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Abstract: We construct a random Schrödinger operator on a subset of the hexagonal
lattice and study its smallest positive eigenvalues. Using an asymptotic mapping, we
relate them to the partition function of the directed polymer model on the square lattice.
For a specific choice of the edgeweight distribution, we obtain amodel known as the log-
Gamma polymer, which is integrable. Recent results about the fluctuations of free energy
for the log-Gamma polymer allow us to prove Tracy–Widom type fluctuations for the
smallest eigenvalue of the random Schrödinger operator. We also relate the distribution
of its k smallest positive eigenvalues to the nonintersecting partition functions of order k.

1. Introduction

In this paper, we study the correspondence between certain random Schrödinger oper-
ators defined on a subset of the 2D hexagonal lattice and a statistical physics model
known as the directed log-Gamma polymer model. The directed log-Gamma polymer
on a square lattice is obtained by putting random weights on the vertices of the lattice,
drawn from the inverse Gamma distribution, and considering up-right paths connecting
the opposite corners of the square, where each path is weighted by the product of its
vertices. One is then interested in various statistical properties of such paths. The model
has recently attracted considerable attention [Sep12,BCR13,KQ16], as it is integrable,
i.e. allows explicit computations.

We construct a 2D random Schrödinger operator H and a mapping which maps
its eigenvalues onto certain quantities in the directed polymer model, called the par-
tition functions. Using results about the fluctuations of free energy for log-Gamma
polymers [KQ16], we prove Tracy–Widom GUE fluctuations for the smallest positive
eigenvalue of H (Theorem 1.1). Moreover, we provide a description of higher eigenval-
ues in terms of partition functions related to non-intersecting paths. Such objects arise
naturally in the technique known as geometric Robinson–Schoensted–Knuth correspon-
dence [COSZ14].
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Fig. 1. The lattice

To our knowledge, our work is the first rigorous proof of Tracy–Widom fluctuations
of eigenvalues for a randomSchrödinger operator. There has been some previous interest
in the physics literature in studying the occurence of the Tracy–Widom distribution in
random Schrödinger operators. In [SOnP07] (see also subsequent works [SLDOn15,
PMSO09]), the authors provide nonrigorous and numerical evidence for the Tracy–
Widom distribution of the Green’s function in a random Schrödinger operator on the
square lattice with random vertex weights (in physics called the Anderson model), also
noting a heuristic connection to directed polymer models.

We consider a random Schrödinger operator defined on a hexagonal lattice in the
shape of a rhombus. Formally, let Gn be a subset of the hexagonal lattice consisting
of 2n − 1 levels, with level k, for k = 0, . . . , 2n − 2, containing min{k, 2n − k − 2}
hexagons. The first and last level contain only a single edge. An example of such lattice
for n = 4 is shown in Fig. 1.We will call horizontal edges blue (thick) and the remaining
edges red (thin).

We consider edges equipped with random real-valued weights, where the weight of
an edge e is denoted by we. The random Schrödinger operator Hn , acting on functions
f : Gn → R, is the weighted adjacency operator on Gn :

(Hn f )(v) =
∑

e=(v,w)

we f (w)

where the sum is over all edges adjacent to v.
We consider two models defined on the lattice Gn :

1. (i.i.d. model) All edge weights are drawn independently at random from some dis-
tribution X that is nonzero almost surely and satisfies Ee−t log|X |,Eet log|X | < ∞ for
some t > 0

2. (mixed model)Pick some parameters γ, β > 0. The red (thin) edges are givenweight
1. Each blue (thick) edge is independently assigned a weight drawn from the Gamma
distribution �(γ, β).

Let N = n2. Since the underlying lattice is bipartite, it is easy to see that the spectrum
of Hn consists of pairs of eigenvalues ±λ1, . . . ,±λN , with λ1 ≥ · · · ≥ λN ≥ 0.

In the mixed model, we prove the following theorem about the smallest positive
eigenvalue of Hn :
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Theorem 1.1. Let λN be the smallest positive eigenvalue of Hn in the mixed model with
parameters γ, β > 0 such that logβ > �(γ ) (so that the logarithms of inverses of blue
edge weights have positive mean). Then we have as n → ∞:

P

(
− log λN − ( f̄γ + 2 logβ)n

n1/3 ≤ r

)
→ FGUE

((
ḡγ

2

)−1/3

r

)

where � is the digamma function, FGU E is the GUE Tracy–Widom distribution function,
f̄γ = −2�(γ/2) and ḡγ = −2� ′′(γ /2).

The i.i.d. model is arguably more natural and we expect the theorem to hold also in
that case:

Conjecture 1.2. Theorem 1.1 holds also in the i.i.d. model for appropriate choice of
constants.

In both models, we make the following conjecture generalizing Tracy–Widom fluc-
tuations also to higher eigenvalues.

Conjecture 1.3. Let λN ,k be the kth smallest positive eigenvalue of Hn. Let

αn,k = − log λN ,k − ( f̄γ + 2 logβ)n

(nḡγ /2)1/3

as in Theorem 1.1, with the same assumptions about γ and β. Then for any k, as n → ∞,
the tuple (αn,1, . . . , αn,k) converges in distribution to the top k points of the Airy point
process.

By considering submatrices of Hn , this conjecture can be extended to multiple space-
time values of the (conjectured) scaling limit of last passage percolation. In particular,
it should be possible to get the Airy sheet [QR14] as a limit in this model. This is in
contrast with standard randommatrix eigenvalue models, for which the Airy sheet is not
expected to arise as a limit.

We make a step toward Conjecture 1.3 by proving that in the mixed model, the
product of the bottom k eigenvalues is related, up to order n1/3, to the partition functions
for k-tuples of non-intersecting paths. Such objects appear naturally while studying
exact formulas related to the geometric RSK correspondence [COSZ14]. It has been
conjectured that the ratios of such non-intersecting partition functions converge to the
Airy point process (see e.g. [LD16] for a similar conjecture for the continuum polymer).

Theorem 1.4. Let λN , . . . , λN−k+1 be the k smallest positive eigenvalue of Hn in the
mixed model with parameters γ, β > 0. For any fixed k ≥ 1, let Z (k)

n be the non-
intersecting partition function of order k for the square lattice corresponding to the
mixed model (Definition 3.1). Then for any γ, β such that logβ > �(γ ) and any δ > 0:

P

(
n−1/3

∣∣∣∣∣− log
k∏

i=1

λN−i+1 − log
∣∣∣Z (k)

n

∣∣∣

∣∣∣∣∣ > δ

)
→ 0.

The theorem holds also for more general models, see Theorem 3.7.
Let us briefly describe another model corresponding to a solvable polymer, namely

the Beta polymer [BC17]. Let Beta(α, β) be the Beta distribution with parameters
α and β. For every blue edge e, consider independent variables Be with distribution
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Beta(α, β) and pick a constant c > max{�(α + β) − �(α),�(α + β) − �(β)}. Put
weight 1 on e, weight Xe1 = cBe on the red edge e1 going up-right from e and weight
Xe2 = c(1 − Be) on the red edge e2 going down-right from e. For such a model, if we
consider α = β = 1, i.e. the uniform distribution, and a lattice of size m × n lattice with
m
n → θ �= 1, analogues of Theorems 1.1 and 1.4 also hold (see discussion at the end of
Sects. 3.1, Sect. 3.2). The same is conjectured for α �= β, but in that case Tracy–Widom
fluctuations are not known rigorously.

