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Abstract

We establish Tracy-Widom asymptotics for the partition function of a random polymer
model with gamma-distributed weights recently introduced by Seppäläinen. We show
that the partition function of this random polymer can be represented within the
framework of the geometric RSK correspondence and consequently its law can be
expressed in terms of Whittaker functions. This leads to a representation of the law of
the partition function which is amenable to asymptotic analysis. In this model, the
partition function plays a role analogous to the smallest eigenvalue in the Laguerre
unitary ensemble of random matrix theory.
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1 Introduction

Denote by Φm,n the set of ‘paths’ of the form φ = {(1, j1), (2, j2), . . . , (m, jm)}, where
1 ≤ j1 ≤ · · · ≤ jm ≤ n, as shown in Figure 1. Let gij be independent gamma-distributed

random variables with common parameter γ, i.e.

P {gij ∈ dx} =
1

Γ(γ)
xγ−1 e−x dx

and set

Zm,n =
∑

φ∈Φm,n

∏

(i,j)∈φ

gij .

This is the partition function of a random polymer recently introduced by Seppäläi-

nen [16] where it was observed that this model exhibits the so-called Burke property.

The analogous property for other polymer models, specifically the semi-discrete Brow-

nian polymer introduced in [14] and the log-gamma polymer introduced in [17], has
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1 INTRODUCTION

(1, 1)

(m,n)

Figure 1: A path in Φm,n.

been used to study asymptotics of the free energy [10,14,17,18]. More recently, the

semi-discrete and log-gamma polymer models have been shown to have an underlying

integrable structure, via a remarkable connection between a combinatorial structure

known as the geometric RSK correspondence andGL(n,R)-Whittaker functions [6,12,13].

This integrable structure has allowed very precise (Tracy-Widom) asymptotics to be

obtained [3–5]. For these models, the partition functions play a role analogous to the

largest eigenvalue in the Gaussian and Laguerre unitary ensembles of random matrix

theory.

In the present paper, we show that the partition function of the above random polymer

can also be represented within the framework of the geometric RSK correspondence

and consequently its law can be expressed in terms of Whittaker functions. For this

model, the partition function plays a role analogous to the smallest eigenvalue in the

Laguerre unitary ensemble. This leads to a representation of the law of the partition

function from which we establish Tracy-Widom asymptotics for this model. A precise

statement is given as follows.

Theorem 1.1. Suppose m/n→ α > 0 as n→ ∞. Set c = 1 + α,

µ = inf
z>0

[
cψ′(z + γ)− ψ′(z)

]
, H(z) = lnΓ(z)− c ln Γ(z + γ) + µz,

where ψ is the digamma function. The infimum in the definition of µ is achieved at some

z∗ > 0 and ḡ := −H ′′′(z∗) > 0. For γ sufficiently small,

lim
n→∞

P

{
lnZm,n − nµ

n1/3
≤ r

}
= FGUE

(
(g/2)

−1/3
r
)

where FGUE is the Tracy–Widom distribution function.

The connection to random matrices can be further illustrated by considering the

zero-temperature limit, which corresponds to letting γ → 0. Then the collection of

random variables −γ log gij converge weakly to a collection of independent standard

exponentially distributed variables wij and so, by the principle of the largest term, the

sequence −γ logZm,n converges weakly to the first passage percolation variable

fm,n = min
φ∈Φm,n

∑

(i,j)∈φ

wij .

This first passage percolation problem was previously considered in [11] where it is

argued, using a representation of fm,n as a departure process from a series of ‘Exp/Exp/1’

queues in tandem together with the Burke property for such queues, that, almost surely,

lim
n→∞

fαn,n/n =
(√

1 + α− 1
)2
. (1.1)

2



2 GEOMETRIC RSK, POLYMERS AND WHITTAKER FUNCTIONS

Moreover, it can be inferred from further results presented in [8] on a discrete version

of this model with geometric weights (or alternatively from Section 2 below) that fm,n

has the same law as the smallest eigenvalue in the Laguerre ensemble with density

proportional to
∏

1≤i<j≤n

(λi − λj)
2

n∏

i=1

λm−1
i e−λidλi.

Given this identity in law, the asymptotic relation (1.1) can also be seen as a consequence

of the Marchenko-Pastur law. As a further consistency check, one can easily verify (see

Lemma 5.2 below) that

−γµ→
(√

1 + α− 1
)2

as γ → 0, where µ is defined in the statement of Theorem 1.1.

The outline of the paper is as follows. In the next section we relate the above polymer

model to the geometric RSK correspondence and deduce, using results from [6, 13],

an integral formula for the Laplace transform of the partition function. In Section 3

we show that this Laplace transform can be written as a Fredholm determinant, which

allows us, in Section 4 to take the limit as n → ∞. Section 5 contains proofs of some

lemmas that we require on the way.

After the present article appeared on the arXiv, a paper by Corwin, Seppalainen and

Shen appeared there [7]. They obtain similar results, however, their approach is very

different to ours. Namely they show that the polymer model can be obtained as a limit

of the discrete-time q-TASEP and then use previously known formulas for that particle

system.

Acknowledgments. Thanks to Timo Seppäläinen for helpful discussions and for making

the manuscript [16] available to us. We also thank two anonymous referees for suggesting

revisions that have led to a much improved version of this paper.

2 Geometric RSK, polymers and Whittaker functions

The geometric RSK correspondence is a bijective mapping

T : (R>0)
h×n → (R>0)

h×n.

It was introduced by Kirillov [9] as a geometric lifting of the RSK correspondence, and is

defined as follows. Let W = (wij) ∈ (R>0)
h×n and write T (W ) = (tij) ∈ (R>0)

h×n. For

1 ≤ k ≤ n and 1 ≤ r ≤ h ∧ k,

th−r+1,k−r+1 · · · th−1,k−1thk =
∑

(π1,...,πr)∈Π
(r)
h,k

∏

(i,j)∈π1∪···∪πr

wij , (2.1)

where Π
(r)
h,k denotes the set of r-tuples of non-intersecting up/right lattice paths π1, . . . , πr

starting at positions (1, 1), (1, 2), . . . , (1, r) and ending at positions (h, k−r+1), . . . , (h, k−
1), (h, k), as shown in Figure 2. The remaining entries of T (W ) are determined by the

relation T (W t) = T (W )t.

