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Trade-offs between driving nodes 
and time-to-control in complex 
networks
Sérgio Pequito1, Victor M. Preciado1, Albert-László Barabási2,3,4 & George J. Pappas1

Recent advances in control theory provide us with efficient tools to determine the minimum number 
of driving (or driven) nodes to steer a complex network towards a desired state. Furthermore, we often 
need to do it within a given time window, so it is of practical importance to understand the trade-offs 
between the minimum number of driving/driven nodes and the minimum time required to reach a 
desired state. Therefore, we introduce the notion of actuation spectrum to capture such trade-offs, 
which we used to find that in many complex networks only a small fraction of driving (or driven) nodes is 
required to steer the network to a desired state within a relatively small time window. Furthermore, our 
empirical studies reveal that, even though synthetic network models are designed to present structural 
properties similar to those observed in real networks, their actuation spectra can be dramatically 
different. Thus, it supports the need to develop new synthetic network models able to replicate 
controllability properties of real-world networks.

In recent years, a powerful arsenal of tools has been developed to control the dynamics of complex networks, 
integrating knowledge from the �elds of control theory, network science, and statistical physics1. In this direc-
tion, control theory equips us with powerful mathematical notions, such as controllability and controllability sub-
space2,3, to determine the set of dynamic states that are achievable (in �nite time) by carefully choosing external 
driving signals. Even though most of these tools require full access to the network dynamics, in many practical 
scenarios, either the dynamics leads to a ill-posed controllability problem4 or only the topology of the dynamic 
network is available. In this context, it is still possible to analyze network control problems using tools from struc-
tural control theory. Structural control theory enables us to draw conclusions about controllability properties of 
almost all dynamic networks sharing the same topology using graph-theoretic methods5–8. Using these tools, a 
collection of interesting network control problems has been recently addressed in the �eld of network science1,9,10. 
One of such problems consists of �nding the minimum number of driving (or driven) nodes to steer a dynamic 
network towards a desired state11. Using structural controllability, the minimum number of driving9,12 and driven 
nodes13 can be found when only the topology of the dynamic network is available by solving a maximum bipar-
tite matching problem. Similar problems can also be solved while considering actuation costs14,15, energy con-
straints16, edge dynamics17,18, or constraints on the set of controlled states19.

Current control tools mainly focus on our ability to steer the network dynamics towards a required state, with-
out any regards to the required control time. Nonetheless, in many biological, social, and technological networks, 
it is of practical importance to ensure that the networks’ states are steered to a prede�ned goal within a small time 
window. In control theory, the controllability index3 characterizes the minimum time required to steer a dynamic 
network towards a desired state with a given set of driving/driven nodes. Furthermore, when only the network 
topology is available, we can use the notion of structural controllability index20,21 from structural control theory. In 
this work, we use these notions to explore the trade-o�s between the time-to-control and the minimum number 
of driving/driven nodes in a variety of real and synthetic network topologies. To visually capture these trade-o�s, 
we introduce the concept of actuation spectrum of a dynamic network, which characterizes the minimum number 
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of driving/driven nodes to control the network for any time-to-control. �erefore, it allows us to characterize our 
ability to steer the dynamics of a network under time constraints.

From an empirical analysis of the actuation spectra for a wide variety of arti�cial and synthetic networks, 
we observe that, in many cases, only a small fraction of driving/driven nodes is required to steer the network to 
a desired state within a relatively small time window. Our empirical observations also reveal that, even though 
arti�cial network models are designed to present structural properties similar to those observed in real networks, 
real-world networks present, in general, di�erent actuation trade-o�s than their arti�cial counterparts. �erefore, 
our studies support the need to develop new synthetic network models able to replicate not only structural met-
rics (such as degree distributions), but also controllability properties of real-world networks.

