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ABSTRACT We are investigating the relation between the force pulling a kinetochore poleward
and the length of the corresponding kinetochore fiber. It was recognized by Ostergren in 1950
(Hereditas 36:1-19) that the metaphase position of a chromosome could be achieved by a
balance of traction forces if such forces were proportional to the distance from kinetochore to
pole. For the typical chromosome (i.e., a meiotic bivalent or mitotic chromosome) with a singie
kinetochore fiber extending to each pole, the resultant force (RF) would equal zero when the
chromosome lay at the midpoint between the two poles. For special chromosomes that have
unequal numbers of kinetochore fibers extending towards opposite poles, Ostergren’s proposal
suggests that RF = 0 when the chromosome is shifted closer to the pole toward which the
greater number of kinetochore fibers are pulling. We have measured the force-length relation-
ship in living spindles by analyzing the metaphase positions of experimentally generated
multivalent chromosomes having three or four kinetochore fibers. Multivalent chromosomes
of varied configurations were generated by y-irradiation of nymphs of the grasshopper Melan-
oplus differentialis, and their behavior was analyzed in living first meiotic spermatocytes. The
lengths of kinetochore fibers were determined from time-lapse photographs by measuring the
kinetochore-to-pole distances for fully congressed chromosomes just before the onset of
anaphase. In our analysis, force (F) along a single kinetochore fiber is expressed by: F = kL ®*°,
where k is a length-independent proportionality constant, L represents the kinetochore fiber
length, and exp is an unknown exponent. The RF on a chromosome is then given by: RF =
2kiL;®*®, where kinetochore fiber lengths in opposite half-spindles are given opposite sign. If
forces on a metaphase chromosome are at equilibrium (RF = 0), then for asymmetrical
orientations of multivalents we can measure the individual kinetochore fiber lengths (L) and
solve for the exponent that yields a resultant force of zero. The value of the exponent relates
how the magnitude of force along a kinetochore fiber varies with its length. For six trivalents
and one naturally occurring quadrivalent we calculated an average value for exp = 1.06 = 0.18.
This result is consistent with Ostergren’s hypothesis and indicates that the magnitude of
poleward traction force along a kinetochore fiber is directly proportional to the length of the
fiber. Our finding suggests that the balance of forces along a kinetochore fiber may be a major
factor regulating the extent of kinetochore microtubule assembly.

A simple hypothesis to explain meiotic and mitotic congression
of chromosomes has emerged from the thoughts and observa-
tions of Rashevsky (1), Hughes-Schrader (2), and ()stergren
(3-5). As proposed by Ostergren, congression of meiotic biva-
lents is produced by the pulling of homologous kinetochores
towards opposite poles by traction forces, these forces increas-
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ing in magnitude with increasing distance from the pole. A
similar force-distance relationship would hold for mitotic chro-
mosomes, in which kinetochores of the sister chromatids are
arranged back-to-back and are pulled towards opposite poles.
As a result of this force-distance relationship, chromosomes
with bipolar orientation become centered on the spindle equa-
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tor simply because the equator is the position where opposite
kinetochore fibers are of equal length; therefore, the two ki-
netochores are pulled equally toward their respective poles.
Should a chromosome be displaced from this equilibrium
position, there would be generated a resultant force on the
chromosome so as to re-establish the position of the chromo-
some equidistant from the spindle poles.

Forces moving chromosomes are now known to be generated
along the array of kinetochore fiber microtubules which me-
chanically link the kinetochore to the spindle pole (6). There-
fore, the force-distance relationship proposed by Ostergren (3)
concerns the relationship between the force applied to a kinet-
ochore and the length of the kinetochore fiber.

In contrast to Ostergren’s force-balance concept of congres-
sion, chromosomes could be moved to an equilibrium position
at the metaphase plate by regulation of the equilibrium length
of the kinetochore fiber (7). For example, based on the dynamic
equilibrium theory of Inoué and Sato (8), Dietz specifically
proposed (9) that, as a consequence of achieving monomer-
polymer equilibrium, kinetochore microtubule lengths change
and thereby regulate chromosome position. If all kinetochores
participate equally in the formation of kinetochore fibers and
if tubulin subunits are freely diffusible, this proposal predicts
that all kinetochore fibers will be of equal length at metaphase
equilibrium. Therefore a chromosome would lie at the spindle
equator due to a requirement that equal lengths of microtubules
compose the two opposing kinetochore fibers. As the Dietz
hypothesis predicts, movements of the kinetochores are ob-
served to be closely coupled to changes in extent of assembly
of kinetochore fiber microtubules (8, 10, 11).