Note in particular that

thn =
∑

π∈Πh,n

∏

(i,j)∈π

wij , (2.2)

where Πh,n is the set of up/right lattice paths in Z2 from (1, 1) to (h, n). This gives an

interpretation of thn as a polymer partition function, providing the basis for the analysis

of the log-gamma polymer developed in [6,13].

The relation to the random polymer defined in the introduction is as follows.
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2 GEOMETRIC RSK, POLYMERS AND WHITTAKER FUNCTIONS

(1, 1)

(h, k)

(h, n)

Figure 2: A 3-tuple of non-intersecting paths in Π
(3)
h,k.

Proposition 2.1. Suppose h ≥ n and set m = h − n + 1. For 1 ≤ i ≤ m and 1 ≤ j ≤ n,

set gij = 1/wi+j−1,n−j+1. Then

1

tm1
=

∑

φ∈Φm,n

∏

(i,j)∈φ

gij , (2.3)

where Φm,n the set of φ = {(1, j1), (2, j2), . . . , (m, jm)} with 1 ≤ j1 ≤ · · · ≤ jm ≤ n.

Proof. From the definition (2.1), taking k = r = n,

tm1 · · · th−1,n−1thn =
∑

(π1,...,πn)∈Π
(n)
h,n

∏

(i,j)∈π1∪···∪πn

wij =
∏

i,j

wij ,

and, taking k = n and r = n− 1,

tm+1,2 · · · th−1,n−1thn =
∑

(π1,...,πn−1)∈Π
(n−1)
h,n

∏

(i,j)∈π1∪···∪πn−1

wij .

Thus,
1

tm1
=

∑

(π1,...,πn−1)∈Π
(n−1)
h,n

∏

(i,j)/∈π1∪···∪πn−1

1

wij
=

∑

φ∈Φm,n

∏

(i,j)∈φ

gij ,

as required. The last identity is illustrated in Figures 1 and 3. The paths in Φm,n

are obtained by taking compliments of (n− 1)-tuples in Π
(n−1)
h,n (as shown in Figure 3),

reflecting this picture through the horizontal, and shifting appropriately to remove the

gaps - this procedure is made precise in the above definition of the gij .

Remark 2.2. The identity (2.3) is analogous to Theorem 5.1, equation (5.4), of the

paper [8], where the corresponding identity for the usual RSK correspondence is given.

Let a ∈ Rn and b ∈ Rh be such that aj + bi > 0 for all i, j. In [6] (here we are using

the notation of [13]) it was shown that, if the matrixW is chosen at random according to

the probability measure

P(dW ) =
∏

i,j

Γ (aj + bi)
−1
e−1/wijw

−aj−bi−1
ij dwij (2.4)
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2 GEOMETRIC RSK, POLYMERS AND WHITTAKER FUNCTIONS

(1, 1)

(h, n)

Figure 3: An (n − 1)-tuple of non-intersecting paths in Π
(n−1)
h,n , and its compliment. The

corresponding path in Φh−n+1,n is shown in Figure 1.

then the law of the vector (th1, . . . , tm1) under P is given by

µn(dx) =
∏

i,j

Γ (aj + bi)
−1

Ψn
a(x)Ψ

n
b;1(x)

n∏

j=1

dxj
xj

,

where Ψn
a and Ψn

b;1 are (generalised) Whittaker functions, as defined in [13]. Observe that

with (2.4) the wij are independent random variables with inverse gamma distribution, so

that the gij follow the gamma distribution. Without loss of generality we can assume

that aj > 0 and bi > 0 for each i, j and deduce the following.

Proposition 2.3. For s ∈ C with ℜs > 0,

Ee−s/tm1 =

∫

(R>0)n
e−s/xn µn(dx) =

∫

(iR)n

n∏

i,j=1

Γ (ai − λj)

n∏

j=1

sλj
∏h

i=1 Γ (bi + λj)

saj
∏h

i=1 Γ (bi + aj)
sn(λ)dλ

(2.5)

where sn is the density of the Sklyanin measure

sn(λ) =
1

(2πi)
n
n!

n∏

i,j=1

1

Γ (λi − λj)
. (2.6)

Proof. By [13, Corollary 3.8] the functions Ψn
a;s(x) ≡ e−s/xnΨn

a(x) and Ψn
b;1 are both in

L2((R>0)
n,
∏n

j=1 dxj/xj) and, by [13, Corollary 3.5], for λ ∈ (iR)n, we have

∫

(R>0)n
Ψn

b;1(x)Ψ
n
λ(x)

n∏

j=1

dxj
xj

=

h∏

i=1

n∏

j=1

Γ (bi + λj)

and ∫

(R>0)n
Ψn

a;s(x)Ψ
n
−λ(x)

n∏

j=1

dxj
xj

= s
∑n

j=1(λj−aj)
n∏

i,j=1

Γ (ai − λj) .

The claim now follows from the Plancherel theorem for GL(n)-Whittaker functions due

to Wallach, noting that Ψn
λ(x) = Ψn

−λ(x) (see for example [13, Section 2]).

The Laplace transform of the partition function Zm,n of the random polymer (defined

in the introduction) is obtained by setting ai = ǫ and bj = γ − ǫ, where 0 < ǫ < γ, for in

this case Zm,n is given by 1/tm1. We remark that the partition function for the log-gamma

polymer can be defined on the same probability space as thn, given by the formula (2.2).

The joint law of the two partition functions is thus given in terms of the joint first and

last marginal of the probability measure µn.
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3 FREDHOLM DETERMINANT REPRESENTATION

3 Fredholm determinant representation

The first step in the proof of Theorem 1.1 is to write the right-hand side of (2.5)

as a Fredholm determinant. A similar algebraic identity is proved in [5] (Theorem 2).

However, this result is proved for what corresponds to the case h = n in our notation,

and moreover would require the poles of Fs to lie to the right of ℓδ2 . Our argument is

an extension of the argument in [5] and follows the same main steps. We will sketch it

below.