Results
Let us model the dynamic evolution of a complex network by the following linear discrete time-invariant system:

+ = + = …x t Ax t Bu t t[ 1] [ ] [ ], 0, 1, , (1)

where ∈x t[ ] N  is a vector containing the states of all the nodes in the network at time t, x[0] =  x0 is the initial 
state, and ∈u t[ ] P is the value of the P-dimensional input signal injected in the network at time t. �e matrix 

∈ ×A N N  is the state matrix, which captures the dynamic interdependencies among nodes; the matrix ∈ ×B N P 
is the input matrix, which identi�es those nodes that are actuated by an external input signal. Equation (1) models 
can be used to model the dynamics of networks, as well as the local linearization of non-linear dynamical22. In 
addition, given A and B, the partial controllability matrix of order T is de�ned as

 = .
−A B T BAB A B( , ; ) [ ] (2)

T 1

When T is equal to N (i.e., the dimension of the state space), the matrix  A B N( , ; ) is referred to as the control-
lability matrix of the system2. A system is controllable if, for every initial condition ∈x N

0 , there exists an input 
signal 

=

−u t{ [ ]}t
N

0
1 able to steer the system to any arbitrary �nal state ∈xd

N  in at most N time steps. Kalman’s 
controllability criterion2 states that a system is controllable, if and only if,  =A B N Nrank( ( , ; )) .

In many practical settings, we are interested in steering the state of a large-scale complex networks within a 
time window much shorter than N. In this case, we need to modify the de�nition of controllability to account for 
the time required to steer a system. In this direction, control theory provides the concept of controllability index, 
which is de�ned as the minimum value of T for which the partial controllability matrix  A B T( , ; ) is full rank. 
Formally, the controllability index is de�ned as follows:

τ = ∈ … = .A B T N A B T N( , ) min { {1, , }: rank( ( , ; )) }

From a dynamic point of view, the controllability index is equal to the minimum number of time steps 
required to steer the system from x0 to an arbitrary �nal state xd. In particular, if the system is controllable and the 
initial state is the origin (i.e., x0 =  0), the input signal 

=

−u t{ [ ]}t
T

0
1 that steers the system to ∈xd

N  can be explicitly 
computed as ref. 2

=
−

−u A B T A B T A B T x( , ; ) [ ( , ; ) ( , ; ) ] , (4)T d0: 1
1C C C⊺ ⊺

where = … −
−

u u u u T[ [0] , [1] , , [ 1] ]T0: 1
     is a vector in TP containing a concatenation of the input signal. 

Notice that, for T ≥  τ(A, B), the matrix inside the brackets in (4) is invertible and u0:T−1 is well-de�ned. �e con-
trollability index can be easily extended continuous-time dynamical systems3. Nonetheless, because current tech-
nology relies in digital controllers, we focused on discrete-time dynamics (for instance, resulting form the 
discretization of continuous time dynamics) to obtain a control law that steers the system towards a desired state.

However, in many contexts, it is not possible to exactly retrieve the dynamic interactions among network var-
iables, but we have access to the topology of the network over which the dynamics takes place. In other words, in 
some cases it is not possible to exactly retrieve the content of the matrices A and B, but we have access to the loca-
tion of their nonzero entries (i.e., the location of the edges in the network). In this context, we can use tools from 
structural controllability theory to study controllability properties of almost all networks sharing the same topol-
ogy. �is can be achieved by analyzing graph-theoretic properties of the system digraph, which is constructed by 
associating vertices to both state variables and input signals. �e edges of the system digraph are determined by 
the entries of the matrices in (1). More precisely, if Aij is non-zero, there exists an edge from the state vertex xj to xi. 
Similarly, if Bl,m is non-zero, then there exists an edge from the input vertex um to the state vertex xl. In particular, 
the state digraph corresponds to the subgraph of the system digraph that contains only state vertices. Remarkably, 
structural controllability can be assessed by resorting to the notion of an input cactus, which is inductively de�ned 
as follows: (i) a directed path with at least two vertices, where the origin is an input vertex and the remaining are 
distinct state vertices, is referred to as an input stem, and it is an input cactus; and (ii) an input cactus connected 
by an edge to a disjoint cycle containing only state vertices is also an input cactus. A major result in structural 
controllability theory states that a system is structurally controllable, if and only if, the system digraph contains a 
disjoint union of input cacti spanning the system digraph23,24. Additionally, given a state digraph, we can �nd the 
minimum number of driving nodes (i.e., the minimum number of inputs required to ensure structural controlla-
bility) by solving a maximum matching problem7,9,12. More recently, it was shown that the minimum number of 
driven nodes (i.e., the minimum number of state vertices that need to be actuated to ensure structural controlla-
bility) can be obtained by solving a minimum weighted maximum matching13. Notice that the minimum number 
of driven nodes is always greater or equal to the minimum number of driving nodes.
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In structural control theory, the notion of structural controllability index20,21 is concerned with the trade-o� 
between the number of driving/driven nodes and the time required to steer a structural system to a desired state. 
�is index is de�ned as follows: Consider the structural matrices ∈ ×

