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TRACTOR CALCULI FOR PARABOLIC GEOMETRIES

ANDREAS ČAP AND A. ROD GOVER

Abstract. Parabolic geometries may be considered as curved analogues of
the homogeneous spaces G/P where G is a semisimple Lie group and P ⊂ G
a parabolic subgroup. Conformal geometries and CR geometries are exam-
ples of such structures. We present a uniform description of a calculus, called
tractor calculus, based on natural bundles with canonical linear connections
for all parabolic geometries. It is shown that from these bundles and con-
nections one can recover the Cartan bundle and the Cartan connection. In
particular we characterize the normal Cartan connection from this induced
bundle/connection perspective. We construct explicitly a family of funda-
mental first order differential operators, which are analogous to a covariant
derivative, iterable and defined on all natural vector bundles on parabolic ge-
ometries. For an important subclass of parabolic geometries we explicitly and
directly construct the tractor bundles, their canonical linear connections and
the machinery for explicitly calculating via the tractor calculus.

1. Introduction

Parabolic geometries form a large class of geometric structures which include,
for example, projective, conformal, almost Grassmannian, almost quaternionic, and
codimension one CR–structures. A unifying feature of these structures is that they
admit a principal bundle with structure group a parabolic subgroup P of a semisim-
ple Lie group G and a Cartan connection on that principal bundle. Both the bundle
and connection are uniquely determined by a normalization condition on the curva-
ture of the Cartan connection. The construction of these normal Cartan connections
has a rather long history, going back to E. Cartan for projective, conformal and
three dimensional CR–structures.

The construction of canonical Cartan connections for all parabolic geometries is
obtained (under some minor restrictions) in the work of N. Tanaka [31]. The result
in full generality has been obtained by T. Morimoto [27] from a general study of
geometric structures on filtered manifolds, and independently in [6].

While constructing a normal Cartan connection solves the equivalence problem
(at least in principle), it is only the first step towards the understanding of a geo-
metric structure. Indeed, it is rather difficult to use a Cartan connection to deal
with many natural geometric problems, such as, for example, a description of poly-
nomial invariants of a structure, or the related problem of constructing differential
operators which are intrinsic to the structure (invariant operators). Recent interest
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in the construction of polynomial invariants of parabolic geometries was initiated
by C. Fefferman [14], who wanted to access CR invariants for the asymptotic expan-
sion of the Bergman kernel on a domain in Cn. Although the asymptotic expansion
of the Bergman kernel is now essentially understood [24] the CR invariants problem
itself is still open.

Systematic ways to use Cartan connections in a relatively direct manner, to
attack geometrical problems as stated above, have been developed only recently, see
e.g. [8]. This has led to remarkable general results on invariant differential operators,
see [9]. However for these developments substantial new ingredients (such as semi-
holonomic jet-modules) were also required. Earlier attempts to use the similarity
of different parabolic geometries to study various structures in a uniform way were
made for example in [28], [16], and [4] for the subclass of irreducible parabolic
geometries (usually called almost Hermitian symmetric or AHS–structures).

There is another basic approach to parabolic geometries. This approach usually
is known by the name “tractor calculus” or “local twistor calculus”. This approach
is based on the fact that certain natural vector bundles associated to a parabolic
geometry admit canonical linear connections. For conformal and projective struc-
tures this was already noticed by Cartan, see [10], and it is a central ingredient
in the work of T. Thomas [32]. For projective and conformal structures, Thomas
used bundles of that type to construct some special invariant operators (now called
tractor–D operators) which are very powerful, for example because they can be
iterated. Although these operators involve the canonical linear connection (which
is equivalent to the Cartan connection) they are not simply a consequence of the
connection but involve additional ingredients. The so-called “local twistor con-
nection” (see [11]) is another connection along these lines which was also found
independently of either source and forms part of the twistor theory machinery.

In [2] Thomas’ calculus for conformal and projective structures was rediscovered
and put into a more modern setting. This calculus was further developed in [18]
and used there to produce an almost complete solution to the invariants problem
for even dimensional conformal structures. The corresponding invariants problem
for projective structures was completely solved by tractor calculus [17]. Tractor cal-
culus was later extended to CR structures [22, 19] and applied to the construction
of CR invariant powers of the sub-Laplacian. It should be remarked that for these
problems there is the alternative approach of the Fefferman–Graham ambient met-
ric constructions, which leads to a complete description of polynomial invariants for
odd–dimensional conformal structures, see [3]. However, for even–dimensional con-
formal and CR–structures the ambient metric construction is obstructed at finite
order. Tractor calculus can be used to proliferate invariants “beyond the obstruc-
tion” to the ambient metric construction. Work is in progress with Hirachi [20] to
use tools from tractor calculus to solve such CR invariants problems.

Tractor calculi for quaternionic, almost Grassmannian and related structures
were touched on in [1, 2] and then developed more fully in [21]. In the latter article
the calculus was used to explicitly construct a new family of invariant differential
operators. Tractor and twistor calculus plays a key role in the so-called “curved
translation principle” [13, 12], which is a scheme for producing very large classes of
invariant differential operators. On the other hand in [5] tractor calculus for confor-
mal hypersurfaces and elliptic theory has enabled the construction of conformally
invariant pseudo-differential operators.
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While covering many important examples, the structures for which versions of
tractor calculus have been developed up to now are only a small proportion of the
wide variety of parabolic geometries. Moreover, all known versions worked for one
concrete structure only, and all developments up to now were on a case-by-case
basis, just using the visible similarities between various structures. In brief the
results of this article are as follows: We develop a (normal) tractor calculus for
all parabolic geometries and do this in a uniform manner. We provide a practical
means of testing whether a candidate for a tractor calculus is the normal calculus.
As part of the calculus we produce a new first order invariant operator, show how
to calculate with this and describe an immediate application. Finally we give,
for a large class of structures, a direct construction of the tractor calculus (i.e. a
construction that avoids first constructing the Cartan bundle and connection). We
conclude this introduction by elaborating on these points.

We start by introducing a uniform setting for tractor calculus for all parabolic
geometries. The main ingredient for this is the so-called adjoint tractor bundle,
which exists for any type of parabolic geometry and provides the basis for our
calculus. After introducing these bundles and the appropriate linear connections
(called tractor connections) on them, we show that we may recover from them a
principal P–bundle endowed with a Cartan connection. Next, we characterize the
usual normalization condition on Cartan connections in terms of the curvature of
the tractor connection, thus arriving at a characterization of the normal adjoint
tractor bundle, which needs no further reference to the Cartan bundle. This is
important since in many cases it is rather easy to construct the tractor bundles and
connections directly.

The key to the applications in [18] was not Thomas’ (second order) tractor-D
operator but a new first order operator. In [19] this was referred to as the “double-
D” operator and some analogous operators were also constructed for CR structures.
In section 3, we vastly generalize these operators and develop an invariant calculus
based on tractor bundles and in particular on the adjoint tractor bundle. More
precisely, for any vector bundle W associated to the Cartan bundle, we introduce
a first order differential operator called the fundamental D–operator , which maps
smooth sections of the bundle to smooth sections of A∗ ⊗ W , where A denotes
the adjoint tractor bundle. These fundamental D–operators have many features
in common with covariant derivatives on vector bundles associated to a principal
bundle endowed with a principal connection. In particular, they can be iterated
and they behave naturally with respect to all constructions with associated vector
bundles. The moral of this is that once one is willing to replace the tangent bundle
by the adjoint tractor bundle (which has the tangent bundle as a quotient), then one
is in a situation closely analogous to the case of a principal connection. It should be
pointed out that, in contrast, the tractor connection only gives a covariant derivative
on bundles V associated to G–modules and takes values in T ∗M ⊗V and so cannot
be iterated. As an application, we prove that knowing the fundamental D–operator
on a bundleW and the tractor connection on the adjoint tractor bundle is sufficient
to record the infinite jet of a section ofW in an invariant way as a section of a fairly
manageable bundle. Moreover, if W is a subquotient of a tensor bundle or in the
case of the infinite jet of the structure itself (which is relevant for finding invariants)
knowledge of the tractor connection alone is sufficient. This is a fundamental step
towards the invariants problem for parabolic geometries.
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Finally, in section 4 we give a direct and uniform construction of adjoint tractor
bundles for all irreducible parabolic geometries. Checking the normality of these is
an application of the results of section 2. This is the first direct construction of the
tractor bundles and their connections which works for an entire class of structures.
This is presented in a notation based around the equivalence class of preferred con-
nections on the tangent bundle of the underlying geometry and so enabling results
to be interpreted directly in terms of tensors and these standard tools of differential
geometry. In particular the fundamental D–operator is described explicitly in this
language.

2. Tractor bundles and tractor connections

2.1. The basic input needed to specify a parabolic geometry is a semisimple Lie
group G together with a so-called |k|–grading of the Lie algebra g of G, that is,

g = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk,

which has the properties that no simple ideal of g is contained in g0 and the sub-
algebra p+ = g1 ⊕ · · · ⊕ gk is generated as a Lie algebra by g1. We will also
need the decreasing filtration corresponding to this grading, which has the form
g = g−k ⊃ · · · ⊃ gk, where gi = gi ⊕ · · · ⊕ gk. Then we define G0 ≤ P to be
the subgroups of G consisting of all elements whose adjoint action preserves the
grading, respectively the filtration, of g, i.e.

G0 = {g ∈ G : Ad(g)(gi) ⊂ gi ∀i = −k, . . . , k},
P = {g ∈ G : Ad(g)(gi) ⊂ gi ∀i = −k, . . . , k}.

It follows immediately that G0 corresponds to the Lie subalgebra g0 ≤ g, while P
corresponds to the Lie subalgebra p = g0 ≤ g. Moreover, it turns out that P is the
semidirect product of G0 with a vector group, so P andG0 are homotopy equivalent.
More precisely, one proves (see [6, proposition 2.10]) that for any element g ∈ P
there exist unique elements g0 ∈ G0 and Zi ∈ gi for i = 1, . . . , k such that g =
g0exp(Z1) . . . exp(Zk).

A parabolic geometry, corresponding to G and the grading of g, on a smooth
manifold M is given by a principal P–bundle G → M together with a Cartan
connection ω ∈ Ω1(G, g) of type (G,P ) on G. That is, ω is a g–valued one–form on
G such that:

(1) ω(ζA) = A, where ζA is the fundamental vector field corresponding to A ∈ p,
(2) (rg)∗ω = Ad(g−1) ◦ ω, where rg denotes the principal right action of g ∈ P ,
(3) ω|TuG TuG → g is a linear isormorphism for all u ∈ G.

Moreover, the curvature of ω has to satisfy a normalization condition which we will
discuss in section 2.10.

In fact, there are various “natural” choices for the group G once the Lie algebra
g is given. Among them is the (unique) simply connected and connected group,
the group Aut(g) of all Lie algebra automorphisms of g and the adjoint group
Int(g) of inner automorphisms of g, which is just the connected component of the
identity of Aut(g). Changing between various groups with the same Lie algebra
does not change the corresponding structure a lot. Usually it amounts to preserving
an additional orientation or a structure similar to a spin structure, etc. We will
comment more on this problem in 2.3 below. It should also be pointed out that
locally no problems arise from any particular choice of group. Over a contractible
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open subset of a manifold one can always switch from one group to another (possibly
by making choices).

Usually, principal bundles equipped with Cartan connections over smooth mani-
folds are not easy to interpret geometrically, and proving the existence of a canonical
Cartan connection for a given geometric structure is often highly non-trivial. In the
case of parabolic geometries, this problem has been completely solved, for example
in [6]. The subject of that paper is to construct a parabolic geometry on a smooth
manifold M from an underlying structure, which can be described as follows: First
one needs a filtration TM = T−kM ⊃ T−k+1M ⊃ · · · ⊃ T−1M such that the rank
of T iM equals the dimension of gi⊕· · ·⊕g−1 and such that the Lie bracket of a sec-
tion of T iM with a section of T jM is a section of T i+jM . This Lie bracket of vector
fields on M induces an algebraic Lie bracket on the associated graded vector bundle
gr(TM) = T−kM/T−k+1M⊕· · ·⊕T−2M/T−1M⊕T−1M . One then has to put on
that exactly the additional structure which characterizes g− = g−k⊕ · · ·⊕ g−1 as a
G0–module. Except for two structures (projective structures and a contact–analog
of those) for which one has to make an additional choice to fix the structure, this
is the complete underlying structure.

Here we construct a parabolic geometry on a manifold starting from a differ-
ent set of underlying data. The underlying data we use here consists of certain
vector bundles (the so–called tractor bundles) over a manifold endowed with an
appropriate linear connection (a tractor connection). We show that these tractor
bundles are the induced bundles of the canonical principal bundle which corre-
spond to representations of the group G, viewed as representations of the subgroup
P . Among these bundles a central role is played by the adjoint tractor bundle,
which corresponds to the adjoint representation.

2.2. Definition. (1) Let M be a smooth manifold of the same dimension as g/p.
An adjoint tractor bundle over M is a smooth vector bundle A → M , which is
endowed with a decreasing filtration A = A−k ⊃ A−k+1 ⊃ · · · ⊃ Ak by smooth
subbundles and an algebraic Lie bracket { , } : A⊗A → A, such that A is a locally
trivial bundle of filtered Lie algebras modeled on g. This means that we have local
trivializations A|U → U × g for A which are compatible with the filtration and the
bracket.

(2) Let A → M be an adjoint tractor bundle over M , and let G be a group
with Lie algebra g with the subgroups G0 ≤ P ≤ G as in 2.1 above. An adapted
frame bundle for A corresponding to G is a smooth principal bundle G →M with
structure group P such that A = G ×P g, the associated bundle with respect to the
adjoint representation of P on g.

Proposition 2.3. If A → M is an adjoint tractor bundle, then there exists a
canonical adapted frame bundle G → M for A corresponding to the group G =
Aut(g) of all Lie algebra automorphisms of g.

Proof. Constructing subgroups G0 ≤ P ≤ G as in 2.1 above, gives G0 as the
group of all automorphisms of the graded Lie algebra g and P as the group of all
automorphisms of the filtered Lie algebra g. Now let G be the set of all isomorphisms
of filtered Lie algebras from g to some fiber of A. Obviously, this can be viewed as a
subbundle of the linear frame bundle of A, which consists of all linear isomorphisms
(of vector spaces) from g to some fiber of A. In particular, this implies that the
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obvious projection p : G →M is a smooth map. Moreover, by our assumptions on
A, this projection has smooth local sections, so it is a surjective submersion.

Next, we get a canonical right action of P on G by composition from the right.
Since P is the group of all automorphisms of the filtered Lie algebra g this action
is free and transitive on each fiber, so p : G →M is a smooth principal P–bundle.

A point u ∈ G with p(u) = x ∈ M by definition is an isomorphism g → Ax
of filtered Lie algebras. Thus we get a canonical smooth map G × g → A by
mapping (u,A) to u(A). If ϕ ∈ P is an automorphism of g, then (u ◦ ϕ,ϕ−1(A))
is also mapped to u(A), so this induces a smooth vector bundle homomorphism
G ×P g → A, which covers the identity on M and is a linear isomorphism in each
fiber. Thus A is the associated bundle to G with respect to the canonical action of
P on g which coincides with the adjoint action.

Remark. As we mentioned in section 2.1, for particular applications it may be
convenient or necessary to work with a group G (with Lie algebra g) which is
different from Aut(g). For all such groups a similar construction of adapted frame
bundles as in the proposition above is possible: Let us first consider the case of
subgroups of Aut(g) which still have Lie algebra g, i.e. which contain the connected
component Int(g) of the identity in Aut(g). If G is such a group, then one just
has to characterize G as a group of automorphisms of g, which usually amounts
to preserving an orientation of g, or some similar structure. Then one has to
equip A with the analog of that structure and in the construction of the above
proposition restrict to those isomorphisms g → Ax which are compatible with
that structure. This procedure is needed for example in passing from conformal
manifolds to oriented conformal manifolds.