For s ∈ R we define a function Fs by

Fs(w) = sw
h∏

j=1

Γ (bj + w) (3.1)

where s is a parameter to be chosen later. For δ > 0 define ℓδ = δ + iR and let Cδ be

the circle centred at the origin of radius δ. Observe that the Proposition 3.1 holds for a

general range of parameters aj , bj and not just the special choice we made at the end of

section 2.

Proposition 3.1. Let δ1, δ2 > 0 such that δ1 < δ2 ∧ (1− δ2). Suppose also that |aj | < δ1
and bj > δ2 for all j. Then

∫
e−s/xn µn(dx) = det

(
I +KLT

n,r

)
L2(Cδ1)

(3.2)

where

KLT
n,r (v, ṽ) =

1

2πi

∫

ℓδ2

dw

w − ṽ

π

sin (π (v − w))

Fs(w)

Fs(v)

n∏

j=1

Γ (v − aj)

Γ (w − aj)
. (3.3)

The rest of this section is devoted to the proof of this proposition. We will begin with the

right-hand side of (3.2) and show that it equals to the right-hand side of (2.5).

Step 1: Of course the right-hand side of (3.2) should be interpreted as a Fredholm

series, namely

det
(
I +KLT

n,r

)
L2(Cδ1)

= 1 +

∞∑

k=1

1

k!

∫
· · ·
∫

Ck
δ1

dv1 . . . dvk det
[
KLT

n,r (vℓ, vr)
]k
ℓ,r=1

. (3.4)

We need to check that this series converges. Using estimates similar to those performed

in [5], in particular the estimate

lim
|y|→∞

|Γ(x+ iy)|√
2π

e
π|y|
2 |y|1/2−x

= 1. (3.5)

from Abramowitz–Stegun [1, (6.1.45)] leads to the following bound for the integrand in

the definition of KLT
n,r (v, ṽ):

Cn
3 |ℑ(w)|(h−n)(δ2− 1

2 ) e−
π
4 (h−n)|ℑ(w)| (3.6)

for some C3 > 0. This is easily seen to be integrable over any vertical line. It follows that∣∣KLT
n,r (v, ṽ)

∣∣ can be bounded by Cn
4 for some C4 > 0, uniformly over v, ṽ. Together with

Hadamard’s bound (see for example [15], section 2) it follows that
∣∣∣det

(
KLT

n,r (vj , vℓ)
)k
j,ℓ=1

∣∣∣ ≤ kk/2 Cnk
4 (3.7)

It now follows immediately that the right hand side of (3.4) is absolutely convergent.
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3 FREDHOLM DETERMINANT REPRESENTATION

Step 2: Cyclic property of determinants. We now re-write the kernel defining the

Fredholm determinant above by using the identity det(I+AB) = det(I+BA) for suitable

kernels A,B. Just as in [5] the operator defined by KLT
n,r can be written as a composition

AB where the kernels defining the operators A,B are given by

KA : Cδ1 × ℓδ2 −→ R, KA (v, w) =
π

sin (π (v − w))

Fs(w)

Fs(v)

n∏

j=1

Γ (v − aj)

Γ (w − aj)

KB : ℓδ2 × Cδ1 −→ R, KB (w, v) =
1

w − v
.

By the same bounds as above these define operators A from L2 (ℓδ2) to L2 (Cδ1) and B

from L2 (Cδ1) to L2 (ℓδ2). Note that the integrals

∫

Cδ1

dv KB (w1, v)KA (v, w2),

∫

ℓδ2

dwKA (v1, w)KB (w, v2)

are finite for all v1, v2 ∈ Cδ1 and w1, w2 ∈ ℓδ2 (we checked one of them above, the other is

similar). Thus we can write the right hand side of (3.2) as det
(
I + K̃LT

n,r

)

L2(ℓδ2)
where

K̃LT
n,r (w, w̃) =

∫

Cδ1

dv

2πi

1

w − v

π

sin (π (v − w̃))

G (w̃)

G (v)
(3.8)

and we have defined

Gs(v) = Fs(v)
n∏

j=1

1

Γ (v − aj)
= Fs(v)

n∏

j=1

v − aj
Γ (v − aj + 1)

. (3.9)

Step 3: The integral in (3.8) can be evaluated using residue calculus: the only sin-

gularities of the integrand inside the closed contour Cδ1 are simple poles of the form
1

v−aj
. Since ℓδ2 is a positive distance away from Cδ1 there are no other poles, and the

fact that δ1 < δ2 ∧ (1− δ2) implies that the fraction involving the sine does not have any

singularities1 inside Cδ1 . Just as in [5] it is sufficient to treat the case where the aj are

all distinct. By computing the residues at the n simple poles we see that

K̃LT
n,r (w1, w2) =

1

2πi

n∑

j=1

fj (w1) gj (w2)

with fj(w) =
1

w−aj
and gj(w) = CjG(w)

π
sin(π(aj−w)) . Here the constant Cj ∈ R is given by

Cj =
1

Fs (aj)

∏

ℓ 6=j

Γ (aj − aℓ) .

Step 4: Applying once more the cyclic property of determinants, analogously to [5],

we obtain

det
(
I +KLT

n,r

)
L2(Cδ1)

= det

[
In +

∫

ℓδ2

dw

2πi
fj(w)gℓ(w)

]n

j,ℓ=1

(3.10)

where In is the n× n identity matrix.

1These poles lie inside of the contour thanks to our assumption that |aj | < δ1 for all j.
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4 ASYMPTOTICS

Step 5: We now shift the integration contour on the right-hand side of (3.10) from

ℓδ2 to −ℓδ1 . On the way we will encounter some poles whose residues we will need to

evaluate. There is sufficient decay at infinity to justify moving the contours thanks to

(3.5).

