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Abstract. In real-world applications, it is often desired that a solu-
tion is not only of high performance, but also of strong robustness. In
evolutionary optimization, robust optimal solutions can be obtained ei-
ther by averaging the fitness in the neighborhood or by perturbing the
design variables in fitness evaluations. Unfortunately, only one solution
can usually be obtained from one run of optimization using the existing
methods for searching robust solutions. Besides, the user knows little
about the performance degradation due to the improvement of robust-
ness of a solution using these methods. This paper suggests two methods
for estimating the robustness of a solution by exploiting the information
available in the current population of the evolutionary algorithm, with-
out any additional fitness evaluations. The estimated robustness is then
used as an additional objective in optimization. Thus, a trade-off between
optimality and robustness can be realized with the help of evolutionary
multiobjective optimization. Simulation studies have been conducted to
verify the proposed method. Finally, the possibility of using this method
for detecting multiple optima of multimodal functions is briefly discussed.

1 Introduction

The search for robust optimal solutions is of great significance in real-world
applications. Robustness of an optimal solution can usually be discussed from
the following two perspectives:

– The optimal solution is insensitive to small variations of the design variables.
– The optimal solution is insensitive to small variations of environmental pa-

rameters. In some special cases, it can also happen that a solution should be
optimal or near-optimal around more than one design point. These different
points do not necessarily lie in one neighborhood.

Usually, two measures can be used to enhance the robustness of an optimal
solution [1, 2].

– To optimize the expectation of the objective function in a neighborhood of
a target point. The expectation of the function is also known as the effective
evaluation function in [3].
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– To minimize the second order moment (variance) or higher order moments
of the objective function.

Unfortunately, using either of the two robustness measures only cannot guar-
antee that a robust optimal solution can be found. If optimization of expectation
is chosen as the only objective, it can happen that positive and negative devi-
ations of the function cancel each other in the neighborhood of a target point.
Thus, an undesirable solution will be considered to be robust. On the other
hand, if optimization of the variance is chosen as the only objective, the opti-
mizer may find a plateau of the original objective function, which may not be
optimal. Therefore, it is sometimes insufficient to optimize the expectation or to
minimize the variance only in the search of robust optimal solutions. In other
words, the search of robust optimal solutions should be basically addressed as
a trade-off between optimality and robustness. As suggested in [1], the trade-off
can be realized by simultaneously

– optimizing the expectation and optimizing the original function, for example
in [1];

– optimizing the expectation and minimizing the variance, for example in [4];

– optimizing the original function and minimizing the variance. The approach
adopted in this work can be categorized into this class, however, instead of
directly minimizing the variance of the function, the variance of the design
variables are also taken into account.

In evolutionary optimization, main efforts have been made to obtain optimal
solutions that are insensitive to small changes in the design variables. Evolu-
tionary approaches to the search of robust optimal solutions are largely based
on the optimization of the expectation, i.e., the average of the objective func-
tion. Existing methods for the expectation-based search of robust solutions in
evolutionary optimization can generally be divided into two categories.

– Averaging. To find a robust solution, the fitness of a solution (x) is calculated
by averaging several points in its neighborhood [5–8]:

f(a, x) =

∑N

i=1
wif(a, x + ∆xi)
∑N

i=1
wi

, (1)

where a and x denote a vector of environmental parameters and a vector
of design variables, respectively, i = 1, 2, ..., N is the number of points to
be evaluated. Usually, N should be larger than 2 but not too large due to
the increasing computational cost with the increasing number of evaluations.
∆xi is a vector of small numbers that can be generated deterministically or
stochastically and wi is the weight for each evaluation. In the simplest case,
all the weights are set equally to 1.

Several ideas have been proposed to use the information in the current or
previous populations [9] to avoid additional fitness evaluations. Note that



throughout this paper, the terminology population is used as defined in evo-
lutionary algorithms. 1 An alternative is to construct a statistical model for
the estimation of the points in the neighborhood using the historical data
[10].