Now if G is a general Lie group with Lie algebra g, then the adjoint action
defines a homomorphism Ad : G → Aut(g). Let G = Ad(G) ⊂ Aut(g) be the
image of G under this homomorphism, and let H ⊂ G be the kernel of Ad. By
construction, we then get surjective homomorphisms P → P and G0 → G0 which
both have kernel H . As described above, we get an adapted frame bundle G →M
with group P . Using this, we can construct a principal G0–bundle G0 → M as
the space G/P+ of orbits of the group P+, the image of exp(p+) in P , and the
canonical projection G → G0 is a principal P+–bundle. Now one has to choose an
additional structure, namely an extension of the principal bundle G0 to the group
G0, i.e. a principal G0–bundle G0 → M together with a homomorphism G0 → G0
over the projection G0 → G0. This corresponds to choosing a structure similar to a
spin structure in Riemannian geometry. Having made this choice, we then get the
adapted frame bundle G with group P as the pullback of G → G0 along the map
G0 → G0. For example, this is exactly the process needed to pass from oriented
conformal manifolds to oriented conformal spin–manifolds.

These comments are broad since the details of the possible structures depend
on the concrete choices of g and so it is not possible to treat all cases in a uniform
way. For our present purposes, the most important point is that there is clearly
no problem at a local level. Furthermore, these details will have no bearing on
our general treatment below so we henceforth simply assume that for a specific
structure we have fixed a suitable group G and that the necessary accompanying
structure has been incorporated into the definition of an adjoint tractor bundle
A → M . Thus, we have always adapted frame bundles which correspond to the
group G.
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2.4. Definition. Let A →M be an adjoint tractor bundle over M and let G →M
be an adapted frame bundle for A corresponding to a group G with Lie algebra g,
and consider the subgroup P ≤ G as before. Let V be a finite dimensional effective
(g, P )–module, i.e. a P–module such that the infinitesimal action of p on V extends
to an effective action of g. We define the V–tractor bundle T = TV for A to be the
associated bundle G ×P V.

Note that any infinitesimally effective representation of the group G is effective
as a (g, P )–module and in the case where g is simple, effectivity just means non-
triviality.

Let T be the V–tractor bundle for A. The g–action on V which is compatible
with the P–action then gives rise to a vector bundle homomorphism A⊗T → T , so
T becomes a bundle of modules over the bundle A of Lie algebras. We will indicate
the module structure simply by (s, t) 7→ s • t if there is no risk of confusion. Note
that by construction this defines a Lie algebra action, so

{s1, s2} • t = s1 • (s2 • t)− s2 • (s1 • t).
It is well known that there exists a unique element E ∈ g called the grading

element such that [E,A] = jA holds for all elements A ∈ gj , j = −k, . . . , k.
Clearly, E is always contained in the center of g0. This implies that Ad(b) ·E = E
for each b ∈ G0 and consequently E acts by some scalar on each irreducible G0–
module. Now we can split the space V according to eigenvalues of the action of E,
and we denote by Vj the component corresponding to the eigenvalue j. Then the
action of G0 maps each Vj to itself, while the (infinitesimal) action of gi maps Vj
to Vi+j for each i = −k, . . . , k.

Clearly, the decomposition V =
⊕

j Vj is just G0 invariant and not P in-
variant. On the other hand, if we pass to the associated filtration by putting
Vj :=

⊕
j′≥j Vj′ , then from the decomposition of P in section 2.1 one concludes

that this endows V with a P–invariant decreasing filtration. Note that if V is
irreducible as a g–module, then it is generated as a module over the universal en-
veloping algebra by a highest weight vector, so the possible eigenvalues j lie in the
set {j0−k : k ∈ N} where j0 is eigenvalue of the highest weight vector. Thus, in the
general (finite dimensional) case, the eigenvalues lie in the union of finitely many
sets of that type (each such set corresponding to a g–irreducible component of V).
Passing to the associated bundles, we see that for each eigenvalue j of E on V, we
get a smooth subbundle T j ⊂ T corresponding to the P–submodule Vj of V, and
these subbundles form a decreasing filtration of T .

2.5. Connections on tractor bundles. According to our definitions, there are
many adjoint tractor bundles (and thus V–tractor bundles for any V) on a manifold
M . As we will show below, the existence of a linear connection with certain proper-
ties is only possible on one (isomorphism class) of those, and this linear connection
is equivalent to a normal Cartan connection on an adapted frame bundle G → M .
Before we discuss this, we make some preliminary observations.

Let T be the V–tractor bundle corresponding to A (and the adapted frame
bundle p : G → M). Let us denote by ρ the effective (g, P )-representation on V.
By definition, T is an associated bundle to the principal bundle G →M , so we can
identify smooth sections of T with smooth maps G → V, which are P–equivariant.
To write down this isomorphism explicitly, note first that the condition that T is
associated to G implies that each point u ∈ G with p(u) = x ∈ M gives rise to an
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1518 ANDREAS ČAP AND A. ROD GOVER

isomorphism u : V→ Tx, the fiber of T over x. Moreover, if b ∈ P is any element,
then u · b(v) = u(ρ(b)(v)) for all v ∈ V where the dot denotes the principal right
action of P on G.

If t ∈ Γ(T ) is a smooth section, then the corresponding function t̃ : G → V is
given by t̃(u) = u−1(t(p(u))). By definition,

t̃(u · b) = ρ(b−1)(u−1(t(p(u)))) = ρ(b−1)(t̃(u))

and so t̃ is seen to be equivariant. Conversely, the smooth section of T corresponding
to a smooth equivariant map τ : G → V is given by x 7→ u(τ(u)), where u ∈ G is any
point with p(u) = x. This is independent of the choice of u since τ is equivariant.

Suppose that∇ is a linear connection on T . Consider a point u ∈ G and a tangent
vector ξ ∈ TuG and let x = p(u). For a smooth section t ∈ Γ(T ) we have a well
defined element ∇Tp·ξt(x) ∈ Tx and thus a point u−1(∇Tp·ξt(x)) ∈ V. On the other
hand, we also have the well defined element ξ · t̃(u) ∈ V. If f is a smooth real valued
function on M , then ∇Tp·ξft(x) = t(x)(Tp · ξ) ·f(x)+f(x)∇Tp·ξ t(x). On the other
hand, f̃ t = (p∗f)t̃ and thus ξ · f̃ t(u) = ξ · (p∗f)(u)t̃(u) + (p∗f)(u)ξ · t̃(u). But this
implies that the difference u−1(∇Tp·ξt(x))− ξ · t̃(u) depends only on t(x) and thus
only on t̃(u). Hence ξ induces a linear map Φ(ξ) : V → V, which is characterized
by the fact that u−1(∇Tp·ξt(x)) − ξ · t̃(u) = Φ(ξ)(t̃(u)), for each smooth section t
of T .

Definition. (1) A linear connection ∇ on T is called a g–connection if and only
if for each tangent vector ξ ∈ TuG the linear map Φ(ξ) : V → V defined above is
given by the action of some element of g.

(2) A linear connection ∇ on T is called non–degenerate if and only if for any
point x ∈M and any nonzero tangent vector ξ ∈ TxM there exists a number i and
a (local) smooth section t of T i such that ∇Tp·ξt(x) /∈ T ix .

(3) A tractor connection on T is a nondegenerate g–connection.

Note that the condition in the definition of a nondegenerate connection is of
algebraic character: Since each T i is a smooth subbundle of T , we can form the
quotient bundle T /T i and the projection πi : T → T /T i. For a smooth vector field
ξ on M and a smooth section s of T i, we can then consider the section πi(∇ξs)
of T /T i. Now one immediately verifies that the map (ξ, s) 7→ πi(∇ξs) is bilinear
over smooth functions on M , so it is induced by a vector bundle homomorphism
TM ⊗T i → T /T i and our condition says exactly that these bundle maps together
separate points in TM .

For the special case of an adjoint tractor bundle, there is a simple and practical
characterization of g–connections:

Proposition 2.6. A linear connection ∇ on an adjoint tractor bundle A → M is
a g–connection if and only if it is compatible with the bracket, i.e. iff

∇ξ{s1, s2} = {∇ξs1, s2}+ {s1,∇ξs2}
holds for all smooth vector fields ξ on M and all sections s1, s2 ∈ Γ(A).

Proof. Let us first assume that ∇ is a tractor connection. For sections s1, s2 of
A with corresponding equivariant functions s̃1, s̃2 : G → g, the function repre-
senting {s1, s2} is just u 7→ [s̃1(u), s̃2(u)], the pointwise bracket in g. Since ∇
is a tractor connection, we can compute the function representing ∇ξs as u 7→
ξ̄ · s̃(u) − [A(ξ̄(u)), s̃(u)], where ξ̄ is a lift of ξ to a smooth vector field on G and
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each A(ξ̄(u)) is an element of g. But then compatibility of the bracket follows im-
mediately from the fact that ξ̄ and [A(ξ̄(u)), ] act as derivations with respect to
the pointwise bracket.

Conversely, assume that ∇ is compatible with the bracket. For a tangent vector
ξ ∈ TuG consider the map Φ(ξ) : g → g. By definition, this map is characterized
by u−1(∇Tp·ξs(x)) = ξ · s̃(u) + Φ(ξ)(s̃(u)) for each smooth section s of A. Now the
fact that ∇ is compatible with the bracket and the same is true for the first term
on the right hand side immediately implies that Φ(ξ) is a derivation for each ξ. But
since g is semisimple, any derivation is inner, so the result follows.

Theorem 2.7. Let A →M be an adjoint tractor bundle, G →M an adapted frame
bundle corresponding to a choice of a group G with Lie algebra g, V an effective
(g, P )–module and T the V–tractor bundle for A.

(1) A tractor connection ∇ on T induces a Cartan connection ω on G.
(2) Conversely, a Cartan connection ω on G induces tractor connections on all

tractor bundles for A.

Proof. (1) Let u ∈ G be a point and let ξ ∈ TuG be a tangent vector. As before,
we denote by ρ both the representations of P and g on V. Since ∇ is a tractor
connection on T , we can find an element ω(ξ) ∈ g such that u−1(∇Tp·ξt(x)) =
ξ · t̃(u) + ρ(ω(ξ))(t̃(u)) holds for all smooth sections t ∈ Γ(T ). Moreover, since by
assumption T corresponds to an effective g–module, the element ω(ξ) is uniquely
determined by ξ, so we get a well defined map ω : TuG → g.

To see that ω : TG → g is smooth, it suffices to prove that for each smooth
vector field ξ on G, the map G → g given by u 7→ ω(ξ(u)) is smooth. For that, in
turn, it suffices to show that u 7→ ρ(ω(ξ(u)))(t̃(u)) is smooth for each t ∈ Γ(T ).
Now since u 7→ Tp · ξ(u) is a smooth map G → TM , the map G → V given by
u 7→ u−1(∇Tp·ξt(p(u))) is smooth, too. Since ξ · t̃ is obviously smooth, the result
follows from the defining equation for ω.

So it remains to verify the three defining conditions for a Cartan connection
listed in 2.1. First, if A ∈ p is any element, then the fundamental field ζA is
vertical, i.e. Tp · ζA = 0. Thus, the defining equation for ω implies ρ(ω(ζA))(t̃) =
−ζA · t̃. But t̃ is equivariant, so t̃(u · b) = ρ(b−1)(t̃(u)). Putting b = exp(tA) in
that formula and differentiating at t = 0 we get ζA · t̃(u) = −ρ(A)(t̃(u)). Thus
ρ(ω(ζA))(t̃(u)) = ρ(A)(t̃(u)) and since V is an effective g–module, this implies
ω(ζA) = A. In particular, this implies that ω induces an isomorphism between the
vertical tangent bundle of G and the trivial bundle G × p.

Next, we claim that ω restricts to a linear isomorphism on each tangent space.
Since by assumption G and g have the same dimension, it suffices to show that the
restriction of ω to each tangent space TuG is injective. So let ξ ∈ TuG be any tangent
vector. Let us first assume that Tp ·ξ 6= 0. Then since ∇ is a tractor connection, we
can find a number i and a smooth section t ∈ Γ(T i) such that ∇Tp·ξt(x) /∈ T ix . But,
by the definition of ω, we have ∇Tp·ξt(x) = u

(
ξ · t̃(u) + ρ(ω(ξ))(t̃(u))

)
. Now the

function t̃ has values in Vi, and so also ξ · t̃ has values in Vi. Thus, ∇Tp·ξt(x) /∈ T ix
implies ω(ξ) 6= 0. On the other hand, if Tp · ξ = 0, then ξ is vertical, and we have
already shown that ω is injective on each vertical tangent space.

It remains to prove the equivariance of ω. For u ∈ G, ξ ∈ TuG and b ∈ P consider
((rb)∗ω)(u)(ξ). By definition, this equals ω(u · b)(Trb · ξ). Since the principal right
action preserves the fibers of G we have Tp · Trb · ξ = Tp · ξ. Thus for a smooth
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section t ∈ Γ(T ) we compute

ρ
(
ω(u · b)(Trb · ξ)

)
(t̃(u · b)) = (u · b)−1(∇Tp·ξt(x))− ((Trb · ξ) · t̃)(u · b)

= ρ(b−1)(u−1(∇Tp·ξt(x))) − ξ · (t̃ ◦ rb)(u).

The equivariance of t̃ implies that t̃ ◦ rb = ρ(b−1)(t̃) and thus ξ · (t̃ ◦ rb)(u) =
ρ(b−1)(ξ · t̃(u)), and we get

ρ(ω(u · b)(Trb · ξ))t̃(u · b) = ρ(b−1)(ρ(ω(u)(ξ))t̃(u))

= ρ
(

Ad(b−1)(ω(u)(ξ))
)
t̃(u · b).

Again, the effectivity of ρ implies that ω(u · b)(Trb · ξ) = Ad(b−1)(ω(u)(ξ)).
(2) Let us conversely assume that ω is a Cartan connection on G. For a smooth

vector field ξ on M we can find a lift ξ̄, which is a smooth vector field on G. Then
for a section t of T with corresponding map t̃ : G → V consider the map G → V
defined by ξ̄ · t̃+ ρ(ω(ξ̄))(t̃). This map is obviously smooth and its value at a point
u depends only on the value of ξ̄ at u (and on t). Adding to ξ̄ a fundamental
vector field ζA does not change the expression since ω reproduces the generators of
fundamental vector fields and t̃ is equivariant. These two facts show that the map
does not depend on the choice of ξ̄ but only on ξ. This in turn implies that we may
choose ξ̄ to be invariant under the principal right action of P , that is, Trb · ξ̄ = ξ̄.
Then both ω(ξ̄) and ξ̄ · t̃ are P -equivariant and so the above function is also P–
equivariant, since all its ingredients have that property. Thus, it defines a smooth
section of T and we define ∇ by letting ∇ξt be that section. One immediately
verifies that this defines a linear connection on T and, by construction, this is a
g–connection, so it remains to verify that ∇ is nondegenerate.

Let us assume that ξ ∈ TxM is a nonzero tangent vector. Choose a point u ∈ G
with p(u) = x and a tangent vector ξ̄ ∈ TuG with Tp · ξ̄ = ξ. Adding the value
of an appropriate fundamental vector field to ξ̄ we may without loss of generality
assume that ω(ξ̄) ∈ g− = g−k ⊕ · · · ⊕ g−1, and clearly ω(ξ̄) 6= 0. Since V is an
effective g–module, we can find a vector v ∈ V such that ρ(ω(ξ̄))(v) 6= 0. Without
loss of generality we may assume that v is an eigenvector for the grading element
E, and we denote by j its eigenvalue. Now we can find a smooth section t of
T j such that u−1(t(x)) = v. Then ξ̄ · t̃(u) ∈ Vj , so u−1(∇ξt(x)) is congruent to
ρ(ω(ξ̄))(v) modulo Vj . But ρ(E)(ρ(ω(ξ̄))(v)) = ρ(ω(ξ̄))(ρ(E)(v)) + ρ([E,ω(ξ̄)])(v),
and since ω(ξ̄) ∈ g− it follows immediately that expanding ρ(ω(ξ̄))(v) as a sum of
eigenvectors for E, smaller eigenvalues than j have to occur. But this implies that
∇ξt(x) /∈ T jx .