☆A {0, }N N  and ∈ ×
☆B {0, }N P, where the 

entries are either 0 (i.e., there is no edge between two nodes), or an unknown nonzero entry (i.e., there is an edge 
between two nodes with an arbitrary weight) denoted by ☆. In other words, the matrices A and B characterize the 
topology of the system digraph, when the weights can take any arbitrary value. Given a structural state matrix A 
and a structural input matrix B, we say that the corresponding structural system is structurally controllable with 
index T if there exists a pair of real matrices (A, B) corresponding to a weighted realization of the system digraph 
such that the controllability index of (A, B) is equal to T. In other words, we can �nd a (weighted) network with a 
system digraph matching the topology described by the pair A B( , ) such that it can be controlled in (at least) T 
time steps. �is value of T is called the structural controllability index, which we denote by τ A B( , ). In fact, using 
functional analysis6, almost all weighted networks associated with such system digraph can be controlled in at 
least T time steps. In other words, any random assignment of weights to the edges of the system digraph would 
result (with high probability) in the same time-to-control.

As we illustrate below, the structural controllability index is a powerful tool to understand the minimum num-
ber of time steps required to steer a network to a desired state. Furthermore, this index can be described in 
graph-theoretic terms as follows: a pair of structural matrices A B( , ) is structurally controllable with index 
τ =A B T( , ) , if and only if, the system digraph is spanned by a disjoint union of input cacti, where every input 
cactus contains at most T state nodes (see SI Text, section II, �eorem 2). In Fig. 1, we depict a particular system 
digraph, as well as two di�erent disjoint unions of input cacti, to illustrate the graph-theoretic interpretation of 
the structural controllability index.

Actuation Spectrum. To understand the trade-o�s between the number of driving/driven nodes and the 
minimum time required to achieve an arbitrary network state, we introduce the notion of actuation spectrum of a 
network. Given the topology of a network, described by the structural matrix ∈

×
☆A {0, }N N , the actuation 

spectrum is de�ned by the sequence of integers 
=

s A T{ ( , )}T
N

1, where =s A T n( , ) T
LSB, with nT

LSB being the mini-
mum number of driving nodes required to actuate the network such that the resulting structural controllability 
index is T, and the superscript label stands for the �rst letter of the authors last name in ref. 9. Alternatively, the 
actuation spectrum can also be de�ned with =s A T n( , ) T

PKA, with nT
PKA being the minimum number of driven 

nodes such that the resulting structural controllability index is T, and the superscript label stands for the �rst 
letter of the authors last name in ref. 13. Notice that for each value of the structural controllability index T, we 
have that =n nT

PKA
T
LSB for undirected graphs, and ≥n nT

PKA
T
LSB for directed graphs13. In Fig. 2, we depict the 

actuation spectrum using a heat-map where yellow (respectively, red) corresponds to a low (respectively, high) 
number driving nodes9 (denoted by nT

LSB) or driven nodes13 (denoted by nT
PKA) required to ensure a structural 

controllability index equal to T (in the x-axis). As we see in Figs 3 and 4, for most real and synthetic networks, the 
sequence 

=
s A T{ ( , )}T

N
1 decays very fast as T increases (i.e., the number of driving/driven nodes required to steer 

the network decreases rapidly as a function of the time-to-control). �erefore, it is convenient to represent the 
actuation spectra using a logarithmic scale over T. For this purpose, we consider a logarithmic base equal to the 
size N of the network, i.e., we use logN(T) in x-axis in the actuation spectra. As a consequence, the abscissas of the 
actuation spectra ranges from 0 to 1, independently of the size of the network. Notice that the highest number of 
driving/driven nodes (darkest red in Fig. 2) is required when the structural controllability index equals 1 (i.e., 0 
in the logN-scale), i.e., we steer the whole network in a single time step. In this case, it is easy to see that every 
single state in the network must be actuated by an input (i.e., = =n n NPKA LSB

1 1 , or, equivalently, 1 in the 
logN-scale). Similarly, the lowest number of driving/driven nodes (brightest yellow in Fig. 2) is required when we 
neglect time constraints, i.e., we consider the ‘standard’ minimum structural controllability problem9.