In Theorems 1.1 and 1.4 we assume logβ > �(γ ). We expect that for every γ > 0
there exists some βc < e�(γ ) such that the above theorems hold for β > βc and do
not hold for β < βc. The reason is as follows (see Sect. 2 for the connection between
eigenvalues and polymers). For β sufficiently small, the typical mean logarithmic weight
of a polymer path is negative and outweighs the contribution to the partition function
coming from the number of paths. Thus, the maximum over S, T in Theorem 2.5 will be
realized for S equal to T , i.e. when the paths have length zero. It follows that the smallest
positive eigenvalue will be, up to a factor of n2, equal to the inverse of the maximum
of n2 vertex weights, which has a different scaling with n than the exponential scaling
in Theorem 1.1. The same discussion pertains to the scaling factor c in the definition of
the Beta model.

We end this section with an outline of how the theorems are proved. In Sect. 2, we
prove that the eigenvalues of the operator are equal to the square roots of the singular
values of the directed weighted square lattice. These, in turn, happen to be related to
the partition functions of the polymer model on the lattice (Theorem 2.5). Using this
connection, in Sect. 3.1we proceed to proveTheorem1.4 using a technical combinatorial
lemma whose proof is contained in Sect. A. Then, in Sect. 3.2, we prove Theorem 1.1
by exploiting known resuts about the fluctuations of the partition functions for the log-
Gamma polymer.

2. Eigenvalues and Polymers

The results in this section are deterministic—we introduce the probabilistic part of the
analysis in Sect. 3. In order to study the eigenvalues of a random Schrödinger operator
on a graph G, we first prove a lemma allowing us to study instead singular values of a
certain directed graph derived from G.

Lemma 2.1. Let G = (V, E) be a weighted bipartite graph on 2N vertices with bipar-
tition V = B 	 C. Let we denote the weight of the edge e. Suppose that G admits a
perfect matching S ⊆ E with edges ei = (bi , ci ), bi ∈ B, ci ∈ C, i = 1, . . . , N. Let G̃
be a weighted directed graph on N vertices, with vertex set S and with edges defined
as follows. For each ei ∈ S, we have a loop (ei , ei ) with weight wei . For each edge
f = (bi , c j ) /∈ S, we have a directed edge (ei , e j ) with weight w f .

Let A be the 2N × 2N adjacency matrix of G and let Ã be the N × N adjacency
matrix of G̃. Then the eigenvalues λi of A are equal to ±σi , where σi are the singular
values of Ã.

Proof. Let B = (b1, . . . , bn), C = (c1, . . . , cn), ordered arbitrarily. Let us index the
rows and columns of A with (b1, . . . , bn, c1, . . . , cn). Then A has the block form:

A =
(

0 Ã
ÃT 0

)
.
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Indeed, each edge (bi , ci ) in G corresponds to the edge (ei , ei ) in G̃, giving the diagonal
entries of Ã. Each edge (bi , c j ) for i �= j corresponds to an edge (ei , e j ) in G̃, giving
the off-diagonal entries. Clearly, the eigenvalues of A are equal to ± the square roots of
eigenvalues of Ã ÃT , which are simply the singular values of Ã. �	

We now construct a general mapping between singular values of a directed graph G̃
and partition functions of the polymer model on the same graph. The results are stated
in generality, but will be used for directed graphs derived from the particular lattice Gn
described in Sect. 1.

Let G̃ be a directed acyclic weighted graph on N vertices and let Ã denote its adja-
cency matrix. Assume that every vertex has a loop with nonzero weight. This implies
that Ã is invertible. Indeed, consider the set of vertices with no incoming edges, which
is nonempty since the graph is acyclic. Since the loop weights are nonzero, the equation
Ã f = 0 implies that f = 0 at such vertices. We can then remove them and repeat until
there are no vertices left, proving that f ≡ 0.

For v,w ∈ G̃, a path π from v to w is defined to be a sequence of edges connecting
vertices (v = u1 → u2 → · · · → un = w), where none of the edges are loops. We
allow a path of length zero connecting a vertex v to itself. Let �(v,w) denote the set of
all paths from v to w. We will say that a vertex v precedes w if there is a positive length
path from v to w.

We define new weights on vertices and edges of G̃ in the following way. For a vertex
u we put wu = ( Ãu,u)−1 and for an edge e = (u, v) we put wu,v = − Ãu,v . For a path
π = (u1 → · · · → un) let its weight wt(π) be defined as:

wt(π) :=
n−1∏

i=1

wui ,ui+1

n∏

i=1

wui . (1)

Note that the weight of an empty path from u to itself is wu .
For any k ≥ 1, a pair of sequences of distinct vertices S = (s1, . . . , sk), T =

(t1, . . . , tk) and a permutation σ of the set {1, . . . , k}, we let �σ,S,T denote the set of all
tuples of paths π = (π1, . . . , πk) with πi connecting si to tσ(i). For any such tuple we
let wt(π) := ∏k

i=1 wt(πi ). We let �n.i.
σ,S,T denote the set of all such tuples with paths πi

non-intersecting (i.e. vertex disjoint).

Definition 2.2. Fix any k ∈ {1, . . . , N } and two sequences of distinct vertices S =
(u1, . . . , uk), V = (v1, . . . , vk). We define:

Z (k)
S,T :=

∑

σ

sgn(σ )
∑

π∈�n.i.
σ,S,T

wt(π).

For k = 1 we will simply write:

Zu,v =
∑

π∈�id,{v},{w}
wt(π).

We put Zu,v equal zero if there are no paths from u to v.
For u ∈ G̃, let fu denote the function defined on the vertices of G̃ by fu(v) = Zu,v .

In particular, fu(v) = 0 if v precedes u and fu(u) = wu . Let δu be the function equal
to 1 on u and 0 otherwise.
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Proposition 2.3. The functions fu satisfy Ã fu = δu.

Proof. We clearly have:

( Ã fv)(v) = Ãv,v fv(v) = 1.

For v �= w, we have:

( Ã fv)(w) =
∑

u→w

Ãu,w fv(u) + Ãw,w fv(w)

=
∑

u→w

Ãu,w

∑

π∈�(v,u)

wt(π) + Ãw,w

∑

π∈�(v,w)

wt(π)

= − Ãw,w

∑

τ∈�(v,w)

wt(τ ) + Ãw,w

∑

π∈�(v,w)

wt(π) = 0.

�	
The quantities Z (k)

S,T can be related to fu using the well known Lindstrom-Gessel-
Viennot formula [GV85] for expressing sums over non-intersecting paths as determi-
nants:

Proposition 2.4. For S = (u1, . . . , uk), T = (v1, . . . , vk) we have:

Z (k)
S,T = det( fui (v j ))

k
i, j=1. (2)

Proof. The standard Lindstrom-Gessel-Viennot formula is usually formulated with
weights only on the edges. To obtain 2 in the general case, consider a graph G ′ where for
an edge (u, v)we putw′

u,v = wu,vwu andw′
u = 1. By applying the standard Lindstrom-

Gessel-Viennot formula to G ′ we obtain Z (k)′
S,T = det( f ′

ui
(v j ))

k
i, j=1. The proof follows

by noting that Z (k)
S,T = Z (k)′

S,T · ∏
v∈T wv and fu(v) = f ′

u(v) · wv . �	
Let σ1 ≥ σ2 ≥ · · · ≥ σN denote the singular values of Ã−1.

Theorem 2.5. For any k = 1, . . . , N, we have:

max
S,T

∣∣∣Z (k)
S,T

∣∣∣ ≤
k∏

i=1

σi ( Ã−1) ≤
(

N

k

)2

· max
S,T

∣∣∣Z (k)
S,T

∣∣∣

where the maximum ranges over all pairs of sequences of distinct vertices S =
(u1, . . . , uk), T = (v1, . . . , vk).