2.8. The fact that we can construct a Cartan connection from a tractor connec-
tion implies some relations between an adjoint tractor bundle admitting a tractor
connection and other natural bundles. First consider the adjoint action of P on g.
This action leaves the subalgebra p = g0 invariant, so we get an induced action on
g/p. So we can form the associated bundle G ×P (g/p). Moreover, the projection
g→ g/p is by definition P–equivariant, so it induces a projection A → G ×P (g/p)
which gives an isomorphism A/A0 ∼= G ×P (g/p). On the other hand, using the
Cartan connection it is easy to identify the bundle G ×P (g/p): Consider the map
G × g → TM which is given by (u,A) 7→ Tp · (ω(u)−1(A)). If A lies in p, then
ω(u)−1(A) = ζA, which is a vertical field, so this map factors to a smooth map
G× (g/p)→ TM . The equivariance of ω then immediately implies that this factors
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further to a homomorphism G ×P (g/p)→ TM of vector bundles which covers the
identity and is an isomorphism in each fiber, so it is a bundle isomorphism. Thus we
see that we get a canonical projection Π : A → TM , which induces an isomorphism
A/A0 ∼= TM .

Let us next assume that we have fixed a G–invariant non–degenerate bilinear
form B on g. (It follows then automatically that B is a nonzero multiple of the
Killing form. For theoretical purposes we could restrict to the case where B equals
the Killing form, but for working with specific structure it is often preferable to use
some multiple, so we prefer to keep this as an additional ingredient.) Then B is also
invariant under the action of P , and hence induces a nondegenerate bilinear form
on A. Moreover, it is easy to see from the grading that the Killing form (and thus
also B) restricts to zero on gp× gq unless p+ q = 0. In particular, this implies that
B restricts to zero on p × p+, so it induces a non–degenerate pairing between g/p
and p+, which is still invariant. In terms of the adjoint tractor bundle A this means
that we get a duality between A1 and A/A0 ∼= TM , which gives us an isomorphism
A1 ∼= T ∗M . Thus, the adjoint tractor bundle contains the cotangent bundle as a
subbundle and has the tangent bundle as a quotient.

The isomorphism TM ∼= A/A0 leads to more structure on TM : First, we get an
induced filtration TM = T−kM ⊃ T−k+1M ⊃ · · · ⊃ T−1M , by putting T iM :=
Ai/A0 ⊂ A/A0 = TM . By construction the rank of the smooth subbundle T iM ⊂
TM equals the dimension of gi ⊕ · · · ⊕ g−1. Moreover, if G → M is an adapted
frame bundle for A corresponding to a group G with Lie algebra g, we consider
the subgroups G0 ≤ P ≤ G as in 2.1. We define P+ = exp(p+) ≤ P and consider
G0 = G/P+. It is easy to see that G0 is a principal bundle over M with group G0,
see [6, 3.11]. Moreover, from the fact that G is a frame bundle for A, one easily
concludes that for each i = −k, . . . ,−1, the quotient bundle T iM/T i+1M is the
bundle associated to G0 with respect to the adjoint action of G0 on gi. Otherwise
put, we can view G0 as a reduction of the associated graded vector bundle of the
filtered vector bundle TM to the structure group G0. This reduction is the basic
underlying geometric structure on M which determines the parabolic geometry on
M in all cases except the two mentioned in 2.1.

2.9. Curvature. The next step is to relate the curvature of a tractor connection
with the curvature of the induced Cartan connection. The curvature of a linear
connection ∇ on T is defined as usual to be the End(T )–valued two-form R which
is characterized by R(ξ, η)(t(x)) = (∇ξ∇η −∇η∇ξ −∇[ξ,η])t(x) for smooth vector
fields ξ, η and any smooth section t of T . We now show that this curvature is given
by the action of the curvature of the induced Cartan connection. Recall (section
2.4) that we write s • t for the action of a section s of A on a section t of T .

Proposition. Let ∇ be a tractor connection on T . Then there is an A–valued
two form κ on M , such that R(ξ, η)(t) = κ(ξ, η) • t for all t ∈ T . Moreover, if
ω ∈ Ω1(G, g) is the Cartan connection induced by ∇, then the function G → g

representing κ(ξ, η) is dω(ξ̄, η̄) + [ω(ξ̄), ω(η̄)], where ξ̄ and η̄ are lifts of ξ and η to
smooth vector fields on G.

Proof. To see that dω(ξ̄, η̄) + [ω(ξ̄), ω(η̄)] depends only on ξ and η notice that we
may check this at one point. So it suffices to see that the expression vanishes
if one of the fields is vertical. Now for A ∈ p let iζA be the insertion operator
associated to the fundamental vector field ζA. Since iζAω is constant, we have
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iζAdω = LζAω, the Lie derivative, which equals − ad(A) ◦ ω by the equivariance
of ω. Consequently, dω(ζA, η̄) = (iζAdω)(η̄) = −[A,ω(η̄)] which is what we had
to show. Next, we claim that the function dω(ξ̄, η̄) + [ω(ξ̄), ω(η̄)] : G → g is P -
equivariant so κ(ξ, η) is a well defined section of A. Equivariancy of ω reads as
ω(u · b)(Trb · ξ̄(u)) = Ad(b−1)(ω(ξ̄(u))). Applying the exterior derivative to the
equation (rb)∗ω = Ad(b−1) ◦ ω we get (rb)∗dω = Ad(b−1) ◦ dω, so

dω(u · b)(Trb · ξ̄(u), T rb · η̄(u)) = Ad(b−1)(dω(u)(ξ̄(u), η̄(u))).

Since ξ̄ is a projectable vector field, we have Tp · ξ̄(u · b) = Tp · ξ̄(u) = Tp ·Trb · ξ̄(u)
and similarly for η̄. Thus we conclude the result from the first step of the proof.

To verify the formula for the curvature, let t ∈ Γ(T ) be a smooth section with
corresponding smooth equivariant function t̃ : G → V as in section 2.5, and let ρ
denote the representation of (g, P ) on V. Then by definition of ω, the function
G → V representing ∇ηt ∈ Γ(T ) is given by η̄ · t̃ + ρ(ω(η̄))(t̃). Thus ∇ξ∇ηt is
represented by the function

ξ̄ · η̄ · t̃+ ξ̄ · ρ(ω(η̄))(t̃) + ρ(ω(ξ̄))(η̄ · t̃) + ρ(ω(ξ̄))
(
ρ(ω(η̄))(t̃)

)
.

Now ξ̄ ·ρ(ω(η̄))(t̃) = ρ(ξ̄ ·ω(η̄))(t̃)+ρ(ω(η̄))(ξ̄ · t̃). Using that ξ̄ · η̄ · t̃− η̄ · ξ̄ · t̃ = [ξ̄, η̄] · t̃
and that ρ(ω(ξ̄)) ◦ ρ(ω(η̄)) − ρ(ω(η̄)) ◦ ρ(ω(ξ̄)) = ρ([ω(ξ̄), ω(η̄)]), we conclude that
the section ∇ξ∇ηt−∇η∇ξt is represented by the function

[ξ̄, η̄] · t̃+ ρ(ξ̄ · ω(η̄))(t̃)− ρ(η̄ · ω(ξ̄))(t̃) + ρ([ω(ξ̄), ω(η̄)])(t̃).

Since ξ̄ lifts ξ and η̄ lifts η, the bracket [ξ̄, η̄] is a lift of the vector field [ξ, η], and
consequently the section ∇[ξ,η]t is represented by the function

[ξ̄, η̄] · t̃+ ρ(ω([ξ̄, η̄]))(t̃).

Subtracting this from the above term we see that by definition of the exterior
derivative R(ξ, η)(t) is represented by the map ρ(dω(ξ̄, η̄) + [ω(ξ̄), ω(η̄)])(t̃).

2.10. Curvature normalization. The canonical Cartan connection for a para-
bolic geometry is characterized by a normalization condition on its curvature. To
state this normalization condition, we have to reinterpret the curvature a little. In
proposition 2.9 above, we have defined the A–valued two form κ, which is by defini-
tion just the curvature of the induced Cartan connection. Now recall from section
2.8 that the cotangent bundle T ∗M is the associated bundle G×P p+ corresponding
to the adjoint action of P on p+ = g1. Thus, κ corresponds to a P–equivariant
map κ̃ : G → Λ2p+ ⊗ g. As we have observed, p+ is the dual P–module to g/p.
The latter may be identified with g− = g−k⊕· · ·⊕g−1 where the P–action on that
space is given by applying the adjoint action and forgetting all terms which are not
in g−. Hence we can view κ̃ as an equivariant map from G to the space L2

alt(g−, g)
of bilinear skew symmetric maps. This form of κ̃ is usually called the curvature
function of the Cartan connection ω.

Since g ∼= g∗ viaB, we see that L2
alt(g−, g) is dual (as aG0–module) to L2

alt(p+, g),
and similarly, L(g−, g) is dual to L(p+, g). Since also p+ is a Lie subalgebra of g, we
have the Lie algebra differential L(p+, g)→ L2

alt(p+, g), and its dual map can thus
be viewed as a G0–homomorphism ∂∗ : L2

alt(g−, g)→ L(g−, g). Following Kostant
(see [26]) one constructs inner products on the spaces in question such that ∂ and
∂∗ are adjoint operators, see [6, 2.5,2.6]. In fact the map ∂∗ turns out to be a
homomorphism of P–modules, see [6, 2.13] and is usually called the codifferential .
To write down a formula for ∂∗, choose a basis {X`} of g− and let {Z`} be the dual
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basis of p+. Then for a bilinear alternating map f : g− × g− → g and an element
X ∈ g− one has (see [33, section 5.1])

(∂∗f)(X) =
∑
`

(
[Z`, f(X,X`)]− 1

2f([Z`, X ]−, X`)
)
.

Here [Z`, X ]− denotes the g− part of the bracket [Z`, X ]. Obviously, this expression
is independent of the choice of the basis {X`}.

A Cartan connection is called normal if and only if its curvature function κ̃
satisfies ∂∗ ◦ κ̃ = 0, i.e. iff κ̃ has ∂∗–closed values.

2.11. Curvature normalization for tractor connections. It is now quite easy
to reformulate the normalization condition in a way which is appropriate for our
purposes. If A is an adjoint tractor bundle on M , p : G → M is an adapted
frame bundle for A corresponding to some group G, T is any tractor bundle, and
∇ is a tractor connection on T , then by proposition 2.9, we have the A–valued
two form κ describing the curvature of ∇. Now by definition, κ is a section of the
bundle G ×P L2

alt(g−, g). Now since the codifferential ∂∗ : L2
alt(g−, g) → L(g−, g)

is P–equivariant it induces a vector bundle homomorphism between the associated
bundles, i.e. we have ∂∗ : Λ2T ∗M ⊗A → T ∗M ⊗A, and we use the same symbol
to denote the induced map on the spaces of smooth sections, i.e. ∂∗ : Ω2(M,A)→
Ω1(M,A). (In fact, a similar construction is possible for forms of higher degree,
but we will not need this here.)

Definition. A tractor connection ∇ on a tractor bundle T is called normal if and
only if the form κ ∈ Ω2(M,A) representing its curvature has the property that
∂∗(κ) = 0.

By construction, if κ̃ : G → L2
alt(g−, g) is the function representing κ, then the

function representing ∂∗(κ) is just given by ∂∗ ◦ κ̃, so a tractor connection ∇ on
T is normal if and only if the induced Cartan connection on the adapted frame
bundle is normal.

Using the formula for ∂∗ on the Lie algebra level from 2.10, one can easily
compute the normality condition explicitly. To do this, we have to make another
simple observation: As we have seen in 2.8, we have a natural projection Π : A →
TM and dually a natural inclusion T ∗M → A∗. The latter gives us inclusions
Λ2T ∗M ⊗A → Λ2A∗⊗A and T ∗M ⊗A → A∗⊗A. (Via the bilinear form B from
2.8, could replace any of these occurrences of A∗ by a A.) In particular, we may
extend the form κ ∈ Ω2(M,A) naturally to a section of Λ2A∗ ⊗A, which has the
property that it vanishes if either of its arguments lies in A0. We again denote this
section by κ, and call it the tractor curvature of the tractor connection ∇.

Now consider the formula for ∂∗ in 2.10. No change is made if we extend f to be
an alternating map on

⊗2
g which annihilates p ⊗ g. Then we may view ∂∗f as a

map from (g/p)→ g. That is we may then insert X ∈ g into the defining expression
and the result is zero if X ∈ p. In fact, since f annihilates p⊗ g (and so also g⊗ p),
it is clear that we obtain the same answer, in any case, if we modify the formula by
omitting the subscript minus in the bracket in the second term and summing over
dual bases (with respect to B) for g (since f(−, X`) is involved in both terms, so
only the g−–component of X` contributes). Bearing in mind that the Lie bracket
of g corresponds to the algebraic bracket on A we obtain the following formulation
of the normalization condition.
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Proposition. Let κ ∈ Γ(Λ2A∗⊗A) be the tractor curvature of a tractor connection
∇ on some tractor bundle T . Then ∇ is normal if and only if the trace (with respect
to B) over the first and last factor of the map

⊗3A → A defined by

(s1, s2, s3) 7→ {s1, κ(s2, s3)} − 1
2κ({s1, s2}, s3)

vanishes.

2.12. Let us summarize the results we have obtained up to now and put them
in perspective: Suppose that we start with the underlying geometric structure
corresponding to some parabolic geometry. Suppose we can construct over each
smooth manifold M with that structure an adjoint tractor bundle A and a normal
tractor connection on one of the tractor bundles for A. Then on the appropriate
adapted frame bundle G for A we get a normal Cartan connection. Thus we get
an alternative approach to constructing the canonical Cartan connection for each
of these underlying geometric structures.

It is known that G (and thus also A, and each tractor bundle for A) is uniquely
determined up to isomorphism by the underlying geometric structure on M and
the fact that it carries a normal Cartan connection (see [6]). In that sense we can
really speak about the normal tractor bundles on a manifold M with an appropriate
geometric structure.

The normal Cartan connection then induces a normal tractor connection on
each of the tractor bundles for A. These tractor connections depend only on the
(canonical) bundle G and Cartan connection ω, so they are invariant differential
operators in any reasonable sense. We will show in the next section how to use
these tractor connections to construct a much broader class of invariant differential
operators.

3. Fundamental D-operators

In this section we construct a basic set of invariant differential operators on a
manifold equipped with a parabolic geometry. Throughout this section we will
assume that we deal with a fixed parabolic geometry corresponding to a group G
with a |k|–grading of its Lie algebra g. As explained above each such manifold
M is equipped with a normal adjoint tractor bundle A → M together with a
normal tractor connection ∇A and a corresponding adapted frame bundle G →M .
Then for any (g, P )-module V we have the corresponding (normal) V-tractor bundle
T = T V →M with a normal tractor connection ∇T on it.

For any P -moduleW the fundamental D-operator is a first order invariant differ-
ential operator from sections ofW to sections of A∗⊗W , whereW is the associated
bundle corresponding toW. Such operators were first described for conformal struc-
tures in [18] and for CR structures in [19]. However in those cases the constructions
were limited to the case that W was either a line bundle or the tensor product of a
line bundle with a tractor bundle. Thus even for those structures we present here
a considerable generalization as well as simultaneously treating all other parabolic
geometries. (In fact there is an alternative approach to these operators which en-
ables their construction in even wider circumstances. However we shall not need
that construction here and it will be described elsewhere.)

3.1. The fundamental D-operators. Suppose that W is some representation
of P and W = G ×P W is the corresponding bundle. Then there is a bijective
correspondence between the space Γ(W) of smooth sections of W and the space
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C∞(G,W)P of P–equivariant smooth maps from G to W, see 2.5. Consider the
exterior derivative d : C∞(G,W)→ Ω1(G,W) for W valued functions on G. Via the
Cartan connection ω on G, we may identify Ω1(G,W) with the space C∞(G, g∗⊗W).
Explicitly, this correspondence is given by mapping τ ∈ Ω1(G,W) to the function
u 7→ (A 7→ τ(ω−1

u (A))), for u ∈ G and A ∈ g. Note that C∞(G, g∗⊗W) contains the
subspace of P–equivariant smooth functions, which is isomorphic to Γ(A∗ ⊗W).

Proposition. (1) The exterior derivative d : C∞(G,W)→ C∞(G, g∗⊗W) maps P–
equivariant functions to P–equivariant functions. Thus it restricts to an (obviously
natural) first order differential operator D = DW : Γ(W) → Γ(A∗ ⊗ W), the
fundamental D–operator for the bundle W.

