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Abstract

Expected utility models in portfolio optimization are based on the assumption of complete knowl-
edge of the distribution of random returns. In this paper, we relax this assumption to the knowledge
of only the mean, covariance and support information. No additional restrictions on the type of
distribution such as normality is made. The investor’s utility is modeled as a piecewise-linear con-
cave function. We derive exact and approximate optimal trading strategies for a robust (maximin)
expected utility model, where the investor maximizes his worst-case expected utility over a set of
ambiguous distributions. The optimal portfolios are identified using a tractable conic programming
approach. Extensions of the model to capture asymmetry using partitioned statistics information and
box-type uncertainty in the mean and covariance matrix are provided. Using the optimized certainty
equivalent framework, we provide connections of our results with robust or ambiguous convex risk
measures, in which the investor minimizes his worst-case risk under distributional ambiguity. New
closed form results for the worst-case OCE risk measures and optimal portfolios are provided for two
and three-piece utility functions. For more complicated utility functions, computational experiments
indicate that such robust approaches can provide good trading strategies in financial markets.

1 Introduction

Consider an investor deciding to allocate wealth among a set of risky assets. The expected utility
maximization model (see Von-Neumann and Morgenstern [36]) provides a natural framework for a
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rational investor to choose a portfolio allocation. Under standard assumptions on the utility function
such as monotonicity and concavity, the optimal portfolio is well characterized in complete markets in
both the single and multi-period settings (see Arrow and Debreu [1], Merton et. al. [21], Ocone and
Karatzas [27], Detemple et. al. [11]). Using a second order-order Taylor series approximation for the
utility results in a quadratic portfolio optimization problem in the spirit of Markowitz’s [20] model.
Portfolio selection under the Markowitz model is based only on the mean and covariance information
of the uncertain returns. Despite it’s popularity, the quadratic utility model suffers from behavioral
limitations such as non-monotonicity (see Wipern [37]) or strong distributional assumptions such as
normality.

A related issue in portfolio optimization models is the quantification of risk. Value-at-risk (VaR)
is one such risk metric that is widely used by banks, security firms and other organizations. More
recently, Artzner et. al. [3] have introduced a class of risk measures (referred to as coherent risk
measures) that satisfy certain desirable properties, some of which variance and VaR do not share.
These properties are positive homogeneity, subadditivity, translation invariance and monotonicity. Many
variations and extensions of coherent risk measures have been proposed and studied in literature (see
Rockafellar and Uryasev [31], Pflug [28], Acerbi and Tasche [2], Föllmer and Schied [13], Pflug and
Ruszczynski [29]). An important extension is based on the relaxation of the positive homogeneity and
subadditivity property into the weaker convexity property leading to the class of convex risk measures
(see Föllmer and Schied [13], Fritelli and Gianin [15]). Properties of these risk measures have intuitive
interpretations in the context of the risk of a portfolio. For instance, the convexity property implies that
the risk of a diversified portfolio is less than individual risks. Risk measures naturally impose preference
orders to random outcomes. A related concept that also imposes a preference order is the certainty
equivalent, or the sure amount for which an investor remains indifferent to an outcome. Examples
of certainty equivalents based on utility functions can be found in Buhlmann [7] and Ben-Tal and
Teboulle [5], [6]. For instance in [6], the negative of the optimized certainty equivalent has been shown
to define a convex risk measure for a class of utility functions. Risk measures, such as conditional
value-at-risk (Rockafellar and Uryasev [31]) and bounded shortfall risk (Föllmer and Schied [13]), can
in fact be derived as special cases of the OCE.

Even if we can address the issue of accurately modeling the investor’s utility function and risk
preferences, there is an implicit assumption that is often made in these models. The investor is assumed
to be in possession of a market model that accurately describes the distribution of the future random
returns. Practitioners are however typically faced with ambiguity in the knowledge of the distribution.
Aversion to ambiguity is well documented in the famous Ellsberg paradox with most people preferring to
bet on an urn with 50 red and 50 blue balls, than in an urn with 100 balls containing an unknown number
of red or blue balls. Under ambiguity-aversion, the investor can choose to maximize the minimum
expected payoff over a set of possible distributions (see Gilboa and Schmeidler [17]). The uncertainty
in the distribution is typically captured through information on partial moments such as the mean and
covariance matrix. Popescu [30] studies the problem of deriving solutions to the single period robust
(maximin) expected utility problem based on mean and covariance information. For a class of utility
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functions, she shows that the robust problem reduces to solving a parametric quadratic program. Our
results in this paper closely relates to her work with stronger results for a subclass of the utility functions.
Garlappi et. al. [16] derive closed form expressions for the optimal portfolios under an ambiguity-averse
mean-variance model where the expected returns are assumed to lie within a confidence interval of it’s
estimated values. Tests on real market data therein indicate that the ambiguity-averse portfolios provide
better out-of-sample performance and are more stable over time as compared to classical portfolios. In
this paper, we do not restrict our attention to quadratic utilities. Interestingly, our computational results
provide similar qualitative insights providing further justification for the use of such robust methods
in practise. In a similar spirit, Calafiore [8] solves the mean-variance and mean-absolute deviation
model with the true distribution assumed to lie within a distance from the nominal distribution with
distance measured in the Kullback-Leibler divergence measure. A related model proposed in Korn and
Menkens [19] assumes that the stock price follows a Black-Scholes type diffusion with a crash that can
happen at an unknown time with an unknown magnitude. In their model, the investor determines
the portfolio that maximizes the worst-case expected utility of the terminal wealth. In contrast, our
approach to modeling ambiguity in distribution does not make any assumption on the form of the
distribution. We however focus exclusively on single period models.

In this paper, we assume that the investor’s utility is represented by a piecewise-linear concave
function. Our contributions can then be summarized as follows:

1. In Section 2, we find the tightest possible lower bounds for the worst-case expected utility under
distributional families of: (a) known mean and covariance information, and (b) known mean and
support information. We present a lower bound (not necessarily tight) under distributions of:
(c) known mean, covariance and support information. This bound is based on a convolution
of the bounds in (a) and (b), thus providing a computationally tractable approximation to a
NP-hard problem. We also develop a lower bound using: (d) partitioned statistics information
which captures asymmetry information in the distribution. Lastly, we find the tightest possible
lower bound for the worst-case expected utility with: (e) box-type uncertainty in the mean and
covariance matrix themselves. All bounds and the corresponding optimal portfolios are found
by solving conic programs, specifically linear, second order cone and semidefinite programs. Such
conic optimization problems can be solved very efficiently in both theory and practice using interior
point methods (see Nesterov and Nemirovski [26]).

2. In Section 3, we provide a connection of our bounds with ambiguous risk measures by defining a
worst-case OCE risk measure. For two and three-piece utility functions, we provide simple closed
form expressions for this new risk measure. For a single risk-free and a single risky asset, the
optimal portfolios are very different with no diversification for two-piece utility and diversification
for the three-piece utility. Connections with convex risk measures is provided based on our results
in Section 2.

3. In Section 4, we perform computational experiments on real financial market data to compare the
robustness of both the worst-case OCE and sample based OCE methods. Our results indicate
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that an optimal rebalancing portfolio derived using the worst-case approach performs better than
sample-based approaches in out-of-sample data. The method appears to be robust across different
periods of the investment horizon.

2 Expected Utility under Ambiguous Distributions

Let z̃ = (z̃1, . . . , z̃n) be a vector of n random variables defined on the probability space (Ω,F ,P). We
define the space of linear combinations of the random variables including constants c as follows:

X = {x̃ : ∃(c, y) ∈ < × <n such that x̃ = c + y′z̃}.

We denote by W the support of the random variable z̃. Throughout the paper, we will use the notation
x̃1 ≥ x̃2 for x̃1, x̃2 ∈ X to represent state-wise dominance. Hence, if x̃1 = c1 +y1

′z̃ and x̃2 = c2 +y2
′z̃,

then x̃1 ≥ x̃2 is equivalent to
c1 + y1

′z ≥ c2 + y2
′z ∀z ∈ W. (2.1)

It is easy to see that the feasibility of (2.1) remains unchanged if we replace W by its convex hull (see
Ben-Tal and Nemirovski [4]). Hence, without loss of the generality, we assume that the support of z̃ is
convex. We define the class of utility functions that we study in this paper next.

Definition 2.1. The utility function u(·) : < → < is a piecewise-linear concave function defined as:

u(x) = min
k∈{1,...,K}

{akx + bk} .

and satisfies the following two properties:

1. The number of linear pieces K ≥ 2,

2. Each piece k ∈ {1, . . . , K} defines the utility function uniquely for at least one value of x.

The expected utility is then given as

EP

(
min

k∈{1,...,K}
{
ak(c + y′z̃) + bk

})
.

