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Abstract

This paper describes a problem domain that lends it-
self to mixed initiative interaction. The domain is
traded control with an autonomous robot. Traded
control is a situation in which a human wants to con-
trol a robot during part of a task and the robot is au-
tonomous during other parts of a task. A significant
problem in traded control situations is that the robot
doesn’t know how the environment has been changed
or what parts of the task have been accomplished when
the human has been in control. Because of this, errors
can occur when the human relinquishes control back
to the robot; these errors can cause potentially dan-
gerous situations. Our solution is to use an intelligent
software architecture designed for autonomous robot
control and modify it to work in concert with human
control. Using an architecture designed for autonomy
allows us to use the monitoring functions designed to
track the actions of the robot to monitor the actions
of human agents for the same tasks. The intelligent
software architecture includes a mixed initiative plan-
ner, an execution monitor, robotic skills and a user
interface. This paper describes the problem domain
and our initial attempts at defining a software archi-
tecture that operates in the domain.

Introduction

We wantto establish effective human/robot teams
that accomplish complex tasks. As members of hu-
man/robot teams, robots must be equal partners with
humans in performing those tasks. The software sys-
tems controlling such robots must allow for fluid trad-
ing of control among team members, whether they be
humans or robots. This is the essence of mixed initia-
tive interaction. We believe that the problem domain
of traded control of an autonomous robot, which is a
subset of the human/robot teaming domain, is an in-
teresting one for mixed initiative interaction. We have
just begun a research project in this domain and in this
paper we outline some of the issues that we are facing.
Our research is framed by an intelligent control archi-
tecture that we use for controlling robots, so we will
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Figure 1: The 3T intelligent reactive control architec-
ture.

also present this architecture and our preliminary ideas
on how to use it in mixed initiative situations.

An intelligent robotic software control
architecture

Over the last several years, we have developed an au-
tonomous robot control architecture that separates the
general robot intelligence problem into three interact-
ing layers or tiers (and is thus known as 3T, see Fig-
ure 1):

¯ A set of robot specific situated skills that represent
the architecture’s connection with the world. The
term situated skills is intended to denote a capability
that, if placed in the proper context, will achieve or
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maintain a particular state in the world. For exam-
ple, grasping, object tracking, and local navigation.
The skills are maintained by a skill manager.

¯ A sequencing capability that can differentially acti-
vate the situated skills in order to direct changes in
the state of the world and accomplish specific tasks.
For example, exiting a room might be orchestrated
through the use of reactive skills for door tracking,
local navigation, grasping, and pulling. In each of
these phases of operation, the skills of the reactive
level are connected to function as what might be
called a "Brooksian" robot (Brooks 1986) - a col-
lection of networked state machines. We are using
the Reactive Action Packages (RAPs) system (Firby
1989) for this portion of the architecture.

¯ A deliberative planning capability that reasons in
depth about goals, resources and timing constraints.
We are using a state-based non-linear hierarchical
planner known as AP (Elsaesser ~ MacMillan 1991).
AP is a multi-agent planner which can reason about
metric time for scheduling, monitor the execution of
its plans, and replan accordingly.

The architecture works as follows, the deliberative
layer takes a high-level goal and synthesizes it into a
partially ordered list of operators. Each of these oper-
ators corresponds to one or more RAPs in the sequenc-
ing layer. The RAP interpreter (sequencing layer) de-
composes the selected RAP into other RAPs and fi-
nally activates a specific set of skills in the reactive
layer. These skills include appropriate event monitors
which notify the sequencing layer of the occurrence
of certain world conditions. The activated skills will
move the state of the world in a direction that should
cause the desired events. The sequencing layer will
terminate the actions, or replace them with new ac-
tions when the monitoring events are triggered, when
a timeout occurs, or when a new message is received
from the deliberative layer indicating a change of plan.
For a more detailed description of our architecture see
(Bonasso et al. 1997).

Scale of control
Figure 2 shows a progression of control from complete
teleoperation to full autonomy. The figure also maps
these onto our intelligent software architecture. Here
is a brief explanation of each:

1. Teaming: Robots and humans work as a team in
which each has full autonomy, but they communicate
to accomplish complicated tasks. Interaction with
our architecture is at the planning level with goals
given to the robot just as they are given to the other
team members.
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Figure 2: Levels of semi-autonomous control and how
they map to the 3T architecture.

2. Supervisory: Robots work nearly autonomously,
but a human is constantly watching and can stop
or correct the robot at any time. Interaction is at
the task (sequencing) level and the human has the
opportunity to rearrange the robots task plan or to
stop the robot completely.