�e representation of the actuation spectrum as a heat-map enables a visual interpretation and diagnosis of 
the actuation trade-o�s between the number of driving/driven nodes and the structural controllability index. We 
illustrate this point by considering the actuation spectra of three di�erent networks with 100 nodes, depicted in 
Fig. 2. First, notice that these three arti�cial networks require 100 driving/driven nodes (depicted by ‘dark’ red 
levels in the spectra) to ensure the structural controllability index to be T =  1 (i.e., 0 in the log100-scale used in the 
x-axis). In addition, the minimum number of driving/driven nodes to ensure structural controllability (without 
any time constraints) is equal to 10 (i.e., = =n n 10PKA LSB

100 100  when T =  100, or, equivalently, 1 in the log100-scale 
used in the x-axis) depicted by ‘light’ yellow levels in the spectra. In Fig. 2A, we show an example of a network in 
which the number of driving/driven nodes decreases slowly for low values of the structural controllability index. 
More speci�cally, if we steer the network using 75 driving nodes (i.e., corresponding to 75% of the nodes of the 
network), we would need to actuate the network during at most 53 time steps, since the corresponding controlla-
bility index is 53 (i.e., 0.862 in log100-scale). In Fig. 2B, we plot the actuation spectrum of a network with a linear 
trade-o� between the number of driving/driven nodes and the structural controllability index. In other words, if 
we control the network using 25 nodes, then it can be steered to any arbitrary state within 75 time steps (i.e., 0.938 
in log100-scale). Similarly, if we control 75 nodes, then we can drive the system to any con�guration within 25 time 
steps. Finally, in Fig. 2C, we consider a network that can be steered to any desired state in a small time window 
using a relatively small percentage of driving/driven nodes. More speci�cally, by controlling 25% of the nodes, it 
is possible to steer the network in at most 15 time steps (i.e., 0.588 in log100-scale). In addition, we observe a �at 
yellow region in the actuation spectrum of the network in Fig. 2C in the range 30 <  T <  100 (i.e., 0.739–1.000 in 
log100-scale). In this �at region, there is no trade-o� between the minimum number of driving/driven nodes and 
the structural controllability index, since nT

LSB and nT
PKA cannot be sensibly reduced by increasing the allowed 

time-to-control T.
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Figure 1. Input Cacti and Proposed Two-Step Approach. In (A) we depict a system digraph, and in (B) and 
(C) two possible disjoint spanning input cacti. Notice that in B one input cactus has nine state vertices and the 
other six, whereas in (C) one input cactus contains eight state vertices and the other seven. In fact, these are the 
only two spanning input cacti, so the structural controllability index is equal to eight. Our two-step approach is 
depicted in (D–F). First, given the state digraph in (D) we consider a partition with at most eight state vertices, 
leading to two partitions denoted by P1 and P2. Secondly, in (E) we �nd the minimum number of driven nodes 
that correspond to the roots of a disjoint union of state cacti containing all the vertices in each partition. Finally, 
we just need to assign inputs to the driven nodes associated with nodes 1 and 11 respectively, as depicted in (F).
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Based on the above observations, we can readily classify networks according to their ‘agility’ using the actua-
tion spectra. For instance, consider the following three examples: (i) a network with a large red region in its actu-
ation spectrum (such as Fig. 2A) requires a large number of driving/driven nodes to steer the network to a desired 
state in a short time window; (ii) networks with an actuation spectrum (Fig. 2B) that requires a number of driv-
ing/driven control nodes that decrease a�nely with the structural controllability index T; and (iii) networks with 
a large yellow region in their spectrum (Fig. 2C) require a small number of driving/driven nodes to steer the 
network within a relatively small time window. In conclusion, the faster the decrease of nT

LSB (or nT
PKA) with 

respect to T, the more ‘agile’ the network is. In other words, the presence of a large yellow region in the controlla-
bility spectrum is an indication of a network being agile from a control point of view. In Figs 3 and 4, we include 
a variety of actuation spectra for a collection of both real and synthetic networks. In what follows, we describe a 
few challenges regarding the computation of the actuation spectra.