The two hypotheses proposed to account for chromosome
congression therefore suggest the following question: Does a
requirement for balance of forces generated along microtubules
of the kinetochore fiber regulate the extent of kinetochore fiber
microtubule assembly (Ostergren hypothesis), or does the ki-

FIGURE 1

netochore microtubule assembly mechanism directly regulate
the equilibrium length of kinetochore fibers (Dietz hypothesis)?
An answer to this question is possible through observation of
the stable metaphase position of multivalent chromosomes that
have more than two kinetochore regions and asymmetrical
orientations on the spindle, i.e., unequal numbers of kineto-
chores oriented to opposite poles (see Fig. 1). If congression is
the result of a balancing of forces, then multivalents oriented
asymmetrically should be shifted off the equator, closer to the
pole to which the greater number of kinetochores are attached
(3, 12). Otherwise, if an equilibrium length-balance mechanism
determines chromosome position, the asymmetrically oriented
multivalents should lie at the spindle equator, with the lengths
of all kinetochore fibers equal (Fig. 1¢).

In this study, we generated multivalents in grasshoppers by
y-irradiation of nymphs, and in living-cell preparations we
examined the positions of these newly arisen multivalents at
congression in meiosis I. From our analysis of the positions of
congressed multivalent chromosomes, we present quantitative
evidence consistent with Ostergren’s hypothesis.

MATERIALS AND METHODS

Experimental Material and Production of
Multivalent Chromosomes

Males of the grasshopper species Melanoplus differentialis (Acrididae, Orthop-
tera) were taken from a laboratory colony maintained by Dr. R. B. Nicklas at
Duke Umiversity, Durham, NC.

We selected third-instar nymphs with average head width and femur length of
3.6 mm and 12 mm, respectively, and exposed them to a 480-rad dose of y-
irradiation (cobalt source operating at 160 rad/min). Both the age of nymphs
when irradiated and the time postirradiation when grasshoppers were sacrificed
affected the number of rearrangements per cell and general cell health. Our
treatment typically yielded 1-2 rearrangements per cell, a useful number for
analysis. Higher numbers of rearrangements produced multivalent chromosomes
too complex for analysis.

R

(a) Phase-contrast micrograph of a living spermatocyte in meiotic metaphase |. The spindle is outlined by mitochondria

(m). Arrows indicate the kinetochores of a trivalent. The asymmetric orientation of kinetochores (two kinetochores attached to
one pole, P, and one kinetochore attached to the other pole, P;) results in congression of the trivalent to an equilibrium position
shifted off the equator. Note that typical bivalents (B) with symmetrical orientations lie at the spindle equator and define the
“metaphase plate.” Bar, 10 pm. X 1,800. ( b) Schematic drawing of the cell shown in a. We measured the interpolar length P, P, and
the kinetochore fiber lengths as approximated by the kinetochore-to-pole distances A,, By, and A,. The subscript identifies the
pole facing a given kinetochore. A symmetrically oriented bivalent is shown for comparison. (¢) Schematic drawing of the expected
position of a congressed trivalent according to the Dietz hypothesis (trivalent A) vs. the Ostergren hypothesis (trivalent 8).
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Spermatocyte Cultures and
Photographic Methods

9-12 d after irradiation, living-cell preparations were made of spermatocytes
explanted from the grasshoppers.

Preparation of cell cultures, phase-contrast microscopy, time-lapse cinematog-
raphy, and frame-by-frame analysis of film records were done according to
methods described by Nicklas and Staehly (13). The buffered saline we used for
the cell preparation was described by Nicklas et al. (14). Normal, healthy cells
were chosen for analysis on the criteria of spindle size and shape, mitochondrial
distribution, and the successful completion of anaphase.

Measurements and Computer Analysis

The lengths of kinetochore fibers for multivalents were measured as follows.
The distance between each kinetochore and the pole to which it was attached
was determined just before anaphase from projected ciné records (see Fig. 1).
Kinetochores were identified by a slight difference in phase density between a
kinetochore and the adjacent chromatin. The identity of kinetochores was later

TABLE |

Comparison of Distances between Kinetochores and Poles in
the Two Half-spindles for Multivalents of Various Orientation
at Metaphase

