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A complex network of trade-offs exists between wheat quality and nutritional traits. We investigated the correlated relationships
among several milling and baking traits as well as mineral density in refined white and whole grain flour. Our aim was to determine
their pleiotropic genetic control in a multi-parent population over two trial years with direct application to practical breeding. Co-
location of major quantitative trait loci (QTL) and principal component based multi-trait QTL mapping increased the power to
detect QTL and revealed pleiotropic effects explaining many complementary and antagonistic trait relationships. High molecular
weight glutenin subunit genes explained much of the heritable variation in important dough rheology traits, although additional
QTL were detected. Several QTL, including one linked to the TaGW2 gene, controlled grain size and increased flour extraction rate.
The semi-dwarf Rht-D1b allele had a positive effect on Hagberg falling number, but reduced grain size, specific weight, grain
protein content and flour water absorption. Mineral nutrient concentrations were lower in Rht-D1b lines for many elements, in
wholemeal and white flour, but potassium concentration was higher in Rht-D1b lines. The presence of awns increased calcium
content without decreasing extraction rate, despite the negative correlation between these traits. QTL were also found that affect
the relative concentrations of key mineral nutrients compared to phosphorus which may help increase bioavailability without
associated anti-nutritional effects of phytic acid. Taken together these results demonstrate the potential for marker-based selection
to optimise trait trade-offs and enhance wheat nutritional value by considering pleiotropic genetic effects across multiple traits.
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INTRODUCTION
Wheat is a crop of major global importance (Shiferaw et al. 2013),
and contributes to diets in the developed world where food
insecurity is rare (Lockyer and Spiro 2020). However, low intake of
whole grains is the leading dietary risk factor for deaths in most
developed countries (Afshin et al. 2019), and mineral nutritional
density has been subject to a dilution effect as yields have
increased (Davis 2009; Murphy et al. 2008; Shewry et al. 2016). At
the same time as enhancing wheat production to meet the food
demands of a rapidly growing global population (Godfray et al.
2010), there is therefore a need to develop high quality wheat
varieties for human consumption with increased nutritional value.
Identification and characterisation of genetic regions that are

consistently associated with improved functional or nutritional
quality would enable improved selection for favourable allele and
trait combinations via marker-assisted selection. Significant
advances have been made in identifying the genetic control of
major quality attributes including high molecular weight (HMW)
glutenin and gliadin sub-units on the homoeologous chromo-
somes 1A, 1B and 1D (Payne and Lawrence 1983). In addition, the
differentiation between hard and soft endosperm texture was
found to be a result of a genetic effect of puroindoline proteins
controlled by two tightly linked genes on chromosome 5D (Morris
2002). These large genetic effects have been readily utilised in
breeding programmes. Numerous quantitative trait loci (QTL)

mapping studies have detected novel marker trait associations for
wheat functional quality (Kristensen et al. 2018; Kuchel et al. 2006;
Perretant et al. 2000; Tadesse et al. 2015) and micronutrient
content (Guttieri et al. 2015a, b; Liu et al. 2019). However, these
typically only explain a small proportion of the variance of the
measured trait, are of small effect size, often not stable across
environments and their effects not validated in independent
genetic backgrounds. Hence, their use in direct breeding
programmes has been limited. Looking beyond the well-known
major effects, considering genetic effects across a wide range of
important traits, and the trade-offs among them, may be a more
effective approach for applied wheat breeding.
Many crop traits are known to be genetically correlated so that

changes in one trait often result in a correlated response in others
due to genetic linkage or pleiotropy (Chen and Lübberstedt 2010).
These relationships can either be complementary, where easier to
measure or higher heritability traits can be used to indirectly
manipulate another desired trait, or antagonistic, where manip-
ulating one trait has a negative effect on another. Here we
investigate complementary and antagonistic trait relationships for
a wide range of milling and baking quality and mineral density
traits and determine their genetic control using an eight-founder
Multi-Parent Advanced Generation Inter Cross (MAGIC) population
that is representative of elite wheat diversity in the UK (Mackay
et al. 2014; Gardner et al. 2016). Multi-parent populations capture
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greater genetic and phenotypic diversity than bi-parental popula-
tions, specifically enabling investigation of the interplay between
traits (Scott et al. 2020). A high degree of recombination is
achieved without residual population structure (Huang et al.
2015), allowing accurate QTL resolution (Scott et al. 2020; 2021),
and consequently better distinction between the effects of
pleiotropy and genetic linkage in multi-trait analysis. As we were
interested in application of findings in a breeding context, we
focused on detection in an unbalanced experimental design
assessed at a single location in each of two years. This closely
reflects an applied breeding context and has been previously
shown to be effective for understanding the genetic basis of
wheat quality (Zhang‐Biehn et al. 2021). Based on these
experiments we used a data analysis approach based on principal
component analysis of multi-trait and multi-environment pheno-
types as applied by Zhang et al. (2012) as well as Xei and Sparkes
(2021). We detected novel loci in addition to previously
characterised genes and characterise their pleiotropic effects to
assess their utility for application in marker-assisted wheat
breeding.

MATERIALS AND METHODS
Plant material and trials
Experiments were conducted using 231 lines from the NIAB Elite MAGIC
(MEL) population created through the inter-crossing of eight UK founder
varieties (Alchemy, Brompton, Claire, Hereward, Rialto, Robigus, Soissons
and Xi-19; Mackay et al. 2014). Double dwarf lines carrying both the Rht-
B1b and Rht-D1b reduced height alleles were already removed during
creation of the population (Mackay et al. 2014). For this experiment, we
used a selected subset of the population with hard endosperm texture
based on genetic markers for the Puroindoline-B (Pinb) gene (Giroux and
Morris 1998), and absence of the 1BL/1RS translocation from rye (Secale
cereale), known to have negative effects on quality traits (Peña et al. 1990).
We used available genotype data (Mackay et al. 2014) generated using the
Illumina 90 K wheat SNP array (Wang et al. 2014), and the genetic map
described by Gardner et al. (2016). KASP (Kompetitive allele specific PCR)
genotyping (He et al. 2014) for the homoeologous high molecular weight
(HMW) glutenin loci (Glu-1B and Glu-1D), as described by Payne and
Lawrence (1983), was also applied across the 231 lines. Field trials were
conducted at the Deutsche Saatveredelung (DSV) UK breeding station over
two trial seasons, reflecting standard breeding assessment capacity and
timeframes. Details of field trials and design are given in Supplementary
Text 1.

End-use quality and mineral nutrient composition trait
assessment
A wide range of end-use quality traits and micronutrient concentrations
were evaluated in both trial years using methods approved by the
American Association of Cereal Chemists (AACC 2000), and are summarised
in Table 1, and detailed in Supplementary Text 2.