(2) Suppose that W′ is another P–representation and that ϕ : W → W′ is a
P–homomorphism. Denoting by ϕ also the induced map Γ(W) → Γ(W ′) between
sections of the associated bundles, we have DW

′
ϕ(s) = ϕ(DW (s)) for all smooth

sections s ∈ Γ(W).
(3) For the tensor product W ⊗W ′, we have the Leibniz rule, D(s ⊗ t) = Ds⊗

t+ s⊗Dt, for all smooth sections s ∈ Γ(W) and t ∈ Γ(W ′).

Proof. For a one–form τ ∈ Ω1(G,W) let us denote by τ̃ : G → g∗ ⊗W the corre-
sponding smooth function. Now consider an element g ∈ P and the principal right
action rg by g on G. By definition, we have

((̃rg)∗τ)(u)(A) = ((rg)∗τ)(u)(ω−1
u (A)) = τ(u · g)(Trg · ω−1

u (A)).

Equivariancy of ω immediately implies that Trg · ω−1
u (A) = ω−1

u·g(Ad(g−1) · A), so
we can rewrite the equation as

((̃rg)∗τ )(u)(A) = τ̃ (u · g)(Ad(g−1) ·A).

Now f ∈ C∞(G,W) is P–equivariant, if and only if (rg)∗f = ρ(g−1) ◦ f , where ρ
denotes the representation of P on W. Applying the exterior derivative d to this
equation and keeping in mind that d commutes with pullbacks and ρ(g−1) is linear,
we get (rg)∗df = ρ(g−1) ◦ df . Using this, we now compute

d̃f(u · g) = ˜(rg)∗df(u) ◦Ad(g) = ρ(g−1) ◦ d̃f(u) ◦Ad(g),

which means exactly that d̃f is equivariant, too, so (1) is proved.
For (2), one just has to notice that ϕ̃(s) = ϕ ◦ s̃, so linearity of ϕ implies that

D̃ϕ(s) = dϕ̃(s) = ϕ ◦ ds̃ = ϕ̃(Ds). Similarly, for (3) we have s̃⊗ t = s̃ ⊗ t̃ and
bilinearity of the pointwise tensor product implies the result.

The naturality of D proved in (2) and (3) above justifies the notation D for
all the fundamental D–operators. Summarizing the result, we see that we are
in a situation completely analogous to the case of covariant derivatives induced
by a principal connection: For any associated bundle one has the fundamental
D–operator D : Γ(W) → Γ(A∗ ⊗ W) and these operators behave naturally with
respect to all constructions with associated bundles. To emphasize the similarity to
covariant derivatives, we will often write Dsσ := Dσ(s) for s ∈ Γ(A) and σ ∈ Γ(W).

3.2. Although the above definition of the fundamental D–operators heavily in-
volves the Cartan connection, we will next show that for a large class of bundles
we can construct the fundamental D–operators directly from tractor connections
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on tractor bundles. First, we will compute the fundamental D–operators in two
important special cases.

Proposition. (1) The fundamental D–operator for the trivial line bundle equals
the extension of the exterior derivative, i.e. for s ∈ Γ(A) and f ∈ C∞(M,R) we
have Dsf = df(Π(s)), where Π : Γ(A) → Γ(TM) is the canonical projection, see
2.8.

(2) Let T be a tractor bundle and let ∇T be the normal tractor connection on
T . Then for smooth sections s ∈ Γ(A) and t ∈ Γ(T ) we have Dst = ∇TΠ(s)t− s • t,
where • is the action introduced in 2.4.

Proof. (1) For f ∈ C∞(M,R) the corresponding P–invariant function f̃ : G → R is
simply p∗f = f ◦ p. Now dp∗f = p∗df , and the result follows immediately.

(2) We know that the normal tractor connection on T is induced by the Cartan
connection ω on G as described in the proof of theorem 2.7. For the smooth section
s ∈ Γ(A), consider the corresponding P–equivariant function s̃ : G → g. Then the
vector field Π(s) corresponds exactly to the function π ◦ s, where π : g→ g/p ∼= g−
is the canonical projection. Moreover, from the description of TM as an associated
bundle in 2.8, we see that Π(s)(p(u)) = Tp ·ω−1

u (s̃(u)). Hence ω−1
u (s̃(u)) is a lift of

Π(s)(p(u)), so the proof of theorem 2.7(2) implies that

∇̃TΠ(s)t(u) = ω−1
u (s̃(u)) · t̃+ ρ(s̃(u))(t̃(u)) = D̃st(u) + s̃ • t(u),

and the result follows.

This result has several important consequences: First, proposition 3.1(3) and
proposition 3.2(1) imply that any fundamental D–operator satisfies a Leibniz rule
with respect to multiplication by smooth functions, i.e. for σ ∈ Γ(W), s ∈ Γ(A)
and f ∈ C∞(M,R) we have Dsfσ = df(Π(s))σ + fDsσ.

Second, for any bundle W associated to G we can consider the dual bundle W∗.
Denoting by 〈 , 〉 : Γ(W)×Γ(W∗)→ C∞(M,R) the canonical pairing, we see from
(3) of proposition 3.1 and (1) of proposition 3.2 that for s ∈ Γ(A), σ ∈ Γ(W) and
σ′ ∈ Γ(W∗) we get

d(〈σ, σ′〉)(Π(s)) = 〈Dsσ, σ
′〉+ 〈σ,Dsσ

′〉,

so the fundamental D–operators behave similarly to covariant derivatives with re-
spect to dual bundles.

Third, since the fundamental D–operators are defined for arbitrary natural bun-
dles, they can clearly be iterated. Moreover, to compute iterates of a fundamental
D–operator, the only thing one has to know, in addition to the fundamental D–
operator on the bundle one starts with, is the normal tractor connection on the
adjoint tractor bundle A. Knowing this, we can compute the fundamental D–
operator on A∗ ∼= A using proposition 3.2(2), and thus by proposition 3.1(3) we
can compute the iterated fundamental D’s.

As a variation on this theme, note that since both D and ∇A satisfy a Leibniz
rule, t⊗ σ 7→ ∇AΠ(−)t⊗ σ + t⊗Dσ gives a well defined operator, so this also gives
rise to an operator that can be iterated. An operator along these lines was used
in [18] to produce a near complete invariant theory for even dimensional conformal
structures. This provides evidence that our observations here provide a practical
first step for parabolic invariant theory, see the next subsection.
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Finally note, that by proposition 3.1(2) once we know the fundamental D–
operator on any bundle W , then we can compute the fundamental D–operator
on any subbundle and on any quotient of W . In particular, knowing the normal
tractor connection on A, we can compute the fundamental D–operators on the
quotient TM and the subbundle T ∗M and hence use proposition 3.1(3) on any ten-
sor bundle. More generally, knowing the normal tractor connection on any tractor
bundle T , we can compute the fundamental D–operator on any subquotient of T .
In particular, if T i is the filtration introduced in 2.4, then we can compute the
fundamental D–operator on any irreducible component of T i/T i+1. The situation
is further simplified by the fact that normal tractor connections behave well un-
der constructions with vector bundles, i.e. knowing the normal tractor connection
on T we also know the normal tractor connection on any exterior power and any
symmetric power of T , and so on.

3.3. An application. There has been considerable interest in the construction
of polynomial invariants for parabolic structures [14, 15, 3, 24]. In these cases
the authors are seeking local density-valued invariants which are in an appropriate
sense polynomial in the jets of the structure. As described in, for example [3, 23],
there are two steps involved in approaching this problem. The first is to represent
the space of jets of the structure (modulo the action of diffeomorphisms) in an
algebraically manageable manner. The second step involves describing how to use
this algebraic structure to construct all invariants. An obvious approach for the
first step is the Cartan connection (or tractor connection) acting on its curvature.
However it is not known how to use the Cartan connection directly in this way.
This led Fefferman and Graham [14, 15] to develop their ambient constructions to
provide an alternative approach for CR and conformal structures. To the extent
that these constructions are valid they capture the jet information (up to a given
finite order) at a point in a section of a bundle corresponding to the P -submodule of
a tensor-product of irreducible G-modules. However the constructions themselves
are obstructed at finite order except in the case of odd dimensional conformal
structures.

The fundamental D-operator provides another approach to this first step that
works to all orders and is universal in that it deals with all parabolic structures.

Theorem. Let W be a natural bundle corresponding to a P–module W for some
parabolic geometry, and let k ∈ N be any fixed order. Then for a section σ of
W the value of the section (σ,Dσ,D2σ = DDσ, . . . , Dkσ) of the natural bundle⊕k

i=0(
⊗iA∗ ⊗W) at a point x contains the full information of the k–jet of σ at

x. Moreover, to explicitly compute this section, it suffices to know the fundamental
D–operator on W and the normal tractor connection on A. IfW is any subquotient
of a tensor bundle or of a tensor power of A, then knowledge of the normal tractor
connection alone is sufficient. In particular, this applies to the tractor curvature κ,
whose jets capture the jets of the structure itself.

Proof. The correspondence between sections of associated bundles and equivariant
functions on the total space of the principal bundle also works at the level of k–jets.
By the definition of the fundamental D–operators, knowing the value of Dσ at a
point x one can reconstruct the derivatives of the equivariant function G → W
corresponding to σ in all directions. Thus, (σ(x), Dσ(x)) determines the one–jet of
σ in x. For k–jets the result then follows by induction.
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1528 ANDREAS ČAP AND A. ROD GOVER

We have already observed in 3.2 above that to compute these iterated D–
operators, it suffices to know the fundamental D–operator on W and the normal
tractor connection on A. That knowledge of the tractor connection alone suffices
in the cases claimed follows immediately from the naturality results in proposition
3.1. The statement about the tractor curvature is clear, since κ may be viewed as
a section of Λ2A∗ ⊗A.

3.4. We have seen above that knowing the normal tractor connection on one trac-
tor bundle allows us to compute the fundamental D–operator for a large class of
bundles. Let us look more closely at the case of irreducible representations. On
any irreducible representation of P , the nilpotent part P+ must act trivially, so
any such representation is given by extending an irreducible representation of G0

to P . On the Lie algebra level, we thus have to deal with irreducible representa-
tions of the (reductive) Lie algebra g0. Now g0 splits as a direct sum of its center
z(g0) and its semisimple part gss0 . If W is any irreducible representation of g0, then
Schur’s lemma implies that the center z(g0) acts by scalars, so there is a functional
w′ : z(g0) → K, where K = R or C, such that A · v = w(A)v for all v ∈ V and
A ∈ z(g0). Now for any concrete choice of a |k|–graded Lie algebra g it is easy to
see that one needs just a few representations of g in order to have any fundamental
representation of gss0 (with some action of the center) as a subquotient in the given
representations of g. Hence, to deal efficiently with all irreducible representations,
it essentially remains to deal with one–dimensional representations.

Before we come to that problem, let us make one more observation. Suppose
that λ is any representation of P on a vector space W and let λ′ be the infinitesimal
representation of p. Then the kernel of λ is a normal subgroup Q of P , whose Lie
algebra q is exactly the kernel of λ′. Since Q is normal, q is an ideal in p and thus in
particular stable under the adjoint action of P . In particular, this implies that we
can form the associated bundle Q = G ×P q which by construction is a subbundle
of A0 and hence also of A. Now if W is the associated bundle corresponding to W,
σ ∈ Γ(W) is a smooth section and σ̃ : G → W is the corresponding P–equivariant
smooth function, then by construction σ̃ is Q–invariant. Infinitesimally, this means
that ξ ·σ̃ = 0 for any tangent vector ξ on G such that ω(ξ) ∈ q. But this immediately
implies that for a smooth section s of Q ⊂ A, we have Dsσ = 0, so Dσ actually is
a smooth section of (A/Q)∗ ⊗W .

3.5. Natural line bundles. The actual construction of fundamental D–operators
for line bundles depends on the structure in question, so we just outline some basic
results here. For simplicity, we restrict to the case of real line bundles here, complex
line bundles can be dealt with similarly. In section 4 below, we will give a uniform
treatment of these operators in the case of irreducible parabolic geometries. It
should be noted that one can always get some natural line bundles as subbundles
of tractor bundles, so the methods outlined in 3.2 are applicable to these bundles.
In fact, suppose that T is a tractor bundle and T i is the smallest component (the
component with i maximal) in the filtration from 2.4. Then by definition of the
filtration, this corresponds to a completely reducible representation of P . Let ` be
the rank of T i, and consider the `–th exterior power Λ`T of T , which is again a
tractor bundle, whose normal tractor connection is known, once the normal tractor
connection on T is known. But now it is obvious that the smallest component in the
filtration of Λ`T is just Λ`T i and this is one dimensional. Finally, it is easy to see
that the center of g0 always acts nontrivially on the representation corresponding
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to T i (in particular, this is easy to see for the grading element, see 2.4), so we really
obtain a nontrivial line bundle in that way. Moreover, it is worth noting that the
tensor product makes the set of line bundles associated to G into an Abelian group,
and on the level of functionals z(g0) → K∗ the tensor product corresponds to the
sum of functionals.

First we establish some notation. Recall that in the identification of T ∗M with
an associated bundle we have used a G–invariant bilinear form B on g. Let us also
denote by B the corresponding map Γ(A)× Γ(A) → C∞(M,R). We will consider
the fundamental D-operator on a line bundle induced from a representation w̃ of
P on R such that Q := ker(w̃) satisfies dim(Q) = dim(P ) − 1. We write w for
the corresponding representation of p. We will denote the one-dimensional real
representation corresponding to w̃ by R[w̃]. The corresponding line bundle will be
denoted by E [w̃].

Proposition. (1) Given any non–vanishing (local) section σ ∈ Γ(E [w̃]) there is a
corresponding unique (local) smooth section Aσ of A0 such that Dsσ = B(Aσ , s)σ
for all s ∈ Γ(A). Moreover, B(Aσ , Aσ) is constant.

(2) For any section σ′ of E [w̃] and σ as in (1) consider the smooth function
f = σ′σ−1 : M → R. Then Dsσ

′ = B(Aσ, s)σ′ + df(Π(s))σ.
(3) Suppose that α is any real number such that w̃α makes sense as a represen-

tation of P and σ is any (local) section of E [w̃]. Then σα is a section of E [w̃α] and
we have Ds(σα) = ασα−1Dsσ. Moreover, if σ is non–vanishing, then Aσ

α

= αAσ.

Proof. (1) Since σ is non–vanishing, we can form σ−1Dσ, which is a section of A∗.
Since B is non–degenerate, any such section may be represented as s 7→ B(Aσ, s)
for a unique section Aσ of A. So to prove (1) we only have to show that Aσ is
actually a section of A0 and that B(Aσ , Aσ) is constant. But from 3.4 we know
that Dsσ = 0 for s ∈ Γ(Q) where Q is the bundle corresponding to the kernel
of w. In particular, A1 ⊂ Q, so B(Aσ, s) = 0 for s ∈ Γ(A1). But this already
shows that Aσ ∈ Γ(A0), since the pairing between A/A0 and A1 induced by B
is non–degenerate, see 2.8. Next, if s ∈ Γ(A0), then from the definitions of the
fundamental D–operator and of Aσ it follows immediately that B(Aσ , s) = −w(s),
where we also use w to denote the map Γ(A0)→ C∞(M,R) induced by w : p→ R.
Now consider the map Ãσ : G → p corresponding to Aσ. Since the Killing form
vanishes on p× p+, the function B(Aσ, Aσ) depends only on the component of Ãσ
in g0. On the other hand, since the Killing form is non–degenerate on g0×g0, there
is a unique element A ∈ g0 such that w(C) = −B(A,C) for all C ∈ p. Now since
B(Aσ, s) corresponds to the function u 7→ B(Ãσ(u), s̃(u)), we see from the above
that the g0–component of Ãσ must be constant and equal to A, so also B(Aσ, Aσ)
is constant.

