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Abstract When solving multiobjective optimization problems, there is typically a
decision maker (DM) who is responsible for determining the most preferred Pareto
optimal solution based on his preferences. To gain confidence that the decisions to be
made are the right ones for the DM, it is important to understand the trade-offs related
to different Pareto optimal solutions. We first propose a trade-off analysis approach
that can be connected to various multiobjective optimization methods utilizing a cer-
tain type of scalarization to produce Pareto optimal solutions. With this approach, the
DM can conveniently learn about local trade-offs between the conflicting objectives
and judge whether they are acceptable. The approach is based on an idea where the
DM is able to make small changes in the components of a selected Pareto optimal
objective vector. The resulting vector is treated as a reference point which is then pro-
jected to the tangent hyperplane of the Pareto optimal set located at the Pareto optimal
solution selected. The obtained approximate Pareto optimal solutions can be used to
study trade-off information. The approach is especially useful when trade-off analysis
must be carried out without increasing computation workload. We demonstrate the
usage of the approach through an academic example problem.

Keywords Multicriteria optimization · Interactive methods · Trade-off rate ·
Reference point · Pareto optimality · Decision support

1 Introduction

In multiobjective optimization problems we are optimizing several conflicting objec-
tive functions simultaneously. Because of the conflicting nature of the objectives, we
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can identify compromise solutions, so-called Pareto optimal solutions, where we can-
not improve the value of any objective function without impairing at least one of the
others. A trade-off represents giving up in one of the objectives, which allows the
improvement of another objective. Thus, different Pareto optimal solutions involve
different trade-offs between the objective functions (see, e.g., Chankong and Haimes
1983; Miettinen 1999). The purpose of multiobjective optimization methods is to offer
support and ways to find the best compromise solution. In this, a decision maker (DM)
and his preference information play an important role. By a DM we mean a person who
is an expert in the domain of the problem considered and who typically is responsible
for the final solution.

When considering Pareto optimal solutions, the DM may think how much must
one give up of a certain objective in order to improve another one to a certain quan-
tity. Multiobjective optimization methods can be classified based on how the DM is
involved in the solution process (see, e.g., Miettinen 1999). We can identify a priori,
interactive and a posteriori methods depending on whether the DM specifies prefer-
ence information before, during or after the solution process, respectively. Especially
in the case of interactive and a posteriori methods the DM typically ends up comparing
a set of Pareto optimal solutions. In interactive methods the DM iteratively directs the
solution process by indicating his preferences related to solution candidates shown.
On the other hand, in a posteriori methods the DM selects, in a way or another, the best
compromise solution from a generated set of solutions. In both cases the methods usu-
ally offer only a set of solutions for the DM to analyze without any additional trade-off
information informing the DM about attainable changes in objective function values
in the neighborhood of each solution. However, seeing trade-off information between
objectives at some given Pareto optimal solution candidate is very important because
by definition to gain in the value of some objective function necessitates always trade-
off with the value of some other objective function. The DM benefits from gaining
understanding of the interdependencies between the conflicting objectives. From a
practical point of view, need for trade-off information is also strongly motivated by
the experiences the authors have had with several decision makers who have used the
interactive NIMBUS method (see, e.g., Miettinen 1999; Miettinen and Mäkelä 2006)
because they have missed some hints indicating what kind of Pareto optimal solutions
could be found near the presented ones.

As pointed out, e.g., in Miettinen et al. (2008), we can define both objective and
subjective trade-offs. An objective trade-off is based on the structure of the prob-
lem and measures the change in one objective in relation to the change in another
one, when moving from a feasible solution to another one. On the other hand, a
subjective trade-off measures how much the DM considers desirable to sacrifice in
the value of some objective function in order to improve another objective to a certain
quantity. In what follows, we retain to objective trade-offs. In addition to objective
trade-off as characterized above, we can consider objective trade-off rates reflecting
infinitesimal change trends when moving from a Pareto optimal solution along a fea-
sible direction. Some examples of interactive methods that utilize objective trade-off
rate information include ISWT (Chankong and Haimes 1977), SPOT (Sakawa 1982),
STOM (Nakayama and Sawaragi 1984), GRIST (Yang 1999) and IMOOP (Tappeta
and Renaud 1999).
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In this paper, we propose a trade-off analysis approach which consists of two
distinct parts. The first part is a so-called local trade-off rate analysis tool which
can be used to analyze trade-off rate information in the neighborhood of a selected
Pareto optimal solution. The second part is a so-called applicability study procedure
which can be utilized if the results obtained with the trade-off analysis tool need
to be further utilized. A central, important feature of the approach proposed is that
it does not necessitate any additional evaluations of the functions of the underly-
ing multiobjective optimization problem. Therefore, it is especially convenient in the
case of computationally costly problems where trade-off information would be wel-
come but, e.g., generating new Pareto optimal solutions would mean waiting times for
the DM.