3. Traded: Robots perform most tasks completely au-
tonomously, but sometimes a human takes complete
control to perform some difficult subtask or to ex-
tract the robot from a dangerous situation. The
human then relinquishes control back to the robot
to perform autonomously. Interaction with our ar-
chitecture is at both the task (sequencing) level 
through skills. This is really a mixture of supervi-
sory and guided control.

4. Guided: A human is always guiding the robot
through a task although the robot has some au-
tonomous capabilities, such as obstacle avoidance or
grasping, that allow for safer and faster operation.
Interaction with our architecture is at the skill level.

5. Teleoperation: The human is in complete con-
trol of all robot movements at all times. The robot
has no autonomy. Interaction is with the mechani-
cal robot servos directly, bypassing the architecture
completely.

While the ideal mixed initiative system will support
all of these levels of control, we have only seriously
developed a robot system that aims for the middle of
this progression of control, namely traded control or
number three above.

Issues in traded control

Effective traded control requires a robot system that
can both perform routine operations autonomously yet
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give control to a human to perform specialized or dif-
ficult operations. The advantage of a traded control
system is that the unique (and expensive in space sit-
uations) capabilities of a human can be brought to
bear when needed most and not during tedious, repet-
itive and routine operations. However, a problem with
traded control is that the robot does not know what
the state of the world or of the task will be when the
human finishes his or her portion of the job. This can
make it difficult and dangerous for the robot to re-
sume autonomous operation. As an extreme example,
the human may forget some crucial aspect of their por-
tion of the task (such as securing a fastener) that the
robot is expecting to be accomplished. Less drastic,
but probably more commonplace would be subtle side
effects of the human’s performance such as putting a
tool in a slightly different orientation than is expected
by the robot. In either case, the problem is that the
robot’s model of the world and of the task are not con-
sistent with the real state of the world and of the task.

Effective traded control also requires that the robot
system know when a human should be performing a
task and when it can safely perform a task. Ideally, the
robot would plan both its own activities and those re-
quired of the human with whom it will be trading con-
trol. In this case, the robot will proceed autonomously
until reaching the point where human intervention is
required; the robot will then inform the human and
safely wait until the human is ready to accept con-
trol. The robot system should also recognize situations
which are off-nominal and stop and ask for human as-
sistance even if human assistance was not originally
required for this step of the plan. The robot system
will then need to replan to account for the human in-
tervention. Because our architecture has the ability to
perform multi-agent planning and replanning with its
top tier and the ability to recognize off-nominal sit-
uations with its middle tier, it is perfectly suited for
traded control situations, as will be shown below.

Using 3T to resolve traded control

issues

Our proposed solution to the problems outlined in the
previous section is three-fold. First, we want to use the
multi-agent, mixed initiative planner in the architec-
ture’s top tier to plan for a traded control task - assign-
ing particular parts of the task to the robot and others
to the human operator. Second, we want to use our ar-
chitecture’s sequencing and monitoring capabilities to
allow the robot to "mentally" check off steps of the task
as the human performs them. We can do this using the
same monitoring functions used in autonomous oper-
ations. In essence the robot is watching and thinking,

but not doing. Third, we would use our architecture’s
reactive ability to recover from off-nominal situations
to overcome small differences between the real world
and the robot’s model of the world; this typically also
has to be done even when the robot is in complete con-
trol. Finally, an integrated graphical user interface will
be needed to manage interaction with the human. We
will examine some of these in detail in the next several
subsections.

Mixed initiative planning for traded
control

Planning for traded control confronts the planning sys-
tem with a number of difficult challenges that revolve
around the issue of the robotic system maintaining an
accurate and coherent view of the world, other agents’
views of the world, and status of pending tasks, as
performed either by itself or its collaborators, what
has been termed the context registration problem. Re-
quiring that even a single human and single robot be
able to engage in a traded control execution scenario
this immediately moves us into a multi-agent domain of
much higher complexity than that occupied by the typ-
ical autonomous robot. The system must not only plan
for collaboration, it must also replan in case of unantic-
ipated sequencing. We are already seeing evidence for
this assertion even in our initial traded control imple-
mentations: the possibility of unknown and/or unan-
ticipated actions by a human leads to the need to care-
fully specify at RAP design time, which steps when
executed may or may not lead to a correctly updated
world state. Utilization of a planner that can gener-
atively produce tailored recovery plans would lessen
the difficult burden on system builders to anticipate
required recovery steps, and lessen the need to con-
stantly perform general but resource intensive scans of
the environment.

