. It is not necessary to take a detour via the full
joint state model.

We have incorporated the proposed approach in a larger
model, where actions have to be estimated themselves from
available sensor data. Such a model can be applied directly
to a real robot.

We have implemented an evaluation platform based on
telepresence techniques for testing the proposed model in
a virtual environment with real humans. The model shows
a good performance and is hence, ready to be tested on a
humanoid.
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