The poles are different to those in [5], but the outcome is analogous: the only

singularity we cross is w = aℓ from fj(w), for each j. When j 6= ℓ this turns out to be a

removable singularity, whereas for j = ℓ it is a simple pole with residue given by

Resw=aj
fj(w)gℓ(w) = −Fs (aj)Cj

1

Γ(1)

∏

r 6=j

Γ (aj − ar) = −1

and we obtain

det
(
I +KLT

n,r

)
L2(Cδ1)

= det

[∫

−ℓδ1

dw

2πi
fj(w)gℓ(w)

]n

j,ℓ=1

(3.11)

=
1

n! (2πi)
n

∫

(−ℓδ1)
n
d~w det [fj (wℓ)]

n
j,ℓ=1 det [gj (wℓ)]

n
j,ℓ=1 (3.12)

where the last equality follows from the Andréiev identity [2].

Step 6: It remains to show that the integrand in (3.12) is identical to that in (2.5). But

this follows exactly in the same way as in [5], see the paragraphs surrounding equation

(3.11) there. This completes our proof.

4 Asymptotics

In the previous section (Proposition 3.1) we saw that

∫

(R>0)n
e−s/xn µn(dx) = det

(
I +KLT

n,r

)
L2(Cδ1)

where

KLT
n,r (v1, v2) =

∫

ℓδ2

dw

2πi

π

sin (π (v1 − w))

Fs(w)

Fs (v1)

1

w − v2

n∏

j=1

Γ (v1 − aj)

Γ (w − aj)
(4.1)

and the function Fs was defined in (3.1). From now on we choose aj = 0 and bj = γ for

all j, where γ > 0. Then 1/xn has the same law under µn as the partition function Zm,n

of the random polymer defined in the introduction, taking m = h − n + 1. We will set

h = ⌈cn⌉ for some fixed c > 1. The correct choice of the parameter s will turn out to be

s = e−nµ−rn−1/3

with µ defined in (4.6) below. Then

e−sZm,n = fn,r

(
lnZm,n − nµ

n1/3

)
(4.2)

where fn,r(x) = exp
{
−en1/3(x−r)

}
. In this section we show that the expectation of the

left-hand side above converges, as n → ∞, to a rescaled version of the Tracy–Widom

GUE distribution function. Observe that with our choice of parameter s this expectation

equals det (I +Kn,r) where

Kn,r (v1, v2) =
1

2πi

∫

ℓδ2

dw

w − v2

π

sin (π (v1 − w))
exp

{
n (Hn,c,γ (v1)−Hn,c,γ (w))− rn1/3 (w − v1)

}

(4.3)
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4 ASYMPTOTICS

and, recalling that h = ⌈cn⌉

Hn,c,γ(z) = lnΓ (z)− c̃n ln Γ (γ + z) + µz. (4.4)

and c̃n = ⌈cn⌉
n .

Theorem 4.1. For γ sufficiently small we have

lim
n→∞

det (I +Kn,r)L2(Cδ1)
= FGUE

(
(g/2)

3
r
)

where g was defined in Theorem 1.1.

The proof of Theorem 1.1 is completed by noting that fn,r(x) = fn,0(x− r) for all r and

that (fn := fn,0 : n ∈ N) and p := FGUE satisfy the conditions of Lemma 4.2, whose proof

is elementary and can be found in [3, Lemma 4.1.39].

Lemma 4.2. For each n ∈ N let fn : R −→ [0, 1] be fn strictly decreasing and converge

to 0 at ∞ and 1 at −∞. Suppose further that for each δ > 0, (fn : n ∈ N) converges

uniformly to 1(−∞,0]. Let (Xn : n ∈ N) be real-valued random variables such that for each

r ∈ R,

lim
n→∞

E (fn (Xn − r)) = p(r)

where p is a continuous probability distribution function. Then (Xn : n ∈ N) converges in

distribution to a random variable with distribution function p.

It therefore remains to prove Theorem 4.1. Recall that we need to compute the n→ ∞
limit of det (I +Kn,r)L2(Cδ1)

with Kn,r as defined in (4.3) above.

The first step is to identify suitable steepest descent contours to which we will deform

the contours Cδ1 and ℓδ2 . We also introduce the functionHc,γ(z) = lnΓ (z)−c ln Γ (z + γ)+

µz. Observe that for z ∈ C,

Hc,γ(z)−Hn,c,γ(z) = (c̃n − c) ln (Γ (z + γ)) . (4.5)

and that c̃n − c = O
(
n−1

)
. For later use we record the first few derivatives of Hc,γ :

H ′
c,γ(z) = ψ(z)− cψ(γ + z) + µ

H ′′
c,γ(z) = ψ1(z)− cψ1(γ + z)

H ′′′
c,γ(z) = ψ2(z)− cψ2(γ + z)

where ψk(x) =
dk+1

dxk+1 ln (Γ(x)) is the k
th polygamma function (in particular ψ = ψ0 is the

digamma function as above). Let λc > 0 be small, with the precise value to be chosen

later. The proof of the following calculus lemma can be found in Section 5.

Lemma 4.3. For each c > 0 and γ > 0 small enough there exists unique z∗c,γ such that

H ′′
c,γ

(
z∗c,γ
)
= 0. Moreover H ′′′

c,γ

(
z∗c,γ
)
< 0 and we can write z∗c,γ = γz̃∗c,γ + O (γ) with

limγ→0 z̃
∗
c,γ = 1√

c−1
.

Our asymptotic analysis will consist of shifting our contours to curves that pass through

or near z∗c,γ and showing that in the n→ ∞ limit only the parts of the contour near z∗c,γ
survive. We will see that the right choice for µ = µc is such that H ′

c,γ

(
z∗c,γ
)
= 0, i.e.

µc = cψ
(
γ + z∗c,γ

)
− ψ(z∗c,γ) (4.6)

= inf
z>0

{cψ (z + γ)− ψ (z)} . (4.7)

9



4 ASYMPTOTICS

Ĉv
∞

Ĉw
∞

γ

Figure 4: The contours Ĉv
∞ and Ĉw

∞. The angle between Ĉv
∞ and Ĉw

∞ and the negative

and positive x-axes respectively is given by π
3 .

with infimum rather than supremum because gc := −H ′′′
c,γ

(
z∗c,γ
)
> 0. Taylor’s theorem

implies therefore that, for v, w near z∗c,γ ,

Hc,γ (v1)−Hc,γ(w) =
gc(w − z∗c,γ)

3

6
−
gc(v1 − z∗c,γ)

3

6
+O

((
w − z∗c,γ

)4)
+O

((
v1 − z∗c,γ

)4)
.