An implicit assumption in computing this expected value is the exact knowledge of the distribution
P. In practice, one seldom has full information about the multivariate distribution of z̃. Even when
completely specified, evaluating the expected utility can be a numerically challenging task. Suppose
instead that the true distribution P is known to lie in a family of distributions F. All distributions
in F are assumed to satisfy certain known properties, such as a known set of partial moments. The
worst-case expected utility is then defined as

û(c + y′z̃) = inf
P∈F

EP

(
min

k∈{1,...,K}
{
ak(c + y′z̃) + bk

})
. (2.2)
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In the portfolio optimization context, z̃ represents the random risky payoffs of n assets and y denotes
the allocation vector. In addition, let r ≥ 0 denote the return of the risk-free asset and y0 be the
allocation in it. The random payoff of the portfolio is then given as

y0r + y′z̃ ∈ X .

We denote the convex feasible region of the portfolio allocation vector (y0, y) as Y . For example, if we
normalize the sum of allocations and prohibit short selling, we have

Y =
{
(y0,y) : y0 + y′e = 1, (y0, y) ≥ 0

}
,

where e is a vector of ones. For a fixed distribution P, the expected utility maximization problem is
formulated as

sup
(y0,y)∈Y

EP

(
min

k∈{1,...,K}
{
ak(y0r + y′z̃) + bk

})

To achieve robustness over a set of ambiguous distributions, the investor chooses to maximize his worst-
case expected utility. This strategy is consistent with that of an ambiguity-averse investor, since it
guarantees a minimum threshold on the expected utility. The robust expected utility problem is then
formulated as:

sup
(y0,y)∈Y

û(y0r + y′z̃) = sup
(y0,y)∈Y

inf
P∈F

EP

(
min

k∈{1,...,K}
{
ak(y0r + y′z̃) + bk

})
. (2.3)

Our focus is on solving the robust expected utility model where the ambiguity in the distribution is
specified in terms of moments of the distribution.

Solving the portfolio problem (2.3) can be also used as a heuristic method for finding an investment
strategy for the robust problem under more general nonlinear utilities. Intuitively, more the number
of linear pieces, better is the piecewise-linear approximation and closer the heuristic solution would be
to the true optimal solution. In Section 4, we provide numerical results to indicate that (2.3) can be
solved in a matter of seconds to provide highly accurate solutions for nonlinear utilities using standard
conic programming solvers. The next proposition relates the quality of the heuristic solution with the
quality of the approximation of the utility function.

Proposition 1. Suppose f(·) : < 7→ < is a general nonlinear concave utility function. If u(·) : < 7→ <
is a piecewise-linear function such that

f(x)− ε ≤ u(x) ≤ f(x), ∀x ∈ <,

with
Zopt = sup

(y0,y)∈Y
inf
P∈F

EP (f(y0r + y′z̃)) ,

(ŷ0, ŷ) = argsup
(y0,y)∈Y

inf
P∈F

EP (u(y0r + y′z̃)) ,

Zh = inf
P∈F

EP
(
f(ŷ0r + ŷ′z̃)

)
.

Then, we have
Zopt − ε ≤ Zh ≤ Zopt.

Proof. See Appendix A.
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2.1 Mean and Covariance Information

Assume that for the random returns z̃, only the mean vector µ = EP(z̃) and covariance matrix Q =
EP((z̃ − µ)(z̃ − µ)′) are explicitly known. For this class of distributions, Popescu [30] shows that the
problem of evaluating the worst-case expected utility by optimizing over a n-variate distribution can
be reduced to an optimization over a univariate distribution with the appropriate mean and variance.
The result is stated next for completeness.

Proposition 2 (Popescu [30]). Let F1 be the family of all distributions P for z̃ with mean µ and
covariance matrix Q. For any utility function u, we have

inf
P∈F1

EP
(
u(c + y′z̃)

)
= inf
Px∈Fx

EPx (u(x̃)) ,

where Fx is the family of all univariate distributions of x̃ with mean µx = c + y′µ and variance σ2
x =

y′Qy.

Proposition 2 is based on the following projection property: for any random variable x̃ with mean
c+y′µ and variance y′Qy, there exists a random vector z̃ with mean µ and covariance matrix Q. The
problem can be further reduced to optimizing over univariate distributions with at most three support
points. This follows from the classical result in the problem of moments (see Rogosinsky [32]): for a
moment problem with q known moments, there exists an extremal distribution with at most q+1 support
points. For a fixed portfolio, the worst-case expected utility thus reduces to solving a deterministic
optimization problem in at most three variables. For a class of utility functions, Popescu [30] proposes
the use of a parametric quadratic program to find the portfolio that maximizes the worst-case expected
utility. We state the result next.

Proposition 3 (Popescu [30]). Let F1 be the family of all distributions P for z̃ with mean µ and
covariance matrix Q and Fx be the family of all univariate distributions for x̃ with mean µx = y0r+y′µ
and variance σ2

x = y′Qy. Suppose the objective function inf
Px∈Fx

EPx (u(x̃)) , is continuous, nondecreasing

in µx, nonincreasing in σx and quasi-concave in (µx, σx). Then the robust expected utility model is
equivalent to solving a parametric quadratic program (PQP):

argsup
(y0,y)∈Y

inf
P∈F1

EP
(
u(y0r + y′z̃)

)
= argsup

(y0,y)∈Y
λ(y0r + y′µ)− (1− λ)y′Qy,

for a suitable value of λ ∈ [0, 1].
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Utility functions for which Proposition 3 holds include increasing concave utility functions with
convex or concave-convex derivative. It also includes the class of increasing concave utility functions
with at most one or two point support structure. We now provide our first key result that shows for the
class of piecewise-linear concave utility functions (not necessarily increasing or with the one or two point
support structure), the robust expected utility problem can in fact be solved as a single second order
cone program (SOCP). This provides a significant computational advantage over using PQP wherein
one would need to solve multiple instances of a convex quadratic program for different λ values.

Theorem 2.1. Let F1 be the family of all distributions P for z̃ with mean µ and covariance matrix Q.
The worst-case expected utility:

û1(c + y′z̃) = inf
P∈F1

EP

(
min

k∈{1,...,K}
{ak(c + y′z̃) + bk}

)
,

is given as the optimal objective value to the problem:

û1(c + y′z̃) = sup
z≥0,t

(
min

k∈{1,...,K}
(
ak(c + y′µ) + bk − a2

kz + akt
)−

(
y′Qy + t2

4z

))
, (2.4)

or equivalently:

û1(c + y′z̃) = inf
λk

K∑

k=1

(ak(c + y′µ) + bk)λk −
√

y′Qy

√√√√ K∑

k=1

a2
kλk −

(
K∑

k=1

akλk

)2

s.t.
K∑

k=1

λk = 1,

λk ≥ 0, ∀k = 1, . . . , K.

(2.5)

Proof. See Appendix A.

A natural implication of Theorem 2.1 is that the robust expected utility model in (2.3) under known
mean and covariance matrix can be solved efficiently as a compact second order cone program. when
the feasible region Y is representable using the SOCP constraints. This problem is formulated as:

sup
z,t,w,s,y0,y

w − s

s.t. w ≤ ak(y0r + y′µ) + bk − a2
kz + akt, ∀k = 1, . . . , K,

4zs ≥ y′Qy + t2,

z ≥ 0,

(y0,y) ∈ Y.

(2.6)

Note that the constraint 4zs ≥ y′Qy + t2, known as the rotated SOCP constraint, can be transformed
to a standard SOCP constraint as follows

z + s ≥
√

y′Qy + t2 + (z − s)2.
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The variables λk in (2.5) can be interpreted as the probability that the kth piece of the utility function
is chosen. Suppose, λk = 1, then we simply get the expected utility for the kth piece, akµx + bk. The
first term in the bound is thus simply a convex combination of these linear approximations for each of
the K pieces based on the mean while the second term is a penalty based on the variance. A similar
formulation has been used to determine choice probabilities in a discrete choice model by Natarajan
et. al. [25]. The result here extends the approach to robust portfolio optimization problems. In special
cases for two and three-piece utility functions, Theorem 2.1 can be solved in closed form (see Figure 1).

baxxu )(

x0)(xu

xxu )(

)(xu)(xu

x

axxu )(

0)(xu

Figure 1: Two and three-piece utility functions.

Proposition 4 (Cauchy-Schwarz inequality, Natarajan and Zhou [23]). For any random variable x̃ with
mean µx and variance σ2

x > 0,

(a) The worst-case expected utility for the two-piece utility function u(x̃) = min{ax̃, 0} with a > 0 is
given as

û1(x̃) =
a

2

(
µx −

√
µ2

x + σ2
x

)
.

(b) The worst-case expected utility for the three-piece utility function u(x̃) = min{ax̃ + b, x̃, 0} with
a > 1 and b > 0 is given as

û1(x̃) =





1
2

(
µx −

√
µ2

x + σ2
x

)
, if σ2

x ≤
(

b
a(a−1) + µx

)(
b

a(a−1) − µx

)
,

1
2

(
(a + 1)µx + b−

√
((a− 1)µx + b)2 + (a− 1)2σ2

x

)
, if σ2

x ≤
(

(2a−1)b
a(a−1) + µx

)(
− b

a(a−1) − µx

)
,

1
2

(
aµx + b−

√
(aµx + b)2 + a2σ2

x

)
, if σ2

x ≥
(

(2a−1)b
a(a−1) + µx

)(
b

a(a−1) − µx

)
,

1
2

(
µx − a(a−1)(µ2

x+σ2
x)

2b − b
2a(a−1)

)
, otherwise.