Statistical analysis
Best Linear Unbiased Predictions (BLUPs) were calculated for each trial year as
well as in a meta-analysis across years to generate adjusted means for each
trait per line. Temporal effects among technical replications across analysis
batches and days were found to be negligible so multiple measurements of
each plot were averaged and per plot data analysed using Restricted
Maximum Likelihood (ReML) mixed effects models with auto regressive spatial
models in Genstat, 18th edition (Payne, 2009; VSN International 2019). For
each trait, spatial autoregression models were run with ‘line’ as a random
effect and all combinations of levels of the sub-blocking structure as a random
effect. The best fitting models for each trait were chosen based on Akaike
Information Criterion (AIC) and model residual plots were visually checked for
normality. Broad sense heritability of each trait was calculated in Genstat using
the method of Cullis et al. (2006) for each best fitting model within trial years
as well as across both years.
Correlations between trait BLUPs in each year and across years were

calculated using the Pearson correlation coefficient. Traits from meta-
analysis across years were clustered into 8 groups using Ward’s
Hierarchical agglomerative clustering method using the ‘hclust’ function

with the ‘ward.D2’ method in R (R Core Team 2013) based on a distance
matrix derived from 2(1− |r | ) where r represents the trait correlation
matrix. Hagberg falling number was not strongly correlated to any other
traits so was considered in a separate group.
A second trait clustering was performed including all trait BLUPs from

each year in a single hierarchical clustering. For each of these eight groups
of traits, a principal component analysis (PCA) was performed on scaled
and centred (so that mean= 0 and variance= 1) trait data. Principal
component (PC) weightings for each PCA group were then used as traits
for further QTL analysis.

QTL detection and calling
QTL mapping was performed for all trait BLUPs in each year, for
generalised BLUPs across both years and for PCs from all PCAs (to analyse
all traits across both years) in R (R Core Team 2013). To account for the
genetic effects of co-segregating haplotype blocks (Brinton et al. 2020), we
employed both SNP- and haplotype-based QTL mapping approaches.
Haplotypes were inferred by identity-by-descent from the multiple MEL
founders (Scott et al. 2020).
First, using a subset of 7269 unique SNP markers, each trait was

regressed against each SNP marker in a linear model weighted by the
number of lines per funnel to adjust for the minimal population structure
resulting from unequal numbers of individuals per 210 MEL funnels
(specific crosses made during the inter-crossing stage of population
development). QTL for single marker main effects were selected based on
a recursive forward selection and backwards model fitting strategy as
employed by Broman and Sen (2009), as follows:
(i) Identification of the most significant peak marker as a significant main

effect in the initial scan. (ii) Repeat the scan with the first peak marker
included as a fixed effect. (iii) Repeat step (ii) until no main effect peaks
with p < 0.00042 are found. This threshold for addition of QTL to the full
model was based on a Bonferroni corrected alpha= 0.1 of the estimated
number of independent haplotype blocks across the whole genome rather
than the total number of SNPs. This was calculated to be 237.19 haplotypes
considering four recombination events per chromosomes and a map
length of 54.05 Morgans. For each QTL added to the model, p values were
also adjusted for false discovery rate (FDR) using the method described by
Benjamini and Hochberg (1995) and QTLs with FDR p < 0.05 at this stage
were considered high confidence. (iv) With all main QTL effects added as
fixed effects, this full model was then reduced, with marker effects being
removed based on AIC using the ‘step’ function in R with k= 13.73 to
define the final fitted model. This value of k was used to remove QTL with
an approximate equivalent p > 0.00021, which was used as the Bonferroni
correction with alpha= 0.05 based on total haplotype number and
removed QTL at a stricter threshold than they were added in at. QTL that
remained in the fitted model but were not already identified as high
confidence based on FDR p value, were considered low confidence.
Markers flanking each QTL interval were defined as those outside but

closest to the interval of markers on the physical map position that were
within 20 cM from the peak and that were within two –log10 p from the
peak marker. The percentage of phenotypic variance explained by each
QTL effect was calculated from the proportion of sum of squares to the
total sum of squares in each of the fitted models and the percentage of
phenotypic variance explained by all QTL per trait was calculated from the
adjusted R2 value of the fitted model.
Second, haplotype mapping was performed with founder haplotype

probabilities, i.e. for every region of the genome in a RIL, the probability
that the haplotype came from each founder. These were calculated from
the set of 7269 SNP markers using the ‘mpprob’ function in R/mpMap
(Huang and George 2011) at 1 cM step intervals. QTL mapping for this
haplotype approach was performed in the same forward and backward
model fitting approach as for regression on SNP markers except a value of
five was used for k in the model reduction function using ‘step’.
Rather than setting strict thresholds for calling QTLs for each trait, across

and within both experimental trial years, and using each analysis method,
the importance and relevance of each QTL was assessed by identifying co-
localised consensus QTLs based on the body of evidence across results
from all traits, trial years and both analysis methods. Pairs of QTL were
considered co-localised if they were on the same chromosome, had peak
markers within 20 cM of each other and had correlated founder effects (r >
0.6). This value of genetic map distance was used to allow for potentially
large D genome blocks with no detectable recombination (Gardner et al.
2016). Hierarchical cluster analysis was performed on the matrix of all QTL
pairs, where co-localised pairs had a distance of 0 and distinct pairs had a
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distance of 1, using the ‘hclust’ function in R with the ‘single’ clustering
method. Individual QTL were assigned to pleiotropic consensus QTL
groups by using the ‘cutree’ function at a threshold of 0.5.

RESULTS
Trait heritability and effects of flour refinement on mineral
density
Milling, baking and mineral density traits were assessed in trials
over two years in the UK, closely reflecting standard breeding

programme trialling capacity. Ranges and distributions of all traits
are shown in Supplementary Fig. S1. Broad sense heritabilities for
each trait measured within and across years varied widely. Traits
such as grain dimensions or some dough rheological traits (e.g.
DoughLab softening and stability) had consistently high herit-
ability (>0.8), whereas traits such as Hagberg falling number and
most micronutrient concentrations, with the exception of Ca, had
relatively low heritabilities (<0.5) (Table 1). Heritability across years
was similar to within year values for traits such as grain protein
content and specific weight that had relatively high correlations of

Table 1. A total of 38 traits were measured across 231 MEL lines assessed in field trials over two years using American Association of Cereal Chemists
(AACC) approved methods.