It can be formally shown that the problem of determining the minimum number of driving/driven nodes to 
achieve a given structural controllability index is computationally hard (see SI Text, section II, �eorem 4). As 
illustrated by Fig. 1A–C, there can potentially exist several possible combinations of disjoint unions of input cacti 
spanning the system digraph. Remember that the structural controllability index T is dominated by the cactus 
with the largest number of state nodes. �erefore, in order to �nd the minimum number of driving/driven nodes 
to obtain a structural controllability index T, we would need to consider all possible disjoint unions of spanning 
cacti and �nd the spanning cacti in which the largest cactus (in the number of state nodes) is minimized. Since 
this is a hard combinatorial problem, we propose a two-step approach (illustrated in Fig. 1D–F) that allows us to 
obtain sub-optimal results with optimality guarantees. In the �rst step of this approach, we search for a partition 
of the state digraph into a disjoint collection of subgraphs with at most T state vertices per subgraph, such that 
each subgraph in this partition is spanned by input cacti having at most T state vertices per cactus (see Fig. 1E for 
a partition of the state digraph in Fig. 1D for T =  8). In the second step, we determine the minimum number of 
driving/driven nodes required for each subgraph to ensure structural controllability, which can be achieved by 
solving a maximum matching problem9,13 (see Fig. 1F for the set of input nodes required for each subgraph). As a 
result of these two steps, we �nd a collection of disjoint input cacti spanning the system digraph, where each cac-
tus contains at most T state vertices. Hence, if we drive the system with the union of all the driving/driven nodes 
corresponding to each disjoint subgraph, the network attains a structural controllability index equal to T. It is 

Figure 2. Actuation Spectrum. Figures (A–C) depict the actuation spectra of three networks with N =  100 
nodes using a heat-map with colors ranging from yellow to red, where yellow (respectively, red) corresponds to 
a low (respectively, high) number of driving nodes (denoted by nT

LSB) or driven nodes (denoted by nT
PKA) 

required to control the network in at least T time steps (represented in the x-axis using the scale log100(T)). 
Notice that the highest number of driving/driven nodes (darkest red) is required when T =  1 (or, log100(T) =  0), 
since we need to actuate all the nodes to drive the network state in a single time step (i.e., = =n n 100PKA LSB

1 1 ). 
Similarly, the lowest number of driving/driven nodes (brightest yellow) is achieved in the absence of time 
constraints (i.e., T =  100 or log100(T) =  1). In addition, we mark by vertical dashed lines the values of logN (T) for 
which the number of required driving/driven nodes corresponds to 25%, 50% and 75% of the network size N. 
�e three networks under consideration exhibit qualitatively di�erent decays in the number of driving/driven 
nodes as T increases. In particular, the faster the decay in the actuation spectrum, the easier it is to control the 
network in a short time window. We, therefore, say that a network is ‘agile’ if its actuation spectrum decays fast 
as a function of T. In this sense, the Type-III network in (C) is the most ‘agile’, while the Type-I in A is the least 
‘agile’. Notice how the actuation spectrum of an ‘agile’ network decays fast to the yellow level in the heat-map, or, 
equivalently, the vertical dashed lines are shi�ed to the le�.
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worth remarking that �nding the partitions of a graph in the �rst step is a computationally challenging problem25. 
Notwithstanding, due to the wide range of practical application in which this partition problem is required, e�-
cient algorithms are currently available to �nd approximate solutions incurring (consistently) in a 1–3% error25.

Actuation Spectra of Artificial Complex Networks. We now examine the actuation spectra of sev-
eral arti�cial networks, such as scale-free (SF), Erdös-Rényi (ER) and small-world (SW) networks. In Fig. 3, we 
include the actuation spectra of these networks for a variety of parameters and network sizes. In our illustration, 

Figure 3. Arti�cial networks and their actuation spectra. 
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we consider 200 random realizations for each one of these synthetic graphs when the number of nodes are 2500, 
5000, and 10000. Figure 3A–C shows box plots and heat maps of the actuation spectra of ER graphs with average 
degrees 〈 k〉  equal to 4, 6, 8, 10, and 12. In our simulations, we observe two distinct phases in these actuation 
spectra. One phase of the spectrum, corresponding to T <  5, is characterized by an abrupt decline in the required 
number of driving/driven nodes. In contrast, we also observe a second phase (for T >  5) characterized by a more 
gradual decrease in the number of required control nodes as T increases.