– Perturbation. A more efficient method for the search of robust solutions is
to introduce stochastic perturbations in the design variables during fitness
evaluation [3]:

f(a, x(t)) = f(a, x(t) + ∆x(t)), (2)

where t is the generation index and ∆x(t) is the random perturbation added
to the design variables in generation t. Recall that the perturbations are in-
troduced only in fitness evaluations and they have no direct influence on the
genotype. Usually, ∆x(t) need to be regenerated randomly in each genera-
tion. This method for obtaining robust solutions is justified due to the fact
that the expected returned fitness value on each point is equivalent to the
mean value over its neighborhood when the variables of the fitness function
are perturbed randomly in each fitness evaluation. It has been shown under
uncertain assumptions in [3] that if the population size is infinitely large,
the perturbed evaluation on the fitness function f(a, x) is equivalent to the
evaluation on its expected value, which is known as the effective evaluation
function of f(a, x).

It is worth mentioning that if the number of points to be evaluated (N) is
set to 1 and if the small variation is chosen randomly in each generation, then
the averaging method is equivalent to the perturbation method. Thus, from
the implementation point of view, the perturbation method can be treated as
a special case of the averaging method. Nevertheless, the perturbation method
and the averaging method were originated from quite a different background,
and the perturbation method is computationally more efficient.

A general drawback of the aforementioned methods for the search of robust
solutions is that only one objective has been used. On the one hand, this method
may fail to find a robust solution in some cases as previously discussed. On the
other hand, it may be impossible to find a single, ideal solution that is both
optimal and robust. For a robust solution obtained using the above methods,
it is difficult to know how robust it is and how much performance has been
sacrificed for the increase in robustness. In real-world applications, a trade-off
between the optimality and robustness often occurs. In this case, it is more
desirable to present a human user with a set of solutions trading off between
the robustness and the optimality, from which the user has to make a choice
according to the need of the application. A method has been suggested in [3] for
detecting multiple robust solutions using the sharing method suggested in [11].
However, no information on the relative robustness increase and performance
decrease of the solutions is available and thus no trade-off decisions can be made
on the obtained solutions.

1 In statistics, a population is defined as any entire collection of elements under inves-
tigation, while a sample is a collection of elements selected from the population.



Whereas most methods in evolutionary optimization consider the robustness
with respect to the variations of design variables, the search for robust solutions
that are insensitive to environmental parameters has also been investigated from
the multiobjective point of view in [12]. A separate fitness function that averages
two points around the design point is used:

fR(a, x) = f(a + ∆a, x) + f(a − ∆a, x), (3)

where fR(·) is a measure for the robustness of the solutions against the change
of environmental parameters, ∆a is a deterministic vector set up according to
the robustness requirement. Obviously, the resulting optimal solution may not
be robust to the variations of the design variables.

This paper considers the search of robust solutions as a multiobjective opti-
mization problem. To this end, a measure for robustness based on the variance
of the objective function in the presence of noises has been introduced, which is
used as a separate objective in evolutionary optimization. To the best of the our
knowledge, no work has been reported in evolutionary optimization that uses a
variance-based robustness measure to deal with the search of robust solutions as
a multiobjective problem. More importantly, the paper suggests two methods for
estimating the robustness measure using the information in the current popula-
tion solely. Thus, no additional evaluations of the fitness function are necessary.
To achieve the trade-off solutions, the evolutionary dynamic weighted method
suggested in [13, 14] will be employed.

The remainder of the paper is organized as follows. Section 2 introduces a
measure for robustness of optimal solutions. Two methods for estimating the
robustness measure using individuals in the current population are suggested.
The robustness measure is then applied in multiobjective optimization in Section
3 to generate a set of Pareto-optimal solutions. Two test functions have been
used to show the effectiveness of the proposed method. A summary of the method
and a brief discussion of future work conclude the paper, where a simple example
of detecting multiple optima using the proposed method is also provided.