Proof. Wefirst use the following formula for the product of the singular values [Hog06]:

k∏

i=1

σi ( Ã−1) = max{
∣∣∣det(U∗ Ã−1V )

∣∣∣ : U, V ∈ C
N×k, UU∗ = V V ∗ = Ik}. (3)

For a sequence of distinct vertices S of size k and a matrix M ∈ C
N×k , let MS

denote the submatrix obtained by taking rows with indices corresponding to S. With
this notation IS is the matrix having columns equal to δs for s ∈ S, i.e. the coordinate
vectors corresponding to vertices in S. We have MS = I ∗

S M .
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Fig. 2. The lattice Gn and the corresponding directed lattice G̃n

For the lower bound, for any S = (u1, . . . , uk), T = (v1, . . . , vk) we plug U =
IS, V = IT into (3). Note that by Proposition 2.3, the matrix Ã−1 expressed in the basis
consisting of δu has the functions fu as its columns. Thus, by Proposition 2.4 we have
det((IS)∗ Ã−1 IT ) = Z (k)

S,T , from which the lower bound follows.
For the upper bound, for any U, V we use the Cauchy-Binet formula twice:

det(U∗ Ã−1V ) =
∑

S

det(U∗
S ) det(( Ã−1V )S) =

∑

S

det(U∗ IS) det(I ∗
S Ã−1V )

=
∑

S,T

det(U∗ IS) · det(I ∗
S Ã−1 IT ) · det(I ∗

T V ).

Clearly, we have |det(U∗ IS)| , ∣∣det(I ∗
T V )

∣∣ ≤ 1, so:

max
U,V

∣∣∣det(U∗ Ã−1V )

∣∣∣ ≤
(

N

k

)2

· max
S,T

∣∣∣det(I ∗
S Ã−1 IT )

∣∣∣ =
(

N

k

)2

·
∣∣∣∣max

S,T
ZS,T

∣∣∣∣ .

�	
We will now apply the construction above to the hexagonal lattice Gn from the

previous section. In the case of Gn , the perfect matching in Lemma 2.1 consists of blue
edges. The corresponding directed graph G̃n is a directed square lattice of size n × n, so
in the above notation N = n2, with a loop added to each vertex. Both lattices are shown
in Fig. 2.

Remark 2.6. In the mixed model, all edges of the directed square lattice have weights
−1. Since each Ãu,u was drawn independently from the Gamma distribution �(γ, β),
each loop u has a weight wu = ( Ãu,u)−1 drawn independently from the inverse Gamma
distribution �−1(γ, β) (Definition 3.8).

Remark 2.7. In the i.i.d. model, all edges of the hexagonal lattice have i.i.d. weights
distributed as some random variable X . This implies that on the directed square lattice
each edge weight wu,v = − Ãu,v is distributed as −X and each vertex weight wu =
( Ãu,u)−1 is distributed as 1

X .

We remark that in general, given any polymermodel on the square latticewithweights
on edges and vertices, one can construct a corresponding random Schrödinger operator
by putting inverses of vertexweights on the blue edges and edgeweights on the red edges.
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The only caveat is that our results relating eigenvalues of the operator to the partition
function of the polymer (Theorem 3.7) require that themean logarithmicweight of a path
is typically positive. By multiplying all weights on the red edges by a suitable constant,
one can ensure this condition while shifting the free energy log Zn by a deterministic
constant.

3. Probabilistic Results

We now introduce the probabilistic part of the analysis for the square lattice with random
edge and vertex weights. We do not require edge weights to be independent, only that
for each path its edges are independent. The square lattice considered is the one from
Fig. 2 rotated 45 degrees counterclockwise, so that the lower left corner is the point
(1, 1) and the upper right corner is the point (n, n). We fix some k ≥ 1 and let S0 =
((1, 1), (1, 2), . . . , (1, k)), T0 = ((n, n − k + 1), (n, n − k + 2), . . . , (n, n)).

For an edge e we let Xe denote its weight and for a vertex u we let Xu denote its
weight.

Definition 3.1. For the directed square lattice from (1, 1) to (n, n), the non-intersecting
partition function of order k is defined as:

Z (k)
n := Z (k)

S0,T0
=

∑

π=(π1,...,πk )

k∏

i=1

wt(πi )

where the summation is over all tuples of k vertex disjoint paths, with πi connecting
(1, i) to (n, n − k + i).

In this section, we prove two results. First, in Sect. 3.1, we show that if the mean
logarithmic weight of a path is positive, then up to order n1/3 the product of k top
singular values of Ã−1

n is with high probability close the quantities Z (k)
n (Theorem 3.7).

By known results about fluctuations of the polymer partition function, this then implies
(Theorem 3.10) Tracy–Widom fluctuations of the smallest singular value of Ãn , for the
weights drawn from the inverse Gamma distribution.

Whenever we say that an event holds with high probability (w.h.p.), it will mean that
the probability that it does not hold is superpolynomially small in n.

3.1. Eigenvalues and non-intersecting partition functions. The goal of this section is
the proof of Proposition 3.5, which combined with the results from Sect. 2 implies
Theorems 1.4 and 3.7.

It will be convenient to work in the case when all vertex weights are equal to 1.
The proposition below states that we can move the all the weights to the edges while
asymptotically changing logarithms of the partition functions by less than n1/3.

Proposition 3.2. Suppose that for all vertices u we haveEe−t log|Xu | < ∞, Eet log|Xu | <

∞ for some t > 0 and likewise for edges. For an edge (u, v) put X ′
u,v = Xu,v · Xv and

put X ′
u = 1 for all vertices u. Note that the primed edge weights are not independent,

but they are still independent along every path. For any k ≥ 1, δ > 0 and all S, T we
have:

P(n−1/3
∣∣∣log

∣∣∣Z (k)
S,T

∣∣∣ − log
∣∣∣Z (k)′

S,T

∣∣∣
∣∣∣ > δ) → 0.
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Proof. We have Z (k)
S,T = Z (k)′

S,T · ∏u∈S Xu , so log
∣∣∣Z (k)

S,T

∣∣∣ = log
∣∣∣Z (k)′

S,T

∣∣∣ +
∑

u∈S log |Xu |.
Since Ee−t log|Xu |,Eet log|Xu | < ∞ for some t > 0, by Markov inequality for each Xu
we have:

P(|log |Xu || > δn1/3) < Ce−tδn1/3

for some constant C > 0. By union bounding over polynomially many choices of S we
can assume that w.h.p. for all choices of S we have

∑
u∈S |log |Xu || < Ckδn1/3, which

finishes the proof. �	
Thus, belowwe assume that all vertex weights are equal to 1.Wewill write X ′

e for the
distribution of the primedweight of an edge e. Belowwewill work under the assumption
E log

∣∣X ′
e

∣∣ > 0, which implies that the mean logarithmic weight of a path is positive.
Below we use notation introduced in Definition 2.2. All weights in the partition

functions are nowprimedweights, distributed as X ′
e. For any tuple of pathsπ ,we let E(π)

denote the set of edges used by paths in π (if an edge is used by multiple paths we count
it only once). Recall that S0 = ((1, 1), . . . , (1, k)) and T0 = ((n, n −k +1), . . . , (n, n)).
The set of all non-intersecting tuples contributing to Z (k)

n is �n.i.
id,S0,T0

.
The proof of Proposition 3.5 will follow from the lemma below, which is purely

combinatorial and whose proof we defer to Sect. A. The lemma roughly says that any
nonintersecting tuple connecting S to T can be modified into a nonintersecting tuple
connecting S0 to T0 while removing only a constant number of edges and adding a
constant number of path segments.

Lemma 3.3. There exists a constant C depending only on k such that for any σ, S, T
with S �= S0 or T �= T0 there exists a set of paths P which has size at most C · nC and
satisfies the following property. For every π ∈ �n.i.

σ,S,T there exist a tuple π ′ ∈ �n.i.
id,S0,T0

such that
∣∣E(π)\E(π ′)

∣∣ ≤ C and E(π)�E(π ′) is a union of paths whose number is at
most C and which are all elements of P .