Remarkably, we observe that all ER networks under study present these two phases with the same boundary at 
T ≈  5, independently of the average degree and the size of the network. �is behavior can be justi�ed based on the 
following fact: the minimum number nT

LSB of driving nodes required to ensure a structural controllability index 

equal to T satis�es α≥ 


{ }n Amax , ( )T

LSB N

T
, where α A( ) is the number of state vertices that do not belong to 

matching edges in the maximum matching problem (see SI Text, section II, �eorem 3). Notice that 




N

T
 is the 

minimum number of subgraphs with at most T state vertices in a partition of the state digraph, whereas α A( ) is 
the minimum number of driving nodes to ensure structural controllability. A possible justi�cation for the pres-

ence of two phases in the actuation spectra of ER graphs is that, for T <  5, the number of partitions 




N

T
 required to 

ensure a speci�c structural controllability index dominates over α A( ). On the contrary, for T >  5, α A( ) dominates 

over 




N

T
, resulting in a more gradual decrease in the number of driving/driven nodes. Furthermore, we also 

observe that the number of driving/driven nodes increases as we decrease the average degree of the ER graph. A 
possible justi�cation for this phenomenon is based on the fact that the resulting number of driving nodes counts 
the minimum number of paths in a decomposition of the state digraph into paths and cycles, among all possible 
such decompositions9,13. In particular, we observe that, as we decrease the average degree of the random graph, 
the minimum number of paths in the aforementioned decomposition increases.

In Fig. 3D–F, we plot the actuation spectra of scale free networks for di�erent sizes and parameters. �ese 
actuation spectra also present two phases with boundaries at T ≈  5 (the same location observed in the ER model). 
Furthermore, the location of this boundary is independent of the size of the network N and the minimum node 
degree d of the SF model. In general, we observe that in the �rst phase (i.e., T <  5), the dependency of the required 
number of driving/driven nodes is very weak with respect to the parameters of the synthetic network, for both 
the ER and the SF models. �is indicates that, for low values of the structural controllability index T, the agility 
of the network does not depend strongly on the network parameters. In contrast, in the second phase (i.e., T >  5), 
we observe a stronger dependency on the network parameters. In other words, the agility of the network is more 
heavily in�uenced by the minimum node degree for large values of the structural controllability index T. �is is 
consistent with previous studies, where this phenomenon was observed in the absence of time constraints in the 
control9. We also notice that the required number of driving/driven nodes decreases slower in the SF network 
than in the ER model (with the same average degree) as the controllability index increases. �erefore, in the sec-
ond phase, SF networks are less ‘agile’ than ER graphs from a control point of view, since they can be controlled 
with less driving/driven nodes within the same time window.

In Fig. 3G–I, we plot the actuation spectra of SW networks for di�erent values of the average degree d and the 
rewiring probability p. From our simulations, we conclude that the average degree and the rewiring probability 
have very little impact on the minimum number of driving/driven nodes. In contrast with the ER and SF models, 

the actuation spectra of the SW model present a single phase in which the number of partitions 




N

T
 required to 

ensure a speci�c structural controllability index T dominates over α A( ). In other words, the actuation spectra 

decays as 




N

T
. Remarkably, this decay rate is not substantially in�uenced by the rewiring probability (for relatively 

small values of p). In conclusion, SW networks present the fastest decrease in the number of required driving/
driven nodes as the structural controllability index T increases. Hence, they are the most ‘agile’ among the three 
synthetic models under consideration, i.e., they can be steered with less driving/driven nodes within the same 
time window.