The bound in Proposition 4(a) is obtained by solving

inf
0≤λ≤1

aµxλ− aσx

√
λ(1− λ),

and reduces to a version of the Cauchy-Schwarz inequality. The bound in Proposition 4(b) is obtained
by solving

inf
λ1,λ2

(aµx + b)λ1 + µxλ2 − σx

√
a2λ1 + λ2 − (aλ1 + λ2)2

s.t. λ1 + λ2 ≤ 1,

λ1, λ2 ≥ 0.
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Solving this convex programming problem in closed form, while more involved, can be done explicitly
using the Karush-Kuhn-Tucker conditions. The reader is referred to Theorem 1, pg. 613 in Natarajan
and Zhou [23] for a proof of this result. Theorem 2.1 generalizes these results to arbitrary piecewise-
linear concave functions.

2.2 Mean and Support Information

Assume that for the random returns z̃, only the mean vector µ = EP(z̃) and a support W are explicitly
known. The set W is assumed to be a conic representable set of the form:

W = {z : Dz + Fu− g ∈ K for some u},

where K is a regular cone, i.e., it is closed, convex, pointed, and has a non-empty interior. This
includes the nonnegative orthant, the second order cone, the cone of positive semidefinite matrices and
their cartesian product as special cases. The corresponding polar cone defined as

K∗ =
{
w : w′s ≥ 0 ∀s ∈ K

}
,

is also a regular cone.

Theorem 2.2. Let F2 be the family of all distributions P for z̃ with mean µ and support W. Suppose
µ lies in the interior of the set W. The worst-case expected utility:

û2(c + y′z̃) = inf
P∈F2

EP

(
min

k∈{1,...,K}
{ak(c + y′z̃) + bk}

)

is given as the optimal objective value to the problem:

û2(c + y′z̃) = sup
s

(
s′µ + min

k∈{1,...,K}

{
inf

z∈W
(aky − s)′z + akc + bk

})
. (2.7)

Proof. See Appendix A.

An implication of Theorem 2.2 is that the robust expected utility problem in (2.3) under given
mean and bounded support can be solved as a conic program when the feasible region Y is also conic
representable. This follows directly by taking the dual formulation for the inner minimization problem
over z ∈ W. The robust expected utility model is then reformulated as the conic program:

sup
s,t,w(k),y0,y

s′µ + t

s.t. t ≤ w(k)′g + aky0r + bk, ∀k = 1, . . . , K,

D′w(k) = aky − s, ∀k = 1, . . . , K,

F ′w(k) = 0, ∀k = 1, . . . , K,

w(k) ∈ K∗, ∀k = 1, . . . , K,

(y0,y) ∈ Y.

(2.8)
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2.3 Mean, Covariance and Support Information

A natural question of interest arises when we consider distribution families of known mean, covariance
and support information. Even though each of the previously established bounds remains valid under
the intersection of the two families, there is no longer a guarantee of tightness. In fact, the complexity
of finding the worst-case expected utility under the intersection of these two sets is typically a NP-hard
problem (see Murty and Kabadi [22]). For example, characterizing distributions over W = <n

+ with a
given mean-covariance matrix is equivalent to characterizing the cone of completely positive matrices.
This is known to be a NP-hard problem. In this section, we sacrifice tightness in order to produce
mathematically tractable bounds.

To develop the bound, we define πl(y,d) : <n × <K 7→ < to denote the worst-case expected utility
over a set of distributions Fl:

πl(y, d) = inf
P∈Fl

E
(

min
k∈{1,...,K}

{
aky

′z̃ + dk

})
.

Observe that πl(y,ac + b) = ûl(c + y′z̃) reduces to the utility bounds derived in the previous sections
for the appropriate set of distributions Fl. The reason for introducing πl(y, d) is that this function is
a positive homogeneous and concave function in its arguments. Using this, we improve on the existing
bounds by taking a convolution.

Theorem 2.3. Let L = {1, . . . , L} and {πl(y, d), l ∈ L} be jointly concave, positive homogenous
functions that each denote the worst-case expected utility over the family of distributions Fl. Then:

EP

(
min

k∈{1,...,K}
{ak(c + y′z̃) + bk}

)
≥ ûL(c + y′z̃) ≥ max

l∈L
ûl(c + y′z̃), ∀P ∈

⋂

l∈L
Fl,

where
ûL(c + y′z̃) = πL(y, ac + b)

and

πL(y, d) = sup
yl,dl

{∑

l∈L
πl(yl, dl) :

∑

l∈L
(yl, dl) = (y, d)

}
,

is itself a jointly concave and positive homogeneous bound.

Proof. See Appendix A.

A direct corollary of the Theorem 2.3 is that we can obtain a polynomial time solvable conic pro-
gramming approximation for the robust expected utility model under mean, covariance and support
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information by combining the results from Sections 2.1-2.2:

sup
z1,t1,w1,s1,y1,s2,t2,w

(k)
2 ,d1,d2,y2,y0,y

w1 − s1 + s2
′µ + t2

s.t. w1 ≤ akµ
′y1 + d1,k − a2

kz1 + akt1, ∀k = 1, . . . ,K,

4z1s1 ≥ y1
′Qy1 + t21,

z1 ≥ 0,

t2 ≤ w
(k)
2

′
g + d2,k, ∀k = 1, . . . ,K,

D′w(k)
2 = aky2 − s2, ∀k = 1, . . . ,K,

F ′w(k)
2 = 0, ∀k = 1, . . . ,K,

w
(k)
2 ∈ K∗, ∀k = 1, . . . ,K,

y1 + y2 = y,

d1 + d2 = ay0r + b,

(y0, y) ∈ Y.

(2.9)

The variables with subscripts of 1 correspond to the mean-covariance bound and the variables with
subscripts of 2 correspond to the mean-support bound.

2.4 Partitioned Statistics Information

One of the main criticisms of using only the first and second moments information is the inability of
capturing distributional skewness. To capture distributional asymmetry in a computationally tractable
way, we partition the random variables into its positive and negative parts and calculate the mean and
covariance matrices of each of these two vectors. We outline the steps next.

The random vector z̃ can be expressed as

z̃ = z̃+ − z̃−,

where z̃+ and z̃− are given entry-wise as z̃+
i = max(0, z̃i), z̃−i = max(0,−z̃i). We then have, y′z̃ =

y′z̃+−y′z̃−. In general, for any vectors yp, ym ∈ <n, we can consider yp′z̃+ + ym′z̃− and express the
expected utility as

EP

(
min

k∈{1,...,K}
{
ak

(
c + yp′z̃+ + ym′z̃−

)
+ bk

})
. (2.10)

These partitioned random variables z̃+, z̃− naturally imply a positive support (i.e, <2n
+ ). Moreover,

partitioning into z̃+ and z̃− isolates the statistical information whenever returns are positive and neg-
ative respectively. Suppose that we have information about the first two moments of the partitioned
random variables:

µp = EP(z̃+),
µm = EP(z̃−),

Q̄ = EP

((
z̃+ − µp

z̃− − µm

) (
z̃+ − µp

z̃− − µm

)′)
.
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Clearly, µ = µp − µm. Note that the covariance matrix Q̄ is a 2n by 2n positive semidefinite matrix
given by

Q̄ = var

((
z̃+

z̃−

))
=




var(z̃+)︸ ︷︷ ︸
Q̄11

cov(z̃+, z̃−)︸ ︷︷ ︸
Q̄12

cov(z̃+, z̃−)︸ ︷︷ ︸
Q̄12

var(z̃−)︸ ︷︷ ︸
Q̄22




,

where
cov(x̃, ỹ) ∆= E

(
(x̃− E(x̃))(ỹ − E(ỹ))′

)
,

and
var(x̃) ∆= cov(x̃, x̃).

Moreover,

var(y′z̃) = y′Qy = var(y′z̃+ − y′z̃−) = (y′ − y′)Q̄

(
y

−y

)
. (2.11)

Hence,
Q = var(z̃+)− 2cov(z̃−, z̃+) + var(z̃−) = Q̄11 − 2Q̄12 + Q̄22.

Thus, clearly the mean and covariance of the asset returns can be derived from the partitioned statistics
of the random variable.

We can find lower bounds to the expected utility in (2.10) using Theorems 2.1 and 2.2. From the
mean and covariance information of the partitioned returns, we can establish the bound

ū1(c + yp′z̃+ + ym′z̃−) = π̄1(yp, ym, ac + b)

in which

π̄1(yp, ym,d) = sup
z,t,w,s

w − s

s.t. w ≤ ak(yp′µp + ym′µm) + dk − a2
kz + akt, ∀k = 1, . . . , K,

z ≥ 0,

4zs ≥
(

yp

ym

)′
Q̄

(
yp

ym

)
+ t2.

Likewise, under the mean and support information (W = <2n
+ ), we have

ū2(c + yp′z̃+ + ym′z̃−) = π̄2(yp, ym, ac + b)

where
π̄2(yp, ym, d) = sup

sp,sm,t
sp′µp + sm′µm + t

s.t. t ≤ dk, ∀k = 1, . . . , K,

aky
p − sp ≥ 0, ∀k = 1, . . . , K,

aky
m − sm ≥ 0, ∀k = 1, . . . , K.