We note that the lemma is obvious in the case k = 1, since it suffices to connect
S = {s} to (1, 1) and T = {t} to (n, n) with any two fixed paths.

We will use the following inequality, which is a straightforward consequence of a
standard large deviation inequality for i.i.d variables [Dur10]. Note that we use the fact
that edge weights are independent along every path.

Lemma 3.4. Assume that Ee−t log|X ′
e| < ∞ for some t > 0 and E log

∣∣X ′
e

∣∣ = μ > 0.
For any path ρ of length m ≤ n and a < μ:

P

(
∑

e∈ρ

log
∣∣X ′

e

∣∣ < ma

)
≤ e−I (a)m (4)

for some rate function I such that I (a) > 0 for a < μ.

Proposition 3.5. For any fixed k ≥ 1 and δ > 0, if E log
∣∣X ′

e

∣∣ > 0 and Ee−t log|X ′
e| <

∞, Eet log|X ′
e| < ∞ for some t > 0, we have:

P

(
1

n1/3

∣∣∣∣log
∣∣∣Z (k)

n

∣∣∣ − max
S,T

∣∣∣log Z (k)
S,T

∣∣∣
∣∣∣∣ > δ

)
→ 0.
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Proof. We need to prove that for any k ≥ 1 and δ > 0, we have w.h.p. for some global
constant D depending only on k:

∣∣∣Z (k)
n

∣∣∣ ≥ max
S,T

∣∣∣Z (k)
S,T

∣∣∣ · e−Dδn1/3 .

Letting:

Zσ,S,T :=
∑

π∈�n.i.
σ,S,T

wt(π)

we clearly have:
∣∣∣Z (k)

S,T

∣∣∣ ≤ k! · max
σ

∣∣Zσ,S,T
∣∣ .

Thus, it suffices to prove that with high probability for all σ, S, T we have:
∣∣∣Z (k)

n

∣∣∣ ≥ ∣∣Zσ,S,T
∣∣ · e−Dδn1/3 . (5)

Consider a tuple π ∈ �n.i.
σ,S,T contributing to Zσ,S,T . By Lemma 3.3 there exists π ′ ∈

�n.i.
id,S0,T0

such that
∣∣E(π)\E(π ′)

∣∣ ≤ C and E(π)�E(π ′) is a union of at most C paths
which are elements of P .

Let A be the event that all edges of the lattice have weights at most etδn1/3 and let B
the event that all paths in P have weights at least e−tδn1/3 . Note that both the number of
edges in the lattice and the number of paths in P are polynomial in n.

Consider a path ρ ∈ P . Let x = logEe−t log|X ′
e| and let ε > 0 be such that εx < tδ/2.

If ρ has length m < εn1/3, by Markov inequality:

P

(
∑

e∈ρ

log
∣∣X ′

e

∣∣ < −tδn1/3

)
≤ emx−tδn1/3 < e−1/2tδn1/3 . (6)

If ρ has length m ≥ εn1/3, applying inequality (4) from Lemma 3.4 we have:

P

(
∑

e∈ρ

log
∣∣X ′

e

∣∣ < −tδn1/3

)
< P

(
∑

e∈ρ

log
∣∣X ′

e

∣∣ < 0

)
≤ e−εn1/3 I (0). (7)

Thus, by union bounding over a polynomial size family of events we have that B holds
with high probability. Likewise, byMarkov inequality and union bound over all edges of
the lattice the event A also holds with high probability. Note that the events B depends
only on P , which depends only on σ, S, T and not on the tuple π .

Let E(π)�E(π ′) = ∪m
i=1πi , where each path πi belongs to P and m ≤ C . Since A

and B hold w.h.p., we have with high probability:

wt(π ′) ≥ wt(π) · e−2tCδn1/3 . (8)

We now need to sum Eq. (8) over all paths π ∈ �n.i.
σ,S,T . The map taking π to π ′

need not be injective. However, note that E(π)�E(π ′) is a union of at most C paths,
all of which lie inside P , which has size at most C · nC . Thus, each π ′ will have at most
polynomially many preimages. Thus, summation of Eq. (8) over all possible π ∈ �n.i.

σ,S,T
proves the desired inequality (5). �	
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Remark 3.6. In the case E log
∣∣X ′

e

∣∣ = 0, the logarithmic weight of a typical path is of
order

√
n and the proof does not apply. However, the same proof can be used to obtain

a weaker statement, namely, for any ε > 0:

P

(
1

n1/2+ε

∣∣∣∣log
∣∣∣Z (k)

n

∣∣∣ − max
S,T

∣∣∣log Z (k)
S,T

∣∣∣
∣∣∣∣ > δ

)
→ 0.

By combining Proposition 3.5 and Theorem 2.5, we arrive at the following theorem.

Theorem 3.7. For any fixed k ≥ 1 and δ > 0, if E log
∣∣X ′

e

∣∣ > 0 and Ee−t log|X ′
e| <

∞, Eet log|X ′
e| < ∞ for some t > 0, we have:

P

(
n−1/3

∣∣∣∣∣log
k∏

i=1

σi ( Ã−1) − log
∣∣∣Z (k)

n

∣∣∣

∣∣∣∣∣ > δ

)
→ 0.

We now proceed to prove Theorem 1.4. To this end, let us first note the following
properties of the inverse Gamma distribution.

Definition 3.8. A random variable X has inverse Gamma distribution with parameters
γ, β > 0, denoted �−1(γ, β), if its probability distribution is supported on positive reals
with density:

P(X ∈ dx) = βγ

�(γ )
x−γ−1 exp

(
−β

x

)
dx .

Remark 3.9. Let X ∼ �−1(γ, β) and let � be the digamma function. Then E log X =
−�(γ ) + logβ and Var log X = � ′(γ ). In particular, for logβ > �(γ ) we have
E log X > 0. Also, for small enough t > 0 we have Ee−t log X < ∞,Eet log X < ∞.

Proof of Theorem 1.4. By Remark 2.6, in the mixed model the dual graph corresponds
to the directed square lattice with inverse Gamma vertex weights. By Proposition 3.2,
if instead we transfer the weights to the edges, the difference between the partition
functions of the vertex weighted model and the edge weighted model, scaled by n−1/3,
converges to zero in probability. By Remark 3.9, for logβ > �(γ ) the inverse Gamma
logarithmic edge weights X ′

e, obtained from Proposition 3.2, satisfy the assumptions of
Theorem 3.7, so the theorem holds also for the vertex weighted case. The proof follows
by invoking Lemma 2.1. �	

The same results also hold for the Betamodel defined in Sect. 1. Recall that weights in
that model are defined, for some constant c > 0, as Xe1 = cBe and Xe2 = c(1− Be) for
the red edges outgoing from a given blue edge e, where Be has distribution Beta(α, β).
The corresponding polymer model has weights on the edges going out of a given vertex
equal to cBe and c(1 − Be). Note that edge weights are not independent, but are still
independent along every path. Since E log Be = �(α)−�(α +β) and E log(1− Be) =
�(β)−�(α+β), by taking c > max{�(α+β)−�(α),�(α+β)−�(β)}we can ensure
that E log Xei > 0 and one can also check that et log Xei , e−t log Xei < ∞ for some t > 0.
The only difference from Proposition 3.5 is that for α �= β the vertical and horizontal
edges are not distributed identically. The only required change in the proof is modifying
inequalities (6), (7) to allow edges from either distribution, which is straightforward to
do.
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3.2. Fluctuations of the smallest eigenvalue in the exactly solvable case. We now estab-
lish the fluctuations of the smallest eigenvalue in the mixed model (Theorem 1.1). Let us
recall the definition of the discrete log-Gamma polymer [BCR13]. Let �n be the square
lattice where each vertex has a weight wu drawn independently from �−1(γ ) and all
edges have weight 1. The log-Gamma polymer partition function is then:

Zn =
∑

π :(1,1)→(n,n)

∏

u∈π

wu .