Figure 4. Actuation spectra of a collection of real networks. 
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Actuation Spectrum of Real Complex Networks. Apart from synthetic network models, we also study 
the actuation spectra of a collection of real-world networks. In Table 1, we summarize some of the main charac-
teristics of these networks, including relevant controllability features. In Fig. 4, we include heat maps for the 
actuation spectra of these networks that are remarkably di�erent from those of synthetic networks. �e �rst row 
contains the spectra of several neural networks. We observe that the actuation spectrum of the C. elegans’ neural 
network (depicted in Fig. 4A) presents a fast decrease in the range T =  1 to 153 (approximately half of the network 
size), followed by a more gradual decrease from T =  154 until T =  300. We observe a similar behavior in the 
Macaque’s brain connectivity network presented in Fig. 4C, in which each node corresponds to a brain region and 
each edge represents white matter �ber tracts connecting pairs of regions. We notice that, even though brain 
connectivity networks exhibit structural characteristics similar to SW networks26, their corresponding actuation 
spectra are drastically di�erent. In particular, we need 13% of the nodes (respectively, 3% of the nodes) to achieve 
a controllability index of = .⌊ ⌋T N0 25  (respectively, = .⌊ ⌋T N0 5 ) for the Macaque network, while these values are 
0.3% (respectively, 0.12%) for the SW network. �is observation justi�es the need for better synthetic models 
capable of capturing controllability properties of the network, beyond simple structural features. As part of our 
experiments, we also analyze the actuation spectrum of the human co-activation network, where nodes represent 
brain regions and edges represent pairs of regions with a high level of brain activity correlation. �e correspond-
ing actuation spectrum presents a sharp gradient for low values of T, indicating that the human co-activation 
network is very ‘agile’ from a controllability point of view. In addition, we include a variety of real-world actuation 
spectra in Fig. 4, which are substantially di�erent from those of the synthetic models as well.

Discussion
In general, not only are we interested in steering a complex network towards a desired state, but also in doing so 
within a given time window. In this context, it is fundamental to understand the trade-o�s between the number 
of driving/driven nodes and the time required to reach a desired state. Towards this goal, we have introduced the 
notion of actuation spectrum, which provides new insights into our ability to steer the dynamics of complex net-
works by taking into account the time-to-control. Nonetheless, computing the actuation spectrum of a complex 
network is computationally challenging; therefore, we have proposed an e�cient algorithm to approximate it, 
while providing performance guarantees.

Label Name N E 〈k〉 nN

LBS
nN

PKA

.⌊ ⌋n N

PKA

0 1 .⌊ ⌋n N

PKA

0 25 .⌊ ⌋n N

PKA

0 5 .⌊ ⌋n N

PKA

0 75

Neuronal

 1 C. Elegans 307 2657 8.6547 10 10 55 43 29 11

 2 Co-Activation 638 37250 58.3856 1 1 11 5 3 2

 3 Macaque 71 71 746 10.5070 1 1 15 9 3 2

Food Webs

 4 Florida 128 2106 16.4531 30 30 51 42 35 34

 5 Mondego 46 400 8.6957 19 19 27 23 20 20

 6 St. Marks 54 356 6.5926 13 13 23 19 15 15

Trust

 7 College 32 96 3.0000 6 6 17 9 6 6

 8 Prisioners 67 182 2.7164 9 11 24 20 14 14

Transportation

 9 US largest 500 airport 500 2980 5.9600 281 281 291 286 282 281

Intra-Orgazinational

 10 Freemans (EIES-1) 46 695 15.1087 12 13 23 16 14 14

 11 Freemans (EIES-3) 32 460 14.3750 1 1 14 4 3 3

Reg. and Metabolic

 12 Ecoli 99 212 2.1856 22 22 39 28 27 22

Electric Circuit

 13 s208 122 189 1.5492 29 29 47 33 30 30

 14 s420 252 399 1.5833 59 59 73 66 62 62

 15 s838 512 819 1.5996 119 119 140 128 125 123

Protein

 16 Protein 1 95 213 2.2421 18 18 33 24 21 19

 17 Protein 2 53 123 2.3208 13 13 23 18 14 14

 18 Protein 3 99 212 2.2316 22 22 39 28 27 22

Table 1.  Properties of real networks analyzed in this paper. Legend: n denotes the number of nodes, E 
denotes the number of directed edges, 〈 k〉  denotes the average degree, nN

LBS the number of driving nodes and 

nN
PKA the number of driven nodes to ensure structural controllability, and ⌊ ⌋n T