Spin-
Multiva-  Struc- 3ty — dle
Cell lent ture L,* Lo 2L, length
um am um um
(1) Triv1 21 60/45 10.5 0 275
(2) Triv 2 2:1 8.0/8.0 10.0 6.0 255
(3) Triv 3 2:1 5.5/5.0 11.5 1.0 25.0
(4) Triv 4 2:1 6.0/6.5 13.0 0.5 27.0
(5) Triv5s 21 7.5/20 95 0 250
(6) Trive 2:1 4.0/6.0 9.5 0.5 25.0
7y Triv7 21 60/50 9.0 20 240
t=1.10 (d.f. = 6, P> 0.05)
8 Quadi1 31 95/40/30 150 15 280
(9) Quad2t 2:1:1 7.0/80 120 30 240
(10) Quad 3 2:2 7.5/11.0 9.0/9.5 0 25.0
(1) Quad 4 2:2 7.0/10.0 7.5/8.5 1.0 25.0
(12) Quad>5 2:2 7.0/8.5 6.0/9.0 0.5 275
(13) Quad 6 22 7.0/80  6.0/90 10 270
(14) Quad7 22 65/115  80/95 0.5 25.0
(15) Quad 8 2:2 9.0/7.0 9.0/8.0 10 26.0
(16) Quad?9 2:2 12.5/4.0 13.0/3.0 0.5 27.0

t =089 (d.f. = 6, P> 0.05)

(10)  Biv 1 11 115 12,0 0.5 250
2 10.5 11.0 05 250
3 11,5 11.0 0.5 250
(1) Biv4 1:1 12,5 115 10 250
5 12,0 11.0 10 250
6 12,0 115 05 250
(17) Biv7 1:1 13.5 135 0 260
8 9.0 8.0 10 260
9 10.5 10.0 05 260
(13)  Biv 10 111 12,5 13.0 05 270
11 10.0 10.5 0.5 27.0
12 9.0 85 05 270

t=139 (d.f.=11, P> 0.05)

* Numbers in the column labeled £, and L, are distances between kineto-
chores and the poles for each half-spindle (Py and P;). The data are
presented such that L. always represents the half-spindle to whose pole, Py,
more than one kinetochore of the multivalent is oriented.

1 Quadrivalent 2 orients in a 2:1:1 fashion, i.e., two kinetochore pairs orient to
pole 1 (P}, one kinetochore pair orients to pole 2 (P,), and the fourth
kinetochore pair orients amphitellically, that is, to both poles. The kineto-
chore-to-pole distances are given only for the monopolarly oriented kinet-
ochores. The amphioriented kinetochore lies at the equator and has equiv-
alent kinetochore-to-pole distances to opposite poles (see Results).
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confirmed by noting that these regions of chromatin lead the way to the poles
during anaphase; the attached chromatin arms trail behind these kinetochores.
The polar region was identified by the phase-dense image of the centriole
complex itself or was considered to occur approximately at the point of conver-
gence of mitochondria surrounding the spindle. A total of 16 cells was analyzed:
7 trivalents and 9 quadrivalents. As controls, 12 bivalents from 4 of the 16 cells
were also analyzed (Table I). Data analysis was performed as described in Resulis
and Fig. 2 using an Apple II Plus microcomputer (Apple Computer Inc.,
Cupertino, CA) and a Houston Instruments Hi-Plot digital plotter (Houston
Instruments, Austin, TX).

RESULTS
Trivalents

Trivalents assumed asymmetric orientations (two chromo-
somes oriented to one pole and only one chromosome oriented
to the opposite pole) and were shifted off the equator as shown,
for example, in Fig. 3. Trivalents lie closer to the pole to which
two kinetochores are attached. All seven trivalents analyzed
showed a similar off-equator position at metaphase; the meta-
phase kinetochore-to-pole distances for the seven are listed in
Table 1.

For each of the analyzed trivalents the sum of the lengths of
the two kinetochore fibers oriented to the nearer pole approx-
imately equaled the length of the single kinetochore fiber
oriented to the far pole; the values are not significantly different
based on a paired Student’s 7 test (Table I). This result suggests
that all kinetochores are nearly alike and that a linear relation-
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FIGURE 2 Computer analysis of force dependence on kinetochore
fiber length for the trivalent shown in Fig. 1. The force (F) applied
to a kinetochore is assumed to be proportional to the kinetochore
fiber length (A4, By, or Az) to an exponential power of exp (e.g., F
= kA;%®). Whether the forces on the trivalent are balanced is
calculated by subtracting the traction forces towards pole 2 (Py)
from those towards pole 1 (P;). For the trivalent in Fig. 1, the
resultant force (RF) = k(A% + B1°®) — A,°®. The algorithm solves
the equation for values of exp from 0.1 to 4.0. At metaphase the
resultant force on the chromosome is assumed to be equal to zero
(RF = 0). Therefore, the value of exp where (A% + B{%®) — A,®°
= 0, best describes the force-length relationship.