By Remark 2.6, the lattice G̃n obtained in the mixed model is the same as in the log-
Gamma polymer with β = 1, except that edges have weights −1 instead of 1. However,
since every pathπ : (1, 1) → (n, n) has an even number of edges, the partition functions
of the two models will be equal. Below we put N := n2.

Theorem 3.10. Let σN ( Ãn) be the smallest singular value of the N × N adjacency
matrix Ãn of the lattice G̃n. Then for all γ, β > 0 such that logβ > �(γ ) we have:

P

(
− log σN ( Ãn) − ( f̄γ + 2 logβ)n

n1/3 ≤ r

)
→ FGUE

((
ḡγ

2

)−1/3

r

)

where � is the digamma function, FGU E is the GUE Tracy–Widom distribution function,
f̄γ = −2�(γ/2) and ḡγ = −2� ′′(γ /2).

Proof. By Theorem 2.1 of [KQ16], we have for any γ > 0 and β = 1:

P

(
log Zn − f̄γ n

n1/3 ≤ r

)
→ FGUE

((
ḡγ

2

)−1/3

r

)
. (9)

We note that this theorem was first proved in [BCR13], under the stronger assump-
tion that γ < γ ′ for some γ ′. Consider the mixed model with γ, β > 0 such that
logβ > �(γ ). Denote the partition function for that model by Zβ

n . By Remark 3.9,
the assumptions of Theorem 3.7 for k = 1 are satisfied, so the random variable

n−1/3
∣∣∣log σ1( Ã−1

n ) − log
∣∣∣Zβ

n

∣∣∣
∣∣∣ converges to 0 in probability. It suffices to see that the

mixed model for arbitrary β corresponds to the same polymer as for β = 1, except that
all vertex weights are multiplied by β. It follows that log Zβ

n = log Zn +logβ ·2n, which
in conjunction with (9) and σN ( Ãn) = (σ1( Ã−1

n ))−1 finishes the proof. �	
Theorem 1.1 follows from Theorem 3.10 by invoking Lemma 2.1 and noting that in

themixedmodel, the dual graph corresponds exactly to the lattice G̃n fromTheorem3.10.
As noted in Sect. 1, thanks to the result about fluctuations of the Beta polymer from

[BC17], a similar result holds also for the model with Beta distributed weights with
α = β = 1, i.e. the uniform distribution, and when the lattice is rectangular of size
m × n, with m

n → κ �= 1. By taking c > e we ensure that E log
∣∣Xei

∣∣ > 0. By invoking
Theorem 2.15 of [BC17], the same proof as in Theorem 3.10 gives, for appropriate
choice of constants, an analogous theorem for the Beta model. This is also conjectured
for α �= β, but not known rigorously.

We end with a brief discussion of the i.i.d model. The i.i.d. model also corresponds
to a polymer model on the lattice, where the vertex and edge weights are independent
given as in Remark 2.7 and the weight of a path is the product of the weights of all edges
and vertices it contains. By Proposition 3.2, one can consider a model with weights
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only on the edges which in this case satisfies E log
∣∣X ′

e

∣∣ = 0. If one could establish
Proposition 3.5 in the case E log

∣∣X ′
e

∣∣ = 0 and a result analogous to Theorem 2.1 of
[KQ16] for such an i.i.d. polymer, these would imply that an analogue of Theorem 3.10,
and therefore Theorem 1.1, holds also for the i.i.d. model.
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A. Appendix: Combinatorial Results on Non-intersecting Paths

The goal of this section is to prove Lemma 3.3.
A naive approach to the proof would be as follows. Given sets S, T and a noninter-

secting tuple π connecting S to T , we would like to connect each point in S to a point
in S0, and likewise for T and T0, with some path so as to obtain a nonintersecting tuple
connecting S0 to T0. However, it is easy to give examples where this cannot be done,
e.g. when one of the points in S is cut off from the origin by some paths in π . Therefore,
a more careful approach is needed.

We start with an informal outline of the proof. Observe that if π contains intersecting
paths, one can switch them to make them noncrossing with each other (see Fig. 3). One
can then push the paths away from each other to remove the intersections (see Fig. 5).
However, in the process we can lose an unbounded number of edges (e.g. consider two
zigzag paths touching each other at each corner). The key idea to prevent this is to
connect every missing vertex from S0 to a vertex from S using a path τ which is simple,
i.e. goes only right and then up. All modifications of paths will occur in a neighborhood
of τ of fixed radius. Since τ is simple, every path in such a neighborhood can make only
a bounded, independent of n, number of turns, which in turn guarantees that we always
remove only a bounded number of edges.

The above approach is formalized as follows. Lemma A.4 states that every tuple
of paths can be uncrossed. Lemma A.9 states that noncrossing paths can be pushed
away to make them nonintersecting while losing only a bounded number of edges. For
technical reasons this requires ensuring that paths intersect properly (Definition A.1),
which is handled by Lemma A.8. Finally, Lemma A.10 combines the previous lemmas
to inductively connect missing points from S0 to points from S\S0. The lemma requires
that there are no points in S too close to the boundary, which is ensured by Lemma A.11.
The section ends with the proof of Lemma 3.3.

For a path τ we let N (τ ) be the neighborhood of τ of radius 6k, i.e. the set of
all vertices within �1 distance at most 6k of some vertex on τ . For a sequence S of
initial vertices let ord(S) := min{i | (1, i) /∈ S} be the y coordinate of the lowest
vertex (1, i) not contained in S and likewise for a sequence T of terminal vertices let
ord(T ) := max{i | (n, i) /∈ T }.

http://creativecommons.org/licenses/by/4.0/
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Definition A.1. For two paths, π1 from s to t and π2 from s′ to t ′, such that π1 ∩π2 �= ∅
we say that they intersect properly if s′, t ′ /∈ π1 and s, t /∈ π2.

We define a partial order on the vertices of the lattice, letting (x, y) > (x ′, y′) if
y > y′ and x < x ′. Consider two paths π1, π2. If there exist vertices x ∈ π1, y ∈ π2
such that x > y and for all x ′ ∈ π1, y′ ∈ π2 if x ′ and y′ are comparable, then also
x ′ > y′, we will write π1 � π2. We write π1 � π2 if π1 � π2 or π1 = π2.

Definition A.2. A crossing intersection between π1 and π2 is a maximal connected
subset of vertices C ⊆ π1 ∩ π2 such that π1 enters C from the left and exits from the
right and π2 enters C from the bottom and exits up.We say that π1 and π2 are crossing if
π1 ∩ π2 contains at least one crossing intersection. We call a tuple of paths noncrossing
if none of the paths in the tuple are crossing.

Remark A.3. If π1 and π2 intersect properly and are not crossing, then π1 � π2 or vice
versa.

Lemma A.4. Fix σ, S, T and consider a tuple of paths π = (π1, . . . , πk), where πi
connects si to tσ(i). There exists a permutation σ ′ and a tuple π ′ = (π ′

1, . . . , π
′
k), where

π ′
i connects si to tσ ′(i), such that π ′ uses exactly the same multiset edges as π and paths

in π ′ are noncrossing. Moreover, there is no pair j < j ′ such that π j ′ ≺ π j . We will say
that the tuple π ′ is obtained by uncrossing π .

Proof. Wewill prove the following statement, from which the lemma follows. Consider
any sequences S, T of vertices of length k and a multiset of edges P such that for every
vertex not in S∪T the number of ingoing edges is equal to the number of outgoing edges
and the total number of edges outgoing from S minus the number of edges ingoing into
S is k. We claim that there exists a tuple of paths π = (π1, . . . , πk) and a permutation
σ such that π j connects s j to tσ( j), the tuple π uses exactly the edges from P and the
paths π j are noncrossing.