Trait Abbreviation AACC method Heritability Correlation between years (r)

Year 1 Year 2 Meta

Grain protein content (%) GPC 39–25.01 0.81 0.86 0.83 0.63

Specific weight (kg hl−1) SPW 55–10.01 0.89 0.93 0.90 0.82

Grain hardness (SKCS hardness) SKCS 55–31.01 0.87 0.91 0.81 0.70

Extraction rate (%) ER – 0.64 0.76 0.74 0.61

Flour whiteness (Tristimulus L*) L* 14–22.01 0.79 0.35 0.73 0.40

Flour yellowness (Tristimulus b*) b* 14–22.01 0.91 0.89 0.86 0.85

Overall flour colour (Tristimulus L*-b*) L*-b* 14–22.01 0.89 0.61 0.84 0.73

Hagberg Falling Number (s) HFN 56–81.03 0.54 0.58 0.42 0.28

MARVIN grain area (mm2) GA – 0.92 0.82 0.89 0.80

MARVIN grain length (mm) GL – 0.95 0.88 0.95 0.89

MARVIN grain width (mm) GW – 0.91 0.84 0.87 0.78

MARVIN thousand grain weight (g) TGW – 0.92 0.88 0.87 0.78

DoughLab Bandwidth at Peak BWAP 54–70.01 0.53 0.86 0.70 0.49

DoughLab Development time (s) DT 54–70.01 0.24 0.83 0.48 0.32

DoughLab mixing tolerance index (mNm) MTI 54–70.01 0.83 0.91 0.77 0.63

DoughLab Peak Energy PE 54–70.01 0.27 0.81 0.45 0.30

DoughLab Softening SO 54–70.01 0.80 0.87 0.75 0.61

DoughLab Stability ST 54–70.01 0.90 0.85 0.72 0.58

DoughLab Water absorption (%) WA 54–70.01 0.79 0.88 0.77 0.62

SDS Sedimentation (ml) SDS 54–61.01 0.84 0.64 0.74 0.62

Calcium in white flour (mg kg−1) Ca White 0.62 0.69 0.79 0.63

Calcium in whole meal flour (mg kg−1) Ca Whole 0.75 0.80 0.77 0.58

Iron in white flour (mg kg−1) Fe White 0.48 0.16 0.07 −0.06

Iron in whole meal flour (mg kg−1) Fe Whole 0.27 0.66 0.51 0.31

Potassium in white flour (mg kg−1) K White 0.51 0.54 0.74 0.61

Potassium in whole meal flour (mg kg−1) K Whole 0.49 0.30 0.41 0.31

Magnesium in white flour (mg kg−1) Mg White 0.22 0.36 0.59 0.38

Magnesium in whole meal flour (mg kg−1) Mg Whole 0.65 0.33 0.54 0.40

Manganese in white flour (mg kg−1) Mn White 0.24 0.32 0.54 0.38

Manganese in whole meal flour (mg kg−1) Mn Whole 0.77 0.50 0.60 0.37

Phosphorus in white flour (mg kg−1) P White 0.05 0.42 0.37 0.10

Phosphorus in whole meal flour (mg kg−1) P Whole 0.40 0.31 0.42 0.24

Sulphur in white flour (mg kg−1) S White 0.06 0.55 0.50 0.23

Sulphur in whole meal flour (mg kg−1) S Whole 0.00 0.41 0.41 0.26

Selenium in white flour (mg kg−1) Se White 0.44 0.18 0.07 0.03

Selenium in whole meal flour (mg kg−1) Se Whole 0.44 0.58 0.44 0.01

Zinc in white flour (mg kg−1) Zn White 0.43 0.18 0.19 0.10

Zinc in whole meal flour (mg kg−1) Zn Whole 0.52 0.64 0.49 0.24

Values of broad sense heritability are given for genotype best linear unbiased predictions (BLUPs) calculated within each year as well as across both years in a
meta-analysis. The correlation coefficient was also calculated between BLUPs within each year.
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BLUPs between the two years (0.63 and 0.82, respectively)
indicating low genotype by environment (G × E) interactions. On
the other hand, traits including Hagberg falling number, Se and Zn
had lower heritability across years than within years, and a low
correlation between BLUPs between years indicating larger G × E
effects.
Analysis of mineral densities in refined white and whole grain

flour revealed large differences between the two processing
methods in average micronutrients value, as well as in the
variance around the averages (Fig. 1). Refinement significantly
reduced P, Mg, Mn, Fe and Zn (p < 0.001) to approximately one
third of the value of whole grain flour whilst it reduced Ca by close
to a half (p < 0.001). In contrast, values of Se were comparable
between the two milling methods and S levels were only slightly
reduced (p < 0.001) in refined white flour.

Relationships among milling, baking and nutritional traits
Correlation analysis revealed relationships among traits within and
between groups (Supplementary Table S1; Fig. 2a). Positive
correlations were found between traits that are considered useful
predictors of harder to measure functional traits in breeding
selection. For example, flour water absorption values were
generally higher in lines with high grain protein content and
endosperm hardness (Fig. 2a). SDS sedimentation was also found
to strongly relate to dough rheology traits such as mixing
tolerance index, softening and stability indicating high gluten
quality (Fig. 2a). Extraction rate, which is an important but difficult
to predict trait, was found to relate to several other grain
morphology traits. Lines with high protein, large, high specific
weight and softer grains had higher extraction rate (Fig. 2a). Grain
width rather than length drove the relationship between grain size
and extraction rate (Fig. 2a).
Concentrations of most micronutrients in whole grain and white

flour were positively correlated with each other, with the
exception of K content in white flour, which was negatively
correlated with Mn, Mg and Fe in whole grain flour (Fig. 2a). Clear
relationships between functional quality traits and micronutrient
density traits were also detected. Most notably, grain protein
content correlated positively with concentrations of most micro-
nutrients in both whole grain and white flour with the exception
of Fe, K and Ca in white flour (Fig. 2a). Other milling quality traits
such as specific weight and extraction rate had negative relation-
ships with micronutrient content in white flour, in particular with K
and Ca (Fig. 2a). This likely indicates that high extraction rate flours
found here have the nutritionally denser bran fractions efficiently
separated from the white flour and represents a trade-off between
processing efficiency and nutritional value. However, despite the
positive link between both thousand grain weight and grain width

with specific weight and extraction rate, the relationships between
grain size traits and different micronutrients varied. For example,
high thousand grain weight and high grain width lines generally
had higher levels of most micronutrients in both whole grain and
white flour, particularly Fe and Mg in whole grain flour, but had
decreased levels of Ca and K in both white and whole grain flour
(Fig. 2a). Similar to grain size traits, the flour colour trait L*-b*
(indicating whiteness) had negative relationships with Ca and K in
white flour but weak positive relationships with Mg and Fe in
whole grain flour (Fig. 2a).

Pleiotropic QTL effects explain trait heritability and
correlations
The total amount of heritable variation that could be explained by
all QTL varied among traits and analysis methods (Fig. 2b). In
general, highly heritable traits were more fully explained by QTLs
but relative differences in this measure reflect each trait’s
underlying genetic architecture. For example, dough rheology
traits, including stability, mixing tolerance index and softening had
cross-year heritabilities ranging from 0.72 to 0.77, but a small
number of detected QTL could explain more than half of this
heritability, indicating simple genetic control with several large
effects (Fig. 2b). Conversely, grain morphology traits, such as grain
length, specific weight and grain protein content were highly
heritable (0.83–0.95), but only a relatively small proportion of this
could be explained by the detected QTL (Fig. 2b). This indicates a
more complex genetic architecture involving many small and/or
non-additive effects. Micronutrient concentration traits generally
had low heritability, except Ca. Very low heritability was found for
Fe, Se and Zn in white rather than whole grain flour, whereas the
opposite was found for K and Mg (Fig. 2b). There was no clear
difference in the proportion of trait variation explained between
SNP or haplotype analysis methods (Fig. 2b).
A total of 280 independent consensus QTL across the genome

were identified across all traits and analysis methods (Supple-
mentary Table S2). Comparison of analyses across traits provided
further evidence for pleiotropic genetic effects, as trait correlations
shown in Fig. 2a were mostly explained by pleiotropic QTL effects
in common between correlated traits (Fig. 3).