(4.8)

The fact that the lowest power is a cube suggests a scaling of order n1/3 around the

critical point and we set ṽj = n1/3
(
vj − z∗c,γ

)
and w̃ = n1/3

(
w − z∗c,γ

)
. We will see below

that only a small part of the integral around the critical point contributes to the limit

which leads to

Proposition 4.4. We have

lim
n→∞

det (I +Kn,r)L2(Cv) = det
(
1 +KLT

r

)
L2(Ĉv

∞) (4.9)

where

KLT
r (ṽ1, ṽ2) =

1

2πi

∫

Ĉw
∞

dw̃

w̃ − ṽ2

1

ṽ1 − w̃
exp




gc

(
w̃3 − ṽ2

3
)

6
+ r (ṽ1 − w̃)





(4.10)

and further Ĉv
∞ = e2iπ/3R≥0 ∪ e4iπ/3R≥0 and Ĉw

∞ = γ +
(
eiπ/3R≥0 ∪ e−iπ/3R≥0

)
, see

Figure 4.

Setting now v =
(

gc

2

)1/3
ṽ and similarly w =

(
gc

2

)1/3
w̃ we obtain det

(
I + K̃LT

r

)

L2(Cv)

where

K̃LT
r (v1, v2) =

1

2πi

∫

Ĉw
∞

dw

w − v2

1

v1 − w
exp





− v3

3 +
(

gc

2

)−1/3

rv

−w3

3 +
(

gc

2

)−1/3

rw





But this is exactly one of the definitions of the Tracy-Widom GUE distribution, see for

example Lemma 8.6 in [4].
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4 ASYMPTOTICS

We begin by deforming the contours Cδ1 and ℓδ2 to suitable steepest descent contours.

In fact, for γ small enough we will be able to do this without passing through any pole.

The integrand on the right hand side of (4.1) has the following poles in the integration

variable w:

• w = v2
• w = −M − γ forM ∈ Z≥0 (these are the poles of F )

• w = v1 + 2pπ for all p ∈ Z

On the other hand the poles of the kernel in v1, v2 are given by

• v1 = w + 2pπ for all p ∈ Z

• v2 = w

• v2 = 0

• v1 = aj −M for allM ∈ Z≥0

We would like to move the contours Cδ1 and ℓδ2 to the following contours, which are

illustrated in Figure 5.

Denote by Cw,± the line segments of length ℓ−n1/3 starting at z∗c,γ+γn
−1/3 making an-

gles π
3 and−π

3 respectively with the positive x-axis and let Cw =
(
z∗c,γ + γℓe−iπ/3 + iR≥0

)
∪

Cw,+ ∪ Cw,− ∪
(
z∗c,γ + γℓeiπ/3 + iR≥0

)
, oriented to have increasing imaginary part.

The closed contour Cv is defined differently according to whether c is larger than 5
2

or not. For c > 5
2 let Cv the union of the line segments of length 6γ

5(
√
c−1)

making angles

± 2π
3 with the positive x-axis and the circular segment, centred at z∗c,γ , that connects

the end-points of these two segments. For c ≤ 5
2 we define Cv to be the union of the

following four line segments: those starting at z∗c,γ of length 2γ
c−1 making angles ± 2π

3

with the positive x-axis and those connecting the end-points of the former with the point

− 2γ
c−1 . In both cases we give Cv the positive orientation.

Cv Cw

z∗c,γ

z∗c,γ + γn−1/3

Cv Cw

z∗c,γ

z∗c,γ + γn−1/3

−
2γ
c−1

Figure 5: Contours Cv and Cw for large c ≤ 5
2 (on the left) and c > 5

2 (on the right). The

parts Cv
irrel and C

w
irrel of the contours are drawn as dashed lines.

It is easy to see that we do not cross any poles of the integrand, further the estimate

(3.5) gives sufficient decay at infinity to justify moving the infinite w-contour. It follows

that Ee−s/Zn = det
(
I +KLT

n,r

)
Cv where

KLT
n,r (v, ṽ) =

1

2πi

∫

Cw

dw

w − ṽ

π

sin (π (v − ṽ))

F (w)

F (v)

n∏

j=1

Γ (v − aj)

Γ (w − aj)
. (4.11)

11



4 ASYMPTOTICS

The proof in the rigorous steepest descent analysis now goes along similar lines as, for

example, [4,5]. Fix ǫ > 0. We will show that the difference between our formula for the

Laplace transform of Ee−s/ZN and the right hand side of (4.10) can be bounded by ǫ for

large enough n.

Lemma 4.5. There existsM∗ > 0 such that forM > M∗,
∣∣∣∣det

(
I +Ktrunc

r,M

)
L2(Ĉv

M)
− det

(
I +KLT

r

)
L2(Ĉv

∞)

∣∣∣∣ <
ǫ

3

where Ĉv
M =

{
z ∈ Ĉv

∞ : |z| ≤M
}
,

Ktrunc
r,M (ṽ1, ṽ2) =

1

2πi

∫

Ĉw
M

dw̃

w̃ − ṽ2

1

ṽ1 − w̃
exp




g
(
w̃3 − ṽ2

3
)

6
+ r (ṽ1 − w̃)





and similarly Ĉw
M =

{
z ∈ Ĉw

∞ : |z| ≤M
}
.

From now on we assume thatM > M∗. Denote by Cv
rel the part of Cv consisting of the

two line segments starting at z∗c,γ . Similarly let Cw
rel be the corresponding part of Cw.

Further define Cv
irrel = Cv \ Cv

rel and C
w
irrel = Cw \ Cw

rel (see Figure 5).