We proceed by induction with respect to k. For k = 1 the statement is obvious.
Suppose we have already proved the lemma for k − 1. For i = 2, . . . , 2n let Li be the
line x + y = i . In each strip between Li and Li+1 we list the edges from P from the
southeasternmost one to the northwesternmost one. We assign each edge a label equal
to the number of edges preceding it (multiple copies of an edge are assigned consecutive
numbers). Consider the northeasternmost vertex s ∈ S among all vertices from x ∈ S
such that the diagonal line started at x and going southeast intersects no other vertices

Fig. 3. Switching paths to make them non-crossing
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Fig. 4. Lemma A.8

used by the edges from P . There exists a path ρ starting at s and ending at some t ∈ T
which uses only edges labelled 0. Indeed, suppose this was not the case and follow the
edges labelled 0 starting from s. Take the first vertex x such that there is no outgoing
edge from x with label 0. This implies there is a vertex y southeast of x with an outgoing
edge labelled 0. The vertex y must belong to S and is to the northeast of s, contradicting
the choice of s.

After removing ρ, by the inductive hypothesis the remaining edges can be arranged
into a noncrossing tuple of paths π̃ = (π̃2, . . . , π̃k) and the tuple π̃ can be reordered
in such a way that there is no pair j < j ′ such that π̃ j ′ ≺ π̃ j . The tuple π ′ =
(ρ, π̃ ′

1, . . . , π̃
′
k−1) is also noncrossing since ρ used only edges labelled 0, so it can-

not cross any of the paths π̃ ′
i . For the same reason the tuple π ′ will be ordered in the

desired way. �	
Definition A.5. Let π = (π1, . . . , πk) be a tuple of paths. Let s, t be the starting and
ending vertices of the path π j for some j . Let P be the set of all paths that start at s, end
at t and use edges from the set ∪k

j=1π j . We define min(s, t;π) to be the smallest path,
with respect to �, among all the paths in P .

Note that this is well defined since for any two paths ρ, ρ′ ∈ P there exists a path
ρ′′ ∈ P such that ρ � ρ′′, ρ′ � ρ′′. The path ρ′′ can be obtained by uncrossing ρ, ρ′
(Lemma A.4) and taking the southeasternmost of the resulting paths. Since every set of
paths in P has a lower bound, there exists a unique smallest element.

Definition A.6. We say a path makes a turn at a vertex v if it enters v from the left and
exits up or enters from below and exits right. We call a path τ simple if it makes at most
one turn.

Remark A.7. Let τ be a simple path. If a path is contained inside the neighborhood N (τ ),
the number of turns it makes is bounded by some constant D depending only on k. This
implies that the number of possible paths lying inside N (τ ) is bounded by D′ · nD′′

for
some constants D′, D′′ depending only on k.

In the following lemmas we fix some σ, S(0), T (0) and a tuple π(0) ∈ �σ,S(0),T (0) .
We also fix a simple path τ that starts at a vertex (1, m) for some m. For any tuple
π = (π1, . . . , πk), a constant C and any 0 ≤ i ≤ k we define the following conditions:
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Fig. 5. Pushing paths away to make them non-intersecting

(1) for all j ≥ k − i + 1 the paths π j do not intersect any paths in π

(2) there are no j, j ′ such that j > j ′ and π j ≺ π j ′
(3)

∣∣E(π(0))\E(π)
∣∣ ≤ C

(4) all the vertices at which paths in π intersect and all the edges in E(π)�E(π(0)) lie
within distance 5(i + 1) of τ ; also, the set E(π)�E(π(0)) is a union of at most C
paths

(5) for all j ≤ m the vertex (1, j) lies on exactly one path from π and for all j > m
the vertex (1, j) lies on at most one path from π

Lemma A.8. Let π ∈ �σ,S,T for some σ, S, T be a noncrossing tuple that satisfies
Conditions (1)–(5) for some i and constant C. Then there exists a noncrossing tuple
π ′ ∈ �σ ′,S′,T ′ for some σ ′, S′, T ′ that also satisfies Conditions (1)–(5) for i and some
constant C ′ depending only on C and k such that all the paths in π ′ intersect properly.

Proof. Let (s j , tσ ( j)) be the pair of starting and terminal vertices of the pathπ j . Suppose
there are some j �= j ′ such that s j ′ lies onπ j (the case of tσ( j ′) is dealt with analogously).
Note that by Condition (5) s j ′ �= (1, y) for any y. Let s′ be defined as the first vertex on
π j ′ which does not belong to any path other than π j ′ . If s′ exists, let π ′

j ′ be the subpath
of π j ′ started at s′. We replace s j ′ with s′ and π j ′ with π ′

j ′ . If there is no s′, we replace
both s j ′ and tσ( j ′) with any vertex in N (τ ) southeast of π j ′ which does not belong to
any path and take π ′

j ′ to be a path of length zero. Note that since π j ′ intersected some
other path, by Condition (1) we must have j ′ ≥ i , so to maintain Condition (2) we can
reorder the paths π j for j ≥ i and this does not violate Condition (1).

We claim that the resulting tuple of paths π ′ uses all but boundedly many edges of
π j ′ , independent of n. Let:

s j ′ = x0, x1, . . . , xl = s′

be the sequence of vertices on π j ′ between s j ′ and s′. Suppose that we lose an edge
(xn, xn+1) used by π j ′ . Then for some path ρ ∈ π we have xn ∈ π j ′ ∩ ρ and xn+1 /∈ ρ

(otherwise the edge is still contained in ρ). All the paths are noncrossing, so, apart
possibly of the first edge of π j ′ , either π j ′ or ρ makes a turn at xn . By Condition (4)
the intersection at xn , hence also the turn, happens inside N (τ ). This implies that the
total number of edges lost is at most the number of turns made by any path inside N (τ ),
which by Remark A.7 is bounded by some constant D independent of n, plus one.
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Since we have removed at most D + 1 edges, Condition (3) still holds with the
constant C increased by D + 1. The remaining conditions are clearly unchanged and the
resulting tuple is still noncrossing. We can repeat the above step and after at most 2k
such steps all the paths will intersect properly. The Condition (3) will be satisfied with
C ′ = C + 2k(D + 1). �	
Lemma A.9. Let π ∈ �σ,S,T for some σ, S, T be a noncrossing tuple that satisfies
Conditions (1)-(5) for some i and constant C and all intersecting paths in π intersect
properly. Then there exists a tuple π ′ ∈ �σ,S,T that satisfies Conditions (1)-(5) for i + 1
and some constant C ′ depending only on C and k.