The trade-off analysis tool proposed offers for the DM a way to analyze local
trade-off rates at Pareto optimal solutions obtained during the solution process of a
multiobjective optimization problem. The term tool is used here to emphasize the fact
that our approach is not a standalone method but it is meant to be connected as an
additional element into an implementation of an already existing multiobjective opti-
mization method. Whenever a Pareto optimal solution is produced by using a certain
type of a scalarization function, we are able to obtain the related local trade-off rate
information as a byproduct from the optimal Karush–Kuhn–Tucker multipliers. In
principle, this means that when an appropriate numerical solver is used to solve the
scalarization problems, we simultaneously also get the multipliers and no additional
computation is needed to obtain local trade-off rate information.

Trade-off rate interpretation of the multipliers can be obtained through many dif-
ferent scalarization functions (see, e.g., Sakawa and Yano 1990). However, in this
paper we build our trade-off analysis tool around the concept of a reference point
consisting of desirable objective function values specified by the DM. Therefore, we
assume that in the multiobjective optimization method used, Pareto optimal solutions
are produced through optimization of an achievement scalarizing function (see, e.g.,
Wierzbicki 1986). Despite this limitation, we still have numerous multiobjective opti-
mization methods that can take advantage of the tool. Namely, for instance, many
scalarization functions which utilize the Chebyshev norm fit directly into this setting
since they can be typically interpreted in the achievement scalarizing function con-
text (of a min–max form). Furthermore, in the case of a posteriori methods, we can
also consider such hybrid methods that are based on some evolutionary multiobjective
optimization method but where each member of the final population is projected into
the set of Pareto optimal solutions using the achievement scalarizing function (see,
e.g., Sindhya et al. 2011).

In addition to trade-off rate analysis based on the reference point concept, we pro-
pose a supplementary applicability study which can be used to indicate whether the
reference point determined by the DM in the trade-off analysis produces a “realistic”
approximate Pareto optimal solution. This information is useful when the results of
the trade-off analysis tool are used to produce a new Pareto optimal solution.

In what follows, in Sect. 2 we briefly present concepts and notation used. The trade-
off analysis tool is introduced in Sect. 3. In Sect. 4, we propose the applicability study
procedure. The usage of the method proposed is demonstrated through an example in
Sect. 5. Finally, we conclude in Sect. 6.
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2 On multiobjective optimization

We consider nonlinear multiobjective optimization problems of the form

minimize { f1(x), . . . , fk(x)}
subject to x ∈ S (1)

with k conflicting twice-differentiable real-valued objective functions fi which are
minimized subject to decision vectors x belonging to a feasible set S ⊂ R

n . For each
x ∈ S we can use a mapping f : R

n → R
k to form an attainable objective vector

z = f(x) = ( f1(x), . . . , fk(x))T belonging to the objective space R
k . The image

f(S) ⊆ R
k of the feasible set is called a set of attainable objective vectors.

Next we give some formal definitions for different trade-off terms (see, e.g.,
Chankong and Haimes 1983). Given two feasible decision vectors x̄ and x̂. We say that

f p(x̄)− f p(x̂)
fq(x̄)− fq(x̂)

(2)

is partial trade-off involving f p and fq between x̄ and x̂ if fq(x̄) �= fq(x̂) and
fi (x̄) = fi (x̂) for all i = 1, . . . , k and i �= p, q. If fi (x̄) �= fi (x̂) for some
i = 1, . . . , k and i �= p, q then (2) is called (total) trade-off involving f p and fq

between x̄ and x̂. Given feasible decision vector x̄ and direction d̄ �= 0 such that there
exists ᾱ > 0 so that x̄+αd̄ ∈ S for 0 ≤ α ≤ ᾱ. If fi (x̄) is continuously differentiable
for each i = 1, . . . , k. We say that

∇ f p(x̄)T d̄

∇ fq(x̄)T d̄
(3)

is (total) trade-off rate at x̄ along d̄, when ∇ fq(x̄)T d̄ �= 0. In addition, if there exists
α̂ > 0 such that fi (x̄+α̂d̄) = fi (x̄) for all i = 1, . . . , k and i �= p, q for all 0 ≤ α ≤ α̂
then (3) is called partial trade-off rate.