Then by convolution, we can derive the partitioned statistics lower bound for the worst-case expected
utility in (2.2), which is tighter than the worst-case mean-covariance bound.
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Theorem 2.4. Let F3 be the family of all distributions P for z̃ with known mean (µp,µm) and covari-
ance (Q̄) of the partitioned random variables. Let F1 be a family of distributions, with mean µ = µp−µm

and covariance Q = Q̄11 − 2Q̄12 + Q̄22. We define a new lower bound:

û3(c + y′z̃) = π3(y, ac + b) (2.12)

where
π3(y, d) = sup

y
p
1 ,ym

1 ,y
p
2 ,ym

2 ,d1,d2

π̄1(y
p
1 , ym

1 , d1) + π̄2(y
p
2 , ym

2 ,d2)

s.t. yp
1 + yp

2 = y,

ym
1 + ym

2 = −y,

d1 + d2 = d,

which satisfies

inf
P∈F3

EP

(
min

k∈{1,...,K}
{
ak(c + y′z̃) + bk

})
≥ û3(c + y′z̃) ≥ inf

P∈F1

EP

(
min

k∈{1,...,K}
{
ak(c + y′z̃) + bk

})

︸ ︷︷ ︸
=û1(c+y′z̃)

.

Proof. See Appendix A.

As in Section 2.3, we can optimize over this partitioned statistics bound using conic programming.
Numerical performance of these bounds are provided in the computational results in Section 4.

2.5 Box-Type Uncertainty in Mean and Covariance Information

The models developed thus far in this paper have assumed that the moment information is known
exactly. However, in some cases, it is desirable to specify uncertainty sets on the moments themselves.
For instance, Delage and Ye [10] study a worst-case model assuming that the true mean vector lies in an
ellipsoidal set centered around an estimated mean and the true covariance matrix lie in the intersection
of two positive semidefinite cones. A related uncertainty set proposed by Tütüncü and Koenig [35]
assumes that the moments lie in a box region specified by upper and lower bounds. Our next results
shows that the worst-case expected utility under the box-type uncertainty model in the mean and
covariance information can be found by solving a semidefinite program (SDP) instead of a second order
cone program (SOCP).

Theorem 2.5. Let F1s be the family of all distributions P for z̃ with µ and covariance matrix Q lying
in the uncertainty set:

U = {(µ,Q) : µ ≤ µ ≤ µ, Q ≤ Q ≤ Q, Q º 0}.

Suppose there exists a positive definite matrix lying in this uncertainty set and ak ≥ 0 for all k =
1, . . . , K, then the worst-case expected utility:

û1s = inf
P∈F1s

EP

(
min

k=1,...,K
{ak(c + y′z̃) + bk}

)
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is given as the optimal objective value to the problem:

sup
z,t,w,s,p,v,ω,ω,Σ,Σ

w − s

s.t. w ≤ ak(c + v) + bk − a2
kz + akt, ∀k = 1, . . . , K,

v ≤ µ′ω − µ′ω,

z + s− p ≥
√

(z − s + p)2 + t2,

p ≥ Q •Σ−Q •Σ,

ω − ω = y,(
4z y′

y Σ−Σ

)
º 0,

z ≥ 0, ω, ω ≥ 0, Σ,Σ ≥ 0.

(2.13)

Proof. See Appendix A.

3 Connection to Risk Measures

In this section, we will use the results in Section 2 to define new ambiguous risk measures. Based on the
previous bounds, we can obtain approximations to the worst-case risk (see Erdoğan and Iyengar [12],
Calafiore [8]) that the investor may face given the uncertain model of returns. Connections with convex
and under special cases, coherent risk measures are also explored.

An important issue in portfolio optimization is the measurement of the risk of an investment. An
axiomatic approach to defining a acceptable properties of risk measures was introduced in Artzner et
al. [3]. The class of risk measures introduced therein is called coherent risk measures. In financial risk
management, a coherent risk can be viewed as a maximum expected loss under a set of probability
measures. A relaxation of these properties gives rise to a larger class of risk measures known as convex
risk measures (see Föllmer and Schied [13], Fritelli and Gianin [15]). Consider the random outcome
x̃ = c + y′z̃ ∈ X which represents the uncertain payoff. The axiomatic characterization of convex and
coherent risk measures is then given as:

Definition 3.1. A function ρ : X 7→ < is a convex risk measure if it satisfies, for all x̃, ỹ ∈ X :

1. Monotonicity: If x̃ ≥ ỹ, then ρ(x̃) ≤ ρ(ỹ).

2. Translation invariance: If c ∈ <, then ρ(x̃ + c) = ρ(x̃)− c.

3. Convexity: If λ ∈ [0, 1], then ρ(λx̃ + (1− λ)ỹ) ≤ λρ(x̃) + (1− λ)ρ(ỹ).

If, in addition, we have

4. Positive homogeneity: If λ ≥ 0, then ρ(λx̃) = λρ(x̃),

we say that ρ is a coherent risk measure.
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3.1 Optimized Certainty Equivalent (OCE)

The approach we use to define risk measures is based on the optimized certainty equivalent notion
introduced by Ben-Tal and Teboulle ([5], [6]). For a random variable x̃ with probability distribution Px

and a normalized concave utility function u, the OCE is defined as:

Su(x̃) = sup
v∈<

(v + EPx (u(x̃− v))) .

The OCE can be interpreted as the sure present value of a future uncertain income x̃. Suppose an
investor expects an uncertain future income of x̃ and can consume part of it at present. If he chooses
to consume v, the resulting present value is then v + EPx(u(x̃− v)). The optimized certainty equivalent
is then a result of an optimal allocation of the payoffs between present and future consumption. The
OCE risk measure is defined as:

ρu(x̃) = −Su(x̃).

Consider the general class of functions u(x) : < 7→ [−∞,∞) that are proper, closed, concave, and
nondecreasing utility functions with effective domain dom(u) = {t ∈ < : u(t) > −∞} 6= ∅. Assume
that the utility function satisfies the properties

u(0) = 0 and 1 ∈ ∂u(0),

where ∂u(·) denotes the subdifferential map of u. It is shown in [6], that for this class of utility
functions, ρu(x̃) satisfies the properties in Definition 3.1 and defines a convex risk measure. Moreover,
for piecewise-linear utility functions with two pieces of the form

u(x) =

{
γ2x, if x ≤ 0,

γ1x, if x > 0,

for some γ2 > 1 > γ1 ≥ 0, ρu(x̃) defines a coherent risk measure. We now specialize this definition of
OCE risk measures for the class of piecewise-linear utility functions.

Definition 3.2. Let u(x) = min
k∈{1,...,K}

{akx + bk} be a piecewise-linear concave utility function satisfying

the following properties:

1. The number of linear pieces K ≥ 2,

2. Each piece k ∈ {1, . . . , K} defines the utility function uniquely for at least one value of x,

3. Utility function is non-decreasing with u(0) = 0, 1 ∈ ∂u(0).
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For this class of piecewise-linear utility functions, the OCE is defined as

Su(x̃) = sup
v∈<

{
v + EPx

(
min

k∈{1,...,K}
{ak(x̃− v) + bk}

)}
,

and the corresponding risk measure is defined as

ρu(x̃) = inf
v∈<

{
v − EPx

(
min

k∈{1,...,K}
{ak(x̃ + v) + bk}

)}
. (3.1)

The corresponding risk measure is then a convex risk measure.

3.2 Risk Measures under Ambiguous Distributions

Consider an investor who wants to evaluate the OCE risk for a random payoff x̃ = c + y′z̃ ∈ X . To
evaluate this for a fixed vector y, the complete knowledge of the multivariate distribution of z̃ must be
known. Suppose that the actual distribution P lies in the set of distributions F. The worst-case OCE
is defined as:

Ŝu(c + y′z̃) = sup
v∈<

{
v + inf

P∈F
EP

(
min

k∈{1,...,K}
{ak(c + y′z̃ − v) + bk}

)}
,

while the worst-case OCE risk measure is defined as:

ρ̂u(c + y′z̃) = inf
v∈<

{
v − inf

P∈F
EP

(
min

k∈{1,...,K}
{ak(c + y′z̃ + v) + bk}

)}
, (3.2)

where the expected utility is evaluated with respect to the worst-case distribution. Using the bounds
developed in Section 2, the problem of finding a trading strategy that minimizes the worst-case OCE
risk measure in a portfolio optimization problem can be formulated as

inf
(y0,y)∈Y

ρ̂u(y0r + y′z̃).

By introducing the variable v in the previous formulations, the optimal portfolio can be found exactly or
approximately as a compact conic program. We now provide two special cases for which the worst-case
OCE risk measure can be computed explicitly under mean and covariance information.

Proposition 5. For any random portfolio payoff x̃ with mean µx and variance σ2
x > 0,

(a) The worst-case OCE risk measure for the two-piece utility function u(x̃) = min{ax̃, 0} with a > 1
is given as

ρ̂u(x̃) = −µx +
√

a− 1σx.

