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ABSTRACT Nowadays, fieldwork is often accompanied by tight schedules, which tends to strain the

shoulder muscles due to high-intensity work. Moreover, it is difficult and stressful for the disabled to drive

agricultural machinery. Besides, current artificial intelligence technology could not fully realize tractor

autonomous driving because of a high uncertain filed environment and short interruptions of satellite

navigation signal shaded by trees. To reduce manual operations, a tractor assistant driving control method

was proposed based on the human-machine interface utilizing the electroencephalographic (EEG) signal.

First, the EEG signals of the tractor drivers were collected by a low-cost brain-computer interface (BCI),

followed by denoising using a wavelet packet. Then the spectral features of EEG signals were calculated

and extracted as the input of Recurrent Neural Network (RNN). Finally, the EEG-aided RNN driving model

was trained for tractor driving robot control such as straight going, brake, left turn, and right turn operations,

which control accuracy was 94.5% and time cost was 0.61 ms. Also, 8 electrodes were selected by the PCA

algorithm for the design of a portable EEG controller. And the control accuracy reached 93.1% with the time

cost of 0.48 ms. To solve the incomplete driving data set in the actual world because some driving manners

may cause dangerous or even death, RNN-TL algorithm was employed by creating the complete driving

data in the virtual environment followed by transferring the driving control experience to the actual world

with small actual driving data set in the field, which control accuracy was 93.5% and time consumption was

0.48ms. The experimental results showed the feasibility of the proposed tractor driving control method based

on EEG signal combined with RNN-TL deep learning algorithmwhich can work with the displacement error

less than 6.7 mm when the tractor speed is less than 50 km/h.

INDEX TERMS Electroencephalographic (EEG), brain-computer interface (BCI), recurrent neural network

(RNN), assistant driving, driving robot.

I. INTRODUCTION

Agricultural machinery is popularly used in most field

operations such as tillage, harvesting, weeding, and land

preparation for improving agricultural efficiency. Whereas

the shoulder muscles of drivers are vulnerable due to the

The associate editor coordinating the review of this manuscript and

approving it for publication was Jinpeng Yu .

high-intensity repetitive operation of quick steering during

the busy farming season [1]. Furthermore, it is extremely

easy to cause fatigue driving and lead to traffic accidents

every year. Moreover, unexpected risk is increased because

of hazard working environment, extreme weather conditions

and high-intensity work due to limited crop harvesting time

which will lead to fatigue of dirvers. Besides, the tradi-

tional agricultural machinery cannot satisfy the operation of
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the disabled drivers whose proportion is about one fifth in

America.

The intelligent navigation method such as the Global Nav-

igation Satellite System (GNSS) [2], [3] was introduced to

tractor autonomous driving in the field but will fail inter-

mittently because of the satellite signal blocked by the trees

occasionally.

Machine vision navigation technology [4] as an auxiliary

navigation method was developed for covering the shortage

of GNSS but can not work all the time because of the tremen-

dous complexity and uncertainty in the farmland.

Since electroencephalogram (EEG) signal is the direct

embodiment of human brain consciousness, the auxiliary

driving method based on the EEG signal can reduce the

driver’s workload, improve work precision, avoid disastrous

consequences caused by driver fatigue operation, and provide

a feasible solution for the disabilities to drive agricultural

machinery as well.

The brain-computer interface (BCI) technology provides

a new solution for tractor assistant driving because the

BCI technology has been widely used in fatigue detec-

tion [5], [6], emotion recognition [7], [8], mental task clas-

sification [9]–[15], robot control and the disabled assistive

help [16], [17], etc. in recent years. Nowadays, BCI tech-

nology has been applied in the assistant driving of airplanes,

automobiles, and other vehicles successfully to achieve steer-

ing, U-turn control, tracking control [18]–[21], etc.

Nowadays, EEG was popularly used in actuator control

in different fields. Alyasseri, Z. A. A. proposed Flower

Pollination Algorithm (FPA) combined with wavelet trans-

formation to denoise EEG signals, extract features and clas-

sify effectively, which accuracy reached 87.69% [9]–[13].

Moreover, the improved MOFPA-WT algorithm can remove

EOG artifacts and the classification precision reached

97.5% [14], [15]. Bartosz Binias utilized EPOC+ electroen-

cephalograph combined with Common Spatial Pattern (CSP)

algorithm, band-pass filtering method, and neural network

classifiers for monitoring and enhancing the performance of

aircraft pilots [19]. In addition, EPOC+ was also used by

J. Gomez-Gil in tractor steering control with a deviation of

less than 7 cm from the standard track which shows the

feasibility of tractor driving based on EEG [21].