Genetic control of functional quality traits
Large effects of well-known genes and QTLs were detected for
most of the functional milling and baking quality traits. QTL peaks
located at the three homoeologous HMW glutenin genes on
chromosomes 1A, 1B and 1D (Fig. 3) explained a large proportion
of the phenotypic variation in dough rheology traits where the
Glu-1D loci had the largest effect (explaining ~40% of the
phenotypic variance in stability, softening, mixing tolerance index

Fig. 1 Differences in micronutrients concentrations between refined white and whole grain flour. Points represent BLUP values for 231
lines grown in field trials across two years. Horizontal lines within each box represents the median value.
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in year 1 and 15% in year 2 based on SNP analysis). Three of the
four bread making quality founders (37.5% of all eight founders),
and 37.2% of the lines included in the study, carried the 5+ 10
rather than the 2+ 12 or 3+ 12 HMW subunit at the Glu-1D loci
(Supplementary Table S3). The 5+ 10 allele increased dough
stability from 4.4 to 6.3 and decreased softening from 63.5 to 43.0.
A QTL in the telomeric region on the short arm of chromosome 1B
also co-located with the known low-molecular weight glutenin
gene (Glu-B3) for SDS sedimentation but was not found for more
specific dough rheology traits (Fig. 3). Other smaller effect QTL
were found for these traits but were inconsistent between trial
years or analysis methods. However, of note, a highly significant
QTL on chromosome 5D was found only through haplotype

analysis in year 2 for softening and mixing tolerance index but not
for the closely related stability trait (Fig. 3).
Similarly to traits relating to gluten quality, gluten quantity traits

were affected by the Glu-1D locus but were largely influenced by
the Rht-D1b allele on chromosome 4D (Fig. 3). Lines carrying the
reduced height allele had 0.22 and 0.65 percentage points lower
grain protein content in year 1 and 2 respectively, and lower water
absorption by one percentage point, but also a faster develop-
ment time by ~13 sec analysed across both trial years. Several
other small effect QTLs were found but were inconsistent across
years, with the exception of a QTL on chromosome 7A which was
found for grain protein content in both trial year analyses as well
as the meta-analysis for SNP associations but not for haplotypes
(Fig. 3). This QTL explained over 6% of the phenotypic variation in
each year and the positive marker allele carried by half of the
founders (Brompton, Hereward, Rialto and Xi-19) increased protein
content by 0.3 and 0.5 percentage points in each trial year,
respectively.
Grain morphology traits were also found to be under strong

pleiotropic genetic control. Rht-B1b and Rht-D1b alleles on
chromosomes 4B and 4D consistently reduced grain size
(thousand grain weight, grain area and grain width) (Fig. 3).
Similarly, a QTL on chromosome 6A associated with the known
TaGW2 gene explained a large proportion of the phenotypic
variation for these traits (Fig. 3). Grain length remained an
exception to the other grain morphology traits and independent
genetic control of grain width and length was clear with no QTL in
common. Instead, a QTL on chromosome 5B had consistent
positive pleiotropic effects on grain length as well as thousand
grain weight and grain area (Fig. 3), which explained 10.6 and 5.9
percent of the variation in grain length in year 1 and 2,
respectively. Another QTL on chromosome 5 A was found in
common between the two trial years for grain length but the
effect was smaller and not in common with other grain
morphology traits (Fig. 3). Specific weight was more closely
related to the milling quality trait extraction rate than the specific
grain morphology traits and had more pleiotropic QTL in
common. Although TaGW2 was found to also increase extraction
rate in line with increasing grain width, both Rht-B1b and Rht-D1b
height reducing alleles, which reduced grain size, did not affect
extraction rate in the same way. Other more minor and
inconsistent QTL were found that explain the association between
specific weight and extraction rate. These include QTL on 2B and
5 A identified through meta-analysis using SNP associations of
specific weight that both also had pleiotropic effects on extraction
rate in year 1, and a QTL on 5D that was in common between the
two traits but identified in different years through SNP
analysis only.
Multiple small effect QTL were found consistently across trial

years and analysis methods for different related flour colour traits
(b*, L* and L*-b*). However, the known Psy-B1 gene on
chromosome 7B explained the greatest percent of the phenotypic
variation in b* (14.1 and 6.9% in years 1 and 2, respectively) and L-
b* (10.7% in year 2 only). The link between both b* and L* flour
colour traits and grain hardness was confirmed by a QTL on
chromosomes 1A in common for b* and grain hardness in year 2,
(explaining 6.0% and 5.6% of the phenotypic variation in the two
traits, respectively), and the allele inherited from the founders
Brompton, Soissons and Xi-19 had greater b* by 0.37 and SKCS
hardness by 5.2. Other small effect QTL had overlapping intervals
between the two traits, but uncorrelated founder effects so were
not considered pleiotropic.
Values of Hagberg falling number were higher in year 1

(mean= 378) than year 2 (mean= 294) due to much lower
precipitation before harvest in July in year 1 (23.2 mm) than year 2
(42.9 mm) (rainfall data from the nearest Met Office historic
weather station; Oxford: Lat= 51.761 Lon=−1.262; Supplemen-
tary Table S4). Hagberg falling number was not found to be

Fig. 2 Relationships among traits and the proportion of the trait
heritability explained by QTL. a Network analysis of all analysed
milling, baking and micronutrients traits across two trial years
identify eight distinct groups. Blue and red connecting lines indicate
positive and negative correlations, respectively and line width is
proportional to correlation strength. Only correlations with p < 0.001
are shown. b Proportion of phenotypic variation explained by the
broad sense heritability as well as all QTL included in a full model for
SNP and haplotype-based analysis for meta-analysis across two trial
years for all traits. GPC= Grain protein content (%); SPW specific
weight (kg hl-1), SKCS single kernel characterisation system hard-
ness, ER extraction rate (%); L*= Flour whiteness (Tristimulus L*);
b*= Flour yellowness (Tristimulus b*); L*-b*= overall flour colour
(Tristimulus L*-b*); HFN= Hagberg Falling Number (s);
GA=MARVIN grain area (mm−1); GL=MARVIN grain length (mm);
GW=MARVIN grain width (mm); TGW=MARVIN thousand grain
weight (g); BWAP=DoughLab Bandwidth at Peak; DT=DoughLab
Development time (s); MTI=DoughLab mixing tolerance index;
PE=DoughLab Peak Energy; SO DoughLab Softening; ST=Dough-
Lab Stability; WA=DoughLab Water absorption (%); SDS= SDS
Sedimentation (ml); whole=mineral concentration in whole meal
flour (mg kg−1); white=mineral concentration in refined white flour
(mg kg−1).
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strongly correlated with other analysed traits and only Rht-D1 was
found as a pleiotropic QTL for this trait where the height reducing
Rht-D1b allele increased Hagberg falling number by 21.4 and
13.9 sec in years 1 and 2, respectively. No other QTL were
consistent between years or analysis methods for Hagberg falling
number. However, a QTL co-locating with the photoperiod
insensitivity allele Ppd-D1a inherited from the only insensitive
founder ‘Soissons’ was found on chromosome 2D only through
SNP analysis in year 2. Lines with the insensitive allele had lower
Hagberg falling number by 18.3 sec in year 2 when Hagberg
falling number values were on average lower, whereas in year 1
insensitive lines had greater Hagberg falling number by 10.9 sec.