(b) The worst-case OCE risk measure for the three-piece utility function u(x̃) = min{ax̃+ b, x̃, 0} with
a > 1 and b > 0 is given as

ρ̂u(x̃) =





−µx − b

a
+
√

a− 1σx, if σx ≥ 2b

a
√

(a− 1)
,

−µx +
a(a− 1)

4b
σ2

x, otherwise.

Proof. See Appendix A.
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The worst-case OCE risk measure in Proposition 5(a) is simply the worst-case conditional value at
risk at confidence level 1/a while 5(b) is a generalization to three pieces. We now show that the optimal
portfolios obtained for these two cases can be significantly different.

Proposition 6. Consider a two asset model with one risk-free asset with return r ≥ 0 and one risky
asset with return z̃ with mean µ ≥ r and variance σ2. Let y ∈ [0, 1] denote the fractional allocation in
the risky asset. The optimal allocation from the worst-case OCE risk minimization problem is given as

(a) For the two-piece utility function u(x̃) = min{ax̃, 0} with a > 1:

y =

{
1, if µ−√a− 1σ ≥ r,

0, otherwise.

(b) For the three-piece utility function u(x̃) = min{ax̃ + b, x̃, 0} with a > 1 and b > 0:

y =





1, if µ−min
(√

a− 1σ,
a(a− 1)σ2

2b

)
≥ r,

2b(µ− r)
a(a− 1)σ2

, otherwise.

Proof. See Appendix A.

The optimal portfolio allocations are plotted in Figure 2.
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Figure 2: Optimal allocation in risky asset for two and three-piece utility functions.

One of the standard criticisms raised against worst-case approaches is that the optimal portfolios
could be too pessimistic. For the two-piece utility function, with one risk-free and one risky asset the
optimal worst-case portfolio in fact involves no diversification. Based on the larger of the two values
r and µ − √a− 1σ, we invest completely in the risk-free asset or the risky asset. On the other hand,
with a three-piece utility function, we obtain non-trivial diversification for the optimal portfolio under
the worst-case OCE risk measure. This is consistent with the notion of diversification and indicates the
merit in studying the ambiguous versions of more complicated piecewise-linear utility functions.

17



While the OCE risk measure in (3.1) is a convex risk measure for utility functions satisfying Definition
3.2, the ambiguous risk measure in (3.2) could violate the axiom of monotonicity. We show that with
the support information, we can characterize the convexity of the ambiguous risk measures next.

Theorem 3.1. Consider the class of utility functions u(·) satisfying Definition 3.2. Let W be a support
for the random returns z̃ (possibly bounded or unbounded) and π : <n × <K 7→ < be a jointly concave,
positive homogeneous function satisfying

π(y, d) ≥ min
k∈{1,...,K}

{
inf

z∈W
aky

′z + dk

}
, ∀y ∈ <n, d ∈ <K ,

and π(0,d) = mink∈{1,...,K} {dk}. Then the functional ρ̂u : X 7→ < defined as

ρ̂u(c + y′z̃) = inf
v∈<

{v − π (y, a(v + c) + b)} , (3.3)

is a convex risk measure over the space of random variables X . If in addition, b = 0, then the risk
measure is coherent over X .

Proof. See Appendix A.

In practice, due to the limited historical data, it is difficult to determine the support of a multivariate
random variable. Therefore, it may be reasonable to assume unbounded support, W = <n. In that
case, the condition in Theorem 3.1 simply reduces to π(y,d) ≥ −∞ for all y, which is always true. As
such, the mean-covariance bound from Section 3 is a convex risk measure over random variables with
unbounded support. For random variables with bounded conic representable support W, using only
mean-covariance bounds but neglecting support, can lead to a loss in the monotonicity property and
hence the convexity of the risk measure. In this case, we propose the use of the convolution bound from
Section 2.3 to obtain convex risk measures.

4 Computational Experiments

In this section, we discuss and compare the performance of different trading strategies on real market
data. The data set analyzed consists of historical daily returns for a 49 industry portfolio obtained from
the Fama & French data library [14]. The portfolio consists of NYSE, AMEX and NASDAQ stocks
classified by industry. These include industries such as finance, health, textiles, food and machinery.
Daily return data of 2772 observations is obtained spanning a total of 11 years, from September 1, 1996
to August 31, 2007.

Consider an investor planning to invest in a portfolio of n = 49 risky assets. He would like to
minimize the risk of his investment, while guaranteeing a certain average level of percentage returns. To
ensure that the returns do not deviate greatly from the required target return, the investor rebalances
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his portfolio at the beginning of each half-year (September or March). We assume that no short selling
is allowed. The set of allowable trading strategies is given by

Y =
{
y ∈ <n : y ≥ 0, y′e = 1, y′µ = µt

}
,

where e is a vector of ones and µt is a target return. It has been observed in numerous empirical tests
(see Schwartz and Whitcomb [33], Simonds et al. [34], Conrad and Kaul [9]) that the distribution of
stock returns exhibits nonstationarity. To avoid any potential bias due to the choice of the period,
we adopt in our experiments a semiannual rebalancing portfolio strategy over the ten year period.
At the beginning of each rebalancing period, data from the past one year is used to determine a six-
month trading strategy. This semiannual rebalancing strategy is adopted for a total of 10 years. For
time-varying distributions, the resulting trading strategy would be myopically optimum. However this
provides an easily implementable model that can validate the effect of capturing ambiguity in a single-
period portfolio selection problem (see Garlappi et. al. [16] for a similar experiment).

The underlying utility model is assumed to be a linear concave utility function approximating the
normalized exponential utility function,

u(x) = (1− exp(−αx))/α,

with risk aversion parameter of α = 200. The function is normalized so that the resulting OCE risk is
a convex risk measure. An approximation of this function with a ten-piece linear function is given in
Table 1. This piecewise-linear function satisfies the properties of Definition 3.2.

k ak bk k ak bk

1 1.3521 0.0002 6 0.4179 0.0011
2 1.1070 0 7 0.3178 0.0016
3 0.8848 0 8 0.2355 0.0021
4 0.6891 0.0002 9 0.1626 0.0027
5 0.5367 0.0006 10 0.1037 0.0033

Table 1: Parameters of the piecewise-linear utility function.

In the beginning of each rebalancing period, the investor chooses among the following three methods
to determine his six-month trading strategy:

1. A sample-based approach (SB): The samples of returns from the one-year training set are used
to construct an empirical distribution of the asset returns. The portfolio optimization problem is
then solved with respect to this empirical distribution. In particular, if the Ntr samples in the
training data set are denoted as {z1, . . . , zNtr}, then the sample-based method for the OCE risk
minimization portfolio problem solves

inf
y∈Y

inf
v∈<

(
v − 1

Ntr

Ntr∑

i=1

min
k∈{1,...,K}

{
ak(v + y′zi) + bk

}
)

.
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2. A robust approach using mean and covariance information (MC): Each one-year training data
set is used to estimate the mean µ and covariance Q of returns of the risk assets. The robust
approach then solves

inf
y∈Y

inf
v∈<

(
v − û1

(
v + y′z̃

))
,

where the worst-case expected utility is computed from Theorem 2.1.

3. A robust approach using partitioned statistics (PS): The one-year training data set is partitioned
into the positive and negative parts, and the corresponding mean and covariance of the partitioned
distribution are estimated. The robust approach then solves

inf
y∈Y

inf
v∈<

(
v − û3

(
v + y′z̃

))
,

where the bound on expected utility is computed from Theorem 2.4.

The computations were performed using the linear and second order cone programming solvers in
ILOG CPLEX 10.1. In our experiments, we tested the quality of different approximations to the expo-
nential utility function using 10, 100, 1000 and 10000 linear pieces. Table 2 displays the discretization
(K), the approximation error (ε) and running time for the mean-covariance (MC) second order conic
program. Even the large scale SOCPs run very quickly (in a matter of seconds) using standard solvers.
For sake of brevity, we restrict our results to the case with K = 10 with an accuracy level of 6.799
×10−5.

K Approximation error (ε) Running time (sec)

10 6.799 ×10−5 < 1
100 7.729 ×10−7 < 1
1000 7.830 ×10−9 4.9498
10000 7.840 ×10−11 14.3033

Table 2: Running times for different discretization.

Under each approach, a 10-year dynamic trading strategy is obtained. We compare the performance
of each of these strategies by comparing the realized mean and realized OCE risk. Suppose Nts is the
number of data points in each six-month rebalancing period. Denote the realization of returns over the 10
year period as {z1, . . . ,zNts , zNts+1, . . . ,z20Nts}. For any 10-year dynamic strategy, y = (y1, . . . ,y20),
the realized mean and OCE risk is then given by

µ̄(y) =
1

20Nts

20∑

i=1

Nts∑

j=1

y′iz(i−1)Nts+j ,

ρ̄(y) = inf
v∈<



v − 1

20Nts

20∑

i=1

Nts∑

j=1

min
k∈{1,...,K}

{
ak(y′iz(i−1)Nts+j + v) + bk

}


 .

The experiment is repeated for varying target mean levels. We find the efficient frontiers of each method
by plotting the realized average returns against the realized OCE risk. On each frontier, a data point
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corresponds to the mean return and risk level of the optimal trading strategy under a specific target
mean. Computing the semiannual optimal trading strategy for each method took less than one second.