Lemma 4.6. There exist γ∗ > 0 and ℓ > 0 such that for γ < γ∗ and n sufficiently large

the following hold

(i) There exists C1 > 0 such that for v ∈ Cv
irrel,

ℜ
(
Hn,c,γ(v)−Hn,c,γ

(
z∗c,γ
))

≤ −C1. (4.12)

(ii) There is C2 > 0 such that for all v ∈ Cv
rel with |v| ≥ ℓ,

ℜ
[
Hn,c,γ(v)−Hn,c,γ

(
z∗c,γ
)]

≤ −C2 (4.13)

(iii) There is C3 > 0 such that for all v ∈ Cv
rel with |v| ≤ ℓ,

ℜ
[
Hn,c,γ(v)−Hn,c,γ

(
z∗c,γ
)]

≤ −C3ℜ
[(
v − z∗c,γ

)3]
(4.14)

(iv) There is C4 > 0 such that for all w ∈ Cw
rel

ℜ
[
Hn,c,γ

(
z∗c,γ
)
−Hn,c,γ(w)

]
≤ −C4ℜ

[(
z∗c,γ − w

)3]
. (4.15)

(v) There exists C5 > 0 such that for all γ < γ∗ and w ∈ Cw
irrel

ℜ
[
Hn,c,γ

(
z∗c,γ
)
−Hn,c,γ(w)

]
≤ −C5. (4.16)

Further there exists L = Lc,γ > 0 such that if additionally |w| > L then

ℜ
[
Hn,c,γ

(
z∗c,γ
)
−Hn,c,γ(w)

]
≤ (1− c)π

4
|ℑ(w)| (4.17)

The proof of Lemmas 4.5 and 4.6 can be found in Section 5. From now on we assume

that γ < γ∗.
By observing that the estimates of Lemma 4.6 are uniform in n and applying

Hadamard’s bound in exactly the same way as in Step 1 of the proof of Proposition 3.1

we deduce that the series defining det
(
I +KLT

n,r

)
Cv is uniformly convergent in n. Thus

we may interchange the n→ ∞ limit with the series in k.

12



5 PROOF OF LEMMAS

Thanks to (v) the contribution of the w integral along Cw
irrel becomes negligible as n

tends to infinity. That is, uniformly in v1, v2 ∈ Cv, as n −→ ∞,

∫

Cw
irrel

dw

w − v1

π

sin (π (v2 − w))
en(Hn,c,γ(z∗

c,γ)−Hn,c,γ(w)) −→ 0 (4.18)

Similarly it follows from (4.12) and uniform convergence that only the ‘relevant’ part of

the v-contour survives in the limit. That is, there exists N ∈ N such that for all n ≥ N ,

∣∣∣∣det
(
I +KLT

n,r

)
L2(Cv)

− det
(
I +KLT

n,r

)
L2(Cv

rel)

∣∣∣∣ <
ǫ

3
. (4.19)

The estimates form (4.14) and (4.15) now allow us to further discard the parts of Cv
rel

and Cw
rel which are further than Mn−1/3 away from z∗c,γ and z∗c,γ + n−1/3 respectively.

Now we make the change of variables vj = n1/3ṽj + z∗c,γ and wj = n1/3w̃+ z∗c,γ , and write

KLT
n,r (v1, v2) = K̃LT

n,r (ṽ1, ṽ2) for ṽ1, ṽ2 ∈ Ĉv
M . Then

lim
n→∞

det
(
I +KLT

n,r

)
L2(Cv

rel)
= lim

n→∞
det
(
I + K̃LT

n,r

)

L2(Ĉv
M)

.

We will show that K̃LT
n,r converges pointwise to Ktrunc

r,M . Once this has been estab-

lished we can conclude by the DCT and uniform convergence that det
(
I +KLT

n,r

)
L2(Cv)

converges to det
(
I +Ktrunc

r,M

)
L2(Ĉv

M )
. But by Lemma 4.5 this differs only by ǫ

3 from

det
(
1 +KLT

r

)
L2(Ĉv

∞) . So we have shown that for N sufficiently large, γ sufficiently small

andM > M∗,
∣∣∣det

(
I +KLT

n,r

)
L2(Cv)

− det
(
1 +KLT

r

)
L2(Ĉv

∞)

∣∣∣ < ǫ

subject to establishing pointwise convergence of K̃LT
n,r to Ktrunc

r,M . For this observe that

dw

w − v2
=

dw̃

w̃ − ṽ2
, n−1/3 π

sin (π (v1 − w))
=

1

ṽ1 − w̃
+O

(
n−1/3

)
, rn1/3 (w − v1) = r (w̃ − ṽ1)

and, thanks to (4.8) and the fact that c̃n = c+O
(
1
n

)
,

n (Hn,c,γ (v1)−Hn,c,γ(w)) =
gc
6

[(
w̃ − z∗c,γ

)3 −
(
ṽ1 − z∗c,γ

)3]
+O

(
n−1/3

)
.

This concludes the proof of Proposition 4.4

5 Proof of Lemmas

This section is devoted to proving the auxiliary results from Section 4 above.

5.1 Proof of Lemma 4.5

The last lemma to prove replaces the finite contour Ĉv
M by Ĉv

∞. By the Dominated

Convergence Theorem and continuity of the determinant we have, for sufficiently large

M ,

∣∣∣∣det
(
I +Ktrunc

r,M

)
L2(Ĉv

M)
− det

(
KLT

r

)
L2(Ĉv

M)

∣∣∣∣ <
ǫ

6
. (5.1)

The following useful result can be found as Lemma 8.4 in [4].
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5.2 Proof of Lemma 4.3 5 PROOF OF LEMMAS

Lemma 5.1. Let Λ be an infinite complex curve and K an integral operator on Λ.

Suppose that there exists C1, C2, C3 > 0 such that |K (v1, v2)| ≤ C1 for all v1, v2 ∈ Λ and

that

|K (Λ (s1) ,Λ (s2))| ≤ C2e
−C3|s1| (5.2)

for all s ∈ R (here, Λ(s) denotes the parametrisation of Λ by arc length). Then the

Fredholm series defining det (I +K)L2(Λ) is well defined, and for any ǫ > 0 there exists

Mǫ > 0 such that for allM > Mǫ,

∣∣∣det (I +K)L2(Λ) − det (I +K)L2(ΛM )

∣∣∣ ≤ ǫ (5.3)

where ΓM = {Γ(s) : |s| ≤M}.
The proof of Lemma 4.5 is therefore complete if we can find C1, C2 > 0 such that∣∣KLT

r (v1, v2)
∣∣ ≤ C1e

−C2v1 for all v1, v2 ∈ Ĉv
∞. But this follows immediately from (4.10).