Proof. To pass from i to i + 1 we need to ensure Condition (1) for i . Suppose that πk−i
intersects some pathπ j with j < k−i . For every such j , we do the following. Informally,
we want to push the path π j right and down at the intersections to remove the intersec-
tions, see Fig. 5. To make this notion precise, let Pπk−i denote the path πk−i with the
edges touching the bottomor right boundary are removed and the remaining edges shifted
one vertex down and one vertex to the right. We let π ′

j := min(s j , tσ( j); (π j , Pπk−i )),
defined as in Definition A.5. The path π ′

j starts and ends at the same vertices as π j . We
claim that:

• π ′
j and πk−i do not intersect

• π ′
j ∪ πk−i uses all but boundedly many edges of π j , independent of n

The paths πk−i and π j intersect properly and are noncrossing, which by Remark A.3
and Condition (2) implies that πk−i � π j . Assume by contradiction that π ′

j ∩ πk−i �= ∅
and take u = (x, y) to be the first vertex in π ′

j ∩ πk−i . The paths go together from u to
some vertex v = (x ′, y′), possibly v = u, at which they exit to different vertices. We
claim that πk−i enters u from the left and π ′

j enters u from the bottom. If not, the path π ′
j

would contain a vertexw to the left of u and πk−i a vertexw′ below u, sow > w′. Since
πk−i � π j , this would imply (w, u) /∈ π j , so the edge (w, u) must come from Pπk−i ,
which is clearly impossible. In the same fashion we prove that leaves v up and π ′

j leaves
v to the right. Let ρ be the subpath of π ′

j connecting (x, y − 1) to (x ′ +1, y′). Let Pρ be
ρ shifted one vertex down and right, so clearly Pρ ⊆ Pπk−i . By considering the path
π j with the path connecting (x, y) to (x ′, y′) replaced by Pρ, we reach a contradiction
with the minimality of π ′

j := min(s j , tσ( j); (π j , Pπk−i )).
We now show that π ′

j ∪ πk−i use all but boundedly many edges of π j . We first
claim the only edges lost are the ones between some u ∈ π j\πk−i and its neighbor
v ∈ π j ∩ πk−i . Suppose there is a horizontal edge (u, v) ∈ π j\(πk−i ∪ π ′

j ) such that
u, v do not belong to πk−i . Let u′, v′ be the vertices u, v shifted one right and down. It
is easy to see that none of the vertices u, v, u′, v′ are available for the path π ′

j . Since
π j � π ′

j , in order to cross the northwest-southeast diagonal line through u the path π ′
j

must pass through the set {x : x < u} using a vertex belonging to Pπk−i . This would
imply the existence of a vertex w ∈ πk−i such that w < u, contradicting πk−i � π j .
The case of a vertical edge is handled in the same way.

Now, consider an edge lost between a vertex u ∈ π j\πk−i and its neighbor v ∈
π j ∩ πk−i . Since the paths are noncrossing, one of the paths makes a turn at u or v.
Thus, the number of edges lost is bounded by twice the number of turns made by any
path inside N (τ ), which is bounded by some constant D by Remark A.7. By the same
reasoning, the set E(π ′

j )\E(π j ) is a union of a set of paths of size bounded by 2D, since
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it consists of path segments starting or ending at vertices where one of the paths makes
a turn.

We first check that by replacing π j with π ′
j we have not violated Condition (1).

Suppose that for some l ≥ k − i + 1 the paths π ′
j and πl intersect at some vertex x .

We must have x /∈ π j , as otherwise π j ∩ πl �= ∅, contradicting Condition (1). We must
then have x ∈ Pπk−i , which means there is a vertex x ′ ∈ πk−i such that x ′ > x . Since
the paths are noncrossing, by Remark A.3 this would imply πk−i � πl , contradicting
Condition (2).

We check that by replacing π j with π ′
j we have not violated Condition (2). Suppose

to the contrary that π ′
j � πl for some l > j . This means that for some x ∈ π ′

j and
y ∈ πl we have x > y. Since π j and π ′

j have the same starting and terminal vertices
and π j � π ′

j , the path π j must cross the region {z : z ≥ x}, in particular, it contains a
vertex z such that z ≥ x > y, proving that π j � πl and contradicting Condition (2).
The proof that Condition (2) holds for l < j proceeds in the same fashion.

Note that after this procedure the pathπk−i still intersects properly and is noncrossing
with other paths that it intersects.We can thus repeat the above procedure for all j < k−i
such that πk−i and π j intersect, obtaining a new tupleπ ′ in which πk−i does not intersect
any paths. The Condition (1) holds now for i +1. Condition (3) holds now for i +1 since
we have removed at most 2k D edges and likewise for Condition (4). Note that every
path has been moved by distance at most 1 and all the edges added or removed were
within distance 5i of τ . Since Condition (4) held for i , this implies that now it holds for
i + 1. The resulting tuple π ′ thus satisfies all the required conditions for i + 1. �	
Lemma A.10. Fix σ, S, T , with either S �= S0 or T �= T0 up to reordering. Suppose that
S\S0 does not contain any vertices closer than k + 1 to the bottom boundary and T \T0
does not contain any vertices closer than k +1 to the top boundary. There exists a simple
path τ with the following properties. For any non-intersecting tuple π ∈ �n.i.

S,T,σ there

exist σ ′, S′, T ′ and a non-intersecting tuple π ′ ∈ �n.i.
S′,T ′,σ ′ such that ord(S′) > ord(S)

(or, if S = S0, ord(T ′) < ord(T )),
∣∣E(π)\E(π ′)

∣∣ is bounded independently of n and
E(π)�E(π ′) is a union of paths whose number is bounded independently of n and
which all lie within N (τ ).

Proof. We treat the case S �= S0, as the case of T is analogous.
Let (1, m) be the vertex in S0\S with smallest m. Pick the path τ to be the one

connecting (1, m) to any vertex s j ∈ S\S0 and such that it goes right and then up
(possibly only up if s j = (1, t) for some t). This is possible since we assume that
no vertices in S lie within the first k levels from the bottom. We modify the set S by
removing s j and inserting (1, m). We replace the path π j , connecting s j to tσ( j), with
τ · π j , the concatenation of τ and π j , which now starts at (1, m). In this way, we obtain
a new tuple that, in general, may contain intersecting paths.

Wewill construct the desired tupleπ ′ using an inductive procedure.We letπ(0) := π .
At step 0 ≤ i ≤ k we will have sets S(i), T (i) and a possibly intersecting tuple π(i) =
(π

(i)
1 , . . . , π

(i)
k ) connecting S(i) to T (i) and satisfying Conditions (1)-(5) for i . Applying

Lemmas A.8 and A.9 will allow us to construct π(i+1) satisfying the conditions for i +1.
To obtain π(1), we do the following. Condition (5) clearly holds for vertices (1, l)

with l < m since the initial tuple π was nonintersecting. To ensure that it holds also for
(1, m), let j be such that (1, m) is the starting vertex of the path π

(0)
j and suppose that

(1, m) also lies on a path π
(0)
j ′ with j �= j ′. Because π was nonintersecting, the path
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Fig. 6. Switching paths π
(0)
j and π

(0)
j ′

π
(0)
j ′ must start at (1, m − 1). Recall that the path τ , which is an initial segment of π

(0)
j ,

connects (1, m) to the vertex s j .

If s j �= (1, l) for any l, we switch paths so that the new path π̃
(0)
j ′ starts with the path

(1, m − 1) → (2, m − 1) → (2, m) and then follows the edges of π
(0)
j , while π̃

(0)
j starts

at (1, m) and follows the edges of π
(0)
j ′ . This is shown in Fig. 6.

If s j = (1, l) for some l > m, consider the endpoint t of the path π
(0)
j ′ . If t = (1, l ′)

for some l ′ ≥ m, we must have l ′ < l because in the tuple π the paths π
(0)
j ′ and the

subpath of π(0)
j starting at s j were nonintersecting. We replace the vertex t by (1, m −1)

and replace π
(0)
j ′ with a path of length zero. If t �= (1, l ′), let (2, a) be the first vertex

on π
(0)
j ′ in the second column. We replace the segment of π

(0)
j ′ connecting (1, m − 1) to

(2, a) with a path that first goes right and then up to (2, a).
We then apply Lemma A.4 to make the tuple noncrossing and ensure that there are

no j ′ > j such that π
(0)
j ′ ≺ π

(0)
j . The procedure above ensures that in all the cases

considered the Conditions (3) and (4) hold. In this way all the Conditions (1)–(5) for
i = 0 are satisfied.

To pass fromπ(i) toπ(i+1), we apply the following steps.Wefirst apply LemmaA.4 to
obtain a tuple π(i)′ with all the paths non-crossing. Then, we apply Lemma A.8 to obtain
a tuple π(i)′′ in which all the paths intersect properly. We can then apply Lemma A.9,
obtaining a tuple π(i)′′′ which satisfies Conditions (1)–(5) for i + 1. We can then put
π(i+1) := π(i)′′′ .