Table 3 provides the 10-year realized OCE risk and average daily returns of the three methods under
each fixed target mean. Figure 3 shows this information in terms of each method’s implied efficient
frontier. Under every target mean, the robust methods provide the least risky 10-year trading strategies.
Moreover, implementing the partitioned statistics strategies always results in the lowest OCE risk. This
is more obvious in the efficient frontiers of the three methods. The partitioned statistics efficient frontier
most closely approximates the true efficient frontier of a 10-year semiannual rebalancing portfolio. One
possible reason for the poor performance of the sample-based method is possible over-fitting of the
distribution. Methods that use in-sample data to assume the complete distribution appear to result in
large errors in the out-of-sample data. This is consistent with numerical results in Natarajan et. al. [24]
for Value-at-risk (VaR) optimization. These strategies however perform better for in-sample data as
one would expect (see Figure 4 for two in-sample periods). Yet this improvement is only slight and the
OCE risk of the sample-based method is only marginally better than those of the robust methods.

Figure 5 plots the cumulative wealth of the dynamic trading strategies over the ten-year period
for the target mean daily return 0.06%. We can observe that the portfolio derived by the sample-
based method gives the lowest overall cumulative wealth over the period. Of the three portfolios, the
one derived by the partitioned statistics approach provides the greatest cumulative wealth. It is also
interesting to note that cumulative wealth of the three portfolios appear to be moving simultaneously
over the ten-year period. Based on all these observations, we can conclude that the robust approach
based on the first two moments can provide good portfolio trading strategies.
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Average Daily Returns (%) Realized OCE Risk (%)
Sample- Mean- Partitioned Sample- Mean- Partitioned

Target Mean (%) Based Covariance Statistics Based Covariance Statistics

0.0400 0.0339 0.0337 0.0363 0.1843 0.1838 0.1827
0.0425 0.0338 0.0337 0.0364 0.1848 0.1840 0.1828
0.0450 0.0337 0.0340 0.0366 0.1851 0.1843 0.1829
0.0475 0.0334 0.0343 0.0370 0.1862 0.1847 0.1832
0.0500 0.0337 0.0346 0.0375 0.1869 0.1851 0.1835
0.0525 0.0342 0.0351 0.0379 0.1873 0.1854 0.1841
0.0550 0.0344 0.0357 0.0383 0.1881 0.1858 0.1847
0.0575 0.0349 0.0366 0.0391 0.1892 0.1859 0.1853
0.0600 0.0358 0.0375 0.0399 0.1897 0.1864 0.1860
0.0625 0.0369 0.0384 0.0409 0.1903 0.1871 0.1866
0.0650 0.0376 0.0394 0.0419 0.1913 0.1881 0.1875
0.0675 0.0389 0.0403 0.0429 0.1925 0.1894 0.1888
0.0700 0.0401 0.0411 0.0439 0.1937 0.1910 0.1903
0.0725 0.0409 0.0418 0.0449 0.1959 0.1930 0.1921
0.0750 0.0417 0.0427 0.0459 0.1981 0.1952 0.1943

Table 3: Realized OCE risk and average daily returns under different target means when tested over
the 10-year investment horizon.
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Figure 3: The efficient frontier of the rebalanced portfolio over September 1997 to August 2007.
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Figure 4: The efficient frontier of optimal trading strategy during in-sample periods. The “actual” OCE
risk values are taken under the empirical distribution, whereas the “worst” OCE risk values are under
the worst-case distribution.

23



500 1000 1500 2000 2500
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Day

C
um

ul
at

iv
e 

W
ea

lth
 (

$)

 

 

SB
MC
PS

Figure 5: The cumulative wealth of the trading strategies over the period September 1997 to August
2007 for target mean return, µt = 0.06%.

24



A Proofs

Proof of Proposition 1: By definition, Zh ≤ Zopt, since Zopt is the optimal objective value for the
utility function f . Let (y∗0, y

∗) be the true optimal solution under f . Then

Zopt = inf
P∈F

EP
(
f(y∗0r + y∗′ z̃)

)

≤ inf
P∈F

EP
(
u(y∗0r + y∗′ z̃)

)
+ ε

≤ sup
(y0,y)∈Y

inf
P∈F

EP (u(y0r + y′z̃)) + ε

= inf
P∈F

EP
(
u(ŷ0r + ŷ′z̃)

)
+ ε

≤ inf
P∈F

EP
(
f(ŷ0r + ŷ′z̃)

)
+ ε

= Zh + ε

Proof of Theorem 2.1: Using Proposition 2, the moment problem over n random variables with given
mean and covariance matrix

inf
z̃∼(µ,Q)

EP

(
min

k
{ak(c + y′z̃) + bk}

)
, (A.1)

is equivalent to the moment problem over a single random variable with given mean and variance

inf
x̃∼(c+y′µ,y′Qy)

EPx

(
min

k
{akx̃ + bk}

)
.

Let µx = c + y′µ and σ2
x = y′Qy. The dual formulation (see Isii [18]) is given as

sup
x0,x1,x2

x0 + µxx1 + (µ2
x + σ2

x)x2

x0 − bk + (x1 − ak)x + x2x
2 ≤ 0, ∀x ∈ <, ∀k = 1, . . . ,K.

(A.2)

The decision variables x0, x1 and x2 are the dual variables for the probability-mass, the mean and
second moment constraints respectively. We focus on the case with σx > 0. From Isii [18], strong
duality holds under this regularity condition. The case when σx = 0 is easily handled as we see later.
The left hand side of the constraint in (A.2) is a quadratic function in x. For utility functions with
two or more distinct linear pieces, the feasible region is nonempty when x2 < 0. If the feasible set is
nonempty, then for each of the K constraints, the maximum value in the left hand side is attained at
x∗ = (ak − x1)/2x2. Therefore, (A.2) is equivalent to

sup
x0,x1,x2

x0 + µxx1 + (µ2
x + σ2

x)x2

s.t. x0 − (x1 − ak)2

4x2
− bk ≤ 0, ∀k = 1, . . . ,K,

x2 ≤ 0.

(A.3)
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Using the change of variables

x0 = w − (t + µx)2

4z
,

x1 =
t + µx

2z
,

x2 =
−1
4z

,

we get an equivalent formulation for (A.3)

sup
z,t,w

w − σ2
x + t2

4z

s.t. w ≤ akµx + bk − a2
kz + akt, ∀k = 1, . . . , K,

z ≥ 0.

When σx = 0, the optimal solution sets both z and t equal to ε ↓ 0. As ε ↓ 0, the dual objective reduces
to the primal objective of mink (akµx + bk). Linearizing the objective, we obtain

sup
z,t,w,s

w − s

s.t. w ≤ akµx + bk − a2
kz + akt, ∀k = 1, . . . ,K,

4zs ≥ σ2
x + t2,

z ≥ 0.

(A.4)

Formulation (A.4) can be rewritten as a standard SOCP:

sup
z,t,v,w,s

w − s

s.t. w ≤ akµx + bk − a2
kz + akt, ∀k = 1, . . . , K,

z + s ≥
√

σ2
x + t2 + (z − s)2,

z ≥ 0.

(A.5)

From strong conic program duality for SOCP (A.5) (see Nesterov and Nemirovski [26]), the equivalent
primal formulation is:

inf
λk,v0,v1,v2,v3

K∑

k=1

(akµx + bk)λk − σxv1

s.t.
K∑

k=1

λk = 1,

λk ≥ 0, ∀k = 1, . . . , K,

v2 −
K∑

k=1

akλk = 0,

v0 + v3 +
K∑

k=1

a2
kλk ≥ 0,

v0 − v3 = −1,

v0 ≥
√

v2
1 + v2

2 + v2
3,

(A.6)
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where λk are the dual variables for the K inequality constraints while v0, v1, v2, v3 are the dual variables
for the SOCP constraint. The optimal solution sets the value as:

v2
0 − v2

3 =
K∑

k=1

a2
kλk,

v2 =
K∑

k=1

akλk,

v1 =

√√√√ K∑

k=1

a2
kλk −

(
K∑

k=1

akλk

)2

.

Formulation (A.6) can then be solved as:

inf
λk

K∑

k=1

(akµx + bk)λk − σx

√√√√ K∑

k=1

a2
kλk −

(
K∑

k=1

akλk

)2

s.t.
K∑

k=1

λk = 1,

λk ≥ 0, ∀k = 1, . . . , K.

Proof of Theorem 2.2: From strong duality results of Isii [18], the problem

inf
z̃∼Wµ

E
(

min
k∈{1,...,K}

{ak(c + y′z̃) + bk}
)

,

is equivalent to the dual formulation

sup
s0,s

s0 + s′µ

s.t. s0 + s′z ≤ min
k∈{1,...,K}

{aky
′z + akc + bk} ∀z ∈ W.