2 Measures for Robustness

The search for robust optimal solutions has been widely investigated in the field
of engineering design [15]. Consider the following unconstrained minimization
problem:

minimize f = f(a, x), (4)

where a and x are vectors of environmental parameters and design variables.
If the robustness with respect to both the environmental parameters and the
design variables are to be considered, then these two different types of robustness
problems can be reduced to one:

f = f(x′), (5)



where x
′ = [aT , xT ]T is a vector of environmental parameters and design vari-

ables. For convenience, we will not distinguish between environmental parame-
ters and design variables and hereafter, both are called design variables denoted
uniformly with x.

Now consider the function f(x) = f(x1, x2, ..., xn), where the xi’s are n

design variables and function f is approximated using its first-order Taylor ex-
pansion about the point (µx1

, µx2
, ..., µxn

):

f = f(µx1
, µx2

, ..., µxn
) +

n
∑

i=1

[

∂f

∂xi

(µx1
, µx2

, ..., µxn
)

]

· (xi − µxi
), (6)

where µxi
, i = 1, 2, ..., n is the mean of xi. Thus the variance of the function can

be derived as follows:

σ2

f =

n
∑

i=1

(

∂f

∂xi

)2

σ2

xi
+

∑∑

i6=j

(

∂f

∂xi

) (

∂f

∂xj

)

σxixj
, (7)

where σ2

xi
is the variance of xi and σxixj

is the covariance between xi and
xj . Recall that the function should be evaluated using the mean value of the
variables. If the design variables are independent of each other, the resulting
approximated variance is

σ2

f =

n
∑

i=1

(

∂f

∂xi

)2

σ2

xi
. (8)

Thus, a measure for robustness of a solution can be defined using the standard
deviation of the function and that of the design variables as:

fR =
1

n

n
∑

i=1

σf

σxi

. (9)

It should be pointed out that with this definition of robustness, the smaller
the robustness measure, the more robust the solution is. In other words, the
search of robust optimal solutions can now be formulated as a multiobjective
optimization problem where both the fitness function and the robustness measure
are to be minimized.

In robust design, the variation of the objective function in the presence of
small variations in the design variables is the major concern. Therefore, it is
reasonable to discuss the variance of the function defined in equation (8) in a
local sense. Take a one-dimensional function f(x) for example, as shown in Fig. 1.
If the robustness of a target point xj is considered, the function is then expanded
in a Taylor series about x = µxj

= xj , which assumes that the variations of the
design variable are zero-mean. Similarly, if the robustness of xk is to be evaluated,
the function will be expanded about x = µxk

= xk, refer to Fig. 1. In the figure,
µf,j and µf,k denote the mean of the function calculated around the point xj

and xk, respectively.
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Fig. 1. Illustration of error propagation under local variations in the design variables.

In the following, an estimation of the robustness measure based on the fitness
evaluations in the current population will be proposed. Suppose the population
size is λ, and Nj (1 ≤ Nj ≤ λ) individuals are in the neighborhood of the j-th
individual. Thus, the robustness of the j-th individual can be approximated by

Robust measure 1: fR
j =

1

n

n
∑

i=1

σ̄f,j

σxi

, (10)

where σ̄f,j is an estimation of the variance of the j-th individual according to
equation (8):

σ̄2

f,j =
1

Nj

∑

k∈Dj

(

fj − fk

xi,j − xi,k

)2

σ2

xi
, k 6= j, (11)

where xi,j and xi,k denote the i-th element of x of the j-th and k-th individuals,
and Dj denotes a set of the individuals that are belong to the neighborhood
of the j-th individual. The neighborhood of j-th individual Dj is defined using
the Euclidean distance between the individual xk, k = 1, 2, ..., λ and the j-th
individual xj :

Dj : k ∈ Dj , if djk =

√

√

√

√

1

n

n
∑

i=1

(xi,j − xi,k)2 ≤ d2, 1 ≤ k ≤ λ, (12)

where , k = 1, 2, ..., λ is the index for the k-th individual, λ is the population
size of the evolutionary algorithm, djk is the Euclidean distance between indi-
vidual j and k, and d is a threshold to be specified by the user according to
the requirements in real applications. This constant should be the same for all
individuals.