In this article, we proposed a tractor assistant driving tech-

nology based on the EEG signal and tested on the second

generation of tractor driving robot platform developed by our

lab [22]–[24]. The rest of the paper was organized as follows:

First, the experimental platform andmethod were introduced.

Then the signal processing, feature extraction, and control

method were mentioned. Finally, the experiments were car-

ried out and the results were discussed and concluded.

II. MATERIALS AND METHODS

A. MATERIALS

1) SUBJECT

Factors such as age, physical condition, and the fatigue level

of the subjects directly influence the experimental results.

Fifteen volunteers including 10 males and 5 females were

selected as subjects in the experiments. All subjects were all

healthy, sighted without any brain disease whose ages ranged

from 20 to 25 years old. Also, the experiments were carried

out at different times of the day for improving the robustness

of the motion intention recognition model.

2) EXPERIMENTAL SETUP

a: EEG ACQUISITION DEVICE

The EEG signals were recorded by the Emotiv-EPOC+ sys-

tem (Fig.1a), which has been applied in the tractor tracking

control by the University of Valladolid in Spain [21]. The

device has 14 electrodes to collect different areas EEG signals

on the head and the electrodes were placed according to the

10/20 electrode placement system (Fig.1b).

EEG signals were collected and processed on an industrial

computer, configured with an Intel Core i5 processor, 8G

memory, Windows 10 operating system, and a programming

environment of Matlab R2019a.

b: DRIVING ROBOT

Figure 2 shows the second-generation human-machine

cooperative tractor driving robot developed by our lab. The

structure mainly includes a steering manipulator, a shift

manipulator, a rotary tiller lifting manipulator, a break-leg, a

clutch-leg, and a throttle-leg in Figure 3. The steering manip-

ulator can control the tractor’s steering wheel smoothly. The

shift manipulator can change the gears. The clutch-leg and

break-leg are responsible for the clutch and brake operations

of the tractor. The throttle-leg is used for the gas adjustment

of the tractor. The driving robot adopts hybrid control modes,

i.e., the break-leg, clutch-leg, and rotary tiller lifting manip-

ulator are hydraulically driven and other manipulations are

electrically controlled.

In order to control the tractor more intelligently and

achieve safe and efficient operation simultaneously, the trac-

tor driving robot was controlled on the hybrid switching

mode, i.e., GNSS navigation control is preferred for the

tractor and EEG control mode will be used when the GNSS

navigation signal is lost or any other emergency cases occur.

Hence, it can relieve drivers’ work intensity and provide a

feasible way for the disabled driving tractors in the compli-

cated agricultural environment as well. This article focuses

on studying the tractor control method by EEG signal.

B. EEG SIGNAL ACQUIRING METHOD

For improving the recognition precision and model robust-

ness, the training set was built based on the experiments

carried out according to the method below. Firstly, the exper-

iments were executed at different times of a day such as

morning, noon, and afternoon for acquiring EEG data of

the subjects in different states of mind and fatigue. Second,

the subjects were trained 3 minutes before the experiments.

Finally, the experiments were conducted according to the

steps below.
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FIGURE 1. Emotiv EPOC+ and electrode setting. a) the Emotiv-EPOC+ system. b) 10/20 electrode placement system.

FIGURE 2. The second-generation human-machine cooperative tractor
driving robot was developed by our lab which structure is showed in
Figure 3. The subjects sat in the tractor and controlled the tractor-driving
robot based on EEG signal for straight going, brake, left turn, and right
turn.

FIGURE 3. The overall arrangement of the driving robot. Among them, 1 is
the steering manipulator, 2 is the hydraulic drive, 3 is the pedal control
mechanical leg, including a break-leg, a clutch-leg, and a throttle-leg, 4 is
the shift manipulator.

1) The subjects were led to concentrate on the experiment

by a cross shown on the center of the screen for 3 s.

2) To acquire the EEG signals of the subjects while they

creating imagery movement according to the displaying ani-

mations in the screen randomly.

3) Previous EEG signal cleaning step by 5 s relaxation was

used to attenuate the brain activity that had been generated by

the previous stimulus [8], [25].