The optimal value for s0 is then

s0 = inf
z∈W

min
k∈{1,...,K}

(aky − s)′z + akc + bk

The dual formulation thus reduces to

sup
s

(
s′µ + min

k∈{1,...,K}

{
inf

z∈W
(aky − s)′z + akc + bk

})
.
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Proof of Theorem 2.3: We first show that that ûL(c + y′z̃) is a tighter lower bound to the problem
for all distributions in ∩l∈LFl. It suffices to show that for all (y,d),

πL(y,d) ≥ max
l∈L

πl(y, d),

which is straightforward, since πL(y, d) is the convolution of L lower bounds and by positive homogene-
ity, πl(0,0) = 0. For all feasible solutions to the maximization problem, the following inequality holds
for all P ∈ ∩l∈LFl and all (y, d)

∑

l∈L
πl(yl, dl) ≤

∑

l∈L
EP

(
min

k
{akyl

′z̃ + dl,k}
)

,

= EP

(∑

l∈L
min

k
{akyl

′z̃ + dl,k}
)

.

However, since
∑

l∈L
min

k
{akyl

′z̃ + dl,k} ≤ min
k

{∑

l∈L

(
akyl

′z̃ + dl,k

)
}

,

and
∑

l∈L
yl = y and

∑

l∈L
dl = d, then for all feasible solutions, we have

∑

l∈L
πl(yl,dl) ≤ πL(y, d) ≤ EP

(
min

k

{
aky

′z̃ + dk

})
.

This shows that πL(y, d) remains a lower bound of (2.2) for all P ∈ ∩lFl.
To see that πL(y, d) is positive homogenous, note that for all λ > 0,

πL(λy, λd) = sup
yl,dl

∑

l∈L
πl (yl, dl)

s.t.
∑

l∈L
yl = λy,

∑

l∈L
dl = λd,

= sup
yl,dl

∑

l∈L
πl (λyl, λdl)

s.t.
∑

l∈L
yl = y,

∑

l∈L
dl = d.

From positive homogeneity of πl for all l, it follows that πL(λy, λd) = λπL(y, d) for all λ > 0. Finally,
the concavity of πL follows immediately from the convexity of the epigraph of −πL which results due
to the concavity of the functions πl,

{(y, d, t) : − πL(y, d) ≤ t},

=

{
(y, d, t) : ∃(yl, dl), l ∈ L :

∑

l∈L
−πl (yl, dl) ≤ t,

∑

l∈L
yl = y,

∑

l∈L
dl = d

}
.
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Proof of Theorem 2.4: We can show that û3(c + y′z̃) is a lower bound for the worst-case expected
utility under partitioned statistics. The details of the proof are similar to the proof of Theorem 2.3.
By convolution, we find that for all feasible solutions of the optimization problem (2.12) and for all
(z̃+, z̃−) satisfying the first two moments and support <2n

+ ,

EP

(
min

k∈{1,...,K}
{
ak(c + y′z̃+ − y′z̃−) + bk

})
≥ π̄1(y

p
1 , ym

1 , d1) + π̄2(y
p
2 ,ym

2 , d2).

Using the fact that z̃ = z̃+ − z̃−, and by taking the supremum of the righthand side over all feasible
solutions, we find that û3(y,ac+b) is a lower bound of the worst-case expected utility under partitioned
statistics. We can also find a feasible solution to problem (2.12) by setting (yp

1 , ym
1 ,d1) = (y,−y, ac+b)

and (yp
2 , ym

2 , d2) = (0,0,0). From the equivalence (2.11) and µ = µp − µm, it follows that

π̄1(y,−y,ac + b) = ū1(c + y′z̃+ − y′z̃−)
= û1(c + y′z̃).

Since π̄2(0,0,0) = 0, then we have û3(c + y′z̃) ≥ û1(c + y′z̃).

Proof of Theorem 2.13: We can formulate û1s as

inf
(µ,Q)∈U

inf
P∈F1

EP

(
min

k
{ak(c + y′z̃) + bk}

)
, (A.7)

where U is the uncertainty set on the moments and F1 is the set of all distributions with known mean
and covariance. Therefore, for any feasible (µ, Q) using Theorem 2.1, we can express the inner problem
of (A.7) as an SOCP. Thus, û1s can be reformulated as

inf
(µ,Q)∈U

sup
z,t,w,s

w − s

s.t. w ≤ ak(c + µ′y) + bk − a2
kz + akt, ∀k = 1, . . . , K,

s ≥ y′Qy + t2

4z
,

z ≥ 0.

(A.8)

For the moment uncertainty set specified by upper and lower bounds on the mean and covariance, û1s

is thus equivalent to

sup
z,t,w,s

w − s

s.t. w ≤ ak(c + µ′y) + bk − a2
kz + akt, ∀µ ≤ µ ≤ µ, ∀k = 1, . . . , K,

s ≥ y′Qy + t2

4z
, ∀Q ≤ Q ≤ Q, Q º 0,

z ≥ 0.

(A.9)

To see why, assume that (µ∗, Q∗, z∗, t∗, w∗, s∗) optimizes the problem (A.8). Further suppose that for
some (µ0, Q0) ∈ U , at least one of the inequalities is violated for (z∗, t∗, w∗, s∗). In other words, at least
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one of the following inequalities is valid

w∗ > ak(c + µ′0y) + bk − a2
kz
∗ + akt

∗, ∀k = 1, . . . , K,

s∗ <
y′Q0y + t∗

4z∗
.

Then we can find w < w∗ or s > s∗ such that the inner problem of (A.8) is still feasible under (µ0,Q0).
Furthermore this feasible solution under (µ0, Q0) attains a lower value than w∗ − s∗. This violates the
assumption that (µ∗,Q∗) achieves the optimal value to (A.8).
We can write the second inequality of (A.9) as

s ≥ p +
t2

4z
,

p ≥ max
Q

1
4z

y′Qy

s.t. Q ≤ Q ≤ Q,

Q º 0.

Consider the maximization problem above. The dual form can be written as:

min
Σ,Σ

Q •Σ−Q •Σ

s.t. Σ−Σ− yy′

4z
º 0,

Σ,Σ ≥ 0.

Since by assumption that there exists a matrix in the uncertainty set that is positive definite, the
maximization problem is strictly feasible and bounded. Hence from strong duality for semidefinite
programs, the primal and dual formulations are equivalent. Using Schur’s complement, the positive
semidefinite constraint in the minimization problem can be written as

(
4z y′

y Σ−Σ

)
º 0.

We can handle the first inequality constraint of (A.9) in a similar manner. Note that since ak ≥ 0 for
all k = 1, . . . , K, we can write it as

w ≤ ak(c + v) + bk − a2
kz + akt, ∀k = 1, . . . , K

v ≤ min
µ

y′µ

s.t. µ ≤ µ ≤ µ.

The maximization problem has a dual form of

max
ω,ω

µ′ω − µ′ω

s.t. ω − ω = y,

ω, ω ≥ 0.

30



Therefore, combining everything, we find that û1s has the following equivalent form:

sup
z,t,w,s,p,v,ω,ω,Σ,Σ

w − s

s.t. w ≤ ak(c + v) + bk − a2
kz + akt, ∀k = 1, . . . , K

v ≤ µ′ω − µ′ω
4z(s− p) ≥ t2,

p ≥ Q •Σ−Q •Σ
ω − ω = y,(

4z y′

y Σ−Σ

)
º 0,

z ≥ 0 ω, ω ≥ 0, Σ,Σ ≥ 0.

Proof of Proposition 5: Consider the random variable x̃ with mean µx and variance σ2
x > 0.

(a) From Proposition 4, the worst-case OCE for the two-piece utility function, is obtained by solving
the single variable maximization problem

Ŝu(x̃) = sup
v∈<

{
v +

a

2

(
µx − v −

√
(µx − v)2 + σ2

x

)}
.

By setting the derivative of the objective to zero, the optimal value for v is obtained as

v = µx − σx
(a− 2)
2
√

a− 1
.

The corresponding worst-case OCE is then given as

Ŝu(x̃) = µx − σx

√
a− 1.

and the worst-case OCE risk measure is

ρ̂u(x̃) = −Ŝu(x̃) = −µx + σx

√
a− 1.

(b) From Proposition 4, the worst-case OCE for the three-piece utility function is obtained by solving
the single variable maximization problem

Ŝu(x̃) = sup
v∈<

{v + û(x̃− v)} ,

where

û(x̃) =





1
2

(
µx −

√
µ2

x + σ2
x

)
, (i): if σ2

x ≤
(

b
a(a−1) + µx

)(
b

a(a−1) − µx

)
,

1
2

(
(a + 1)µx + b−

√
((a− 1)µx + b)2 + (a− 1)2σ2

x

)
, (ii): if σ2

x ≤
(

(2a−1)b
a(a−1) + µx

) (
− b

a(a−1) − µx

)
,

1
2

(
aµx + b−

√
(aµx + b)2 + a2σ2

x

)
, (iii): if σ2

x ≥
(

(2a−1)b
a(a−1) + µx

)(
b

a(a−1) − µx

)
,

1
2

(
µx − a(a−1)(µ2

x+σ2
x)

2b − b
2a(a−1)

)
, (iv): otherwise.
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Figure 6: Characterization of the regions for three-piece utility function.

We partition the four different regions (i)-(iv) in the (v, σx) space as indicated in Figure 6. In fact, we
show next that only regions (iii) or (iv) can occur in the optimal solution.