Genetic control of micronutrients traits
Genetic control of mineral micronutrients concentrations in whole
grain and white flour was also found to be determined by several
QTL that explained the strong correlations among and between
nutrients and other functional quality traits. As well as having
effects on many grain morphological and protein quantity traits,

Rht-D1 was found to have wide-ranging effects on mineral content
in both whole grain and white flour. Considered across both trial
years, the height reducing Rht-D1b allele decreased concentra-
tions of Mn (−7.3%), Fe (−4.6%), P (−1.8%), Mg (−4.2%), Zn
(−2%), Se (−8.7%) and S (−1.7%) in whole grain flour, as well as of
Mn (−3.3%), P (−1.5%), Mg (−3.2%) and S (−2.5%) in white flour.
However, the opposite effect was found for K where the reduced
height allele increased concentrations by 1.9% and 6.8% in whole
grain and white flour, respectively. A large effect and highly
significant QTL, that co-located to the awn length inhibitor locus
(ALI-1; Wang et al. 2020) on chromosome 5 A, was found for Ca in
both whole grain and white flour in all analysis methods. The
single locus explained 23.9% and 22.2% of the phenotypic
variation in whole grain and white flour, respectively, where lines
with awns, inherited from the only awned founder (Soissons), had
24.0% and 20.4% higher Ca content than non-awned lines for
whole grain and white flour, respectively.
Other QTL for micronutrients were less consistent but linked

nutritional traits to functional quality traits. For example, although

Fig. 3 Main effect QTLs detected across all traits within each year and across both years using SNP- and haplotype-based mapping. Traits
are grouped based on relationships shown in Fig. 2a. Point symbol size is proportional to QTL FDR adjusted p-value significance level. Vertical
dashed lines indicate locations of known genes and QTL. GPC grain protein content (%), SPW specific weight (kg hl−1), SKCS single kernel
characterisation system hardness, ER extraction rate (%); L*= Flour whiteness (Tristimulus L*); b*= Flour yellowness (Tristimulus b*); L*-b*=
overall flour colour (Tristimulus L*-b*); HFN= Hagberg Falling Number (s); GA=MARVIN grain area (mm−1); GL=MARVIN grain length (mm);
GW=MARVIN grain width (mm); TGW=MARVIN thousand grain weight (g); BWAP=DoughLab Bandwidth at Peak; DT=DoughLab
Development time (s); MTI=DoughLab mixing tolerance index; PE=DoughLab Peak Energy; SO DoughLab Softening; ST=DoughLab
Stability; WA=DoughLab Water absorption (%); SDS= SDS Sedimentation (ml); whole=mineral concentration in whole meal flour (mg kg−1);
white=mineral concentration in refined white flour (mg kg−1).
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the correlations between gluten quality traits and micronutrients
were small, the positive effect on dough rheology traits (stability,
softening and mixing tolerance index) at the Glu-1D locus was also
found to increase Fe in white flour. A QTL that had a positive effect
on mixing tolerance index and softening on chromosome 3 A was
also found to increase Mn (in the haplotype analysis) in whole
grain flour. However, relatively few other QTL could explain the
close correlations among nutrients in whole grain or white flour,
possibly due to the low heritability of these traits and strong
environmental effects. One QTL on 6 A was found for both P and S
in whole grain flour and a group of possibly co-locating QTL on 5B
for Fe found in both year 2 and meta-analyses and Mn in whole
grain flour (all using SNP analysis). For micronutrient traits in white
flour, a group of overlapping QTLs on chromosome 6B was found
for Mg and Mn in white flour, although their founder effects were
not exactly synchronous between traits and trial years. Another
QTL on chromosome 2B was found to have pleiotropic effects on
both P and Mg in white flour through haplotype analysis.

PCA multi-trait analysis detects novel genetic effects to
optimise trait trade-offs
For PCA based QTL mapping, traits measured within each trial year
were grouped into eight groups by hierarchical clustering (Fig. 4).
Similarly to groupings for meta-analysis traits across both years
(Fig. 2b), group 1 traits included Ca and K mineral density traits
with milling quality traits (extraction rate and specific weight),
group 2 traits included grain dimensions and morphology traits,
group 3 traits included endosperm texture and flour colour traits,
and group 4 traits included gluten quality traits (Fig. 4). Conversely
to groupings for meta-analysis (Fig. 2b), micronutrient traits
measured in whole grain flour were grouped into two separate
groups for each trial year (groups 5 and 6) (Fig. 4). Group 7
included several dough rheology traits relating to gluten quantity
and flour water absorption, while group 8 included many

micronutrient density traits measured in white flour, that were
measured with lower heritability, and Hagberg falling number
which had low correlations with other traits (Fig. 4).
PCA based QTL mapping for all PC of each trait group identified

additional genetic effects that contrast between traits (Fig. 5;
Supplementary Table S2). Of the 155 consensus QTL identified
from the PCA method, 101 were unique and not found using
single trait analysis. Some of these demonstrate interesting and
novel genetic effects that are orthogonal to the overall trait
correlations. As an example of a PCA QTL that optimised a trade-
off between functional and nutritional quality traits, the second PC
of the group 1 traits had positive weightings for both extraction
rate and Ca in white flour, two traits which were negatively
correlated (r=−0.2 across years) (Fig. 2a), and therefore had
opposing weightings for the first PC (Fig. 6). The genetic effect of
awns (controlled by the ALI-1 gene) increased Ca concentration in
whole and white flour (as outlined above), but also a slight
increase in average extraction rate and specific weight (Fig. 6),
despite their negative correlation with Ca (Fig. 2b). Among the
closely positively correlated group 2 (grain morphology) traits, the
awns locus was detected with high confidence for PC4 (Fig. 6).
Awned lines had similar thousand grain weight despite decreasing
other closely related grain dimension traits (grain area and width).
QTL effects from the awns locus were far too small to be detected
for any of the group 2 traits from single trait analysis, but while the
PC4 only explained 1.3% of the phenotypic variance across traits
in the group, 19.3% of the variance in PC4 could be explained by
the highly significant awns QTL. This example therefore indicates
how multi-trait PC QTL analysis greatly increases the power to
detect small effect QTL by considering novel pleiotropic effects
across related traits.
Other novel PCA QTL include one on chromosome 5B that was

not found from any single trait analysis (Fig. 5), where the minor
allele inherited only from the founder Xi-19 had a negative effect