It should be noted that step 1 and step 3 mentioned above

were not used during the test experiments. The subject made a

decision to go straight, left turn, right turn, or brake according

to the condition of the lane displayed in the screen and at

the same time, the EEG signal of the subject was collected

and processed to control the virtual car in the game. The

sameEEG signal acquiringmethodwas adopted during actual

tractor driving control using a tractor driving robot.

FIGURE 4. Imagine according to the animation content.

C. CONTROL METHODS BASED ON EEG

1) TRACTOR DRIVING MODEL BASED ON EEG IN THE

VIRTUAL ENVIRONMENT

The control model based on EEG for tractor driving was

carried out in the virtual environment for avoiding fatal dan-

gerous and financial loss during physical experiments in the

actual tractor test field.

The specific experimental steps are as follows shown

in Figure 6. Firstly, the EEG signals of the subjects were

collected by using the Emotiv-EPOC+ system followed by

denoising using a Butterworth low-pass filter. Then the fea-

tures of the power spectrum signal of driving actions were

extracted by the wavelet packet. Finally, the obtained features
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FIGURE 5. Time paradigm of EEG acquisition for a sports imagination.

FIGURE 6. The process of EEG control.

were input into the neural network to build the driving model

for tractor driving robot control such as straight going, brake,

left turn, and right turn.

a: SIGNAL DENOISING

Brainwaves associated with motor imagery are delta

(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz),

and gamma (30-50 Hz) waves which could be captured

and processed by Emotiv EPOC+. Also, the frequency of

EMG artifact [26] caused by the sub-scalp EMG contrac-

tion is generally above 100 Hz. Therefore, the 8th order of

50 Hz Butterworth low-pass filter was used to filter out the

high-frequency irrelevant noise signals and the delta, theta,

alpha, beta, and gamma waves were extracted.

For denoising the EEG signals, wavelet transform (WT) is

a more suitable method to decompose the EEG signal into

its different frequency bands and retain the signal informa-

tion in both time and frequency domain unlike fast Fourier

transform (FFT) or short-time Fourier transform (STFT).

WT represents or approximates signals or functions through

a wavelet function system which is formed by the translation

and stretching of the basic wavelet, then characterized the

local characteristics of signals in both time and frequency

domains [27]. Besides, the transform coefficients can be

approximated to the original signal. Figure 7 shows the

detailed denoising method flow.

The continuous WT of signal x(t) is defined as:

WTx(a, τ ) =
1

√
a

∫ ∞

−∞
x(t)ψ(

t − τ

a
)dt (1)

where a represents scale displacement, τ representing time

displacement, and ψ (i) is a wavelet basis function, including

Haar, db series, Coiflet, and so on.

As EEG signals are discrete signals, discrete wavelet trans-

forms (DWTs) are suitable for discrete wavelets. Compared

with the continuous WT, the DWT is to limit the a and τ of

the wavelet basis function ψ (a, τ ) to discrete points, that is,

the discretization of scale and displacement, and the discrete

wavelet basis function is ψj,k (t) = 2− i
2ψ

(

2−jt − k
)

, where

j ∈ Z , k ∈ Z , the DWT is:

WTx(j, k) =
∫

x(t)ψ∗
j,k (t)dt (2)
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FIGURE 7. The process of noise reduction method based on wavelet
transform.

By comparing popular wavelet basis functions, db series

has better orthogonality and tight support. So, dbwavelet base

is selected to better denoising effect. Since brainwaves associ-

ated with motor imagery are 5 wavebands, the decomposition

scale j is set to 4, and j performs wavelet transformation on

the signal x(t) to obtain wavelet decomposition coefficients

WTx(j, k), where k represents the position.

b: FEATURE EXTRACTION BASED ON SPECTRUM

EEG signals are time-varying and nonstationary signals,

which have different frequency elements at different times.

Besides, the signal amplitude of EEG signal is weak, and it

is easily interfered with by the external environment. So, it is

hard to analyze EEG signal using FFT. The power spectrum of

the random signal could reflect its frequency component and

the relative intensity of each component. Therefore, popular

power spectrums such as periodograms, MUSIC, and Welch

were used to characterize brain commands.

Periodograms method power spectrum treats EEG signals

in the time domain as a sequence with limited energy and

uses discrete Fourier transform (DFFT) to calculate the power

spectral density [28]. The formula for calculating the power

spectral density is:

P(ω) =
1

N
|XN |2 =

1

N

∣

∣

∣

∣

∣

N−1
∑

n=0

x (n) e−jωn

∣

∣

∣

∣

∣

2

(3)

where x(n) is the data in the time domain and N is the number

of the data.