Case (a): σx ≥ b/(a − 1):
For σx ≥ b/(a − 1), the worst-case utility function û takes the value in region (iii). The maximization
problem is then given as

sup
v∈<

{
v +

1
2

(
a(µx − v) + b−

√
(a(µx − v) + b)2 + a2σ2

x

)}
.

By setting the derivative to zero, the unconstrained maximum is obtained at

viii = µx +
b

a
− (a− 2)σx

2
√

a− 1
,

with an optimal objective value of

Ŝu(x̃) = µx +
b

a
−√a− 1σx.

Case (b): σx ≤ 2b/(a
√

a − 1):
For σx ≤ 2b/(a

√
a− 1), the solution obtained in case (a) is no longer feasible. The value viii in fact lies

inside the outer envelope of region (iv). To check this, we first evaluate the two roots of the equation

σ2
x =

(
(2a− 1)b
a(a− 1)

+ µx − v

)(
b

a(a− 1)
− µx + v

)
,
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which is given as

viii± = µx +
b

a
±

√
b2

(a− 1)2
− σ2

x.

Thus we obtain

(viii+ − viii)(viii − viii−) =
b2

(a− 1)2
− σ2

x −
(a− 2)2σ2

x

4(a− 1)
,

=
a2

4(a− 1)

(
4b2

a2(a− 1)
− σ2

x

)
,

≥ 0.

where the last inequality follows from the assumption that σx ≤ 2b/(a
√

a− 1). Hence in case (b), the
optimal value of v over the region (iii) is attained at either viii+ or viii−. This follows from the concavity
of the objective function (see Figure 6).
Over the region (i), the objective function for the worst-case OCE is given as

{
v + 1

2

(
µx − v −

√
(µx − v)2 + σ2

x

)}
,

which is an increasing function in v. Hence the optimal v over region (i) is given by the larger root of
the equation

σ2
x =

(
b

a(a− 1)
+ µx − v

) (
b

a(a− 1)
− µx + v

)
.

The corresponding v value is given as (see Figure 6)

vi+ = µx +

√
b2

a2(a− 1)2
− σ2

x,

with an objective value of

µx − b−
√

b2 − σ2
xa2(a− 1)2

2a(a− 1)
.

A similar argument shows that the worst-case OCE over the region (ii) is decreasing in v. Hence the
optimal v over region (ii) is given by vii− (see Figure 6). Lastly over the region (iv), the objective
function for the worst-case OCE is given as

{
v + 1

2

(
µx − v − a(a−1)((µx−v)2+σ2

x)
2b − b

2a(a−1)

)}
.

By setting the derivative to zero, the unconstrained maximum for this function is attained at

viv = µx +
b

a(a− 1)
,

with the optimal objective value of

µx − a(a− 1)σ2
x

4b
.

Since this unconstrained optimal v lies in the region (iv), it is also optimal over the region (iv). Lastly,
from the continuity of the objective function at the boundaries of the four different regions, it follows
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that the optimal objective value at viv is greater than the values at viii−, vi+, vii−, viii+, proving that
the minimum under this case occurs in region (iv).
Case (c): 2b/(a

√
a − 1) ≤ σx ≤ b/(a − 1):

In this case, viii definitely lies in region (iii) and is feasible while viv always lies in region (iii) (see
Figure 6(a)). Due to concavity of the objective, this implies that the optimal value v over region (iv) is
attained at either viii+ or viii−. We have also previously established that the optimal v over regions (i)
and (ii) are attained at vi+ and vii− respectively. From continuity of the objective function at the
boundaries of the regions, it follows that the optimal objective value viii is greater than the values at
viii−, vi+, vii−, viii+. Thus, the optimal objective lies in region (iii). By combining these three cases, we
get our desired result.

Proof of Proposition 6: The portfolio allocation problem is given as

min
0≤y≤1

ρ̂u((1− y)r + yz̃).

where y is the allocation in the risky asset and 1− y is the allocation in the risk-free asset.
(a) For the two-piece utility function, the problem to be solved is

min
0≤y≤1

−(1− y)r − yµ +
√

a− 1σy.

The optimal portfolio is then given by the following simple rule of investing completely in a single
instrument:

y =

{
1, if µ−√a− 1σ ≥ r,

0, otherwise.

(b) For the three-piece utility function, the optimal worst-case OCE risk minimizing portfolio is found
by splitting into two cases. For σ ≤ 2b

a
√

a−1
, we need to solve

min
0≤y≤1

−(1− y)r − yµ +
a(a− 1)

4b
σ2y2.

The optimal solution to this problem is given as:

y =





1, if µ− a(a− 1)σ2

2b
≥ r,

2b(µ− r)
a(a− 1)σ2

, otherwise.

For σ ≥ 2b
a
√

a−1
, we need to solve

min

{
min

0≤y≤ 2b
a
√

a−1σ

−(1− y)r − yµ +
a(a− 1)

4b
σ2y2, min

2b
a
√

a−1σ
≤y≤1

−(1− y)r − yµ− b

a
+
√

a− 1σy,

}
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The optimal solution to this problem is given as:

y =





1, if µ−√a− 1σ ≥ r,

2b(µ− r)
a(a− 1)σ2

, otherwise.

Combining these two solutions, we get the optimal portfolio:

y =





1, if µ−min
(√

a− 1σ,
a(a− 1)σ2

2b

)
≥ r,

2b(µ− r)
a(a− 1)σ2

, otherwise.

Proof of Theorem 3.1: To prove that ρ̂u : X 7→ < is a convex risk measure, we must show that it
satisfies monotonicity, translation invariance and convexity properties for all random returns in X . To
show monotonicity, we consider two random returns c1 + y1

′z̃, c2 + y2
′z̃ ∈ X such that

c1 + y1
′z ≥ c2 + y2

′z, ∀z ∈ W.

Equivalently, we have
inf

z∈W
(c1 − c2 + (y1 − y2)′z) ≥ 0.

Then for all v ∈ <, we have

π(y1, a(c1 + v) + b) = π(y2 + (y1 − y2), a(c2 + v) + b + a(c1 − c2)),
≥ π(y2, a(c2 + v) + b) + π(y1 − y2, a(c1 − c2)),

where the inequality follows from the joint concavity and positive homogeneity of π. Observe that since
a ≥ 0,

π(y1 − y2, a(c1 − c2)) ≥ min
k∈{1,...,K}

{
inf

z∈W
ak(c1 − c2 + (y1 − y2)′z)

}

≥ 0

Hence
inf
v
{v − π (y2, a(c2 + v) + b)} ≥ inf

v
{v − π (y1, a(c1 + v) + b)} ,

or equivalently, ρ̂u(c2 + y2
′z̃) ≥ ρ̂u(c1 + y1

′z̃). This implies that the risk measure satisfies the mono-
tonicity property. The rest of the proof is exactly as in Ben-Tal and Teboulle [6]. We add it here for
completeness.
To show translation invariance, note that for any d ∈ <,

ρ̂u(c + y′z̃ + d) = inf
v
{v − π (y, a(v + c + d) + b)} ,

= inf
v
{v − d− π (y,a(v + c) + b)} ,

= inf
v
{v − π (y, a(v + c) + b)} − d,

= ρ̂u(c + y′z̃)− d.
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To show convexity of the risk measure, note that for any λ ∈ [0, 1]

ρ̂u (λ(c1 + y1
′z̃) + (1− λ)(c2 + y2

′z̃)) = inf
v
{v − π (λy1 + (1− λ)y2, a(λc1 + (1− λ)c2 + v) + b)} .

We introduce variables v1, v2 such that v = λv1 + (1− λ)v2. From the concavity of π,

π (λy1 + (1− λ)y2,a(λc1 + (1− λ)c2 + v) + b)
= π (λy1 + (1− λ)y2, λ (a(c1 + v1) + b) + (1− λ) (a(c2 + v2) + b)) ,

≥ λπ (y1, a(c1 + v1) + b) + (1− λ)π (y2, a(c2 + v2) + b) .

Thus,

ρ̂u (λ(c1 + y1
′z̃) + (1− λ)(c2 + y2

′z̃))
≤ inf

v1,v2

{λ (v1 − π(y1, a(c1 + v1) + b)) + (1− λ) (v2 − π(y2, a(c2 + v2) + b))} ,

= λ inf
v1

{v1 − π(y1, a(c1 + v1) + b)}+ (1− λ) inf
v2

{v2 − π(y2, a(c2 + v2) + b)} ,

= λρ̂u(c1 + y1
′z̃) + (1− λ)ρ̂u(c2 + y2

′z̃).

Therefore, this defines a convex risk measure.
Finally, suppose b = 0. For any λ > 0,

ρ̂u(λ(c + y′z̃)) = inf
v
{v − π(λy,a(λc + v))} ,

= inf
v
{λv − π(λy, aλ(c + v))} .

Since π is positive homogeneous, then

ρ̂u(c + λy′z̃) = λ inf
v
{v − π(y,a(c + v))} ,

= λρ̂u(y0r + y′z̃).

Therefore, if b = 0, this defines a coherent risk measure.
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