After performing the inductive procedure, we obtain a tuple π(k) that satisfies all
the required conditions. We put S′ := S(k), T ′ := T (k), π ′ := π(k). By Condition (1)
the tuple is nonintersecting. By Condition (3)

∣∣E(π)\E(π ′)
∣∣ is bounded independently

of n. By Condition (4) E(π)�E(π ′) is a union of paths whose number is bounded
independently of n and which all lie within N (τ ). Finally, since the vertices (1, l) for
l ≤ m were never removed, we have ord(S′) > ord(S). �	
Lemma A.11. For any σ, S, T and a tuple π ∈ �n.i.

S,T,σ there exist σ ′, S′, T ′ and a

tuple π ′ ∈ �n.i.
S′,T ′,σ ′ such that S′\S0 does not contain any vertices closer than k + 1 to

the bottom boundary, T ′\T0 does not contain any vertices closer than k + 1 to the top
boundary,

∣∣E(π)\E(π ′)
∣∣ is bounded independently of n and E(π)�E(π ′) is a union of
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Fig. 7. Removing the vertices at level l for l = 1. The path τ is shown in green

paths whose number is bounded independently of n and which all lie within distance k
of the boundary.

Proof. We prove the statement for the part concerning S, the part concerning T is
analogous. Let Sl be the sequence of vertices from S\S0 located at some level 1 ≤
l ≤ k from the bottom boundary. Take the smallest l so that Sl is nonempty. Let Sl =
(si1, . . . , sim ). We take the vertex (1, l) and connect it with the unique path τ it to the
rightmost vertex sim ∈ Sl . For j = 1, . . . , m, let πi j be the path contained in π starting
from si j . If m > 1, for 1 ≤ j < m we replace the vertex si j with s′

i j
, defined as the first

vertex on level l + 1 which lies along πi j . If there is no such vertex, we replace the pair
(si j , tσ(i j )) with any vertex at least k +1 away from the boundary which does not belong
to any path and modify πi j to be a path of length zero.

If (1, l) ∈ S, the path τ will intersect the path ρ belonging to π which starts at (1, l).
In that case, we retain (1, l) in S and insert a new starting vertex s′, defined as the first
vertex on level l + 1 which lies along ρ. If there is no such vertex, we deal with this case
in the same way as in the last case in the previous paragraph.

The tuple π ′ thus obtained may contain intersecting paths, coming from intersections
of τ with paths starting at vertices (1, i) with i < l. We deal with these intersections by
applying Lemmas A.8 and A.9, exactly as in the proof of Lemma A.10.

Overall, the procedure performed above is illustrated in Fig. 7 for l = 1. Note that
the new tuple π ′ uses all the edges contained in π , apart possibly from the vertical edges
connecting levels l to l + 1, lost when replacing the vertices si j with s′

i j
, and edges

removed in the pushing process. We have added the edges contained in τ , plus possibly
other edges during the switching and pushing part, all of which lie within distance k to
the boundary. �	
Proof of Lemma 3.3. Given σ, S, T and π ∈ �n.i.

S,T,σ , we first apply Lemma A.11 to

obtain σ ′, S′, T ′ and π ′ ∈ �n.i.
S′,T ′,σ ′ such that

∣∣E(π)\E(π ′)
∣∣ is bounded independently

of n, the set E(π)�E(π ′) is a union of a bounded number of paths contained within
distance at most k from the bottom or top boundary, S′\S0 does not contain any vertices
closer than k + 1 to the bottom boundary and T ′\T0 does not contain any vertices closer
than k + 1 to the top boundary. We are now in position to apply Lemma A.10 to obtain
a tuple π ′′ and σ ′′, S′′, T ′′ such that either ord(S′′) > ord(S) or ord(T ′′) < ord(T ),
E(π)\E(π ′′) is bounded by some constant C ′ independent of n and E(π)�E(π ′′) is a
union of at most C ′ paths lying inside N (τ ) ∪ Nb, where τ is some simple path, N (τ )

is the neighborhood of τ of radius 6k and Nb is the neighborhood of the boundary of
radius k.

By repeating the above procedure, in each step increasing ord(S) or decreasing
ord(T ), afterm ≤ 2k stepswe arrive at sets S, T with ord(S) = k+1 and ord(T ) = n−k,
which actually implies that S = S0 and T = T0, thus completing the proof. Let {τi }m

i=1
be the set of simple paths τ appearing at repeated applications of Lemma A.10. We take



Tracy–Widom Fluctuations in 2D Random Schrödinger Operators 893

P to be the set of all possible paths contained in ∪m
i=1N (τi ) ∪ Nb. By Remark A.7, the

set P has size at most D′ · nD′′
for some constants D′, D′′ depending only on k. The

proof is finished by taking C := max{D, D′′, 2kC ′}. �	

References

[BC17] Barraquand, G., Corwin, I.: Random-walk in beta-distributed random environment. Probab.
Theory Relat. Fields 167(3), 1057–1116 (2017)

[BCR13] Borodin, A., Corwin, I., Remenik, D.: Log-gamma polymer free energy fluctuations via a fred-
holm determinant identity. Commun. Math. Phys. 324(1), 215–232 (2013)

[COSZ14] Corwin, I., O’Connell, N., Seppäläinen, T., Zygouras, N.: Tropical combinatorics and whittaker
functions. Duke Math. J. 163(3), 513–563 (2014)

[Dur10] Durrett, R.: Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, Cambridge (2010)

[GV85] Gessel I, Viennot, G (1985) Binomial determinants, paths, and hook length formulae. Advances
in Mathematics. 58: 300–321

[Hog06] Hogben, L.: Handbook of Linear Algebra. Discrete Mathematics and Its Applications, 1st edn.
Chapman & Hall, Boca Raton (2006)

[KQ16] Krishnan, A., Quastel, J.: Tracy–widom fluctuations for perturbations of the log-gamma polymer
in intermediate disorder. Ann. Appl. Probab. 28, 3736 (2016)

[LD16] De Luca, A., Le Doussal, P.: Mutually avoiding paths in random media and largests eigenvalues
of random matrices. Phys. Rev. E 95, 030103 (2016)

[PMSO09] Prior, J., Somoza, A.M., Ortuño, M.: Conductance distribution in two-dimensional localized
systems with and without magnetic fields. Eur. Phys. J. B 70, 513–521 (2009)

[QR14] Quastel, J., Remenik, D.: Airy processes and variational problems. In: Ramírez, A.F., Arous,
G.B., Ferrari, P.A., Newman, C.M., Sidoravicius, V., Vares, M.E. (eds.) Topics in Percolative
and Disordered Systems, pp. 121–171. Springer, New York (2014)

[Sep12] Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann.
Probab. 40(1), 19–73 (2012)

[SLDOn15] Somoza,A.M.,LeDoussal, P.,Ortuño,M.:Unbinding transition in semi-infinite two-dimensional
localized systems. Phys. Rev. B 91, 155413 (2015)

[SOnP07] Somoza, A.M., Ortuño, M., Prior, J.: Universal distribution functions in two-dimensional local-
ized systems. Phys. Rev. Lett. 99, 116602 (2007)

Communicated by A. Borodin


	Tracy–Widom Fluctuations in 2D Random Schrödinger Operators
	Abstract:
	1 Introduction
	2 Eigenvalues and Polymers
	3 Probabilistic Results
	3.1 Eigenvalues and non-intersecting partition functions
	3.2 Fluctuations of the smallest eigenvalue in the exactly solvable case

	Acknowledgements.
	A Appendix: Combinatorial Results on Non-intersecting Paths
	References