Fig. 4 Weightings of the first two principal components for each trait group. Trait groups were defined by hierarchical clustering for traits
measured in each trial year. Arrows indicate the direction of trait weightings where traits with similar weightings for PC1 on the x axes are
positively correlated. PC2 on the y axes show an example of higher order PCs that contrast effects that are orthogonal to PC1 overall trait
correlations.
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Fig. 5 Main effect QTL locations found across all principal components multi-trait analyses for all trait groups using SNP based and
haplotype-based mapping methods. Traits measured separately for each trial year were grouped and analysed in separate principal
component analyses. Point symbol size is proportional to QTL FDR adjusted p value significance level. Vertical dashed lines indicate locations
of known genes and QTL.
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on extraction rate (−0.27 percentage points) and a positive effect
on specific weight (0.9 kg hl−1) across years, despite the positive
correlation of these traits (Fig. 2a). The role of the Psy-B1 gene,
identified for flour colour traits in the single trait analysis, was also
identified with higher confidence in the second rather than first
PC of the group 4 traits (Fig. 5), where its effect was to reduce flour
yellowness (b*) (−0.50) without the associated decrease in grain
hardness, despite the two traits’ positive correlation (Fig. 2a).
Genetic effects that contrast among nutritional traits were also

identified. P was found to correlate positively with most other
important mineral nutrients, including Fe, Mg, Mn and Zn (Fig. 2a),
and is known to be largely stored in the grain as phytic acid, which
is known to have anti-nutritional effects on bioavailability of
associated mineral elements (Gupta et al. 2015). Therefore, PC QTL
that can increase mineral nutrient density without associated P
would have the potential to increase the concentrations of key
nutrients such as Fe, Mg, Mn or Zn in more bioavailable forms.
Two independent QTL on chromosome 5B were found for group 5
(year 2) and 6 (year 1) whole grain flour nutritional traits (Fig. 5),
that each increased Mg in whole grain flour by 16.8 mg kg−1 in
year 2, or 20.7 mg kg−1 in year 1, while slightly decreasing P
concentration. Additionally, a QTL that co-located with Rht-D1 was
found for trait group 6 PC2 (Fig. 5), where the dwarf allele reduced
Mn in whole grain flour in year 1 by −1.7 mg kg−1 (−7.1%), whilst
only also slightly reducing P by −14.5 mg kg−1 (−0.47%).

PCA multi-trait analysis detects novel G × E effects
Although the present study included only two trial environments,
our results suggest that considering the same trait measured in
different trial years as separate independent traits in the PCA QTL
analysis also meant that QTL effects involved in G × E interactions
could be identified. Critically, these were not identified in either
trial year alone. As an example, the effect of the photoperiod
sensitivity (Ppd-D1) locus on chromosome 2D was found for group
2 PC3 (Fig. 5), which highlighted the differential effect of Ppd-D1
on grain morphology traits between the two trial years. All grain
morphology traits in year 1 were positively weighted on PC3
whereas equivalent traits in the second year were weighted
negatively. While thousand grain weight correlated well between
the two years (r= 0.78), lines that carried the insensitive Ppd-D1a
allele, inherited from the founder Soissons, had slightly higher
thousand grain weight in the second year (0.21 g) but lower in the
first year (−0.26 g) when thousand grain weight values were on
average lower, suggesting reduced stability across the two
environments.

DISCUSSION
Genetic control of milling, baking and nutritional traits was
analysed in a wheat MAGIC population over two trial years
reflecting current practice for selection in applied wheat breeding.

Fig. 6 The pleiotropic genetic effects of the awns locus (ALI-1) identified through PCA multi-trait QTL analysis in two groups of
correlated traits. a PCA biplots to the left include trait and line weightings on the first PC on the x axis and the PC for which PC QTL were
identified on the y axis. Non-awned and awned lines are indicated by pink and blue colours, respectively, across all plots. The percent of the
phenotypic variance explained by each PC across all traits in each group is given in parenthesis in axis labels. b Boxplots alongside the biplots
indicate the genetic effect of the awns PCA QTL on the y axis PC. c Boxplots to the right also indicate the genetic effect of awns for each trait
within each group. Horizontal lines within each box represent the median and black points represent the mean values. –log10p values of QTL
effects are shown above each plot. SPW specific weight (kg hl−1), ER extraction rate (%); GA=MARVIN grain area (mm2); GL=MARVIN grain
length (mm); GW=MARVIN grain width (mm); TGW=MARVIN thousand grain weight (g); whole=mineral concentration in whole meal flour
(mg kg−1); white=mineral concentration in refined white flour (mg kg−1). Yr1 and Yr2 indicate traits measured in year 1 and 2, respectively.
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A large number of QTL were identified, which confirmed major
effects of known loci in addition to detecting novel QTLs of
smaller effect. This is consistent with indications that few large
effect genetic effects remain to be found that further explain trait
variation (Scott et al. 2021). Many of the micronutrient traits were
found to be of low heritability or inconsistent between trial years,
suggesting limited potential for direct selection in breeding.
However, it may be more effective in crop breeding to practice
indirect selection on related traits with greater heritability and
consider genetic effects that optimise the interplay among related
traits. We found that pleiotropic QTL effects could explain many of
the correlations among traits and that a PCA-based approach to
QTL mapping identified additional QTL with novel antagonistic
effects that could be used to optimise trait trade-offs.
Major findings from this study were the identification of the role

of the Rht-D1b dwarfing allele on many functional quality traits,
and its negative effect on grain mineral concentrations, and the
previously unreported, large and consistent positive effect of awn
presence on Ca concentration in both whole grain and white flour.
We further present evidence that genetic effects contrasting
between correlated grain micronutrients may be used to increase
the ratios of important micronutrients, such as Mn, and P, thus
increasing the concentration of micronutrients in a more
bioavailable form (Gutpa et al. 2015).
Replication of a subset of lines within each trial year and almost

all lines across the two trial years enabled estimation and
comparison of trait heritabilities. While most traits were highly
heritable across years, some of the micronutrient density traits,
such as Fe content and flour whiteness, particularly in year 2, were
lower due to contamination of grain with extraneous soil and dust
particles from harvesting field grown plots. Some dough rheology
traits, including bandwidth at peak, development time and peak
energy, had much lower heritability in year 1 whena second and
larger peak in the development curve was sometimes found,
similarly to Bason et al. (2005). Heritability of Hagberg falling
number was considerably lower across than within years which
reflects the strong environmental component to this this trait and
the contrasting weather patterns between the two trial years
(Smith and Gooding 1999). Similar to results reported by Scott
et al. (2021) in a 16 founder MAGIC population, the proportion of
the heritable trait variation that could be explained by detected
QTLs was dependent on the complexity of trait genetic
architecture. Additional small genetic effects may explain the
remaining heritability but were not detected using the statistical
power available in this study. Wright et al. (2021) investigated
similar traits in the same population with a similar number of lines
and found that the probability of detecting small effect QTL
(explaining <10% of the variation) was very low, unless the trait
heritability was very high. We acknowledge that low heritability of
some traits and testing in only two trial years may limit the extent
to which results can be interpreted. This highlights the difficulty in
detecting QTL with genome-wide significance for highly polygenic
traits, even in highly recombined MAGIC populations (Scott et al.
2021). Methods that integrate cross-phenotype associations are
widely found provide additional information to genetic associa-
tion studies and increase the power to detect QTL (Mortezaei and
Tavallaei 2021). Therefore, rather than setting a strict statistical
significance threshold for detection of QTL, we considered co-
localising QTL across related traits, trial years and analysis
methods to assess biological significance. We were therefore able
to show that pleiotropy of detected QTL was responsible for
correlations between related functional quality traits as well as
negative trade-offs, such as between functional milling and
nutritional quality traits. PCA based QTL analysis, which identifies
orthogonal contrasts among the multivariate trait data, was then
used to further determine genetic effects that could be used to
optimise negative trade-offs. The first PC of each group captured
the greatest proportion of phenotypic variation so that correlated