For the DM, potentially interesting solutions of problem (1) can by identified by
using the concept of Pareto optimality. A decision vector ẋ ∈ S and the corresponding
objective vector f(ẋ) are Pareto optimal if there exists no other decision vector x ∈ S
such that fi (x) ≤ fi (ẋ) for all i = 1, . . . , k and at least one of the inequalities is strict.
In what follows, we refer to a Pareto optimal decision vector and the corresponding
objective vector by the term Pareto optimal solution. If an objective vector is Pareto
optimal, we say that it is not dominated by any other attainable objective vector, that
is, it is nondominated. In this text, when it is said that an objective vector is dominated
or nondominated we mean the dominance in the sense of Pareto optimality. In the
objective space, Pareto optimal objective vectors can be identified using a positive
orthant cone R

k+ =: {z ∈ R
k : zi ≥ 0, for i = 1, . . . , k} as a dominance structure. If

ż is Pareto optimal then (ż − R
k+) ∩ (f(S) \ {ż}) = ∅. We use a term Pareto surface

for the set P = f(E), where E ⊆ S is the set of Pareto optimal decision vectors of
problem (1). A decision vector ẋ ∈ S is weakly Pareto optimal if there does not exist
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another decision vector x ∈ S such that fi (x) < fi (ẋ) for all i = 1, . . . , k. The set of
Pareto optimal decision vectors is always a subset of the set of weakly Pareto optimal
decision vectors.

In what follows, we assume that we have a set P ′ ⊂ P of Pareto optimal objective
vectors available for some given multiobjetive optimization problem (1), and we also
have an approximate Pareto optimal objective vector z̃ ∈ R

k . We say that z̃ is a realistic
approximate Pareto optimal solution with respect to P ′, if none of the vectors in set
P ′ ∪ {z̃} dominates each other.

In this paper, we concentrate on such interactive and a posteriori multiobjective
optimization methods where (weakly) Pareto optimal solutions are computed by min-
imizing the differentiable formulation of an achievement scalarizing function (see,
e.g., Wierzbicki 1986). In other words, we are solving the problem

minimize α

subject to wi ( fi (x)− z̄) ≤ α, for i = 1, . . . , k (4)

x ∈ S, α ∈ R.

The aspiration levels z̄i indicate desirable levels of the objective functions fi , for
i = 1, . . . , k. These values form a reference point z̄ = (z̄1, . . . , z̄k)

T and by solving
(4) we project the reference point to the Pareto optimal set. For brevity of presentation,
we discuss a formulation (4) that generates weakly Pareto optimal solutions. Weak
Pareto optimality can be avoided, for instance, by considering an augmented version
of (4) (see, e.g., Miettinen 1999).

The scaling coefficients wi > 0 can be used to determine the projection direction,
that is, how the given reference point z̄ is projected to the set of Pareto optimal solu-
tions. One typically used scaling uses ranges, that is, wi = 1/(zup

i − zlow
i ), where zup

i
and zlow

i are approximate (computed or given by the DM) high and low values for the
objective function fi attainable in the Pareto optimal set, respectively. In what follows,
when we say that ẋ is an optimal solution of (2), we implicitly refer to solution (ẋ, α̇)
because variable α has only a technical meaning to maintain differentiability (see,
e.g., Miettinen 1999).

3 Interactive trade-off analysis tool

According to the definition of Pareto optimality, moving from some Pareto optimal
solution to another one always necessitates some trade-off in objective function val-
ues. Locally this kind of trade-off information can be given in a form of trade-off
rates which can be used to approximate how many units the value of some objective
function changes if we alter the value of some other objective function by one unit
(see, e.g., Chankong and Haimes 1983 for more detailed discussion).

Let us assume the DM uses a multiobjective optimization method where Pareto
optimal solutions are produced by solving problem (4). At some point of the solu-
tion process, to direct the process or to gain confirmation that some Pareto optimal
solution can be considered as the most preferred one, the DM may be interested in
knowing how the objective function values are changing in a local neighborhood of
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some particular Pareto optimal solution. If the changes seem to be favorable then, for
example, a further search can be concentrated around that particular Pareto optimal
solution. From the practical point of view, when this kind of analysis is needed, it
is not always necessarily efficient or purposeful to carry out accurate computations
to reflect what is happening in the set of Pareto optimal solutions (in particular, if
the problem is computationally costly and function evaluations take time). Instead, a
computationally inexpensive approximation of the Pareto surface can be used to study
trade-offs between the objectives.

In what follows, we first describe how a so-called trade-off plane can be used as
a very local linear approximation for the set of Pareto optimal objective vectors at a
given Pareto optimal solution. Then we construct the trade-off analysis tool which uti-
lizes the trade-off plane and the reference point concept allowing the DM interactively
study trade-off rates related to Pareto optimal solutions computed.