The curve labeled Resultant Force plots the resultant force/k (in
relative units) on the chromosome, calculated assuming various
values for the exponent, exp. Forces should be balanced when RF
= 0. RF becomes zero when the value of the exponent is 1.0. For
values of the exponent between 0.1 and 4, Delta gives the distance
that the chromosome would need to be displaced towards pole 2
( P2) to make the forces balance. (Negative values on x-axis indicate
toward pole 2; positive values indicate toward pole 1.) For example,
if force was proportional to the square of distance, then the trivalent
would need to be shifted 2 um closer to pole 2 to achieve a balance
of forces. The kinetochore-to-pole distances, i.e., kinetochore fiber
lengths (A1, By, A2), and the interpolar length ( P4 P2) are given in the
upper right-hand corner. For exp = 1.0, both the resuitant force and
delta values equal zero.



FIGURE 3 Two separate cells with single trivalents in 2:1 configuration. (a) Cell including trivalent 5, see Table I. (b) Cell including
trivalent 6, see Table |. Time (T) is given on each frame in min relative to metaphase (7 = 0). At metaphase, trivalents are shifted
towards the lower pole ( Py) to which two kinetochores (arrows) are attached. The kinetochore-to-pole distances in opposite haif-
spindles are not significantly different (see Table |). At anaphase (a, frame 07, b, frame 04), kinetochores separate, confirming that

both chromosomes are trivalents. Bar, 10 gm. X 1,290.

ship exists between traction force and kinetochore fiber length,
assuming that the measured kinetochore-to-pole distances cor-
respond to the lengths of the kinetochore fibers (see below),
and assuming, as Ostergren (3) proposed, that the stable posi-
tion of fully congressed chromosomes reflects isometric forces
on the chromosome.

Since for these trivalents the summed lengths of the two
shorter kinetochore fibers in one half-spindle usually do not
equal exactly the length of the single kinetochore fiber in the
opposite half-spindie, the possibility that the force-length re-
lationship is not strictly linear must be considered. Therefore,
in addition to comparing the summed kinetochore fiber lengths
of opposite half-spindles, we used an algorithm to calculate the
power to which these measured kinetochore-to-pole distances
must be raised in order to make the difference between them
exactly equal to zero. The value of the exponent relates how
the magnitude of force along a kinetochore fiber varies with
fiber length. If the force-length relationship is linear, then we
expect the exponent value to equal 1.

In our algorithm, the force (F) applied to a kinetochore is
assumed to be proportional to the kinetochore fiber length (L)
raised to the power exp in the relation: F = kL, where k
represents a length-independent factor which in the following
analysis is assumed to be the same for all kinetochores. If the
metaphase position of a chromosome represents the position at
which forces in opposite directions on a chromosome are
exactly balanced, the resultant force (RF) will equal zero. For
example, see the trivalent of Figs. 1 and 2, where RF = 0 =
AP + B*P — A,°*" (4, and B, are the kinetochore fibers to
pole 1, A4, is the kinetochore fiber to pole 2). The exponent
values were derived from computer-generated plots, such as
those shown in Fig. 44 and b. For six of the seven trivalents
analyzed, a linear relation between force and kinetochore fiber
length is indicated by the fact that RF = 0 when the exponent
is approximately 1. The mean exponent for these six chromo-

somes (excluding trivalent 2) is 1.06 + 0.18 (see Table II);
trivalent 2 was anomalous and gave an exponent value of 3.15
(see Discussion).

We evaluated the significance of our calculated exponent
values by asking how great a difference would occur in the
equilibrium chromosome position for different exponent val-
ues. That is, for exponents that did not yield RF = 0 for the
observed position of the chromosome, how much would the
position of the chromosome need to be shifted for RF to equal
0. If such an analysis showed that shifts of chromosome position
as small as 0.25 pm would allow exponents much greater or
less than 1 to yield an RF = 0, then the significance of the
exponent 1 would be questionable since our measurements
from the ciné films could not detect such small changes with
accuracy. For values of the exponent between 0.1 and 4, we
determined the distance, delta (A), that a multivalent would
have had to be displaced from its observed equilibrium position
between the spindle poles to achieve an RF = 0. This analysis
supports our conclusion that an exponent value of 1 best fits
the force-balance data since a 1-um or greater shift in the
observed metaphase chromosome position is necessary to yield
exponent values greater or less than 1 + 0.4 (see Fig. 2).