MUSIC method power spectrum is a non-parametric

method of power spectrum estimation based on matrix fea-

ture decomposition, which can suppress noise, significantly

improve the signal-to-noise ratio, and can reflect harmonic

characteristics in more detail [29]. The basic idea is to sep-

arate the signal from the noise, and the spectral estimation

calculation formula is shown below:

Pmusic (f ) =
1

eH (f ) [
N
∑

k=p+1

VkV
H
k ]e (f )

=
1

N
∑

k=p+1

∣

∣VH
k e (f )

∣

∣

2

(4)

wherePmusic (f ) is the power spectrum value, f is the complex

sine wave frequency, N is the dimension of the eigenvec-

tor, Vk is k-order eigenvector of the input signal correlation

matrix, p is the dimension of the signal subspace and H is

complex conjugate transpose.

Welch method power spectral is a power spectrum density

estimator that applies the periodogram, which is based on

Bartlett’s idea of splitting the data into segments and finding

the average of their periodograms. Where L is the length of

the segments, the i-th segment is denoted by x iN and the offset

of the successive sequences by samples [30]. Compared with

the periodic graph, this algorithm performs segmentation

through an appropriate window function to make the power

spectrum smoother. First, find each segment of the spectrum

estimate (5), and then average the L-segment periodic graph

to obtain the power spectrum estimate of the entire signal (6).

Pixω =
1

MU

∣

∣

∣

∣

∣

M−1
∑

n=0

x iN (n) d2 (n) e
−jωn

∣

∣

∣

∣

∣

2

(5)

where Pixω is the i-th spectral estimate, M is the number of

samples in each segment, U = 1
M

M−1
∑

n=0

d22 (n) is the normal-

ization factor and d2(n) is added window function.

Pwelch (ω) =
1

L

L
∑

i=1

Pix (ω)

=
1

MUL

L
∑

i=1

∣

∣

∣

∣

∣

M−1
∑

n=0

x iN (n) d2 (n) e
−jωn

∣

∣

∣

∣

∣

2

(6)

where Pwelch (ω) is the spectral estimate of the entire signal

and L is the number of segments of the periodograms.

c: DRIVING BEHAVIOR RECOGNITION

In the BCI technology, neural networks are more suitable to

use for behavior recognition due to their powerful nonlinear

fitting and data mining capabilities, such as BP neural net-

works, Support VectorMachines (SVM), Convolutional Neu-

ral Networks (CNN), and Recurrent Neural Networks (RNN),

etc. In this article, the above-mentioned neural networks were

selected for driving behavior recognition to compare the

recognition effects and calculation consumption.

BP is a multi-layer pre-feedback neural network, includes

the input layer, hidden layer, and output layer. The learning
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process of BP neural network is a forward feedback learning

process. It is a process essentially in which errors propagate

backward while correcting the weight coefficients of each

layer. Feedback learning works through the adjustment of the

connection mode, weight, and threshold of each neuron, and

the identification of the whole network [31].

The SVM algorithm is based on the statistical learning

theory and the Vapnik-Chervonenkis dimension. It maps the

input patterns into a higher dimensional feature space through

some nonlinear mapping where a linear decision surface

is then constructed. In SVM, a kernel function implicitly

maps samples to a feature space given by a feature mapping.

But, training SVMs from extremely large and complicated

datasets is a pivotal issue due to the high time and memory

complexity of the SVM training [32], [33]. In this article,

RBF was selected as the Kernel function of SVM, the param-

eters such as c and g were optimized by going through −5 to

+5 to reach the highest cross-validation accuracy as the best

parameters.

In the CNN algorithm, the convolutional layers used are

responsible for performing the mathematical process of con-

volution on the pseudo images generated. Each of these lay-

ers is activated by the ReLU, Sigmoid, or Tanh activation

functions which determines the output value of each neuron.

While the Max pooling Layers are responsible for grouping

the original input data, and the dropout layers are responsible

for disconnecting a portion of neurons from the previous

layer to avoid overfitting in this way. The layers which are

between the input layer and the output layer are called hidden

layers whose number determines the depth of the architec-

ture. Although it is evident that the greater the depth of the

network, the greater the abstraction capacity of the network,

however, the greater depth of CNNneedsmore computational

cost to train it [34].