traits have similar PC weightings. However, higher order PCs
capture variation that contrasts the overall trait correlations where
traits are weighted together despite being negatively correlated
and so represent genetic effects that are often not evident from
single trait analyses.

Application of milling and baking quality trait QTL for wheat
breeding
For traits relating to functional milling and baking quality, most
large effect QTL could be related to known genes or QTL. The
dough rheology traits were largely controlled by the well
characterised HMW glutenin genes (Payne and Lawrence 1983).
Their effects and the favourable combinations of the three
homoeologous loci are well-known and readily selected for in
milling wheat breeding programmes in the UK (Liu et al. 2012).
Few other genetic effects that were consistent between the two
years were found which might explain the relatively small amount
of remaining heritability for these traits. This is consistent with the
range of end use classes of the population founders (Supplemen-
tary Table S3) and the strong selection by breeders for consistency
of bread quality traits. However, the founder variety Hereward is
an exception as it is known to have high quality despite a poor
profile of HMW glutenin genes (Shewry et al. 1992), but its
alternative genetic control of high quality was not identified here.
Only 17 (7.4%) of the lines did not carry the beneficial 5+ 10 allele
at the Glu-D1 locus and had greater dough stability than
Hereward. A QTL from only one of the eight founders would
need to be of large effect to be detected in the population
suggesting complex genetic control by many small and possibly
epistatic genetic effects explains Hereward’s high functional
gluten quality. Hereward is also the oldest of the eight founders
and had the greatest protein content but lowest dough stability
compared to the other high bread making quality founders (Rialto,
Soissons and Xi-19), reflecting recent trends in breeding stronger
gluten but lower protein content wheat varieties (Call et al. 2020).
Wheat with low Hagberg falling number (below 250) due to

excessive alpha amylase activity often results in poor loaf volume
and structure (Perten 1964). The Rht-D1b dwarfing allele was
found to have a consistent and large positive effect on Hagberg
falling number, which is supported by similar results from other
studies (Börner et al. 2018; Gooding et al. 2012). Mares and Mrva
(2014) suggest that the effect of the dwarfing genes on late
maturity alpha amylase, which is known to reduce Hagberg falling
number in the absence of pre-harvest sprouting, is due to a direct
effect of gibberellic acid. However, TaGW2 is known to similarly
regulate gibberellic acid synthesis (Li et al. 2017) and grain size
but, unlike Rht-D1b, was not found to significantly affect Hagberg
falling number in the present study, suggesting independent
pleiotropic effects. The majority of current varieties in the UK
possess Rht-D1b (Bentley et al. 2014) so its beneficial effect is
generally already selected for in breeding programmes. As well as
the known effect of Rht-D1b, we found that the photoperiod
insensitive allele Ppd-D1a, despite low frequency in the population
(11.3%), reduced Hagberg falling number in the year when
Hagberg falling number values were generally lower due to above
average rainfall before harvest. Although this suggests that
insensitive lines have less stable Hagberg falling number, this
effect may be due to the practicalities of harvesting material with
varying maturities. Agronomically, earliness is valued to enable
ease of crop management logistics allowing earlier harvest before
potential adverse weather conditions later in the season (Sheehan
and Bentley 2021). No other consistent QTL were found for
Hagberg falling number. However, a QTL on the short arm of
chromosome 6A had positive founder effects matching almost
exactly with all the high grain quality founders (Hereward,
Soissons and Xi-19) with the exception of Rialto, which is known
to be susceptible to pre-maturity alpha-amylase activity (Tjin-
Wong-Joe 2004). The lack of large effect QTL for Hagberg falling
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number reflects its relatively low heritability and large G × E
effects. Kristensen et al. (2018) also found that variation in
Hagberg falling number could not be explained easily by single
marker effects.
Several small effect QTL for extraction rate and specific weight

explained only a small proportion of the trait heritabilities,
highlighting their complex nature. The previously reported large
differences in extraction rate between hard and soft wheats
controlled by the puroindoline genes (Campbell et al. 2001) were
fixed in the lines assessed here. Further genetic markers
controlling extraction rate, a complex, costly and important
milling efficiency trait, have remained largely elusive as genetic
markers for this trait have yet to be routinely employed in
breeding. However, considering pleiotropic effects between these
traits and other related grain morphology traits sheds some light
on their component phenotypes and provided stronger evidence
for QTL than traits considered independently. While both Rht
genes were found as high confidence QTL for grain size traits
(grain width, area and thousand grain weight) but not extraction
rate, a positive pleiotropic effect of the TaGW2 locus in increasing
extraction rate along with increased grain size further reinforces
the value of this already well characterised gene (Simmonds et al.
2016). Small effect QTL on 2B, 5A and 5D were also found in
common between specific weight and extraction rate and PCA
based QTL mapping found a QTL on 5B that had contrasting
effects between the two traits. While these few novel QTL effects
for Hagberg falling number and extraction rate may prove
valuable for marker assisted breeding, our approach of assessing
genetic effects for multiple traits may be more effective in
optimising traits under complex pleiotropic control.

Resolving trade-offs with grain nutritional quality
Our findings also shed light on the genetic basis of the mineral
concentration dilution effect (Davis 2009; Fan et al. 2008), as well
as trade-offs between grain nutritional content and functional
quality traits. In general, micronutrient concentrations were
strongly associated with protein content which supports findings
in other studies (Cakmak et al. 2010). This trend is likely to be
related to the close trade-off and negative correlation between
yield and protein (Michel et al. 2019; Simmonds 1995). Supporting
findings by Jobson et al. (2018), our results show that the height
reducing allele Rht-D1b had the largest effect on both nutrient
density and protein content. This locus underpins the high
yielding nature of post-green revolution wheats (Hedden 2003).
The reduced height allele is present in the majority of current UK
wheat varieties but we suggest that this only partly accounts for
the observed dilution. The amount that Rht-D1b reduced nutrient
density (generally < 5% for most elements) is less than the
decreases found by Fan et al. (2008) in recent decades
(20–30%), suggesting that many other small genetic effects have
enabled recent yield increases but have also contributed to the
dilution effect. Whilst other small effect QTL in a limited number of
environments were identified here that could be used to
implement selection for biofortification, caution should be taken
when selecting for QTL identified for micronutrient density where
opposing negative effects on yield are likely to be present.
Increasing grain yields at the expense of nutritional value has
been problematic, but the opposite approach of increasing
nutritional value by lowering yield would be no better considering
calorie requirements of a growing population. Regarding the link
between mineral concentration and protein content, we suggest
that selection on an index of high grain yield-protein deviation,
that breaks the trade-off between yield and protein content
(Michel et al. 2019), would also have indirect effects on
micronutrient density. Based on evidence in literature, this has
not yet been implemented in wheat breeding. Despite protein
being a valuable quality trait that is selected for in bread wheat
varieties, protein content levels have been shown to have