A source of error in interpreting our results stems from the
possibility that the kinetochore fiber ends at some distance
from the pole (15, 16). For example, mechanical anchorage of
a kinetochore fiber may occur at the periphery of the centro-
some complex, closer to the kinetochore than we assumed by
considering the centriole complex to be the terminus of kinet-
ochore fibers. If so, our measurement of kinetochore-to-pole
distances overestimates the true lengths of the kinetochore
fibers. To estimate the possible contribution of such error, the
measured kinetochore-to-pole distances were shortened by an
amount approximately equal to the radius of the pericentriolar
material (0.5-1.0 ym) and these new lengths were used to
determine the exponent values. Only small differences were
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FIGURE 4 The analysis of the force balance, for (a) trivalent 5, cf.
Fig. 3 a and Table | and (b) trivalent 6, cf. Fig. 3 b and Table I.
Kinetochore traction force to opposite poles is balanced at the
exponent value {exp) = 1.05 for both trivalents. (¢} Hypothetical

shortening of the measured kinetochore-to-pole distances has little
effect on the exponent value.

noted between the mean exponent value derived from the
measured distances (1.06 + 0.18) and those values calculated
from the hypothetically shortened distances: 0.98 + 0.18 when
shortened by 0.5 um, 0.90 + 0.17 when shortened by 1.0 um
(see also Fig. 4¢ and Table II). It must, of course, be borne in
mind that any overestimation of the true kinetochore fiber
lengths by our distance measurements is counteracted by spin-
dle geometry. The spindle at the metaphase plate is elliptical
in cross section due to flattening during the culture preparation.
The major and minor axes of this ellipse are represented by
the width and thickness of the spindle. The kinetochore-to-
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pole distance measurements are accurate for kinetochores in
the same optical focal plane as the spindle interpolar axis. For
kinetochores on the periphery of the spindle, above or below
this interpolar axis, our measurements will represent a projec-
tion of the true kinetochore-to-pole distance. Taking an average
pole-to-pole spindle length of 26 um and a 5-um radius for the
minor axis of the ellipse (17), we have calculated that our
kinetochore fiber length values underestimate the correct val-
ues by 0.5 um or less.

Quadrivalents

Symmetric orientations of quadrivalents (kinetochores ori-
ented two to each pole) are apparently more stable than
asymmetric ones (18-21). Seven of the eight experimentally
generated quadrivalents had symmetrical 2:2 orientations, as
shown in the example of Fig. 6. In this situation, with equal
numbers of kinetochores oriented to opposite poles, the con-
gressed quadrivalents lic on the spindle equator, on a line with
normal bivalents. The length of individual kinetochore fibers
within a half-spindle can be significantly unequal because of
the geometry of the quadrivalent chromosome as, for example,
in Fig. 6. Yet for each quadrivalent the sums of kinetochore
fiber lengths in opposite half-spindles are not significantly
different (P = 0.05) and support a linear force-length propor-
tionality (Table I). However, the data obtained from symmet-
rically oriented multivalents do not yield unique solutions for
the exponent (exp) in our computer algorithm.

One of the eight experimentally produced quadrivalents
recorded was asymmetrically oriented in a 2:1:1 fashion. In this
configuration the fourth kinetochore pair was separated from
the other kinetochores by an extended chromatin arm (~12 um
long), and appeared to behave independently, congressing to

TaBLE |
Comparison of the Exponent Value “exp” in the Unique
Solution of ZF = ZkL®® = 0 for Asymmetrically Oriented

Multivalents
Multivalent no. L* L—0.5um L—10pum
Triv 1 1.00 0.95 0.85
Triv 2 3.15 2.95 2.75
Triv 3 0.85 0.85 0.75
Triv 4 0.95 0.85 0.85
Trivs 1.05 0.85 0.75
Triv 6 1.05 1.05 0.95
Triv7 1.45 1.35 1.25
Mean 1.36 1.22 1.16
SD 0.74 0.73 0.66
t=119 (d.f. =6, P> 005)
Excluding triv 2:1
Mean 1.06 0.98 0.90
SD 0.18 0.18 0.17
t=0.80 (d.f. =5, P>0.05)
Quad 1 1.15 1.05 0.95
3:7
Quad 2 1.45 1.35 1.35
(221:1)

* Exponent values are given for the solution to £F = ZkL*® = 0 using the
actual measured, kinetochore-to-pole distances (L), and hypothetical
lengths L — 0.5um and L — 1.0 um.

1 The mean and standard deviation are recalculated excluding the values
obtained for trivalent 2, whose behavior is anomalous (see Discussion).