Multilayered architecture is a special architecture of neural

models.With respect to the direction of their connection, mul-

tilayered networks are divided into feedforward and feedback

networks. Highly nonlinear dynamic mappings can be per-

formed by RNNs and therefore have a temporally extended

application, whereas multilayer feedforward networks are

confined to performing static mappings [35]. So, RNNs are

suitable for EEG signals recognition. When processing EEG

signals, RNN takes the spectrum of EEG signal as the net-

work input and transmits the output of each layer to the

input of the next neural network layer. And at the same time,

the output of a hidden layer transmits to its input through a

recycled unit to generate its influence, and by thismeans, each

neuron in the hidden layer is recycled, as shown in Figure 8.

There is a forward connection and a feedback connection

between the neural units of the RNN network. So, the weights

are equal, the connection of each neuron is independent and

there is no connection with other neurons that contribute

to the robustness when processing time series and EEG

signals.

While tractor driving utilizing EEG control method in the

virtual environment, the subjects drove in every possible

FIGURE 8. RNN hidden layer expansion.

manner they want, including deadly and dangerous way,

to generate as complete a training set as possible.

2) TRACTOR DRIVING MODEL BASED ON EEG COMBINED

WITH RNN-TL DEEP LEARNING ALGORITHM IN THE ACTUAL

ENVIRONMENT

To improve the tractor driving performance through EEG

through the tractor driving robot developed by our lab. Trans-

fer Learning (TL) algorithm was applied to transfer the driv-

ing experience in the virtual environment to the actual-world

only with a small amount of driving experience data in the

actual environment.

Training neural networks have faced two critical prob-

lems, including expensive resources and computational costs.

Besides, the computational time to train a number of deep

learningmodels increases exponentiallywhen the deep neural

networks become deeper andmore complex. TL is introduced

to overcome the problems of expensive resources and com-

putational costs for training multiple deep learning models.

TL methodology focuses on applying the gained knowledge

of deep learning models from a trained architecture to train

another deep learning model on a different task [36].

FIGURE 9. Tractor driving model based on RNN-TL.

Specifically, a tractor driving control mode of RNN deep

neural network based on EEGwas established using the com-

plete dataset built in the virtual environment. Then transfer

learning strategy was applied by freezing LSTM layer and

Softmax layer followed by training the parameters of a fully

connected layer using the small driving data set in the actual

field as shown in Figure 9.
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FIGURE 10. Signal denoising (e.g. F3 electrode of left turn signal). a) EEG signal after low-pass filtered. b) Wavelet multi-layer decomposition. c) Wavelet
decomposition spectral characteristics.

FIGURE 11. Power spectrums of the eeg signals under different control commands.

III. ANALYSIS OF EXPERIMENTAL RESULTS

A. SIGNAL DENOISING

The EEG signals of a driver’s subject are firstly filtered

by an 8th order of 50 Hz Butterworth low-pass filter and

then decomposed by db4 wavelet packet to remove the

high-frequency noise signal d1, as shown in Figure 10.

B. FEATURE EXTRACTION

1) SPECTRIM ANALYSIS

Due to the randomness, time-variability, and vulnerable being

interfered with, the power spectrum analysis method was

introduced to extract the statistical information of EEG sig-

nals for getting the driving control intent with high precision.

The power spectrums such as periodograms, MUSIC power

spectrum, and Welch power spectrum were selected for com-

paring the signal-to-noise ratio (SNR) of EEG signal spec-

trums [37], as shown in Table 1. The Welch power spectrums

of EEG signals under different control commands are shown

in Figure 11.

TABLE 1. SNR of different power spectrums.

As shown in Figure 11, the delta is the frequency range

from 0.5 Hz up to 4 Hz, which only occurs in the cortex, and

is not controlled by the nerves in the lower parts of the brain.

The power spectrum amplitude of this band is significantly

larger in the brake and forward control EEG signals. Theta

is the frequency range from 4Hz to 8Hz, which can be seen

in meditation. The power spectrum amplitude of this band

is slightly bigger in the forward and right turn control EEG

signals. Alpha is the frequency range from 8Hz to 13Hz,

which emerges with relaxation and attenuates with mental

exertion. Besides, it can reflect the subconscious mind of

the brain. The power spectrum amplitude of this band is
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remarkably bigger in the left-turn control EEG signal. The

beta is the frequency range from 13 Hz to 30 Hz, which is

closely related to consciousness, brain activities, and motor

behaviors [38]. The power spectrum amplitude of this band is

larger in the forward and right-turn control EEG signals. The

gamma is the frequency range from 30 Hz to 50 Hz, which

carries out a certain cognitive or motor function. The power

spectrum amplitude of this band is bigger in the forward and

right-turn control signals. The spectrums of EEG signals of

the experimental results are consistent with the law of brain

wave activity [39].