Actually, a more direct method for estimating the robustness measure can
be used. Using the current population and the definition of the neighborhood,



the robustness measure of the j-th individual can be estimated by dividing the
local standard deviation of the function by the average local standard deviation
of the variables. Assume Nj (1 ≤ Nj ≤ λ) is the number of individuals in the
neighborhood of the j-th individual in the current population, then the local
variance of the function corresponding to the j-th individual in the population
can be estimated as follows:

µf,j =
1

Nj

∑

k∈Dj

fk, (13)

σ2

f,j =
1

Nj − 1

∑

k∈Dj

(fk − µf,j)
2, (14)

where µf,j and σ2

f,j are the local mean and variance of the function calculated
from the individuals in the neighborhood of the j-th individual. Thus, the ro-
bustness of the jth individual can be estimated in the following way:

Robustness measure 2: fR
j =

σf,j

σ̄x,j

, (15)

where σ̄x,j is the average of the standard deviation of xi estimated in the j-th
neighborhood:

σ̄x,j =
1

n

n
∑

i=1

σxi,j . (16)

The calculation of the mean and variance of xi in the j-th neighborhood is
similar to the calculation of the local mean and variance of the j-th individual
as follows:

µxi,j =
1

Nj

∑

k∈Dj

xi,k, (17)

σ2

xi,j
=

1

Nj

∑

k∈Dj

(xi,k − µxi,j)
2. (18)

Note that the individuals in the neighborhood can be seen as a small and most
probably biased sample of the local distribution around the concerned point. The
sample is biased in the sense that it is chosen from the invididuals in the current
population of the evolutionary algorithm rather than drawn randomly from the
local distribution, refer to Fig. 2. Therefore, the estimation of the local mean and
variance is a rough approximation of the true local distribution. Nevertheless,
the results obtained in the simulation show that the estimations are sufficient
for the search of robust solutions.

With the robustness measures defined above, it is then possible to explicitly
treat the search of robust optimal solutions as a multiobjective optimization
problem. The main advantage of the proposed multiobjective approach to the
search of robust optimal solutions over the existing ones is that the user is able
to made a choice among a set of solutions and select those that can best deal
with the problem at hand.
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Fig. 2. Samples of the local statistics of the objective function on the basis of the cur-
rent population of the evolutionary algorithm. The black dots represent the individuals
in the current population.

Some remarks can be made on the robustness measure defined by equation
(10) and equation (15). The former definition is based on an approximation of
the partial derivative of the function with respect to each variable. Theoretically,
the smaller the neighborhood, the more exact the estimation will be. However,
the estimation may fail if two individuals are too close in the design space due
to numerical errors. In this method, neither the variance of the function nor the
variance of the variables needs to be estimated. In contrast, the latter definition
directly estimates the local variance of the variables and the function using the
individuals in the neighborhood.

3 Dynamic Weighted Aggregation for Multiobjective

Optimization

3.1 Evolution Strategies

In the standard evolution strategy (ES), the mutation of the object parameters
is carried out by adding an N(0, σ2

i ) distributed random number. The standard
deviations, σi’s, usually known as the step sizes, are encoded in the genotype
together with the object parameters and are subject to mutations. The standard
ES can be described as follows:

x(t) = x(t − 1) + z̃, (19)

σi(t) = σi(t − 1)exp(τ ′z)exp(τzi); i = 1, ..., n, (20)

where x is an n-dimensional parameter vector to be optimized, z̃ is an n-
dimensional random number vector with z̃ ∼ N(0, σ(t)2), z and zi are normally
distributed random numbers with z, zi ∼ N(0, 1). Parameters τ , τ ′ and σi are
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Fig. 3. Patterns of dynamic weight change. (a) Gradual change; (b) Bang-bang switch-
ing; (c) Combined.

the strategy parameters, where σi is mutated as in equation (20) and τ , τ ′ are
constants as follows:

τ =

(

√

2
√

n

)−1

; τ ′ =
(√

2n
)−1

(21)

3.2 Dynamic Weighted Aggregation

The classical approach to multiobjective optimization using weighted aggrega-
tion of objectives has often been criticized. However, it has been shown [13, 14]
through a number of test functions as well as several real-world applications
that the shortcomings of the weighted aggregation method can be addressed by
changing the weights dynamically during optimization using evolutionary algo-
rithms. Two methods for changing the weights have been proposed. The first
method is to change the weights gradually from generation to generation. For
a bi-objective problem, an example for the periodical gradual weight change is
illustrated in Fig. 3(a). The first period of the function can be described by:

w1(t) =

{

t
T

, 0 ≤ t ≤ T,

− t
T

+ 2, T ≤ t ≤ 2T.
(22)

w2(t) = 1 − w1(t), (23)

where T is a constant that controls the speed of the weight change.
A special case of the gradual weight change method described above is to

switch the weights between 0 and 1, which has been termed the bang-bang
weighted aggregation (BWA) method, as shown in Fig. 3(b). The BWA has
shown to be very effective in approximating concave Pareto fronts [14]. A com-
bination of the two methods will also be very practical, as shown in Fig. 3(c).

4 Simulation Studies

4.1 Test Problem 1

The first test problem is constructed in such a way that it exhibits a clear
trade-off between the performance and robustness exists. The function can be



described as follows, which is illustrated in Fig. 4.

f(x) = 2.0 sin(10 exp(−0.08x)x) exp(−0.25x), (24)

where 0 ≤ x ≤ 10. From Fig. 4, it is seen that there is one global minimum
together with six local minima in the feasible region. Furthermore, the higher
the performance of a minimum, the less robust it is. That is, there is a trade-off
between the performance and robustness and the Pareto front should consist of
seven separated points.

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5
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1.5

2

x

f(
x
)

Fig. 4. The one-dimensional function of test problem 2.

At first, robustness measure 1 in equation (10) is used. That is to say, the
individuals in the neighborhood are used to estimate the partial derivatives. The
obtained Pareto front is given in Fig. 5. It can be seen that an obvious trade-off
between the performance and the robustness of the minima has been correctly
reflected. Thus, it is straightforward for a user to make a choice among the
trade-off solutions according to the problem at hand.

The result using the robustness measure in equation (15) is presented in
Fig. 6. Although the absolute values of the robustness are different, the shape
of the Pareto front is similar to the one obtained using robustness measure 1.

In the following, we extend the test function in equation (24) into a two-
dimensional one. The 2-dimensional test function is shown in Fig. 7(a). It can
be seen that a large number of minima with a different degree of robustness
exist.

The trade-off between the performance and the robustness is shown in Fig. 7(b)
using the robustness measure 2. It can be seen that the Pareto front looks con-
tinuous due to the large number of minima and the small robustness difference
between the neighboring minima. Nevertheless, the result provides a very clear
picture about the trade-off between the performance and the robustness, from
which a user can make a decision and choose a preferred solution.
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Fig. 5. The trade-off between performance and robustness of test problem 1 based on
robustness measure 1.
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Fig. 6. The trade-off between performance and robustness of test problem 1 based on
robustness measure 2.
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Fig. 7. (a) The 2-dimensional function of the test problem 1. (b) The Pareto front
obtained using robust measure 2.



4.2 Test Problem 2

The second test problem is taken from reference [16]. The original objective
function to minimize is as follows:

f(x) = (x1 − 4.0)3 + (x1 − 3.0)4 + (x2 − 5.0)2 + 10.0, (25)

subject to

g(x) = −x1 − x2 + 6.45 ≤ 0, (26)

1 ≤ x1 ≤ 10, (27)

1 ≤ x2 ≤ 10. (28)

The standard deviation of the function can be derived as follows, assuming
the standard deviation of x1 and x2 are the same:

σf (x) = σx

√

(3.0(x1 − 4.0)2 + 4.0(x1 − 3.0)3)2 + (2.0(x2 − 5.0))2, (29)

where σx is the standard deviation of both x1 and x2, which is set to:

σx =
1

3
∆x, (30)

where ∆x is the maximal variation of x1 and x2. According to [16], the search
of robust optimal solutions can be formulated as follows, assuming the maximal
deviation of the both variables is 1:

minimize f1 =
f

µ⋆
f

, (31)

f2 =
σf

σ⋆
f

, (32)

subject to g(x) = −x1 − x2 + 8.45, (33)

2 ≤ x1 ≤ 9, (34)

2 ≤ x2 ≤ 9, (35)

where µ⋆
f = 5.1046 and σ⋆

f = 0.4168 are the ideal solutions for the mean and
deviation of the function[4]. We call the objective for robustness in equation (32)
the theoretical robustness measure, which is explicitly derived from the original
fitness function.

The dynamic weighted aggregation method with a (15, 100)-ES is used to
solve the multiobjective optimization problem. The obtained Pareto front is
shown in Fig. 8 (a), which is obviously concave. Note that no archive of the
non-dominated solutions has been used in the optimization, which also indicates
that the success of the dynamic weighted aggregation method for multiobjective
optimization has nothing to do with the archive that has been used in [13, 14].

An estimated local standard deviation is used as the robustness measure so
that the obtained Pareto front is comparable to the one in Fig. 8(a). Since only
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Fig. 8. (a) The Pareto front of test problem 2 using the theoretical robustness measure.
(b) The approximated Pareto front using the estimated standard deviation as the
robustness measure.

information in the current population is used, no additional fitness evaluations
are needed, which is essential if the fitness evaluation is highly time-consuming
as in many real-world applications.

The optimization result is provided in Fig. 8(b). It is seen that although the
Pareto front is quit “noisy”, it does provide an acceptable approximation of the
theoretical trade-off between performance and robustness.

5 Conclusion and Discussions

Two robustness measures based on the variance of function have been intro-
duced. Methods for estimating the robustness using the information within the
current population have been suggested. The robustness measure is then used
as a separate objective so that the search of robust optimal solutions can be
formulated as a multiobjective optimization problem to find the solutions that
trade off between the performance and the robustness. The main advantage of
the method is that by exploiting the available information in the current popu-
lation, the robustness of a solution can be estimated without additional fitness
evaluations. The basic idea is to define a neighborhood of a solution and thus to
estimate the local mean and variance of a solution. With the trade-off solutions
at hand, a user can easily make a decision on which solution is to be used to
deal with the variations of design variables and environmental parameters in
real-world applications. The method has been applied to two test problems and
encouraging results have been obtained.

Although the proposed method is originally targeted at achieving trade-off
optimal solutions between performance and robustness, it is straightforward to
imagine that the method can also be used in detecting multiple optima of mul-
timodal functions [11]. To show this capability, we consider the central two peak
trap function studied in [17]. The function is modified to be a minimization



problem and rescaled as shown in Fig. 9(a)

f(x) =







−0.16x if x < 10,

−0.4(20− x) if x > 15,

−0.32(15− x) otherwise.
(36)

The function has two minima and is believed to be deceptive because values of
x between 0 and 15 lead toward the local minima.
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Fig. 9. (a) The trap function. (b) The detected minima.

The proposed method is employed to detect the two minima of the function
and the result is shown in Fig. 9(b). It can be seen that both minima have
successfully been detected.

Of course, it will be difficult to distinguish different optima using the pro-
posed method either if the function values of the optima are very similar or if
the robustness values of the optima are very similar.

A few issues still deserve further research efforts. For example, how to improve
the quality of the robustness estimation. Currently, the robustness estimation is
quite noisy, which to some extent, degrades the performance of the algorithms.
Meanwhile, it may be desirable to use the information not only in the current
generation, but also in the previous generations. Finally, the current algorithm
is based on evolution strategies. It will be interesting to extend the method to
genetic algorithms.
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