(2) We have σ′ = fσ, so the Leibniz rule from 3.2 implies that Dsσ
′ = df(Π(s))σ

+ fDsσ, and rewriting the last term as fB(Aσ, s)σ the result follows.
(3) If σ corresponds to the function σ̃ : G → R, then σ̃α is equivariant for the

action w̃α, so it defines a smooth section of the bundle E [w̃α]. But then for A ∈ g,
we clearly get ω−1

u (A) · σα = ασα−1ω−1
u (A) · σ, so the formula for Dsσ

α follows. If
in addition σ is non–vanishing, then so is σα and by (1) we have

B(Aσ
α

, s)σα = Dsσ
α = ασα−1Dsσ = αB(Aσ , s)σα,

and the result follows.
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Note that viewing D as having values in sections of A⊗W rather than A∗⊗W ,
part (1) and (2) can be rewritten as Dσ = Aσ ⊗ σ for σ non–vanishing and Dσ′ =
I(df)⊗ σ +Aσ ⊗ σ′ with f = σ−1σ′ and I denoting the inclusion T ∗M → A from
2.8.

Note further that the last part of the above proposition together with the fact
that the tensor product of line bundles corresponds to the sum of functionals im-
plies that it suffices to compute the fundamental D–operators for line bundles cor-
responding to a basis of the space of linear functionals on z(g0). This observation
is nontrivial since it may well occur that E [w̃α] makes sense for all α ∈ R, see 4.15.

3.6. The Lie bracket on adjoint tractors. As we have outlined, the philoso-
phy of the fundamental D–operators is to view the adjoint tractor bundle A as
a replacement for the tangent bundle and the fundamental D–operators as a re-
placement for covariant derivatives. From this point of view, it is desirable to have
objects analogous to the torsion and curvature of covariant derivatives. The main
problem in constructing such analogues is that we have not yet an analogue of the
Lie bracket of vector fields on the level of adjoint tractors. Such an analogue can
however be constructed using the following observation: By definition, sections of
the adjoint tractor bundle A are in bijective correspondence with P–equivariant
smooth functions G → g. Now if s̃ : G → g is such a function, then we can associate
to it a vector field ξ ∈ X(G) uniquely characterized by ω(ξ(u)) = s̃(u). Moreover,
equivariancy of ω, which can be written as ω(Trg · ξ(u)) = Ad(g−1)(ω(ξ(u))), and
equivariancy of s̃ imply that the vector field ξ is right invariant, i.e. (rg)∗ξ = ξ or
ξ(u · g) = Trg · ξ(u). On the other hand, if ξ is a right invariant vector field on G,
then ω(ξ) : G → g is a P–equivariant smooth function, so we actually get a bijective
correspondence between smooth sections of A and right invariant vector fields on
G.

Now it is an elementary observation that the Lie bracket of two right invariant
vector fields is again right invariant, so by this construction we get a Lie bracket
on the space Γ(A) of smooth sections of the adjoint tractor bundle. Fortunately,
this bracket can be computed easily in terms of fundamental D–operators:

Proposition. Consider the fundamental D–operator on sections of A, let Π :
Γ(A)→ X(M) be the canonical projection, and let κ ∈ Γ(Λ2A∗ ⊗A) be the tractor
curvature of the tractor connection on A. Then for s1, s2 ∈ Γ(A) the Lie bracket
described above is given by

[s1, s2] = Ds1s2 −Ds2s1 − κ(s1, s2) + {s1, s2}.
Moreover, the Lie bracket has the following properties:

(1) Π([s1, s2]) = [Π(s1),Π(s2)], where the second bracket is the Lie bracket of
vector fields on M .

(2) [s1, fs2] = (Π(s1) · f)s2 + f [s1, s2] for all f ∈ C∞(M,R).

Proof. Let s̃1, s̃2 : G → g be the P–equivariant functions corresponding to s1, s2 ∈
Γ(A), and let ξ1, ξ2 be the corresponding right invariant vector fields on G. The

bracket [s1, s2] is then defined by ˜[s1, s2] = ω([ξ1, ξ2]). Inserting the definition of
the exterior derivative and the definition of the curvature function κ̃ (see 2.10) of
the Cartan connection ω, we get

˜[s1, s2] = ξ1 · ω(ξ2)− ξ2 · ω(ξ1)− κ̃(ω(ξ1), ω(ξ2)) + [ω(ξ1), ω(ξ2)],
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where the last bracket is in g. By definition, ω(ξi) = s̃i, so the definition of the
fundamental D–operators implies that the first two terms correspond to Ds1s2 −
Ds2s1, while the last term exactly represents {s1, s2}. Finally, proposition 2.9
immediately implies that the remaining term exactly represents κ(s1, s2).

Next, the identification of TM with a bundle associated to G from 2.8 implies
that the vector field ξi is a lift of the vector field Π(si), so the Lie bracket [ξ1, ξ2]
is a lift of [Π(s1),Π(s2)], which implies (1).

Finally, for (2) we just have to observe that (̃fs2) = (f ◦ p)s̃2, so the right
invariant vector field on G corresponding to fs2 is given by (f ◦ p)ξ2. But then
[ξ1, (f ◦ p)ξ2] = (ξ1 · (f ◦ p))ξ2 + (f ◦ p)[ξ1, ξ2], so (2) follows since ξ1 · (f ◦ p) =
((Tp · ξ1) · f) ◦ p.

Remark. The proposition above also shows that viewing the fundamental D–
operator on A as an analogue of an affine connection, then the obvious analogue
Ds1s2 −Ds2s1 − [s1, s2] of the torsion is simply given by κ(s1, s2)− {s1, s2}.

3.7. To finish this section, we want to discuss curvature–like properties of the
fundamental D–operators. First we have to note that for any bundleW the obvious
analogue

(s1, s2, t) 7→ Ds1Ds2t−Ds2Ds1t−D[s1,s2]t

of curvature vanishes. Indeed, if t̃ : G → W is the function corresponding to t
and ξi are the right invariant vector fields corresponding to the smooth sections
si of A, then the above expression is represented by the function ξ1 · ξ2 · t̃ − ξ2 ·
ξ1 · t̃ − [ξ1, ξ2] · t̃ = 0. This is not surprising, since essentially the fundamental D–
operator was constructed from a trivialization of TG. Nevertheless, we still get that
the alternation of DDt can be expressed by lower order terms involving curvature.
This can be expressed as follows:

Proposition. Let W be any bundle associated to G, and let κ be the tractor cur-
vature of the tractor connection on A. Then for smooth sections s1, s2 of A and t
of W we have

DDt(s1, s2)−DDt(s2, s1) = −Dκ(s1,s2)t+D{s1,s2}t.

Proof. The flatness of the fundamental D–operators observed above can be ex-
pressed as Ds1Ds2t − Ds2Ds1t = D[s1,s2]t. From proposition 3.6 we know that
[s1, s2] = Ds1s2 − Ds2s1 − κ(s1, s2) + {s1, s2}. Now we just have to observe
that applying the naturality results from proposition 3.1 (2) and (3) to the map
s2⊗Dt 7→ Ds2t, we get DDt(s1, s2) = Ds1Ds2t−DDs1s2

t and the result follows.

Remarks. (1) The result of this proposition may look slightly strange since it seems
that the tractor curvature κ acts differentially on t instead of algebraically as one
would expect. One has however to keep in mind that the curvature of a Cartan
connection contains a torsion part (the part with values in g−) and a part with
values in p, which is the analogue of the curvature of a linear connection. By
definition of the fundamental D–operators, the p–part actually acts algebraically
while the torsion part really acts differentially, so the behavior is as expected.

(2) A particularly nice consequence of the above proposition is that if one consid-
ers the sequence (t,Dt,DDt, . . . ) for a smooth section t ∈ Γ(W), then this encodes
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not only the infinite jet of the section t but also the actions of jets of the curva-
ture on jets of t. This should be especially relevant when dealing with questions of
invariants.

(3) Since the normal Cartan connection gives a canonical trivialization of TG it
determines a linear connection on TG. Since this is just the exterior derivative in
the trivialization it is, of course, curvature flat. On the other hand it does have
torsion and in the trivialization this is given by κ̃( , ) − [ , ]. Restricting to right
invariant vector fields enables us to interpret this picture via the tractor bundles
and this is another way of viewing the results above.

4. Adjoint tractor bundles for irreducible parabolic geometries

In this section we construct the normal adjoint tractor bundle for any manifold
equipped with a parabolic geometry corresponding to a |1|–grading g = g−1⊕g0⊕g1

on a simple Lie algebra g. Since |1|–gradings are characterized among all |k|–
gradings by the fact that the tangent bundle corresponds to an irreducible repre-
sentation of p, we call these geometries irreducible parabolic geometries . Another
name for these structures, which is frequently used in the literature, is almost Her-
mitian symmetric– or AHS–structures.

The construction of the canonical Cartan connection for this class of structures
has quite a long history. In several cases a construction was already given by Car-
tan, see e.g. [10]. More recent presentations can be found for example in [30] and
[8, part II]. Also, tractor calculi for several of these structures have been known for
quite some time, see e.g. [32] and [2] (conformal and projective), and [21] for the
case of almost Grassmannian structures. Tractor bundles and connections (corre-
sponding to standard or in some cases spinor representations) for all such structures
were constructed (case by case) in [4, part I]. Via a construction which treats almost
all the geometries in a uniform manner, we present here, for the first time, a simul-
taneous construction of tractor calculi for the entire class of irreducible parabolic
geometries.

4.1. Let g = g−1 ⊕ g0 ⊕ g1 be a real |1|–graded simple Lie algebra of rank bigger
than two (which excludes the case of one–dimensional projective structures, which
is a degenerate case). We say that g is of projective type if either g or its complexifi-
cation is isomorphic to some sl(n,C) with the |1|–grading corresponding to the first
or last simple root. Let G be a Lie group with Lie algebra g, and let G0 ⊂ P ⊂ G
be the subgroups as introduced in 2.1. The restriction of the adjoint action to g−1

gives rise to a homomorphism Ad : G0 → GL(g−1). If g is not of projective type,
then an irreducible parabolic geometry of type (G,P ) on a smooth manifold M with
dim(M) = dim(g−1) is then simply given by a principal G0–bundle p : G0 → M
which is a reduction (corresponding to the above homomorphism) of the frame
bundle PM of M . Equivalently, we must have a one–form θ ∈ Ω1(G0, g−1) which
is strictly horizontal, i.e. ker(θ(u)) = VuP , the vertical subspace of TuP for each
point u ∈ G0, and G0–equivariant, i.e. (rg)∗θ = Ad(g−1) ◦ θ for all g ∈ G0, where
rg denotes the right principal action of g.

If g is of projective type, then G0
∼= GL(g−1), so G0 is just the full frame bundle

in this case. The whole structure is then given by the choice of an equivalence class
of connections, see 4.4 below.
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As mentioned above, examples of irreducible parabolic geometries include the
classical projective, conformal and almost Grassmannian (among them almost qua-
ternionic) structures. See [8, part I, 3.3] for further examples and a more detailed
discussion.

4.2. The first thing one gets from a structure (G0, θ) as described above is an
identification of the tangent bundle TM of M with the associated bundle G0×G0g−1

corresponding to the adjoint action of G0 on g−1. Explicitly, the isomorphism
G0 ×G0 g−1 → TM is induced by the map G0 × g−1 → TM given by mapping
(u,X) to Tup · ξ, where ξ ∈ TuG0 is any element with θ(ξ) = X . Since θ is strictly
horizontal, this map is well defined and surjective on each fiber, and since θ is
equivariant, it descends to the required isomorphism.

As we have observed in 2.8, the choice of a G–invariant bilinear form B on g

induces a non–degenerate, G0–invariant pairing between g−1 and g1, so g1 is the
dual G0–module to g−1. In particular, this implies that the cotangent bundle T ∗M
is isomorphic to the associated bundle G0 ×G0 g1.

We can also form the associated bundle G0×G0 g0. For reasons that will become
clear soon, we denote this bundle by End0 TM .

The Lie bracket on g is equivariant under the adjoint action and so, in particular,
it is equivariant under the action of G0. Moreover, since the action of G0 preserves
the grading on g, we can split the bracket into components and get induced vector
bundle homomorphisms on the associated bundles. Since using the Jacobi–identity
to relate various brackets will be essential in the sequel, we will denote all these
induced brackets by { , }. In detail, the induced brackets annihilate TM ⊗ TM
and T ∗M ⊗T ∗M and we have non-trivial brackets TM ⊗End0 TM → TM , TM ⊗
T ∗M → End0 TM , End0 TM ⊗ End0 TM → End0 TM , and End0 TM ⊗ T ∗M →
T ∗M . These brackets are the key input for our further constructions.

It is well known that for all |k|–graded simple Lie algebras the map g0 →
L(g−1, g−1) induced by the bracket g0×g−1 → g−1 is injective (see e.g. [33, lemma
3.2]). Moreover, g0 is always reductive and in the |1|–graded case g−1 is an irre-
ducible g0 module. In particular, this implies that via { , } we can view End0 TM
as a subbundle of L(TM, TM) ∼= T ∗M ⊗ TM . Note that if g is of projective type,
we simply have End0 TM = T ∗M⊗TM . Note further, that under the identification
of End0 TM with a subbundle of T ∗M ⊗ TM , the algebraic bracket on End0 TM
is simply given by the commutator of endomorphisms.

Proposition 4.3. Let G0 → M be an irreducible parabolic geometry. Let x ∈ M ,
{Xi} be a basis for TxM and {Zi} the dual basis for T ∗xM .

(1) For each element Φ ∈ T ∗xM ⊗TxM there is a unique element A ∈ End0 TxM
such that

∑
i{Zi,Φ(Xi)} =

∑
i{Zi, {A,Xi}}.

(2) For each element Φ ∈ T ∗xM ⊗End0 TxM there is a unique element ω ∈ T ∗xM
such that

∑
i{Zi,Φ(Xi)} =

∑
i{Zi, {ω,Xi}}. If g is not of projective type, then

there is an element τ ∈ Λ2T ∗M ⊗ TM such that Φ(ξ) = {ω, ξ}+
∑

i{Zi, τ(ξ,Xi)}
for all ξ ∈ TxM . Moreover, we can choose τ = 0, i.e. Φ(ξ) = {ω, ξ} if and only if
{Φ(ξ), η} = {Φ(η), ξ} for all elements ξ, η ∈ TxM .

(3) For each element τ ∈ Λ2T ∗xM ⊗ TxM there is an element Φ ∈ T ∗xM ⊗
End0 TxM such that

∑
i{Zi, τ(ξ,Xi)} =

∑
i{Zi, {Φ(ξ), Xi} − {Φ(Xi), ξ}}. More-

over, if g is not of projective type and Φ1,Φ2 are two such elements, then there is
a unique element ω ∈ T ∗xM such that Φ2(ξ) = Φ1(ξ) + {ω, ξ}.
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(4) For each element κ ∈ Λ2T ∗xM ⊗ End0 TxM there exists a unique element
Ψ ∈ L(TxM,T ∗xM) ∼= T ∗xM ⊗ T ∗xM such that

∑
i

{Zi, κ(ξ,Xi)} =
∑
i

{Zi, {Ψ(ξ), Xi} − {Ψ(Xi), ξ}} for all ξ ∈ TxM.

All elements, whose existence is asserted by these statements are independent of
the choice of the basis {Xi}. Moreover, the analogous statements hold for smooth
sections instead of elements at one point.

Proof. These statements can be proved for each structure separately by straightfor-
ward but tedious computations. There is, however, a uniform proof for all structures
based on the analysis of the standard complex computing the Lie algebra cohomol-
ogy H∗(g−1, g) and basic results on these cohomology groups: By definition, the
k–th space Ck(g−1, g) in this standard complex is the space of all k–linear, alternat-
ing maps (g−1)k → g, so Ck(g−1, g) = Λkg∗−1⊗g. The differential ∂ : Ck(g−1, g)→
Ck+1(g−1, g) is defined by ∂(ϕ)(Y0, . . . , Yk) :=

∑k
i=0(−1)i[Yi, ϕ(Y0, . . . , î, . . . , Yk)].

(The second term in the usual formula for the Lie algebra differential does not
occur, since g−1 is Abelian.)