TABLE 2. Comprehensive coefficient and weight of electrodes in the right
turn signal.

2) PCA

Due to the inconvenience to wear and poor experimental

comfort using 14 electrodes for EEG signal acquisition, Prin-

ciple Component Analysis (PCA) algorithm was applied to

optimize and reduce the EEG electrodes. The comprehensive

coefficient and weight of 14 electrodes e.g. in right turn were

obtained in Table 2. And the comprehensive coefficient and

weight of each pair of motion control electrodes are shown

in Table 3.

TABLE 3. The comprehensive coefficient and weight of each pair of
motion control electrodes.

The results showed that the motion signals such as brake,

forward, left-turn, and right-turn mainly reflected on sev-

eral electrodes which are AF3, AF4, F7, F8, T7, T8, F3,

and F4. Besides, the brake control command reflected on

the electrodes of AF3, AF4, and F3. The forward control

command reflected on the electrodes of AF3, F7, and AF4.

The left-turn command reflected on the electrodes of AF3,

FC5. The right-turn command reflected on the electrodes

of AF4 and T7 respectively. The contribution rate is shown

below.

C. DRIVING BEHAVIOR RECOGNITION

Before driving behavior recognition, 1000 groups of EEG

driving control signals including brake, forward, left-turn,

FIGURE 12. The average contribution rate of motion signals in each
electrode.

FIGURE 13. The roc curve of RNN-TL algorithm.

and right-turn signals were built in the virtual environment

which has 4000 EEG signals. And 750 groups of them were

applied as a training set and the rest 250 groups were used as

the testing set.

EEG signals of different numbers of the electrode were

employed for modeling of driving behavior recognition. The

comparing prediction results of the models using BP, SVM,

CNN, RNN are shown in Table 4 which demonstrates that

more electrodes lead to higher precision at the cost of more

time consumption. Moreover, the prediction precision of

RNN model is the best among that of different models. Over-

all, the scheme of 8 electrodes is the optimization in which

prediction accuracy and time consumption are 93.1% and

0.48 ms respectively. For the practical application of tractor

driving in the actual environment using EEG signal, the trans-

fer learning algorithm was employed. Firstly, 300 groups of

EEG driving control signals were built which has 1200 EEG

signals. And 200 groups of them were applied as a training

set and the rest 100 groups were used as the testing set.

According to the existed RNN model trained using the

EEG signals in the virtual environment, the LSTM layer and

Softmax layer were frozen firstly followed by training the

parameters of the Fully connected layer using the training

set of the actual environment to transfer the driving model
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TABLE 4. Comparison of different classification methods.

from virtual environment to the actual environment. Finally,

100 groups of the testing set were used for model testing

the result shows that the command recognition accuracy is

93.5% with the time consumption of 0.48 ms. The recall rate

is 93.6% and the precision is 93.8%. The ROC curve is shown

in Figure 13.

IV. DISCUSSION AND CONCLUSION

A. DISCUSSION

Firstly, the EEG signals of the subjects were collected in

the virtual driving environment without any danger to build

a complete data set by using the Emotiv-EPOC+ system

followed by denoising using 8th order of 50 Hz Butterworth

low-pass filter. Then the features of power spectrum signals

of driving actions were extracted by the wavelet packet.

Furthermore, the obtained features were input into the neural

network such as BP, SVM, CNN, and RNN to establish the

driving model for tractor driving robot control in a virtual

environment such as straight going, brake, left turn, and

right turn. Among which the prediction precision of RNN

reaches 94.5% followed by CNN with a precision of 93.9%.

Whereas the prediction of SVM and BP are only 91.6% and

91.3% respectively. And the calculation time consumption

of the RNN model only costs 0.61 ms which leads to an

8.5 mm displacement error when the tractor works at the

speed of 50 km/h.

The study of the paper is consistent with the existing

research which results show that EEG signal of a human is

available to be applied to control machines. For example,

the University of Valladolid, Spain [21] studied the control of

a tractor tracking specific trajectories based on EEG signals.