FIGURE 5 (a) Naturally occurring 3:1 quad-
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FIGURE 6 Time-lapse series of a quadrivalent in a balanced 2:2 orientation. Two kinetochores are oriented towards each pole
(arrows). Time (T) in min is given on each frame. At metaphase (T = 81), when all bivalents lie on the equator, the balanced
quadrivalent is also at the equator. Bar, 10 um. X 1,290.

the spindle equator with the normal bivalents, so that equal
lengths of kinetochore fibers extended to opposite poles. There-
fore, we considered the remaining three kinetochore pairs as
members of a trivalent and determined that an exponent of
1.45 was required to yield an RF = 0 on the chromosome in its
observed position. This exponent value represents a deviation
from linearity. An explanation for this exception may lie in the
structure of the chromatin joining the kinetochores. That is,
despite the apparent independent behavior of the fourth kinet-
ochore, the extended and folded chromatin arm connecting it
to the rest of the multivalent may have presented structural
constraints on the position of the rest of the chromosome.

We have also included in our analysis a naturally occurring
quadrivalent described earlier by Wise and Rickards (22). Fig.
5 depicts this natural quadrivalent in the observed asymmet-
rical 3:1 orientation. Three chromosomes are oriented to the
lower pole and the fourth is oriented to the upper pole. As
noted by the authors, the chromosome is shifted off the spindle
equator and closer to the pole to which three chromosomes are
oriented. The extent of shift is consistent with a linear force-
length relationship as indicated by the graph resulting from the
computer analysis shown in Fig. 5. Both the resultant force
plot and the delta plot pass through zero at the exponent value
of 1.15. Shortening all the measured kinetochore-to-pole dis-
tances by 0.5 or 1.0 um had little effect on the computed
exponent value (Table II).

Univalents

Occasionally, irradiation of the spermatocytes produced
univalents. Such univalents, much like the X-chromosome (7,

15, 23), did not congress but continued to course back and
forth between spindle poles. At the onset of anaphase, the
univalent remained in the half-spindie in which it happened to
lie. Thus, with unidirectional force applied to it, the chromo-
some does not achieve a stable equilibrium position. Fig. 7
shows one such trip of an induced univalent to one pole where
the univalent reorients and then proceeds towards the opposite
pole.

DISCUSSION

Our observations confirm some earlier observations that asym-
metrically oriented multivalents are displaced off the equator
(3, 18, 24-26) and strongly support Ostergren’s hypothesis that
the position of chromosomes at metaphase is determined by a
balancing of traction forces on opposing kinetochores (3-5).
Moreover, our results show that the magnitude of traction force
on a kinetochore fiber is a linear function of fiber length, as
proposed by Luykx (27). This balance of forces is demonstrated
most dramatically by the stable metaphase positions of asym-
metrically oriented multivalents. These multivalents lie closer
to the pole to which the greater number of kinetochore fibers,
and therefore force components, are directed. The experiments
reported here, like the studies of Bauer et al. (26) and Wise
and Rickards (22), meet two important criteria (12): (a) by
using newly arisen (i.e., experimentally induced) multivalents
there is no need to consider evolutionary modifications of
kinetochore activity such as might be involved in establishing
stable multivalents in the genome (as is necessary, for example,
in considering sex multivalents [28-30]), and (b) we can deter-
mine precisely the final metaphase position of these chromo-
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FIGURE 7 The simplest case of unbalanced forces—a univalent. Time in min is given on each frame. Irradiation has deleted one

&

of the kinetochore pairs of a bivalent chromosome. The univalent migrates to the lower pole (T = 0, 27), reorients at T = 49, and
migrates towards the upper pole (T = 59, 71) (arrows). The univalent never congresses. The behavior resembles that of the sex

univalent X-chromosome. Bar, 10 um. X 1,290.

somes because we have followed the multivalents in living cells
from late prometaphase into anaphase.

Our results do not agree with a mechanism of congression
based on achieving equal lengths of all kinetochore fibers (7,
9). The shifted, asymmetrically oriented multivalents have
great differences in the lengths of their individual kinetochore
fibers (Fig. 3a and b; Table I). Similarly, symmetrically ori-
ented quadrivalents, though lying at the spindle equator, have
different kinetochore-fiber lengths that depend on the geometry
of the multivalent (i.e., inequality in the lengths of the chro-
matin arms that separate the kinetochore pairs, see Fig. 6).