Now let ∂∗ : Ck+1(g−1, g) → Ck(g−1, g) be the codifferential from 2.10 which,
as we observed there, is an adjoint to ∂. In the |1|–graded case, the formula for ∂∗

is given by ∂∗ϕ(Y1, . . . , Yk) =
∑

i[bi, ϕ(ai, Y1, . . . , Yk)], where {ai} is a basis of g−1

and {bi} is the dual basis of g1.
Next, one defines the Laplacian � : Ck(g−1, g)→ Ck(g−1, g) by � = ∂ ◦∂∗+∂∗◦

∂. Since ∂ and ∂∗ are adjoint, and ∂2 = (∂∗)2 = 0, we get ker(�) = ker(∂)∩ker(∂∗)
and a Hodge–decomposition Ck(g−1, g) = im(∂) ⊕ ker(�) ⊕ im(∂∗). Moreover,
ker(∂) = im(∂)⊕ker(�) and similarly for ∂∗, so in particular, ker(�) ∼= Hk(g−1, g).

Now there are a few things to observe: First of all, one easily verifies that ∂ is a
G0–homomorphisms and as we have noted in 2.10, ∂∗ is even a P–homomorphism.
Hence also � is a G0–homomorphism and the the Hodge decomposition is a decom-
position of G0–modules. Moreover, the splitting g = g−1 ⊕ g0 ⊕ g1 of G0–modules
induces a splitting of Ck(g−1, g) into G0 submodules and this splitting is given by
homogeneous degrees of multilinear maps. Now obviously both ∂ and ∂∗ preserve
homogeneous degrees, so also the Hodge decomposition induces a decomposition
for each homogeneous degree.

Notice that the projections describing the Hodge–decomposition can be explicitly
described in terms of ∂, ∂∗ and �. By construction, im(�) ⊂ im(∂) ⊕ im(∂∗), so
in particular ker(�) ∩ im(�) = {0}. From this, one immediately verifies that �
restricts to invertible G0–homomorphisms im(∂) → im(∂) and im(∂∗) → im(∂∗),
so it makes sense to form �−1 ◦ ∂ and �−1 ◦ ∂∗, even though � is not invertible in
general. It is then simple to verify that the projections from Ck(g−1, g) to im(∂)
and im(∂∗) are given by ∂ ◦�−1 ◦ ∂∗ and ∂∗ ◦�−1 ◦ ∂, respectively.

Finally we need some facts about the cohomology H∗(g−1, g) provided by Kos-
tant’s version of the Bott–Borel–Weil theorem. Namely, for any |1|–graded Lie
algebra g the cohomology in degree zero is given by H0(g−1, g) = g−1 and if g

is not of projective type, then the first cohomology H1(g−1, g) is contained in
g∗−1 ⊗ g−1 ⊂ g∗−1 ⊗ g. If g is of projective type, then H1(g−1, g) is contained in
g∗−1 ⊗ g0. See [28] for a proof of these results in the |1|–graded case.
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Now we only have to transfer these results to the manifold in order to ob-
tain the proof of our proposition. Since all maps we are dealing with are G0–
homomorphisms, they induce vector bundle homomorphisms between the corre-
sponding associated bundles, and also the Hodge decomposition induces a decom-
position of the bundles into smooth subbundles. Then (1) is exactly the decompo-
sition g∗−1 ⊗ g1 = im(∂)⊕ ker(∂∗) plus the fact that ∂ : g0 → g∗−1 ⊗ g−1 is injective
since H0(g−1, g) ∩ g0 = 0.

The first part of (2) is the decomposition g∗−1 ⊗ g0 = im(∂) ⊕ ker(∂∗) plus
the fact that ∂ : g1 → g∗−1 ⊗ g0 is injective. If g is not of projective type, then
H1(g−1, g) ⊂ g∗−1 ⊗ g−1, so the Hodge decomposition of g∗−1 ⊗ g0 just reads as
im(∂) ⊕ im(∂∗) and this immediately gives the second part of (2). For the very
last comment of that part note that if τ = 0, then the claimed symmetry follows
from the Jacobi identity and the triviality of the bracket on TM ⊗ TM . On the
other hand if {Φ(ξ), η} 6= {Φ(η), ξ}, for some ξ, η ∈ TxM , then Φ corresponds to
an element of g∗−1⊗g0 outside ker(∂) and thus ∂∂∗ does not annihilate the element
of Λ2g∗−1 ⊗ g−1 corresponding to τ .

Statement (3) reflects the decomposition Λ2g∗−1⊗g−1 = im(∂)⊕ker(∂∗), and the
fact that if g is not of projective type, then the kernel of ∂ : g∗−1⊗g0 → Λ2g∗−1⊗g−1

coincides with the image of ∂ : g1 → g∗−1 ⊗ g0, since H1(g−1, g) is contained in
g∗−1 ⊗ g−1.

The existence part of statement (4) follows from the Hodge decomposition
Λ2g∗−1 ⊗ g0 = im(∂) ⊕ ker(∂∗). Since there is no map ∂ landing in g∗−1 ⊗ g1 by
homogeneity, the fact that H1(g−1, g)∩ g∗−1⊗ g1 = {0} implies that ∂ : g∗−1⊗ g1 →
Λ2g∗−1 ⊗ g0 is injective, which gives the uniqueness part in statement (4).

The fact that all statements are independent of the choice of the basis for TxM
immediately follows since all maps involving the bases are induced by ∂∗, which
in turn is independent of the choice of the basis of g−1. Finally, the fact that
analogous results hold for smooth sections is clear from the explicit description of
the projectors above.

4.4. Preferred connections. If g is of projective type, then the irreducible par-
abolic geometry is precisely a class of affine connections on M having ∂∗–closed
torsion, such that for two connections ∇ and ∇̂ in this class there is a (necessarily
unique) smooth one–form Υ ∈ Ω1(M) such that ∇̂ξη = ∇ξη+{{Υ, ξ}, η}. (It is easy
to see that then all the connections in the class in fact have the same torsion, see
below.) For any other irreducible parabolic geometry we can use part (3) of propo-
sition 4.3 to define a class of preferred affine connections on M having analogous
properties. Consider two affine connections ∇ and ∇̂ on M , which both are induced
by principal connections on G0. A difference of two affine connections, ∇̂ − ∇, is a
section of T ∗M ⊗ T ∗M ⊗ TM . However, since they both are induced by principal
connection on G0, the difference must actually be a smooth section of the subbundle
T ∗M ⊗End0 TM . Conversely, if ∇ is induced by a principal connection on G0 and
Φ is an arbitrary smooth section of T ∗M ⊗End0 TM , then ∇̂ξη = ∇ξη+ {Φ(ξ), η}
is also induced by a principal connection on G0. Moreover, if T is the torsion of
∇, then the torsion T̂ of ∇̂ is given by T̂ (ξ, η) = T (ξ, η) + {Φ(ξ), η} − {Φ(η), ξ}.
Consequently, if we start with any connection ∇ we can find by proposition 4.3(3)
a section Φ of T ∗M ⊗End0 TM such that the corresponding connection ∇̂ has the
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property that
∑
i{Zi, T̂ (ξ,Xi)} = 0 for any vector field ξ on M and any local frame

{Xi} for TM with dual frame {Zi} of T ∗M .

Definition. If g is not of projective type, then an affine connection ∇ on M is
called a preferred connection for the irreducible parabolic geometry G0 → M if
and only if it is induced by a principal connection on G0 and its torsion T has the
property that

∑
i{Zi, T (ξ,Xi)} = 0 for any vector field ξ on M and any local frame

{Xi} for TM with dual frame {Zi} of T ∗M .
As we saw above, preferred connections exist. Moreover, if both ∇ and ∇̂ are

preferred connections on M , and Φ = ∇̂ − ∇ ∈ Γ(T ∗M ⊗ End0 TM), then since
both connections are preferred, we must have

∑
i{Zi, {Φ(ξ), Xi}−{Φ(Xi), ξ}} = 0.

Again by proposition 4.3(3) this implies that there is a unique one form Υ ∈ Ω1(M)
such that Φ(ξ) = {Υ, ξ}. But by the Jacobi–identity, and since {ξ, η} = 0, we see
that {{Υ, ξ}, η} is symmetric in ξ and η, so T̂ = T . Consequently, all preferred
connections have the same torsion and so this is an invariant of the parabolic
geometry, which is called the torsion T of M .

Whether this torsion may actually be nonzero depends on the concrete choice
of the Lie algebra g. The point about this is that the Lie algebra differential ∂ is
identically zero on Λ2g∗−1 ⊗ g−1 and so, since the torsion takes values in ker(∂∗) =
ker(�), it can only be nonzero if there is a component of the cohomologyH2(g−1, g)
contained in that subspace. Again, this cohomology group can be computed using
Kostant’s version of the Bott–Borel–Weil theorem for each choice of g. For example,
for conformal structures the cohomology is contained in Λ2g∗−1 ⊗ g0 in dimensions
bigger than three and in Λ2g∗−1⊗g1 in dimension three. In particular, the torsion is
always zero for conformal structures. On the other hand, there are also irreducible
parabolic geometries for which the torsion is a complete obstruction against local
flatness. See [7] for a discussion of the use of second cohomology in describing
obstructions against local flatness for irreducible parabolic geometries.

4.5. For later use, we have to analyze the set of preferred connections more closely.
In particular, we discuss the difference between the curvatures of different preferred
connections. Moreover, the formulae we derive are useful for making concrete com-
putations in any specific structure.

From 4.4 we know that for any irreducible parabolic geometry we have a class
of preferred affine connections on M and for two such connections ∇ and ∇̂ there
is a unique one–form Υ ∈ Ω1(M) such that ∇̂ξη = ∇ξη + {{Υ, ξ}, η}. Using
this, one immediately verifies that for a one–form ω ∈ Ω1(M) we get ∇̂ξω =
∇ξω+{{Υ, ξ}, ω}. From this in turn, one verifies that for a section Φ of L(TM, TM)
the transformation is given by ∇̂ξΦ = ∇ξΦ + {Υ, ξ} ◦Φ−Φ ◦ {Υ, ξ}. In particular,
if Φ is a section of the subbundle End0 TM , then ∇̂ξΦ = ∇ξΦ + {{Υ, ξ},Φ}.

To compute the formulae for second derivatives, we have to keep in mind that
the brackets { , } are defined on bundles induced from G0 by G0–homomorphisms
of the corresponding modules. Thus, they are covariantly constant for any affine
connection on M which is induced by a principal connection on G0 and hence, in
particular, for all preferred connections. Thus we compute

∇̂ξ(∇̂η) = ∇̂ξ(∇η + {Υ, η}) = ∇̂ξ(∇η) + ∇̂ξ({Υ, η})
and, since {Υ, η} is a section of End0 TM , we end up with

∇ξ(∇η) + {Υ, ξ} ◦ ∇η −∇η ◦ {Υ, ξ}+ {∇ξΥ, η}+ {Υ,∇ξη}+ {{Υ, ξ}, {Υ, η}}.
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Using the results on second derivatives, we can next compute the change of
curvature. From the definition of the curvature R of an affine connection ∇ one
immediately concludes that this can be written as

R(ξ, η)(ζ) = ∇ξ(∇ζ)(η) −∇η(∇ζ)(ξ) +∇T (ξ,η)ζ,

where T denotes the torsion of ∇. Inserting into the formula above, we get

∇̂ξ(∇̂ζ)(η) = ∇ξ(∇ζ)(η) + {{Υ, ξ},∇ηζ} − ∇{{Υ,ξ},η}ζ
+ {{∇ξΥ, ζ}, η}+ {{Υ,∇ξζ}, η}+ {{{Υ, ξ}, {Υ, ζ}}, η}.

In the second term of the right-hand side, we may exchange ξ and ∇ηζ and so this
term and the fifth one cancel after alternation in ξ and η. Moreover, the third term
in the right-hand side is symmetric in ξ and η, so it also vanishes after alternation.
Finally a short computation using the Jacobi identity shows that after alternation
the last term just produces {{{Υ, ξ}, {Υ, η}}, ζ}. Bringing ζ to the right in the
fourth term we arrive at

R̂(ξ, η) = R(ξ, η) + {∇ξΥ, η} − {∇ηΥ, ξ}+ {{Υ, ξ}, {Υ, η}}+ {Υ, T (ξ, η)}.

4.6. The Rho–tensor, Weyl–curvature and the Cotton–York tensor. We
can split the curvature of a preferred connection into parts that have simpler trans-
formation laws than the curvature itself. Since any preferred connection ∇ is in-
duced from a principal connection on G0, its curvature R is a section of Λ2T ∗ ⊗
End0 TM . Hence, by proposition 4.3(4), there is a unique section P of the bundle
L(TM, T ∗M) ∼= T ∗M ⊗ T ∗M such that W (ξ, η) := R(ξ, η) + {P(ξ), η} − {P(η), ξ}
has the property that

∑
i{Zi,W (ξ,Xi)} = 0 for all vector fields ξ on M and one

(or equivalently any) local frame {Xi} for TM with dual frame {Zi}. P is called
the Rho–tensor of the preferred connection ∇ and W is called the Weyl–curvature
of ∇. Note that in abstract index notation

∑
i{Zi,W ( , Xi)} just equals W c

acb .
Using this, one easily verifies that for conformal structures, one recovers the usual
Rho–tensor and Weyl–curvature.

Now observe that for all one–forms Υ and vector fields ξ, we have∑
i

{Zi, {Υ, T (ξ,Xi)}} =
∑
i

{Υ, {Zi, T (ξ,Xi)}} = 0

by construction of the torsion, see 4.4. Moreover, using the Jacobi identity, one
easily verifies that

− 1
2

(
{{Υ, {Υ, ξ}}, η}− {{Υ, {Υ, η}}, ξ}

)
= {{Υ, ξ}, {Υ, η}}.(1)

Using these two facts and the formula for R̂(ξ, η) from 4.5, one easily verifies that
if P is the Rho–tensor for ∇ and ∇̂ is another preferred connection corresponding
to Υ ∈ Ω1(M), then

P̂(ξ) = P(ξ)−∇ξΥ + 1
2{Υ, {Υ, ξ}}

satisfies the defining equation for the Rho–tensor of ∇̂. Hence the uniqueness part
of proposition 4.3(4) implies that this is the transformation law for the Rho–tensor.
From this in turn, it follows that the Weyl–curvature of ∇̂ is given by

Ŵ (ξ, η) = W (ξ, η) + {Υ, T (ξ, η)}.
In particular, if the torsion of M vanishes, then the Weyl–curvature is independent
of the choice of the preferred connection, and thus an invariant of M . This always
happens for conformal structures, see 4.4.
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Recall that whether the torsion of a particular structure can possibly be nonzero
depends on H2(g−, g). Similarly, whether the Weyl curvature may be nonzero if
the torsion vanishes, again depends on the cohomology H2(g−, g). By [6, corollary
4.10] if the torsion vanishes, then the Weyl–curvature is not only ∂∗–closed but
also ∂–closed, so zero torsion and nonzero Weyl–curvature may occur only if that
cohomology group has a nonzero component contained in Λ2g∗−1⊗g0. For example,
for conformal structures, the Weyl curvature is always zero in dimension three, while
in higher dimensions it is a complete obstruction against local conformal flatness.

Finally, we define the Cotton–York tensor CY ∈ Ω2(M,T ∗M) of a preferred
connection ∇ as the covariant exterior derivative of the Rho–tensor, which we may
view as a T ∗M–valued one–form. That is, by definition

CY (ξ, η) = ∇ξ(P(η))−∇η(P(ξ)) − P([ξ, η]).

Inserting the definition of the torsion, we see that this can also be written as
(∇P)(ξ, η) − (∇P)(η, ξ) + P(T (ξ, η)). At this stage, one may verify by a direct
computation that changing from ∇ to ∇̂ the Cotton–York tensor transforms as
follows:

ĈY (ξ, η) = CY (ξ, η) + {Υ,W (ξ, η)}+ 1
2{Υ, {Υ, T (ξ, η)}}.

However, we will not need this, and it will drop out of the later developments
automatically.