5.2 Proof of Lemma 4.3

Convexity considerations show that if there exists a zero of H ′′
c,γ then it is unique. Let

us write z = γz̃ then

H ′′
c,γ(z) = γ−2

(
1

z̃2
− c

(1 + z̃)
2

)
+
π2

6
(1− c) +O(γ)

with the error being uniform in z̃ over compact intervals. Hence, for γ small enough we

have H ′′
c,γ

(
γ√
c−1

)
< 0 and H ′′

c,γ

(
γ√
c−1

− λc

)
> 0, from which the result follows.

5.3 Proof of Lemma 4.6

The following small γ estimates will be useful. Throughout we set z = γz̃.

Lemma 5.2. There exist
(
µ̃∗
c,γ : γ > 0

)
such that

µ∗
c,γ =

µ̃∗
c,γ

γ
+O (γ) (5.4)

and µ̃∗
c,γ −→ − (

√
c− 1)

2
as γ −→ 0.

Proof. We have

µ∗
c,γ = cψ

(
γ
(
z̃∗c,γ + 1

))
− ψ

(
γz̃∗c,γ

)

=
1

γ

[
1

z̃∗c,γ
− c

1 + z̃∗c,γ

]
+O (γ) .

The claim now follows from Lemma 4.3.

We also record the following small γ expansions.

gc = −H ′′′
c,γ

(
z∗c,γ
)
= γ−3

(
2c

(1 + z̃∗c,γ)
3
− 2
(
z̃∗c,γ
)3

)
(5.5)

Hc,γ(z)−Hc,γ(v) = c log (1 + ṽ)− c log (1 + z̃)− log (ṽ) + log (z̃) (5.6)

+ µ̃∗
c,γ (ṽ − z̃) +O(γ)
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5 PROOF OF LEMMAS 5.3 Proof of Lemma 4.6

Proof of Lemma 4.6. (i) Because v varies over a compact set it follows from (4.5) that

there exists some C > 0 such that

∣∣Hn,c,γ(v)−Hn,c,γ

(
z∗c,γ
)
−
[
Hc,γ(v)−Hc,γ

(
z∗c,γ
)]∣∣ < C

n

holds for all v ∈ Cv. Therefore we may as well prove the claim with Hn,c,γ replaced by

Hc,γ , which is what we will do.

Since the contours are different we will consider the cases c > 5
2 and c ≤ 5

2 separately.

Case I: c > 5
2 . Fix ǫ > 0 to be chosen later and write v = γṽ. Recall that z∗c,γ = γz̃∗c,γ

and µ∗
c,γ =

µ̃∗
c,γ

γ . By (5.6),

Hc,γ (v)−Hc,γ

(
z∗c,γ
)
= c ln

(
ṽ + 1

z̃∗c,γ + 1

)
− ln

(
ṽ

z̃∗c,γ

)
+ µ̃∗

c,γ

(
ṽ − z̃∗c,γ

)
+O(γ)

where the error term is uniform in ṽ (because the latter varies over a compact contour).

Now ṽ = z̃∗c,γ + rce
iθ where rc = 6

5
1√
c−1

and θ ∈
[
2π
3 ,

4π
3

]
, so we obtain, for γ small

enough,

ℜ
(
Hc,γ (v)−Hc,γ

(
z∗c,γ
))

≤ c ln

∣∣∣∣1 +
rc

z̃∗c,γ + 1
eiθ
∣∣∣∣− ln

∣∣∣∣1 +
rc
z̃∗c,γ

eiθ
∣∣∣∣+ ℜ

(
µ̃∗
c,γrce

iθ
)
+
ǫ

2
.

By Lemmas 4.3 and 5.2 we can now ensure, by choosing γ small enough, that

ℜ
(
Hc,γ (v)−Hc,γ

(
z∗c,γ
))

≤ c ln

∣∣∣∣1 +
6

5
√
c
eiθ
∣∣∣∣− ln

∣∣∣∣1 +
6

5
eiθ
∣∣∣∣−

6

5

(√
c− 1

)
cos(θ) + ǫ

=
c

2
ln

[(
1 +

6

5

√
c α]

)2

+
36

25c
(1− α2)

]

− 1

2
ln

[(
1 +

6

5
α

)2

+
36

25
(1− α)

]
− 6

5

(√
c− 1

)
α+ ǫ

where we have written α = cos(θ) ∈
[
−1,− 1

2

]
. Denote by f(c, α) the last expression

above, with ǫ = 0. For each c > 5
2 the function α 7−→ f(c, α) has a unique critical point on

the interval
[
−1,− 1

2

]
which turns out to be a minimum. Thus we are reduced to consider

the end-points. Now f
(
·,− 1

2

)
is strictly decreasing and clearly C11 = f

(
5
2 ,− 1

2

)
< 0. On

the other hand f (·,−1) is strictly increasing and tends to C12 = ln(5)− 48
25 < 0 as c −→ ∞.

Taking now C1 = ǫ = − 1
2 min {C11, C12} completes the proof for the case c > 5

2 .

Case II: c ≤ 5
2 . The contour in question is the union of the (complex) line segments[

2γ
c−1e

2iπ/3,− 2γ
c−1

]
and

[
2γ
c−1e

−2πi/3,− 2γ
c−1

]
. By symmetry it suffices to consider the former.