Evidence that the position of chromosomes at metaphase is
determined by antagonistic pulling forces on opposing kineto-
chores is reported by Izutsu (31). He found at metaphase that
irradiating one kinetochore on a meiotic bivalent or on the
adjacent kinetochore fiber caused the bivalent to move toward
the pole to which its unirradiated kinetochore was attached.
McNeil and Berns (32) observed similar results for mitotic
chromosomes in PtK, cells in culture. In addition, electron
microscopy showed that the kinetochore fiber had lost its
attachment to the irradiated kinetochore. Thus, severing one
kinetochore fiber allowed the antagonistic fiber to pull the
chromosome poleward. The remaining chromosomes on the
spindle were unaffected by the irradiation and moved to the
metaphase plate. Our observations on univalents, chromosomes
that have a single kinetochore fiber and move directly towards
the attached pole, are also consistent with such behavior.

If the final metaphase position of a chromosome reflects a
balance of forces on the chromosome, the relationship between
traction force and Kinetochore fiber length calculated for asym-
metrically oriented multivalents gives a unique solution to the
computer algorithm we used. Assuming that all kinetochores
are functionally equivalent (have the same & value), we deter-
mined that the exponent to which the measured kinetochore-
to-pole distances must be raised to yield an RF = 0 is 1. We
conclude that the traction force generated along a kinetochore
fiber increases linearly with length.

We attribute the linear proportionality between force and
kinetochore-to-pole distance to the presence of the array of
kinetochore-fiber microtubules spanning this distance. The
kinetochore fiber forms a mechanical link between the chro-
mosome and the polar complex (13, 33, 34). While all micro-
tubules of the kinetochore fiber which terminate at the kinet-
ochore may not run continuously to the spindle pole, a signif-
icant number do (35, 36). The simplest way to establish a linear
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force-length mechanism is to distribute force-producers uni-
formly along the kinetochore fiber. Such forces on the chro-
mosomes could result from cross-bridging between microtu-
bules and microfilaments or between microtubules and the
cytoplasmic matrix (6, 37-43). The magnitude of force would
increase with the number of cross-bridges, which would be
directly proportional to the length of the kinetochore fiber.

Alternatively, forces may be generated by the depolymeri-
zation of kinetochore microtubules, as suggested by Inoué and
Sato (8; see also reference 10). The simplest interpretation of
our data with this alternative would require that depolymeri-
zation occur along the entire length of the microtubules, with
the rate of subunit loss per unit length being constant; total
disassembly would then be greater for longer microtubules.
The off-equator position of trivalents would be the position at
which the amount of disassembly occurring in opposite half-
spindles is equal. The plausibility of this interpretation, how-
ever, is tempered by indirect evidence in vivo (44, 45) and in
vitro (46-48) that suggests that depolymerization occurs only
at the ends of microtubules or spindle fibers. However, a
mechanism of force production that generates forces only at
the ends of the kinetochore fibers and does not sense the length
of the fiber would not be consistent with our results. Such a
mechanism would not achieve a balance of forces on a trivalent
chromosome: instead of reaching a stable metaphase position,
the trivalent would move directly to the pole with the greater
number of attached kinetochore fibers.

In the relation for traction force, F = kL***, k represents the
length-independent factor(s) that determine the magnitude of
traction force applied to the kinetochore. Our assumption that
k is the same for all multivalent kinetochores is justified by
two results. First, for most multivalents, both symmetrically
and asymmetrically oriented, the sum of the lengths of the
kinetochore fibers in one half-spindle equals, within 10%, the
sum of the lengths in the opposite half-spindle (Table I).
Secondly, with the exception of trivalent 2 (Table II), the
standard deviation of the calculated exponent values (exp =
1.06 + 0.18) for the trivalents is small. If kinetochores typically
had widely different values of k, then no single force-length
relationship (exponent value) would explain the observed po-
sitions of the majority of the multivalents.

The length-independent factor(s), k, may be directly related
to the number of functional kinetochore microtubules. In this
case, the traction force produced along a kinetochore fiber
would not be simply a linear function of its length but a



function of both length and number of kinetochore microtu-
bules (i.e., total microtubule length). Consequently, we would
expect a trivalent to congress to a position where the total
length of kinetochore microtubules (not lengths of kinetochore
fibers) will be equal in opposite half-spindles (Fig. 8, trivalent
B). If the number of microtubules on different kinetochores
varied widely, the ultimate positions of asymmetrically oriented
multivalents would show little relationship from example to
example, Instead, we usually observed that the sums of kinet-
ochore fiber lengths in opposite half-spindies were equal (Fig.
8, trivalent 4). Only if all kinetochores have equal numbers of
attached microtubules can both the totai microtubule length
and fiber length be equal in opposite half-spindles. Therefore,
the observed positions of the multivalents in our study suggest
that the majority of autosomes have about the same number of
functional kinetochore microtubules.