3.1 Linear approximation

Let us assume that a Pareto optimal solution ẋ for problem (1) is produced by solv-
ing problem (4), and the DM wants to study trade-off rates in a local neighborhood of
ż = f(ẋ). A tangent hyperplane T (ż) for the Pareto surface P at ż can be used to reflect
trade-off rate information. In other words, we locally produce a linear approximation
for the nonlinear (possibly also nonconvex) Pareto surface. In what follows, we refer
to T (ż) as a trade-off plane.

For problem (4), using the results presented by Yano and Sakawa (1987) and Sakawa
and Yano (1990), the trade-off plane can be obtained from the Karush–Kuhn–Tucker
(KKT) multipliers. Namely, if ẋ is a solution of (4) for some w and z̄, with optimal
KKT multipliers λi related to constraints wi ( fi (x) − z̄i ) ≤ α which are assumed to
be active for all i = 1, . . . , k, and if in addition at ẋ the following assumptions hold

(i) second-order KKT sufficiency conditions are satisfied,
(ii) the gradients of all active constraints are linearly independent,

(iii) all active constraints have strictly positive KKT multipliers

then the partial trade-off rate involving objectives f1 and fi at ẋ is ∂ f1(ẋ)/∂ fi =
−(λiwi )/(λ1w1), for i = 2, . . . , k.

Let us point out, that assumption (i) above implies that first-order KKT sufficiency
conditions hold at ẋ and with assumption (ii) it is guaranteed that multipliers related to
active constraints of problem (4) are unique (see, e.g., Nocedal and Wright 2006). Fur-
thermore, it must be emphasized that in problem (4) constraints wi ( fi (x)− z̄i ) ≤ α,
for i = 1, . . . , k, must be active at ẋ.

Partial trade-off rate information can be interpreted as a linear approximation to
a relative change in the value of f1 when the value of fi (i = 2, . . . , k) is changed
by one unit and at the same time all the other objectives f j ( j = 2, . . . , k, j �= i)
remain at their current values. This information can be presented in the form of partial
trade-off vectors t1i (ẋ) ∈ R

k , where the first component is −(λiwi )/(λ1w1), the i :th
component is 1, and the other components ( j = 2, . . . , k, j �= i) are zero. We can
directly conclude that vector n = −(λ1w1, λ2w2, . . . , λkwk)

T is orthogonal to t1i (ẋ),
for all i = 2, . . . , k. In other words, we can express a normal vector in an explicit
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form whenever we are able to compute partial trade-off vectors (see, e.g., Yang 1999;
Yang and Li 2002).

The normal vector n for the Pareto surface P at some ż ∈ P can be used to char-
acterize other objective vectors z ∈ T (ż) ⊂ R

k in the neighborhood of ż in the form
nT (z − ż) = 0. Because the plane T (ż) is giving only a linear approximation for the
Pareto surface, we must point out that in the nonlinear case, a vector z ∈ T (ż) is most
likely not Pareto optimal (when z �= ż), and it might be even unattainable but it can
provide approximate information in the neighborhood of ż.

In what follows, we assume that KKT multipliers are available as byproducts after
having solved problem (4) with an appropriate single objective optimization method.
In addition, we restrict our consideration to Pareto optimal solutions of problem (1),
where it is possible to numerically compute the trade-off plane T (ż) using KKT multi-
pliers (see, e.g., Nocedal and Wright 2006, p. 337; Kuk et al. 1997 how the assumptions
(i), (ii), and (iii) above can be numerically verified). If at some Pareto optimal solution
we are not able to compute the trade-off plane, then the DM can be informed. It must
be also pointed out that since our approach can be applied for nonconvex problems, it
is assumed that we are in every case able to produce a globally optimal solution for (4).
In practice, this might mean that we have to use a separate solver to first reach the area
where a locally optimal solution is also globally optimal and after this use some local
solver which is producing the final solution and the related KKT multipliers.

3.2 Trade-off analysis tool

Let us assume that the DM wants to study the trade-off information behavior in a
local neighborhood of a Pareto optimal solution ż but unnecessary evaluations of
the functions in (1) should be avoided because it is relatively time consuming. The
DM is assumed to determine how to change objective values in ż to get a more pre-
ferred solution. However, instead of using this preference information to generate new
Pareto optimal solutions, we use trade-off analysis to study whether the desired changes
are reachable. This analysis is computationally inexpensive to carry out because it is
based on the trade-off plane information obtained by using the KKT multipliers related
to ż.