PKA the number of driven nodes 

required if the structural controllability index is set to be equal to ⌊ ⌋T , with T =  0.1N, 0.25N, 0.5N, 0.75N.
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We have empirically analyzed the actuation spectrum of a wide variety of real and synthetic complex networks,  
and have found that in many cases only a small fraction of driving/driven nodes is required to steer the network to 
a desired state within a relatively small time window. Our numerical experiments have also unveiled the presence 
of a controllability phase transition in Erdös-Rényi and Scale-Free networks. In particular, the controllability 
properties of both networks change drastically when the structural controllability index crosses the value T =  5. 
Even though phase transitions of topological graph properties (e.g., distribution of connected components) have 
been widely studied, phase transitions of controllability properties are yet to be understood. Our empirical stud-
ies also reveal that, even though synthetic models are designed to present topological properties similar to those 
observed in real networks, their controllability properties (e.g., their actuation spectra) can be drastically di�er-
ent. For example, even though small-world networks have been used as models of brain networks, their actuation 
spectra are rather dissimilar. Despite the wide variety of synthetic network models in the literature, there is a 
need for new models able to replicate not only structural metrics, but also controllability properties observed in 
real-world networks.

Methods
Structural Controllability Index. In order to compute the actuation spectrum, we need to repeatedly solve 
the problem of �nding the minimum number of driving/driven nodes given a bound on the time-to-control. 
Since this problem is computationally challenging (see SI Text, section II, �eorem 4), we propose a two-step 
approximation algorithm with quality guarantees. �e two steps in this algorithm are the following: �rst, given a 
prescribed controllability index T, we partition the state digraph  A( ) into a collection of disjoint of weakly con-
nected subgraphs of size at most T. In the second step, for each subgraph, we compute the minimum number of 
driving/driven nodes. As a result, the total number of driving/driven nodes required to drive the network towards 
an arbitrary state within T time steps is equal to the sum of the driving/driven nodes over all subgraphs.

Minimum Number of Driving/Driven Nodes. To compute the minimum number of driving nodes, we 
�nd a maximum matching on the bipartite graph representation of a state digraph associated with the structural 
matrix A. �e number of driving nodes is then equal to α Amax {1, ( )}, where α A( ) is the number of unmatched 
state vertices in the maximum matching9. To obtain the minimum number of driven nodes, we �nd a minimum 
weight maximum matching (i.e., a maximum matching with the minimum weight sum) of an augmented bipar-
tite graph representation of the state digraph13, as described below. Brie�y, the augmented bipartite graph consists 
of the bipartite graph representation of the state digraph and a collection of additional ‘slack’ nodes. In particular, 
we include as many slack nodes as the number of root strongly connected components of the state digraph, i.e., 
strongly connected components (SCCs) without incoming edges coming into them. �en, each slack node is 
connected to all the state nodes in one and only one root-SCC. Furthermore, a weight equal to 1 is assigned to 
those edges connecting state variables, and a weight equal to 2 is assigned to the edges incident to slack nodes. By 
�nding a minimum weight maximum matching in this augmented bipartite graph, we obtain the maximum 
number of unmatched state vertices distributed across di�erent root-SCCs13; hence, minimizing the required 
conditions to have a minimum number of driven nodes. Subsequently, the total number of driven nodes equals 
the number of unmatched vertices in the minimum weight maximum matching plus the total number of 
root-SCCs without an unmatched state vertex belonging to it13.

Graph Partition Problem. �e graph partition (GP) problem consists in determining the minimum num-
ber κ of weakly connected subgraphs of = ( , )G V E , where the set of subgraphs G V E=

κ

=
{ ( , )}i i i i 1 satisfy the following  

conditions: (i) ≤







i T

 
, (ii) ∩ = ∅i j   for i ≠  j, and (iii)  ∪ =i i . Even though the GP problem is known 

to be NP-hard, it is possible to e�ciently approximate the solution to this problem using polynomial-time algo-
rithms25. One of the most successful tools to approximate the GP problem is implemented in a publicly available 
so�ware package is called METIS, and it is used by us to obtain the actuation spectra. In practice, METIS has 

consistently shown to lead to only a 1–3% of partitions that do not satisfy  
≤







i T
.
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