Thus, writing v = γṽ,

ṽ = t+ i

√
3√

c+ 2

(
t+

2

c− 1

)
, t ∈

[
− 2

c− 1
,

√
c

c− 1

]
. (5.7)

Fix ǫ > 0. By Lemmas 4.3 and 5.2 as well as (5.6) and (5.7) we have, for γ small enough

and then n large enough,

ℜ
[
Hc,γ (v)−Hc,γ

(
z∗c,γ
)]

≤ (c− 1) ln
(√
c− 1

)
+ ln

(√
c
)
− 1

(
√
c− 1)2

(
t− 1√

c− 1

)

− ln

[
t2 +

3

(
√
c+ 2)

2

(
t+

2

c− 1

)2
]

+ c ln

[
(t+ 1)2 +

3

(
√
c+ 2)

2

(
t+

2

c− 1

)2
]
+ ǫ
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5.3 Proof of Lemma 4.6 5 PROOF OF LEMMAS

Temporarily denote the right hand side above by F (c, t, ǫ). For any fixed c ∈
(
1, 52

]
the

function F (c, ·, 0) has a unique critical point on the interval
[
− 2

c−1 ,
√
c

c−1

]
, at which point

the second derivative is positive. Furthermore it is easy to verify that the end points

t0 = − 2
c−1 and t1 =

√
c

c−1 satisfy F (c, t0, 0) < 0 and F (c, t1, 0) < 0. This completes the proof

for c ≤ 5
2 and hence for part (i) of the lemma.

(ii) By the same argument as in part (i) we may replace Hn,c,γ by Hc,γ .

Consider first the case where c > 5
2 , so that we have v = γ

(
z̃∗c,γ + re2iπ/3

√
c−1

)
for

r ∈
[
0, 65

]
. Then

ℜ
[
Hc,γ(v)−Hc,γ

(
z∗c,γ
)]

= c ln

∣∣∣∣1 +
re2iπ/3

(
√
c− 1)(z̃∗c,γ + 1)

∣∣∣∣− ln

∣∣∣∣1 +
re2iπ/3

z̃∗c,γ(
√
c− 1)

∣∣∣∣−
1

2

rµ̃∗
c,γ√
c− 1

Fix ǫ > 0. Using (5.6) and Lemmas 4.3 and 5.2 as above we have, for γ suitably small,

ℜ
[
Hc,γ(v)−Hc,γ

(
z∗c,γ
)]

≤ c ln

[(
1 +

r

2
√
c

)2

+
3r2

4
√
c

]
− ln

[(r
2

)2
+

3r2

4

]

+
r

2

(√
c− 1

)
+ ǫ.

Now for any fixed r the right hand side is decreasing in c, so it is enough to consider the

case where c = 5
2 , for which it is easy to see that the quantity above is bounded above

away from zero (for small enough ǫ), uniformly in r ∈
[
0, 65

]
. Taking γ small enough deals

with the error term (which is uniform in the other variables involved).

For the case c ≤ 5
2 we set v = γ

(
z̃∗c,γ + 2r

c−1 e
2iπ/3

)
with r ∈ [0, 1]. A similar compu-

tation as in the case c > 5
2 shows that for this choice of v (at any fixed r ∈ [0, 1]) the

function c 7−→ ℜ
[
Hc,γ(v)−Hc,γ

(
z∗c,γ
)]

is strictly increasing in c and converges to zero

as c −→ 1. Thus the claim holds for any fixed c > 1, as required.

Parts (iii) and (iv) follow from Taylor’s theorem and the fact that H ′
n,c,γ

(
z∗c,γ
)
=

H ′′
n,c,γ

(
z∗c,γ
)
= 0.

It remains to prove part (v). For the first assertion observe first that by (4.5) we have,

uniformly in w ∈ Cw
irrel,

ℜ
[
Hn,c,γ

(
z∗c,γ
)
−Hn,c,γ (w) −

(
Hc,γ

(
z∗c,γ
)
−Hc,γ(w)

)]

= ℜ
[
Hn,c,γ

(
z∗c,γ
)
−Hc,γ

(
z∗c,γ
)]

︸ ︷︷ ︸
O(n−1)

+ℜ [Hc,γ (w)−Hn,c,γ(w)]

= (c̃n − c) ln |Γ (w + γ)|+O
(
n−1

)

Now |Γ (w + γ)| < 1 for w ∈ Cw
irrel and we have chosen c̃n > c, so the first summand above

is negative and we can once more reduce to the case where Hn,c,γ is replaced by Hc,γ .

Next, write w = γw̃ so that w̃ = z̃∗c,γ + ℓeiπ/3 + iy for y ≥ 0 or w̃ = z̃∗c,γ + ℓe−iπ/3 + iy for

y ≤ 0. By symmetry it is enough to consider the former case. Fix ǫ > 0. Applying once

more Lemmas 4.3 and 5.2 and (5.6) as well as the fact that eiπ/3 = 1
2 + i

√
3
2 we get, for
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suitably small γ,

ℜ
[
Hc,γ

(
z∗c,γ
)
−Hc,γ(w)

]
≤ 1

2
ln



(
1 +

ℓ (
√
c− 1)

2

)2

+
(√
c− 1

)2
(
y +

√
3ℓ

2

)2



− c

2
ln



(
1 +

ℓ (
√
c− 1)

2
√
c

)2

+
(
√
c− 1)

2
(
y +

√
3ℓ
2

)2

c




− (
√
c− 1)

2
ℓ

2
+ ǫ

Let us denote by F (c, ℓ, y, ǫ) the last expression above. It is straightforward to check

that the map y 7−→ F (c, ℓ, y, 0) is strictly decreasing on [0,∞). Furthermore the map

ℓ 7−→ F (c, ℓ, 0, 0) is strictly decreasing on [0,∞) and moreover F (c, 0, 0, 0) = 0. Since

ℓ > 0 it follows that there exists C̃5 > 0 such that F (c, ℓ, y, 0) ≤ −C̃5 for all c > 1 and

y ≥ 0. The first assertion now follows by choosing ǫ = C5 = 1
2 C̃5.

For the second assertion we will apply the bound (3.5): for any η > 0,

ℜ
[
Hn,c,γ

(
z∗c,γ
)
−Hn,c,γ(w)

]
≤ C − ln |Γ(x+ iy)|+ c̃n ln |Γ(γ + x+ iy)|

≤ C − ln

(√
2π(1 + η)e−π|y|/2 |y|x−

1
2

)

+ c̃n ln

(√
2π(1− η)e−π|y|/2 |y|x+γ− 1

2

)

≤ C + (1− c̃n)
π

2
|y|

from which the estimate follows by observing that c̃n ∈
[
c, c+ 1

n

]
.
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