In what follows, a vector d ∈ R
k (expressed by the DM) is used to indicate desired

changes in the objective function values at ż. This determines a reference point z̄ = (ż+
d) which can be used in a linear achievement scalarizing problem where the task is to

minimize α
subject to wi (zi − (żi + di )) ≤ α, for i = 1, . . . , k

nT (z− ż) = 0
z ∈ R

k, α ∈ R.

(5)

In other words, in (5), the Pareto surface is approximated linearly at ż (see Fig. 1)
and the solution which is in a sense closest to the new reference point located on this
trade-off plane is found (in Fig. 1 this solution is denoted by z̃) and shown to the DM.
This solution is called an approximate Pareto optimal solution and it is supposed to
give some insight for the DM about the reachability of the desired changes expressed.
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Fig. 1 Approximation of the Pareto surface

Because the approximate solution corresponding to the new reference point is obtained
basically very fast (by solving a linear problem), the DM can judge in real-time the
kind of trade-offs available in a local neighborhood of ż and give different desirable
changes, if needed. For example, if trade-offs related to ż seem to be promising, it is
always possible to solve problem (4) corresponding to the reference point z̄ to obtain
a new actually attainable Pareto optimal solution (but this may take some time with
computationally expensive problems).

It may be preferable, even though not necessary, that the changes in d are set in a
way that obeys the principle of Pareto optimality, that is, if the value of some objec-
tive is to be improved then the value of at least one objective should be relaxed. This
is an important issue because if the preferences are set according to the principle of
Pareto optimality, it is more likely that the DM can experience that the tool is able to
produce Pareto optimal solutions which correspond to preferences expressed (feeling
of control). Problem (5) has a unique solution except if the normal vector n is parallel
to some of the coordinate axes in the objective space R

k .
For our purposes, it is enough to use information that the projection direction in

problem (4) is determined by a vector w−1 = (1/w1, . . . , 1/wk), where wi > 0
(i = 1, . . . , k) are the scaling coefficients. Thus, instead of actually solving the linear
problem (5), we can directly compute where the projection direction vector (ż+ d+
tw−1) and trade-off plane nT (z− ż) = 0 are intersecting. This means solving for t (to
be denoted by t̃) in equation nT ((ż+ d+ tw−1)− ż) = 0 which we can write in the
form t̃ = −(nT d)/(nT w−1), where nT w−1 > 0 because w−1

i > 0 and ni < 0, for
i = 1, . . . , k. Then, the approximate Pareto optimal objective vector obtained using the
preference information given by the DM is z̃ = (ż+d)+ t̃w−1 = z̄+ t̃w−1. In this way,
the new approximate solution can be obtained even faster than by solving problem (5).

In practice, it is convenient to assume zlow
i ≤ z̄i ≤ zup

i and zlow
i ≤ z̃i ≤ zup

i , for
i = 1, . . . , k. However, in the above calculation, it happen that z̃i ≥ zup

i , for more
than one i = 1, . . . , k, even though zlow

i ≤ z̄i ≤ zup
i , for i = 1, . . . , k. This special

case can be taken into account but for the sake of clarity we omit such details in this
paper.

Figures 1 and 2 demonstrate a situation where the trade-off analysis is carried out at
the Pareto optimal solution ż ∈ P . In the figures, we have only two objectives to enable
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Fig. 2 The selected solution

intuitive visualization. However, it must be emphasized that the trade-off analysis tool
can be utilized for multiobjective problems having any number of objectives.

In Fig. 1, we demonstrate the trade-off analysis tool with a simple example, where
the DM considers the solution ż and is interested in decreasing f2 value by allowing
f1 to increase as indicated by the reference point z̄ = (ż + d), where d = (d1, d2)

T

reflects the desired changes. According to the trade-off analysis tool, the approximate
solution reflecting z̄ is z̃ ∈ T (ż). The vector z̈ is the corresponding attainable Pareto
optimal objective vector which could be obtained by solving problem (4).

Figure 2 corresponds to the setting depicted in Fig. 2 and it presents a possible
user interface for the trade-off analysis tool described above. In the figure, the DM
has selected for trade-off analysis the Pareto optimal solution ż for which objective
function values are visualized using a bar chart (black bars). The triangle marker is a
reference point z̄ = (ż + d) determined by the DM. The circle marker indicates the
approximate Pareto optimal objective vector z̃ ∈ T (ż) obtained using the trade-off
analysis tool.

The DM can rapidly experiment with different z̄’s by altering the reference point
and the approximate Pareto optimal objective vector z̃ is updated accordingly with
minimal effort. In this way, the DM can in real-time get an idea of what kind of trade-
offs are available and how his/her preferences correspond to Pareto optimal solutions
in the local neighborhood of the selected Pareto optimal solution ż. The interface pro-
posed in Fig. 2 can be, for instance, implemented in such a way that the DM is able to
alter the reference point (triangle markers) rapidly using the mouse.