4.7. Now we can start the construction of the adjoint tractor bundle for the cases
where g is not of projective type. The first thing to observe is that there is an
obvious invariant differential operator d0 on vector fields on M defined as follows:
Let F be the quotient bundle (T ∗M ⊗ TM)/End0 TM and πF : T ∗M ⊗ TM → F
the canonical projection. Now for a preferred connection ∇ on M and a vector field
ξ ∈ X(M) consider πF (∇ξ) ∈ Γ(F). If ∇̂ is another preferred connection, then by
4.4 there is a unique one–form Υ ∈ Ω1(M) such that ∇̂ηξ = ∇ηξ + {{Υ, η}, ξ}.
Since the last expression is symmetric in ξ and η, we can rewrite this equation
as ∇̂ξ = ∇ξ + {Υ, ξ}. Since {Υ, ξ} is a section of End0 TM , this implies that
πF(∇̂ξ) = πF (∇ξ), so we obtain an invariant operator d0 : X(M)→ Γ(F).

Next let J1(TM) be the first jet–prolongation of the tangent bundle of M . Then
d0 is induced by a vector bundle homomorphism J1(TM) → F , which we also
denote by d0. From the construction it is clear that this bundle map is surjective,
and we define A(0) to be its kernel. Hence, by definition, we get a short exact
sequence of vector bundles

0→ A(0) −−−−→ J1(TM) d0−−−−→ F → 0.(2)

Moreover, the jet exact sequence 0→ T ∗M ⊗TM → J1(TM)→ TM → 0 and the
definition of d0 immediately imply that we also get a short exact sequence

0→ End0 TM → A(0) p−1−−−−→ TM → 0.(3)

Explicitly, the fiber A(0)
x of A(0) in x ∈ M consists of all one–jets j1

x(ξ) at x of
vector fields ξ such that for one (equivalently any) preferred connection ∇ we have
∇ξ(x) ∈ End0 TxM , and p−1(j1

x(ξ)) = ξ(x).
Next, consider the first jet prolongation J1(d0) : J1(J1(TM)) → J1(F) of the

bundle map d0. Since forming a jet prolongation is an exact functor, J1(d0) is
surjective and its kernel is J1(A(0)). On the other hand, we have the subbundle
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J2(TM) ⊂ J1(J1(TM)), and we define A ⊂ J2(TM) to be the kernel of the
restriction of J1(d0) to this subbundle. Equivalently, A = J1(A(0)) ∩ J2(TM).
By construction, we have a canonical projection p0 : A → A(0), induced by the
projection J1(A(0))→ A(0).

Next, we have to analyze the kernel K of p0. Clearly, K is the intersection of the
kernel of the projection J2(TM) → J1(TM), which is just S2T ∗M ⊗ TM , with
the kernel of the projection J1(A(0)) → A(0), which is T ∗M ⊗A(0). Thus, we get
K = (T ∗M ⊗ End0 TM) ∩ (S2T ∗M ⊗ TM). For a point x ∈ M and an element
Φ ∈ T ∗xM ⊗ End0 TxM , lying in S2T ∗xM ⊗ TxM just means {Φ(ξ), η} = {Φ(η), ξ}
for all ξ, η ∈ TxM . But by proposition 4.3(2) this implies that there is a unique
element ω ∈ T ∗xM such that Φ(ξ) = {ω, ξ}, which shows that K is canonically
isomorphic to T ∗M . In particular, this implies that A is a smooth subbundle of
J2(TM), and we will prove that A is the normal adjoint tractor bundle on M .

Note that this result is the analogue in our picture of the fact that for a |1|–
graded Lie algebra g which is not of projective type, the first prolongation of g0 ⊂
L(g−1, g−1) is exactly g1.

We next define a filtration A ⊃ A0 ⊃ A1 on A by A0 = ker(p−1 ◦ p0) and
A1 = K = ker(p0), where p0 : A → A(0) and p−1 : A(0) → TM are the canonical
projections. From above we know that A1 ∼= T ∗M , while by construction A/A0 ∼=
TM and A/A1 ∼= A(0). In particular, this implies that A0/A1 is isomorphic to the
kernel of p−1 : A(0) → TM and hence to End0 TM . If we start with an atlas for
TM and use the induced atlas for J2(TM), then we see that A is a filtered vector
bundle modelled on the filtered vector space g ⊃ (g0 ⊕ g1) ⊃ g1, and thus is a
candidate for an adjoint tractor bundle.

4.8. Next, we want to show that a choice of a preferred connection leads to an
isomorphism A ∼= TM⊕End0 TM⊕T ∗M of vector bundles, and compute how this
isomorphism depends on the choice of the connection. In fact, several isomorphisms
of that type are possible; the one that is described here has a particularly simple
behavior under a change of preferred connection.

Let ∇ be a preferred connection on M and let j2
x(ξ) be an element of Ax. Then

we can form ξ(x) ∈ TxM and since j2
x(ξ) ∈ Ax, we know that ∇ξ(x) ∈ End0 TxM ,

so the first two components of the isomorphism are very simple to describe. The
third component is a little more complicated to get. Since j2

x(ξ) ∈ Ax, we know that
∇2ξ(x) lies in T ∗xM⊗End0 TxM ⊂ T ∗xM⊗T ∗xM⊗TxM , so∇η(∇ξ)(x) ∈ End0(TM)
for all η. Applying proposition 4.3(2) to the element of T ∗xM ⊗ End0(TM) giving
the map

η 7→ ∇η(∇ξ)(x) + {P(η), ξ(x)}

gives us a unique element ω ∈ T ∗xM such that the map

A(η) := ∇η(∇ξ)(x) + {P(η), ξ(x)} − {ω, η}

has the property that
∑

i{Zi, A(Xi)} = 0 for one (or equivalently any) basis {Xi}
for TxM with dual basis {Zi} of T ∗xM .

Proposition. Choosing a preferred connection ∇ on M , the map j2
x(ξ) 7→ (ξ,Φ, ω),

where ξ = ξ(x), Φ = ∇ξ(x) and ω ∈ T ∗xM is defined as above, induces an isomor-
phism A ∼= TM ⊕ End0 TM ⊕ T ∗M of vector bundles. If ∇̂ is another preferred
connection corresponding to Υ ∈ Ω1(M), then the isomorphism corresponding to ∇̂
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is given by

̂(ξ,Φ, ω) = (ξ,Φ + {Υ, ξ}, ω + {Υ,Φ}+ 1
2{Υ, {Υ, ξ}}).

Proof. The first two components of the map are clearly given by bundle maps, while
for the last component this follows from the proof of proposition 4.3. Moreover,
from 4.7 we know that the bundles A and TM ⊕ End0 TM ⊕ T ∗M have the same
rank, so to prove that we have constructed an isomorphism of bundles it suffices to
show that the map we have constructed at a point is injective.

So let us assume that j2
x(ξ) ∈ Ax is mapped to zero. Then vanishing of the

first two components implies that ξ(x) = 0 and ∇ξ(x) = 0, while by the proof of
proposition 4.3(2) the vanishing of the last component implies that we can recover
∇(∇ξ)(x) from its alternation. (Note that the term involving P does not show up,
since ξ(x) = 0.) But this alternation can be written in terms of ξ(x) and ∇ξ(x)
using the curvature and torsion of ∇, so it has to be zero, too. Consequently, we
must have j2

x(ξ) = 0, and we get an isomorphism of vector bundles.
If we change from ∇ to ∇̂, then clearly ξ(x) is independent of ∇, while ∇̂ξ =

∇ξ+{Υ, ξ}, so the transformation law for the first two components is obvious. For
the last component, note that since ∇ξ(x) ∈ End0 TxM , ∇ηξ(x) = {∇ξ(x), η} and

{{Υ(x), η},∇ξ(x)} + {Υ(x), {∇ξ(x), η}} = {{Υ(x),∇ξ(x)}, η},
we see from 4.5 that at the point x we get

∇̂η(∇̂ξ) = ∇η(∇ξ) + {{Υ,∇ξ}, η}+ {∇ηΥ, ξ}+ {{Υ, η}, {Υ, ξ}}
for all η ∈ TxM . On the other hand, from 4.6 we know that

P̂(η) = P(η)−∇ηΥ + 1
2{Υ, {Υ, η}}.

Using these two facts, and the formula (1) from 4.6, one immediately sees that

ω + {Υ(x),∇ξ(x)} + 1
2{Υ(x), {Υ(x), ξ(x)}}

satisfies the defining equation for the last component. Using the uniqueness part
of proposition 4.3(2) the transformation law follows.

Remark. The proof of proposition 4.3 gives us a simple way to compute the last
component ω in our isomorphism explicitly. Namely, we see that we can obtain ω
by applying �−1 ◦ ∂∗ to our given element of T ∗xM ⊗ End0 TxM . But since T ∗M
corresponds to the irreducible representation g1 of G0, the Laplacian on that space
is just a scalar multiple of the identity. Hence, if we denote by λ the inverse of this
scalar (which depends only on g), then

ω = λ

(∑
i

{
Zi,∇Xi(∇ξ)(x) + {P(Xi), ξ(x)}

})
.

4.9. The adjoint tractor bundle for g of projective type. For g of projective
type, there is a simple direct construction of the adjoint tractor bundle as follows:
Consider the two jet prolongations J2(TM) of the tangent bundle of M . Then this
contains the subbundle S2T ∗M ⊗ TM as the kernel of the canonical projection to
J1(TM). Now there is a unique trace S2T ∗M ⊗ TM → T ∗M , and we denote its
kernel by (S2T ∗M ⊗ TM)0. This is also a smooth subbundle of J2(TM) and we
define A to be the quotient bundle J2(TM)/(S2T ∗M ⊗ TM)0. Note that on one
hand this implies that the rank of A equals the rank of TM⊕(T ∗M⊗TM)⊕T ∗M ,
and on the other hand it immediately gives a canonical second order differential
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operator from vector fields on M to sections of A by composing the canonical
projection J2(TM)→ A with the two–jet operator.

Now we can also easily get the analogue of proposition 4.8 for g of projective
type. Choosing a preferred connection ∇, we can define a bundle map J2(TM)→
TM ⊕T ∗M ⊗TM ⊕T ∗M by mapping j2

x(ξ) to (ξ(x),∇ξ(x), ω), where ω is defined
as in 4.8 above. (Recall that End0(TM) = T ∗M ⊗TM for g of projective type.) If
j2
x(ξ) goes to zero under this mapping, then clearly j1

x(ξ) = 0 and so, in particular,
∇2ξ(x) is symmetric. Hence, by proposition 4.3(2), ω = 0, in this case, if and
only if j2

x(ξ) lies in (S2T ∗xM ⊗TxM)0. Consequently, this bundle map factors to an
injection A → TM⊕T ∗M⊗TM⊕T ∗M , which must be an isomorphism since both
bundles have the same rank. Finally, the change of this isomorphism under a change
of the preferred connection is computed exactly as in the proof of proposition 4.8.
Thus, proposition 4.8 also holds for g of projective type.

4.10. The algebraic bracket. Via the isomorphism A ∼= TM⊕End0 TM⊕T ∗M
induced by the choice of a preferred connection, it is now very simple to construct
the algebraic bracket on A. Namely, choose a preferred connection ∇ on M , use it
to identify A with TM ⊕ End0 TM ⊕ T ∗M and define the algebraic bracket { , }
on A by

{(ξ,Φ, ω), (η,Ψ, τ)}
:=
(
{ξ,Ψ}+ {Φ, η}, {Φ,Ψ}+ {ξ, τ}+ {ω, η}, {Φ, τ}+ {ω,Ψ}

)
.

Proposition. The definition of the algebraic bracket above is independent of the
choice of the preferred connection ∇. (A, { , }) is a bundle of filtered Lie–algebras
modelled on the filtered Lie algebra g ⊃ g0 ⊕ g1 ⊃ g1.

Proof. Recall that TM , End0 TM , and T ∗M are associated to G0, corresponding to
the representations g−1, g0, and g1, respectively. Hence, the bracket we put on the
triples just means that we declare the isomorphisms TxM ⊕End0 TxM ⊕T ∗xM ∼= g

given by the points u ∈ (G0)x to be isomorphisms of graded Lie–algebras, and
then pull back this bracket to A via the isomorphism given by the choice of a
preferred connection. If we change to another connection ∇̂ corresponding to Υ ∈
Ω1(M), then for each point u ∈ (G0)x, the value Υ(x) corresponds to an element
Z ∈ g1. But then by proposition 4.8 the change in the identifications of Ax with
TxM ⊕ End0 TxM ⊕ T ∗xM corresponds exactly to the adjoint action of exp(Z).
In particular, this adjoint action is an automorphism of the Lie algebra g so the
independence of the choice of the preferred connection follows.

In terms of triples, the filtration of A from 4.7 is simple to describe: A0 corre-
sponds to triples of the form (0,Φ, ω), while A1 corresponds to triples of the form
(0, 0, ω). From proposition 4.8 it is obvious that having one of these properties is
independent of the choice of the preferred connection ∇. But from the definition
of the algebraic bracket it is obvious that A0

x and A1
x are subalgebras of Ax, so we

have a bundle of filtered Lie–algebras.

4.11. Next, we construct a tractor connection on A. First observe that any pre-
ferred connection on M gives rise to a connection on A (which is not a tractor
connection) as follows: A preferred connection ∇ gives a connection on TM ⊕
End0 TM ⊕ T ∗M which we can pull back, via the isomorphism of that bundle to
A induced by ∇, to get a connection on A. We denote this connection also by ∇.
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This just means that in the splitting into triples corresponding to ∇ we have

∇η(ξ,Φ, ω) = (∇ηξ,∇ηΦ,∇ηω).

While this connection is not invariant (see below for the transformation law), it is
compatible with the algebraic bracket on A, i.e. ∇η{s, t} = {∇ηs, t}+ {s,∇ηt} for
all section s, t of A. This is an obvious consequence of the componentwise definition
of the algebraic bracket in 4.10 and the fact that ∇ is compatible with the algebraic
brackets on the factors, see 4.5. From here on, we use the convention that when
computing in triples, we replace a triple which has only one nonzero entry by that
entry. For example, we write Υ for (0, 0,Υ), {Υ, η} for (0, {Υ, η}, 0) and so on,
if Υ is an element in or a section of T ∗M and η is an element in or a section of
TM respectively. Note that this is compatible with the algebraic bracket by the
componentwise definition.

Note that in this notation we can write the transformation laws for tractors and
connections as

̂(ξ,Φ, ω) = (ξ,Φ, ω) + {Υ, (ξ,Φ, ω)}+ 1
2{Υ, {Υ, (ξ,Φ, ω)}}

and

∇̂η(ξ,Φ, ω) = ∇η(ξ,Φ, ω) + {{Υ, η}, (ξ,Φ, ω)},
respectively. Using this and the compatibility of ∇ with the bracket, we now
compute

{Υ,∇η(ξ,Φ, ω)} = ∇η{Υ, (ξ,Φ, ω)} − {∇ηΥ, (ξ,Φ, ω)}
and

1
2{Υ, {Υ,∇η(ξ,Φ, ω)}} = 1

2∇η{Υ, {Υ, (ξ,Φ, ω)}}− {∇ηΥ, {Υ, (ξ,Φ, ω)}}.
Using this, we see that

̂∇η(ξ,Φ, ω) = ∇η( ̂(ξ,Φ, ω))− {∇ηΥ, (ξ,Φ, ω)} − {∇ηΥ, {Υ, (ξ,Φ, ω)}}.
But since {∇ηΥ, {Υ, {Υ, (ξ,Φ, ω)}}} = 0, we may write this also as

̂∇η(ξ,Φ, ω) = ∇η( ̂(ξ,Φ, ω))− {∇ηΥ, ̂(ξ,Φ, ω)}.
On the other hand, we have

∇̂η( ̂(ξ,Φ, ω)) = ∇η( ̂(ξ,Φ, ω)) + {{Υ, η}, ̂(ξ,Φ, ω)},
so we arrive at the transformation law

̂∇η(ξ,Φ, ω)− ∇̂η( ̂(ξ,Φ, ω)) = −{(0, {Υ, η},∇ηΥ), ̂(ξ,Φ, ω)}.

Theorem 4.12. The expression

∇Aη (ξ,Φ, ω) = ∇η(ξ,Φ, ω) + {(η, 0,P(η)), (ξ,Φ, ω)}
in the splitting corresponding to ∇ defines a tractor connection on A which is
independent of the choice of the preferred connection ∇.