Traction force, however, cannot depend only on the number
of microtubules attached to a kinetochore independent of the
length of the fiber. The chromosome would always move all
the way to the pole towards which the greater number of
kinetochore microtubules was oriented.

We have no ultrastructural information on the numbers of
kinetochore microtubules attached to multivalents of Melano-
plus, but ultrastructural analysis of several other cells has shown
that the number of microtubules per kinetochore is relatively
constant for a given cell type (35, 49-52). Moens (50) compared
the number of kinetochore microtubules between different
autosomes of primary spermatocytes from the grasshopper
Locusta. Like the Melanoplus spermatocytes used in our study,
Locusta spermatocytes contain 11 bivalents and one univalent
sex chromosome. From the three metaphase I Locusta cells
analyzed by Moens, we computed an average of 22 * §
microtubules per kinetochore. The low SD indicates a high
degree of uniformity. However, an occasional kinetochore had
substantially more or fewer microtubules than the average—as
many as 35 or as few as 10.

In light of these data, consider the exceptional trivalent 2
observed in our study. Its congressed position was not consist-
ent with a linear force-length relationship if we assumed that
all three kinetochores had the same length-independent con-

B P
FIGURE 8 Hypothetical

illustra-

tion of the effect of microtubule @ Cp
number on the position of a triva-
lent if force on a kinetochore is
proportional to the total length of
microtubules in a kinetochore fi-
ber. At metaphase, countervailing
forces will be equal when the total
length of kinetochore microtubules
is the same in both half-spindles.
(A) If all kinetochores have the
same number of microtubules, A
forces are balanced when the total

length of kinetochore fibers are the 8
same in opposite half-spindles. ( 8)

If some kinetochores have more

microtubules than others, total

length of kinetochore fibers cannot

be equal in both half-spindles

when total length of microtubules

in opposite half-spindles are equal.

stant, k. The simplest explanation would be that one kineto-
chore of the trivalent had a significantly different value of k.
Relative values of k for each kinetochore of the trivalent can
be calculated from the observed kinetochore-fiber lengths at
congression (Table II), using a linear force-length relation in
the force-balance equation. The value of & for the single fiber
(10 pm long, extending to pole 2, Table I) could be 1.6 times
greater than the value for & for the pair of fibers in the opposite
half-spindle (both 8.0 um long, extending to pole 1, Table I),
or the value of k of one of the pair of fibers could be one-
fourth the value of the other two fibers. It is possible that
irradiation may have damaged a kinetochore in trivalent 2,
thus causing a change in its normal k value. On the other hand,
if k is related to the number of functional microtubules, perhaps
one kinetochore in trivalent 2 had substantially more or fewer
microtubules than the others. Since some kinetochores on
Locusta chromosomes appear to have exceptionally high or
low numbers of microtubules naturally, a difference in k values
as would explain the position of trivalent 2 would be expected
to occur now and then. Translocations between chromosomes
with kinetochores of similar & values, however, would be more
likely.

An important implication of our results is that, if balanced
traction forces determine the position of metaphase chromo-
somes, traction forces may directly regulate the extent of mi-
crotubule assembly, hence the length of kinetochore fibers.
Some earlier investigations also suggest force-balance regula-
tion of microtubule assembly. Inoué (53) showed that Chaetop-
terus metaphase spindles elongated in response to interpolar
tension produced by flattening the oocyte between slide and
cover slip. Nicklas (12, and unpublished data) observed that
chromosomes move from their congressed position in grass-
hopper spermatocytes when tension is applied to a meiotic
bivalent by stretching a chromosome arm towards one pole
with a microneedle. The kinetochores remain mechanically
anchored to their poles by their kinetochore fibers, but the
kinetochore fiber under tension slowly elongated while the
other kinetochore fiber shortened. After tension on the
stretched chromosome was released, the bivalent moved back
to the metaphase plate at the normal congression velocity.
These results demonstrate that the position of the chromosomes
under artificially produced temsion was determined by the
balance of applied forces. The length of the kinetochore fibers
changed in response to the applied forces. It should be noted,
however, that, although these data demonstrate that chromo-
somes move when there is an imbalance of poleward-directed
forces, the velocity at which they move is largely independent
of the magnitude of the imbalance. The rate at which kineto-
chore fibers change length is limited by the rates at which
microtubules can assemble and/or disassemble (12, 54).

In summary, our results strengthen the view that congression
of chromosomes takes place as the result of a balancing of
countervailing linear forces on the chromosomes. We also have
suggestive evidence that this balance of forces regulates the
extent of assembly of kinetochore-fiber microtubules.
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