Silesian Polytechnic University in Poland [18], [19] studied

on the basis of EEG aircraft assisted driving to improve the

pilot’s accident response. Besides, the University of Tokyo

in Japan [20] using sEMG to control vehicles to achieve

different steering ranges.

To reduce the employed electrodes for improving the

user’s comfortable feeling, PCA algorithm was applied for

dimensionality reduction of electrodes. Eight electrodes were

selected which located in the anterior half of the brain, i.e.

AF3, AF4, F7, F8, T7, T8, F3, and F4. And the prediction

accuracy and time consumptions were 93.1% and 0.48 ms

respectively which only lead to 6.7 mm displacement error

when the tractor works at the speed of 50 km/h. The motor

cortex is mainly located in the central anterior gyrus of

the cerebral cortex, where electrodes of AF3 and AF4 are

located in the forehead, electrodes of F3 and F4 are located

in the frontal area, and electrodes of F7 and F8 are located

in the lateral forehead. Related studies [40] showed that

some electrode channels appear more frequently in the sub-

jects, the frontal brain area is more important under artificial

induction.

For actual employment in tractor driving control by EEG

signals in the actual world, large experimental data should

be collected when the subjects drive the tractor using EEG

signal. But it’s difficult to generate a complete dataset for

model training because some driving control will lead to

dangerous or even cause death. So, the Transfer Learning

algorithm was introduced to use not so many driving experi-

ence data in the actual environment to retrain the parameters

of the fully connected layer of the trained RNN driving

model mentioned above to transfer the EEG signal driving

mode from the virtual environment to the actual application

world.

Due to the introduction of TL, the improvement of the

model accuracy no longer limited to the objective condi-

tions of tractor experiments in the actual environment e.g.

site restrictions and natural environment. And the prediction

accuracy and time consumptions were 93.5% and 0.48 ms,

respectively, with 8 optimized electrodes which lead to only

6.7 mm displacement error when the tractor works at the

speed of 50 km/h. The results show that it can meet the

conventional requirement of tractor field operations.

In addition, relevant research showed that human move-

ments could be predicted to exceed one second in advance

before the movement occurs [41] which means that

human-computer cooperative control mode based on EEG

could compensate for human reaction delays, improve driving

safety, and reduce agricultural machinery accidents caused

by improper operation. In the meantime, EEG signal control

method can avoid accidents caused by untimely tractor brak-

ing and other unexpected conditions for incorrect recognition

of control commands or other reasons.

Moreover, the arms and legs of agricultural machinery

drivers could be moderately relaxed. Therefore, the work

intensity of agricultural machinery drivers could be reduced.

Furthermore, this article provides a feasible method for the

disabled to drive agricultural machinery.

It should be noted that: during the EEG test, the electrodes

of the electroencephalograph need to be kept wet, otherwise

the electrodes and the scalp are directly in poor contact, which

leads to large errors in the data collected by the electrodes.
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B. CONCLUSION

In this article, a tractor assistant driving control method based

on EEG signals was proposed to relieve the tight operation to

avoid shoulder muscle strain. Also, it can help the driver to

avoid misoperation when the brain consciousness and limb

movements are not consistent. Furthermore, it can contribute

to assist a disabled person to drive tractors as well.

By using deep learning algorithms, there are also many

challenges and limitations. For example, a huge dataset is

required to obtain better accuracy, but it is difficult to col-

lect huge datasets due to site constraints, environmental

influences, and other factors during tractor operation in the

actual world. Although it is convenient to build big dataset

in the virtual environment, their conditions can not be con-

sistent with each other which require subsequent algorithm

modifications.

To solve the incomplete driving data set in the actual world

because some driving manners will lead to dangerous or even

to death, RNN-TL algorithm was employed by creating the

complete driving data in the virtual environment followed by

transferring the driving control experience to the actual world

with small actual driving data set in the field. The experiments

showed the feasibility of the proposed tractor driving control

method based on EEG signal combined with RNN-TL deep

learning algorithm which can work when the tractor speed is

not more than 50 km/h and the displacement error is less than

6.7 mm.

In summary, the paper provided a novel tractor assistant

driving control method based on EEG signal and a transfer-

ring learning algorithm based on RNN to obtain a perfect

control model only using a small dataset in the actual world

and large data set in the virtual environment.
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