As an example, let us point out that the trade-off analysis tool can be easily included,
for example, as a part of the IND-NIMBUS software (Miettinen 2006) implementing
the NIMBUS method discussed in the introduction. This is possible since scaralization
(4) is available in NIMBUS. Furthermore, interface depicted in Fig. 2 is very similar
to what is available in the IND-NIMBUS software.

After having studied the local trade-off rate information around some Pareto optimal
solution ż with the trade-off analysis tool, the DM has a couple of options. Naturally,
the DM can continue to do the trade-off analysis at some other Pareto optimal solu-
tion and in this way implicitly gain insight about the shape of the Pareto surface. On
the other hand, if the analysis reveals preferable trade-offs around some particular
Pareto optimal solution, then more Pareto optimal solutions can be generated around
this solution. How the generation of these new Pareto optimal solutions is carried
out depends on the underlying multiobjective optimization method. The most direct
approach to continue after the trade-off analysis is to use the reference point z̄ and
project it directly to the set of attainable Pareto optimal solutions by solving problem
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(4) (in which case z̃ gave an idea of what may be the corresponding objective vector
values). Especially in interactive methods such as NIMBUS, this option is very appeal-
ing. However, also in a posteriori methods some individual Pareto optimal solution
can be refined by using our approach.

Whenever z̃ is relatively far from ż, we are not able to say how good the approx-
imation really is because T (ż) gives only a linear approximation. Therefore, in what
follows, we propose a supplementary applicability study which can be used to reveal
whether z̃ can be considered as a reliable approximation for some attainable Pareto
optimal objective vector.

4 Applicability study

The design goal of the applicability study to be proposed is similar to the trade-off
analysis tool presented in the previous section. To be more specific, we build up a
procedure to provide information about the reliability of an approximation z̃ ∈ T (ż)
without evaluating the functions of multiobjective optimization problem (1). Based
on the motivation behind the trade-off analysis, it is assumed that the DM is primarily
interested in Pareto optimal solutions which have the same trade-off rates as those
related to z̃, which was induced by the reference point z̄. We are referring to the
approximate Pareto optimal objective vectors (ż+ t (z̃− ż)), for t ∈ [0, 1].

Let us assume that when the trade-off analysis takes place, the set P ′ ⊂ P contains
all the Pareto optimal solutions available at that moment. We recall that an approxi-
mate Pareto optimal objective vector z̃ is called realistic with respect to P ′ if none of
the vectors in the set P ′ ∪ {z̃} dominates each other. Now, the aim of the applicability
study is to indicate if z̃ related to the reference point z̄ (determined by the DM) is
realistic with respect to P ′, and if not, to determine the largest possible t ′ ∈ [0, 1] in
such a way that (ż+ t (z̃− ż)) is realistic for each t ∈ [0, t ′]. Furthermore, we say that
a Pareto optimal objective vector z ∈ P ′ is active if it either dominates or is dominated
by (ż+ t (z̃− ż)), for some t ∈ [0, 1]. In other words, the applicability study points out
the first Pareto optimal objective vector in P ′ which becomes active when we move
from ż to z̃ along the line (ż+ t (z̃− ż)) where the trade-off rates remain unchanged.
Algorithm 1 describes the applicability study in a formal way.

The first phase of Algorithm 1 reveals whether ż + t (z̃ − ż) dominates any
Pareto optimal objective vector in P ′′ for some t ∈ [0, 1] and the second one whether
ż + t (z̃ − ż) is dominated by any Pareto optimal objective vectors in P ′′. If at the
end z′ �= ż then z′ is the Pareto optimal objective vector which becomes first active
when we move from ż to z̃. The example in the next section gives an idea of how the
applicability study can be utilized in practice.

It is clear that when we have only very few Pareto optimal solutions available
(or if we have a large number of objectives), the applicability study proposed does not
necessarily help that much to evaluate whether approximate Pareto optimal solutions
obtained with the trade-off analysis tool are realistic or not (this is due to the fact
that the objective vectors considered do not dominate each other). In other words,
the DM can determine very large variations to the Pareto optimal objective vector
selected without being able to say anything about the reliability of the approximation
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Algorithm 1 Applicability study
Require: ż ∈ P ′, z̃ ∈ T (ż), z̃ �= ż, and ż �= z for all z ∈ P ′′ := P ′ \ {ż}