decreased in more modern varieties where sufficient baking
performance has instead been achieved by increasing the ratio of
glutenin to gliadin proteins and resulting gluten strength (Shewry
et al. 2020). However, a suitably high heritability for the grain
yield-protein deviation has been found (Mosleth et al. 2020),
which suggests that positive genetic gain would be possible using
appropriate selection indices and genomic prediction tools
(Michel et al. 2019; Scott et al. 2021). This approach is thought
to also result in increased nitrogen use efficiency (Fradgley et al.
2021).
Our results showed that, as expected, there were generally

much greater concentrations of micronutrients in whole grain
flour before refinement due to their greater concentrations in the
bran fractions (Slavin et al. 2000). In addition, we found that there
was also greater phenotypic variation and clearer QTL effects in
whole grain flour than white flour. Capitalising on the already well-
established health benefits of whole grain cereals and increased
intake of whole grain bread would have immediate positive
impact (Poole et al. 2020). Whilst it has been suggested that the
nutritional value of white flour, with respect to insoluble fibre from
starch, has increased (Lovegrove et al. 2020), this has been at the
expense of amino acid and mineral micronutrient concentrations
(Shewry et al. 2016). Genetic improvement in nutritional
components that have been diluted by increased starch content
within the narrow range of phenotypic variation in white flour will
be difficult given the limited genetic effects in the current wheat
gene pool and the specifications of the milling and baking
industry. Murphy et al. (2008) suggested that decreases in mineral
content of soft white spring wheat cultivars were due to breeders’
selection for low flour ash content. While ash content is not
commonly used as a quality evaluation in the UK, as it is in the US,
we found that high extraction rate and bright white flour colour
were also negatively associated with some mineral concentrations.
This suggests that continued breeding for these functional quality
traits has further eroded the nutritional value of bread made from
refined white flour, and presents even greater challenges to
selecting for enhanced wheat nutritional quality within the
parameters of current milling quality requirements. However, by
considering pleiotropic effects across traits, we demonstrate that
these trade-offs can also be optimised.

Selection for awns: an opportunity to increase grain Ca
content
We detected a large and highly significant effect of presence of
awns on increasing grain Ca content and grain density. This is an
ideal example of a single genetic effect that could be used to
optimise the trade-off between nutritional density and milling
quality traits. The only awned founder of this population was
Soissons and a minority of current UK and European milling wheat
varieties are awned (Würschum et al. 2020). Therefore, the
beneficial effect of awns could easily be selected for phenotypi-
cally within the current elite and high grain quality gene pool.
Whilst the causative underlying awn length inhibitor 1 gene (ALI-1)
in bread wheat has recently been identified (Wang et al. 2020), the
novel effect on Ca has only recently been identified in a more
limited set of varieties (Pongrac et al. 2020). Considering the high
QTL significance, narrow interval, the lack of effects of awns on
other mineral nutrients and founder effects matching exactly to
the only awned founder, a direct effect of the ALI-1 gene, which
encodes a C2H2 zinc finger transcription factor, on Ca transport is
likely rather than a closely linked independent gene also inherited
from only Soissons. A link between the same ALI-1 and greater
grain yield without the associated negative effect on protein has
also recently been found (Scott et al. 2021). We hypothesise that
because Ca is known to be upwardly mobile in the xylem but not
in the phloem (Kerton et al. 2009), increased transpiration due to
photosynthetically active awns during grain filling drives Ca
transport to the ear and increases deposition in the grain. The
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variation in values in Ca content observed in material presented
here (white flour: mean= 231 mg/kg, standard deviation= 29
mg/kg; whole grain flour: mean= 396mg/kg, standard
deviation= 55.6 mg/kg) and the effect size of the largest QTL
effect of awns (white flour 45mg/kg; whole grain flour 92 mg/kg)
is far less than the statutory minimum requirements of 2350 mg/
kg of CaCO3 that flour is fortified with in the UK (The Bread and
Flour Regulations 1998). However, the strategy of biofortification is
considered advantageous over supplemental fortification of food
products (Yadav et al. 2020).

Balancing grain mineral content to increase nutrient
bioavailability
Bioavailability of key mineral nutrients such as Fe, Zn, Mg and Mn
are known to be mediated by anti-nutritional chelating effects of
phytic acid (Gupta et al. 2015), which is the main storage form of P in
the grain. Therefore, P concentrations can be used as a proxy for
phytic acid content (Fatiukha et al. 2020). These mineral nutrients
were all closely correlated with P and S suggesting that genetic
improvement of mineral concentrations in a bioavailable form
would be difficult. Further to the effects of Rht-D1b in reducing
concentrations of several micronutrients, it is of additional concern
that Rht-D1b also decreased Mn relative to P concentration in whole
grain flour, which is consistent with evidence from Fan et al. (2008)
who found decreases in the ratios of Fe and Zn to phytate P in
wheat varieties over time. However, PCA based multi-trait QTL
mapping presented here identified genetic effects that could
potentially increase ratios of Mg to P or Mn to P as advocated by
approaches to develop low-phytic acid crop varieties (Raboy 2020).
On the other hand, there may be valuable health benefits of phytic
acid in human nutrition including prevention of several cancers and
diabetes (Abdulwaliyu et al. 2019). Many other factors influence the
chelating effects of phytate and wheat nutritional availability such as
other dietary factors (Lopez et al. 2002), and processing (Rodriguez-
Ramiro et al. 2017) need to also be considered.

CONCLUSIONS
Increased predictability of milling and baking quality traits can aid
development and breeding of productive and sustainable milling
wheat varieties. Few undetected large effect QTL remain in
European wheat germplasm to further explain trait variation of
functional quality traits. However, multi-trait PCA based QTL
mapping increases the power to detect novel small effect
pleiotropic genetic effects across related traits and may be used
to optimise trade-offs between crop quality traits with grain
nutritional content. Wheat breeding programmes should consider
these approaches to achieve enhanced health impacts at the
same time as increasing functional quality and productivity traits.

Data archiving
Germplasm used in this study are available from https://www.niab.
com/research/agricultural-crop-research/resources/niab-magic-
population-resources. The phenotypic dataset is available on
Figshare.com (https://doi.org/10.6084/m9.figshare.18397244). Sta-
tistical methods and software used are outlined in the ‘Materials
and Methods’.
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