Proof. Obviously, the expression defines a linear connection on A. To see that the
connection is independent of the choice of∇, we have to compute the transformation
law for the second term. By the invariance of the bracket, this transformation is
given by

{ ̂(η, 0,P(η)), ̂(ξ,Φ, ω)} = {(η, {Υ, η},P(η) + 1
2{Υ, {Υ, η}}), ̂(ξ,Φ, ω)}.
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On the other hand, we have

(η, 0, P̂(η)) = (η, 0,P(η)−∇ηΥ + 1
2{Υ, {Υ, η}}).

Subtracting this from the above term, we see that the contribution of this part
exactly cancels with the contribution from the last formula in section 4.11, so ∇A
is independent of the choice of η.

To verify that∇A is a tractor connection, we have to prove compatibility with the
bracket and the non–degeneracy condition. Non–degeneracy follows immediately
from the fact that ∇Aη (0, 0, ω) = (0, {η, ω},∇ηω). So the algebraic map TM →
A/A1 induced by ω ∈ Ω1(M) has values in End0 TM and is given by the algebraic
bracket with ω, so these maps (as we range over all ω) separate points in TM ; see
[33, lemma 3.2]. Compatibility with the algebraic bracket for the first term in the
definition of∇A has been observed in 4.11 above, while for the second term it follows
from the Jacobi identity. Hence ∇A is compatible with the algebraic bracket, so it
is a g–connection by proposition 2.6 and thus a tractor connection.

4.13. The curvature of the tractor connection. We can now directly compute
the curvature of the tractor connection ∇A. First, by definition we have

∇A[η,ζ](ξ,Φ, ω) = ∇[η,ζ](ξ,Φ, ω) + {([η, ζ], 0,P([η, ζ])), (ξ,Φ, ω)}.(4)

On the other hand we compute

∇Aη ∇ζ(ξ,Φ, ω) = ∇η∇ζ(ξ,Φ, ω) + {(η, 0,P(η)),∇ζ (ξ,Φ, ω)}.(5)

Finally, the compatibility of ∇A with the bracket implies

(6) ∇Aη ({(ζ, 0,P(ζ)), (ξ,Φ, ω)}) = {∇Aη (ζ, 0,P(ζ)), (ξ,Φ, ω)}
+ {(ζ, 0,P(ζ)),∇η(ξ,Φ, ω)}+ {(ζ, 0,P(ζ)), {(η, 0,P(η)), (ξ,Φ, ω)}}.

To get the curvature, we have to add the terms in (5) and (6) and then subtract the
same terms with η and ζ exchanged as well as the terms in (4). First note that the
second term in (5) after alternation cancels with the second term in (6). Expanding
the definition of ∇Aη and using the Jacobi identity, we see that the remaining two
terms in (6) add up to

{∇η(ζ, 0,P(ζ)), (ξ,Φ, ω)} + {(η, 0,P(η)), {(ζ, 0,P(ζ)), (ξ,Φ, ω)}}.

After alternation, the second of these terms just produces the bracket of

{(η, 0,P(η)), (ζ, 0,P(ζ))} = (0, {η,P(ζ)} − {ζ,P(η)}, 0)

with (ξ,Φ, ω). The first term in (5) together with its alternation and subtracting
the first term in (4) combine to give the curvature of ∇ applied to (ξ,Φ, ω), which
can be written as {(0, R(η, ζ), 0), (ξ,Φ, ω)}. By definition of the Weyl curvature (see
4.6) this combines with the term from above to yield {(0,W (η, ζ), 0), (ξ,Φ, ω)}. The
rest is then simply given by the bracket of

∇η(ζ, 0,P(ζ))−∇ζ(η, 0,P(η)) − ([η, ζ], 0,P([η, ζ]))

=
(
T (η, ζ), 0,∇η(P(ζ)) −∇ζ(P(η))− P([η, ζ])

)
with (ξ,Φ, ω). Inserting [η, ζ] = ∇ηζ − ∇ζη − T (η, ζ), the last component in the
right hand side can be written as (∇ηP)(ζ)− (∇ζP)(η) + P(T (η, ζ)), so we exactly
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1544 ANDREAS ČAP AND A. ROD GOVER

recover the Cotton–York tensor of ∇ from 4.6. Thus, the curvature RA of ∇A is
given by

RA(η, ζ)(t) = {(T (η, ζ),W (η, ζ), CY (η, ζ)), t}.
Since by construction T and W are ∂∗–closed, while for CY this is trivially true,
we have verified that ∇A is the normal tractor connection on M . Finally note
that this shows that κ(η, ζ) is given by (T (η, ζ),W (η, ζ), CY (η, ζ)) in the splitting
corresponding to ∇. Since κ(ξ, η) is a section of the adjoint tractor bundle by 2.9,
proposition 4.8 implies the transformation law for the Cotton–York tensor claimed
in 4.6.

4.14. The fundamental D–operator on adjoint tractors and tensors. Hav-
ing the normal tractor connection at hand, we can now easily compute the funda-
mental D–operators for a large class of bundles. Let us start with the fundamental
D on adjoint tractors themselves. From proposition 3.2(2) we know that for smooth
sections s, t ∈ Γ(A), we have Dst = ∇AΠ(s)t− {s, t}. If ∇ is a preferred connection
and in the splitting corresponding to ∇ we have s = (ξ,Φ, ω) and t = (η,Ψ, τ),
then Π(s) = ξ and the formula for ∇A from 4.12 immediately implies that in the
splitting corresponding to ∇, the section Dst is given by

(∇ξη,∇ξΨ,∇ξτ) − {(0,Φ, ω − P(ξ)), (η,Ψ, τ)}
= (∇ξη − {Φ, η},∇ξΨ− {Φ,Ψ} − {ω − P(ξ), η},∇ξτ − {Φ, τ} − {ω − P(ξ),Ψ}).

By proposition 3.1(2) we immediately see from this that the fundamental D–
operators on vector fields and one–forms are given by Dsη = ∇ξη − {Φ, η} and
Dsτ = ∇ξτ − {Φ, τ}, respectively. Let us introduce a final piece of notation. Any
irreducible bundle W corresponds to a representation of G0, so the corresponding
infinitesimal representation induces a bundle map End0 TM ×W →W , which we
denote by •. Again, in the case of a tractor bundle this is compatible with our earlier
notation. In this notation we can write Dsη = ∇ξη−Φ • η and Dsτ = ∇ξτ −Φ • τ .
By naturality of the fundamental D–operators (see proposition 3.1(2) and (3)),
this implies that Dst = ∇ξt − Φ • t for any tensor field t on M . Finally, for later
use, observe that by its definition it is clear that for Φ ∈ End0 TM , Φ• satisfies
a Leibniz rule over the tensor product of induced bundles. For example if W and
W ′ are two irreducible bundles corresponding to two representations of G0 and
s⊗ t ∈ Γ(W)⊗ Γ(W ′), then Φ • (s⊗ t) = (Φ • s)⊗ t+ s⊗ (Φ • t).

To see how to proceed to compute iterations of fundamental D–operators, let
us compute DDt for any tensor field t on M . Applying proposition 3.1(3) to the
map s2⊗Dt 7→ Ds2t we immediately see that DDt(s1, s2) = Ds1(Ds2t)−DDs1s2

t.
If, in the splitting corresponding to a preferred connection ∇, the sections si of A
are given by (ξi,Φi, ωi) for i = 1, 2, then we can read off Ds1s2 from above, so the
second summand contributes

−∇∇ξ1ξ2t+∇{Φ1,ξ2}t+ (∇ξ1Φ2 − {Φ1,Φ2} − {ω1 − P(ξ1), ξ2}) • t.

On the other hand, Ds1(∇ξ2t) = ∇ξ1∇ξ2t − Φ1 • ∇ξ2t and by naturality of the
fundamental D’s we get Ds1(Φ2 • t) = (Ds1Φ2) • t + Φ2 • (Ds1t). Expanding the
remaining D’s and collecting terms, we see that DDt(s1, s2) is given by

∇2t(ξ1, ξ2)− Φ1 • ∇ξ2t− Φ2 • ∇ξ1t+∇{Φ1,ξ2}t

+ Φ2 • Φ1 • t− {ω1, ξ2} • t+ {P(ξ1), ξ2} • t.
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4.15. Natural line bundles and weighted tensor fields. In the case of irre-
ducible parabolic geometries, natural line bundles are also easy to understand. First
observe that the adjoint action induces a representation Ad− : G0 → GL(g−1). Now
for a real number w we define the bundle E [w] to be the line bundle associated to G0

corresponding to the representation g 7→ |det(Ad−(g))|−w/n where n = dim(g−1).
Otherwise put, E [w] is the bundle of −w/n–densities on M . The choice of the nor-
malization is motivated as follows: The corresponding infinitesimal representation
is given by −w/n times the trace of the restriction of ad to g−1. Since by definition
the grading element acts as the negative of the identity on g−1, the number w is
exactly the value of the infinitesimal representation on the grading element. Since
the center of g0 is 1–dimensional in the |1|–graded case, any natural line bundle is
locally isomorphic to some E [w], so it suffices to compute the fundamental D’s for
these bundles.

By construction, the highest exterior power ΛmaxT ∗M = ΛnT ∗M of T ∗M is
locally isomorphic to E [n]. Since this is a tensor bundle, we know from 4.14 above,
that for sections s ∈ Γ(A) and σ ∈ Γ(ΛnT ∗M), and a preferred connection ∇,
we have Dsσ = ∇ξσ − Φ • σ, where s = (ξ,Φ, ω) in the splitting corresponding
to ∇. By the definition of the fundamental D–operators, the same formula holds
for σ ∈ Γ(E [n]). Of course by proposition 3.2(1) this formula also holds for the
trivial line bundle E [0] with the space of smooth sections C∞(M,R). Now let
0 6= α ∈ R and suppose µ is any section of E [nα ]. From the previous but one result
we have Dsµ

α = ∇ξµα−Φ •µα. By definition of the bundle E [w], for σ ∈ Γ(E [w]),
we have Φ • σ = −wn tr(Φ)σ. In particular Φ • µα = αµα−1Φ • µ. Of course
∇ξµα = αµα−1∇ξµ, and by proposition 3.5(3), we have Dsµ

α = αµα−1Dsµ. Thus
we may conclude that the formula Dsµ = ∇ξµ−Φ •µ holds for sections of any line
bundle.

Proposition. (1) Let t be a section of the tensor product of a tensor bundle with
a natural line bundle. Then

Dst = ∇ξt− Φ • t,
where s ∈ Γ(A) is given by (ξ,Φ, ω) in the splitting corresponding to ∇. Similarly
the formula for DDt derived in 4.14 continues to hold for weighted tensor fields.

(2) If σ is a section of the bundle E [w] for some w ∈ R, then

Dsσ = ∇ξσ + w
n tr(Φ)σ

where, again, s = (ξ,Φ, ω) in the splitting corresponding to ∇.
(3) Let σ be a non–vanishing section of the bundle E [w] for 0 6= w ∈ R and let

E ∈ g0 be the grading element. Then B(E,E) 6= 0 and for a preferred connection
∇ the tractor Aσ from proposition 3.5(1) is given in the splitting corresponding to
∇ by w

B(E,E)(0, id, σ−1∇σ).

Proof. The first of these follows immediately from the results for tensors and line
bundles since D satisfies the Leibniz rule for tensor products of induced bundles.

For (2) simply observe that by definition of E [w], we have Φ • σ = −wn tr(Φ)σ for
all sections Φ of End0 TM .

Finally we deal with (3). Let C be the Killing form on g. Since the grading
element E acts by multiplication by j on each gj , the definition of the Killing form
implies C(E,E) = 2n, where n denotes the dimension of g−1. Since B is a nonzero
multiple of the Killing form, we also have B(E,E) 6= 0.
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Now for any smooth section s of A, we know from above that we have Dsσ =
∇ξσ − Φ • σ = B(Aσ , s)σ, where s = (ξ,Φ, ω) in the splitting corresponding to ∇.
Next, consider the one–form Υ := σ−1∇σ. If ∇̂ denotes the connection obtained
by deforming ∇ corresponding to −Υ, then by construction ∇̂σ = 0, and clearly
∇̂ is the unique preferred connection which has this property. Hence we see that
Dsσ = −Ψ•σ = B(Aσ, s)σ, where s = (ξ,Ψ, τ) in the splitting corresponding to ∇̂.
Recall, once again, that Ψ • σ = −wn tr(Ψ)σ for all sections Ψ of End0 TM and σ ∈
Γ(E [w]). So in the splitting corresponding to ∇̂, we must have B(Aσ, (ξ,Ψ, τ)) =
w
n tr(Ψ). On the other hand, for A ∈ g0, by definition of the Killing form, we get
C(E,A) = tr(ad(−A)|g−1) + tr(ad(A)|g1

), and from the definition of the adjoint
action one easily verifies that this equals −2tr(ad(A)|g−1

). Since B is a multiple
of the Killing form and C(E,E) = 2n, we get B(E,A) = B(E,E)

2n C(E,A). Since
the constant function E corresponds to − id ∈ Γ(End0 TM), we see that in the
splitting corresponding to ∇̂, the adjoint tractor (0, w

B(E,E) id, 0) has the property
that its pairing under B with some Ψ gives exactly w

n tr(Ψ), so by the uniqueness
part of proposition 3.5(1), it coincides with Aσ. Passing back to the splitting
corresponding to the connection ∇, proposition 4.8 implies that Aσ is given by
(0, w

B(E,E) id, {Υ, w
B(E,E) id}). Since the bracket T ∗M ⊗End0 TM → T ∗M is given

exactly by the evaluation of endomorphisms, the last component equals w
B(E,E)Υ =

w
B(E,E)σ

−1∇σ, and the result follows.

Remark. (1) In the proof of the above proposition we have seen that for any non–
vanishing section σ (or equivalently any trivialization) of one of the bundles E [w]
with w 6= 0 there is a unique preferred connection ∇ such that ∇σ = 0. The
connections obtained in that way form a proper subclass of all preferred connections
(since they are affine over smooth functions). In the case of conformal structures
these are exactly the Levi–Civita connections of metrics in the conformal class (as
opposed to Weyl–structures, which are the general preferred connections). Note
that it follows easily from the definition of Aσ in proposition 3.5(1) that the adjoint
adjoint tractor B(E,E)

w Aσ is independent of the scale of the form B and the power
of σ. That is if α 6= 0, then B(E,E)

αw Aσ
α

= B(E,E)
w Aσ. Moreover, in the proof we

saw that in the splitting corresponding to the preferred connection ∇ with ∇σ = 0,
the adjoint tractor −B(E,E)

w Aσ is simply given by (0,− id, 0). In particular, this
implies that the isomorphism A ∼= TM ⊕End0 TM ⊕T ∗M induced by ∇ is exactly
the splitting of A into the eigenspaces corresponding to the eigenvalues −1, 0, 1 of
the operator −B(E,E)

w {Aσ, }.
(2) Suppose that we write w̃ for the representation inducing the line bundle

E [w]. Let us also write w̃ for the corresponding representation of the Lie algebra
g0. Then it follows immediately from the previous observation that w = w̃(E),
where E is the grading element. This gives an alternative understanding of the
density weight for irreducible parabolic structures. Another weight is commonly
used for these bundles. In the complexification of g the parabolic subalgebra (the
complexification of p) corresponds to omitting the weight spaces corresponding to
all negative roots which are linear combinations involving a certain simple root
α× (see [25] for this and other notation used here). In fact this is the simple
root such that α(E) = 1. (We are assuming here that the Cartan subalgebra is
consistent with the given grading.) Corresponding to each simple root α there is
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an element, usually denoted hα, of a standard basis of the Cartan subalgebra. The
representation w̃ on g is determined by w̃(hα×) and this number is often used as
a characterizing weight for the representation. For example this is the convention
used in [2, 21]. The difference between w̃(hα×) and w̃(E) depends on the structure.
More precisely, if one takes the basis {hα} of the Cartan algebra, where α ranges
over the set of simple roots, then E is the element of the dual basis (with respect
to the Killing form) corresponding to hα× . So the difference is exactly given by the
coefficient of hα× in the expression of E in the basis {hα}. Since it is well known
that this coefficient can be read off the inverse of the Cartan matrix, this poses
no problem. For example these numbers agree on conformal geometries, while on
projective geometries w̃(hα×) is n+1

n w̃(E).
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