t ′ ← 1
z′ ← ż
for all z ∈ P ′′ do

t1 ← minimize t subject to (z̃− ż)t ≤ (z− ż) and 0 ≤ t ≤ 1
if t1 ≤ t ′ then

t ′ ← t1
z′ ← z

else
t2 ← minimize t subject to (z̃− ż)t ≥ (z− ż) and 0 ≤ t ≤ 1
if t2 ≤ t ′ then

t ′ = t2
z′ ← z

end if
end if

end for

obtained. However, the applicability study presented in this section can be regarded as
an addition to the trade-off analysis tool rather than an accurate applicability indicator.
The idea is just to take advantage of all information available, that is, the computed
Pareto optimal solutions no matter how many they are. Naturally, the more Pareto
optimal solutions are available, the better the applicability study is able to identify
the approximations which are not realistic or not—and all this without adding the
computational cost.

5 Example

In this section, we demonstrate the usage of the trade-off analysis tool by considering
an academic nonconvex problem having three objective functions. Even though the
example problem does not contain any computationally demanding functions, it must
be pointed out that while carrying out the trade-off analysis, we do not need to evaluate
functions of the original problem.

In this example, the objective functions fi : R
2 → R (i = 1, 2, 3) are con-

structed using function φ(x1, x2) = ψ(x1, x2)− exp(−50ψ(x1, x2)), where we have
ψ(x1, x2) = x2

1 + x2
2 . The actual unconstrained problem is expressed in the form

minimize { f1 = φ(x1, x2), f2 = φ(x1, x2 − 1), f3 = φ(x1 − 1, x2)} . (6)

Let us assume that we have obtained six Pareto optimal solutions using some
multiobjective optimization method utilizing problem (4) with different preferences
specified by the DM and the DM is now willing to use the trade-off analysis tool to
study these solutions. The objective function values of these six solutions are shown in
Fig. 3 together with upper and lower bounds for the objective functions. In this case,
the DM has determined bounds zup and zlow using his expertise. The Pareto surface
and the six Pareto optimal solutions are visualized in Fig. 4 solutions. Even though
the Pareto surface is visualized in Fig. 4 its explicit form is assumed to be unknown.
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Fig. 3 Pareto optimal solutions and ranges

Fig. 4 Set of attainable objective vectors and the six computed Pareto optimal solutions

As already explained in Sect. 3, the DM can change the components of the Pareto
optimal objective vector selected to produce a reference point which is then projected
to the trade-off plane. Let us assume that we have a simple user interface containing a
bar chart visualization for each Pareto optimal objective vector available and the DM
has selected ż5 for the trade-off analysis (the upper part of Fig. 5). In case (a) of Fig. 5,
the DM is interested in studying what kind of solutions are approximately available if
he wants to improve the value of f1 around 5% and value of f3 around 10% from ż5

1 and
ż5

3, respectively (percentages refer to ranges (zup
i − zlow

i ), i = 1, 2, 3). To compensate
this improvement, the DM is willing to sacrifice around 5% in the value of f2 from ż5

2.
The DM proposes the resulting new reference point by adjusting the positions of gray
triangle markers appearing in (a) bar chart in Fig. 5. The resulting approximate Pareto
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(a) (b)

Fig. 5 Trade-off analysis with applicability study: a with realistic and b with unrealistic approximate
solution

optimal objective vector is z̃ = (0.27, 0.76, 0.31)T and it is depicted in Fig. 5 with
white circles. By using Algorithm 1 we can confirm that the approximation z̃ can be
considered realistic in comparison to the five other Pareto optimal solutions available.
However, we do not know how far from the Pareto surface P the approximate Pareto
optimal objective vector z̃ really is.

Case (b) of Fig. 5 illustrates the situation where the DM has proposed twice as large
changes to get a new reference point as in case (a) and the trade-off rates between
objective functions remain, therefore, unchanged. However, now the reference point
z̄ produces the approximate Pareto optimal objective vector z̃ = (0.27, 0.96, 0.08)T

which dominates the Pareto optimal objective vector ż6 and, thus, the approximation
regarded not to be realistic. Because the approximation obtained is not realistic, the
applicability study suggests to the DM that maybe he would like to carry out trade-off
analysis based on the Pareto optimal solution ż6 instead of the current solution ż5.
However, it must be emphasized that this is only a suggestion and the DM is allowed
to continue the analysis even though the resulting approximation is not realistic. The
approximate Pareto optimal vectors can be used by the DM to study the local trade-
off rate information around the selected Pareto optimal solution and the result of the
applicability study can be considered only as a warning.

6 Conclusions

We have introduced a trade-off analysis approach which can be integrated into any
implementation of an interactive or a posteriori multiobjective optimization method
utilizing an achievement scalarizing function an equivalent scalarization formulation
for generating Pareto optimal solutions. The approach provides a possibility to make
the most of information generated as a byproduct of solution generation. The approach
has two distinct parts. The first part is a local trade-off analysis tool, where trade-off
rates can be studied by projecting a reference point into a linear approximation of the set
of Pareto optimal objective vectors at a given Pareto optimal solution. The tool utilizes
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the well-known trade-off rate interpretation of the Karush–Kuhn–Tucker multipliers.
Since the multipliers can be obtained as a byproduct when a Pareto optimal solution is
generated by solving the achievement scalarizing problem with an appropriate solver,
the computational burden caused by this trade-off analysis is minimal. Thus, the tool
is particularly useful for supporting DMs dealing with computationally expensive
problems where function evaluations take time. With the tool, the DM can judge the
feasibility of one’s preferences without solving the actual time-consuming problem.

The second part of the approach proposes a supplementary applicability study which
can be used to analyze whether the reference point used in the trade-off analysis can be
considered to produce a reliable approximate Pareto optimal solution. Also this appli-
cability study utilizes only the information available at the moment when the trade-off
analysis takes place. Therefore, the fundamental idea behind the approach presented is
that additional function evaluations related to the multiobjective optimization problem
are completely avoided and the information available is utilized as widely as possible.
We have also demonstrated the usage of the approach with a simple example.

References

Chankong V, Haimes YY (1977) The interactive surrogate worth trade-off (ISWT) method for multiobjec-
tive decision making. In: Zionts S (ed) Multiple criteria problem solving, vol 155. Springer, Berlin,
pp 42–67

Chankong V, Haimes YY (1983) Multiobjective decision making theory and methodology. Elsevier Science
Publishing Co., Inc., New York

Kuk H, Tanino T, Tanaka M (1997) Trade-off analysis for vector optimization problems via scalarization.
J Inf Optim Sci 18:75–87

Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, Boston
Miettinen K (2006) IND-NIMBUS for demanding interactive multiobjective optimization. In:

Trzaskalik T (ed) Multiple criteria decision making ’05. The Karol Adamiecki University of Eco-
nomics in Katowice, Katowice, pp 137–150

Miettinen K, Mäkelä MM (2006) Synchronous approach in interactive multiobjective optimization. Eur
J Oper Res 170(3):909–922

Miettinen K, Ruiz F, Wierzbicki AP (2008) Introduction to multiobjective optimization: interactive
approaches. In: Branke J, Deb K, Miettinen K, Slowinski R (eds) Multiobjective optimization: inter-
active and evolutionary approaches. Springer, Berlin, pp 27–57

Nakayama H, Sawaragi Y (1984) Satisficing trade-off method for multiobjective programming. In: Grauer
M, Wierzbicki AP (eds) Interactive decision analysis. Springer, New York, pp 113–122

Nocedal J, Wright SJ (2006) Numerical Optimization, 2nd edn. Springer, New York
Sakawa M (1982) Interactive multiobjective decision making by the sequential proxy optimization tech-

nique: SPOT. Eur J Oper Res 9:386–396
Sakawa M, Yano H (1990) Trade-off rates in the hyperplane method for multiobjective optimization prob-

lems. Eur J Oper Res 44:105–118
Sindhya K, Deb K, Miettinen K (2011) Improving convergence of evolutionary multi-objective optimization

with local search: a concurrent hybrid algorithm. Nat Comput. doi:10.1007/s11047-011-9250-4
Tappeta RV, Renaud JE (1999) Interactive multiobjective optimization procedure. AIAA J 37:881–889
Wierzbicki AP (1986) On completeness and constructiveness of parametric characterizations to vector opti-

mization problems. OR Spektrum 8:73–87
Yang J-B (1999) Gradient projection and local region search for multiobjective optimisation. Eur J Oper

Res 112:432–459
Yang J-B, Li D (2002) Normal vector identification and interactive tradeoff analysis using minimax formu-

lation in multiobjective optimization. IEEE Trans Syst Man Cybern Part A: Syst Hum 32(3):305–319
Yano H, Sakawa M (1987) Trade-off rates in the weighted Tchebycheff norm method. Large Scale Syst

13:167–177

123

http://dx.doi.org/10.1007/s11047-011-9250-4

	Trade-off analysis approach for interactive nonlinear multiobjective optimization
	Abstract
	1 Introduction
	2 On multiobjective optimization
	3 Interactive trade-off analysis tool
	3.1 Linear approximation
	3.2 Trade-off analysis tool

	4 Applicability study
	5 Example
	6 Conclusions
	References