For the most part our planning focus in the past has
been from a multi-agent perspective: the view that
the planner plans globally for a set of agents in order
that they achieve a common objective. In addition
to purely autonomous multi-agent planning, however,
we are now beginning to investigate the planning task
from a different perspective; that of mixed-initiative
planning in which agent roles are opportunistically ne-
gotiated amongst the agents in order to best solve
the problem at hand (Ferguson, Allen, &: Miller 1996;
Ferguson 1995). Rather than central coordination,
the mixed-initiative perspective is one of collabora-
tion among equals. In practice, of course, the semi-
autonomous system is rarely, if ever, on an equal foot-
ing with the human. What is meant is that each con-
tributes in an interactive nature what each does best
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in deriving plans of action.
We feel there are some advantages to moving from

the multi-agent to mixed-initiative planning perspec-
tive for our traded control tasks, including:

¯ Increased flexibility of the overall solutions as the
system and human agents collaborate synergistically
on solving problems, each doing what it does best -
e.g., the human performing sensing where it is supe-
rior such as in vision tasks, and the planning system
rapidly evaluating many courses of action.

¯ More robust system behavior as it can participate
in an interactive dialogue with the human agent for
filling in unknowns about the domain, thus allevi-
ating the context registration problem which we’ve
found is so problematic for a traded control system.

¯ More tractable planning as the planner can rely on
human agents to aid in constraining particularly un-
wieldy and combinatorially explosive parts of a plan
tree through operator selection, variable instantia-
tion commitment, and revised goal ordering.

¯ Increased user control and involvement in the plan-
ning process which can result in plans customized to
the preferences of different classes of users.

Related to the idea of mixed-initiative planning
is that of advisable planning systems (Myers 1996),
where an advice-taking interface is developed for the
planner. Such an interface expands the range of pos-
sible interactions between human and agent and thus
shares many of the benefits of mixed-initiative plan-
ning. An advisable planning system may be viewed as
a point on the planning perspective dimension which
is approaching a true mixed-initiative approach. Cur-
rently, we have not begun applying the planning layer
of the architecture to traded control situations.

Sequencing traded control tasks

Our research to date has concentrated on the condi-
tional sequencing layer. This is the crucial layer in
our architecture as it serves as a "differential" between
the continuous, fast-paced real world and the symbolic,
discrete, and deliberative planning world. Our condi-
tional sequencer is based on the RAP system (Firby
1989), although we have, over the years, made many
changes to the basic RAP system that made imple-
mentation of traded control much easier. For example,
we extended the RAP system to allow for control of
multiple agents (i.e., multiple skill managers). This
enhancement allows a human to be one of the other
agents that could be used by the RAP system.

Preliminary work All of our preliminary imple-
mentations have focused on the sequencing layer of our
architecture. We have two domains in which we apply
traded control. First, we have a simulated "Station-
World" domain in which a robot can move around a
space station and perform tasks. Second, we have an
upcoming flight project in which certain Shuttle Re-
mote Manipulator System (SRMS) operations will 
automated using our architecture. The key aspects of
traded control for man-machine teams in both of these
domains are the following:

¯ Changes in the level of autonomy Robot op-
eration at three levels of autonomy is desired: (1)
autonomous; (2) semi-autonomous (for traded con-
trol); and (3) tele-operated (fully manual). 
changes in level are initiated by the human.

¯ Human-robot task allocation Our implementa-
tion of traded control allocates to the human the
choice of an agent to perform a task. While in
semi-autonomous mode, the robot can perform sin-
gle primitive actions without human intervention,
but after each action the robot must be authorized
by the human to proceed.

¯ Maintaining robot awareness of situation
during human operations The robot maintains
awareness of human activities and their effects by
monitoring those activities. We have implemented
two approaches. In one approach, the robot moni-
tors tele-operated actions using the sensor feedback
events provided by the skill manager for autonomous
execution. In the second approach, the robot uses al-
ternative sensing techniques to monitor the action.
For the servicing scenario, the alternative sensing
technique is visual monitoring of human activities.

Reconfiguration of the robot at the resump-
tion of autonomous operations Tele-operated
actions can change the state of the robot’s subsys-
tems and the state of the environment. When re-
suming autonomous operations, the robot must up-
date the RAP memory with the most recent state
information. To make this update tractable and ef-
ficient, the robot only checks states that are likely to
have been affected by the actions performed while in
semi-autonomous mode. Thus, if an arm-grasp RAP
has been executed, the robot will update and verify
the states of all the manipulators.

An example from the StationWorld problem domain
is useful to demonstrate these key aspects. To begin
a task - for example, the loading of a light - one first
selects the level of autonomy. When the "Set LOA"
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button is selected in the initializations menu, a pop-up
window allows the choice of three levels of autonomy.
The autonomous level is the normal mode of opera-
tion; the robot control is exercised by the appropriate
RAPs enabling and disabling sets of skills to achieve
a task. Both the RAPs agenda and the updates to
RAPs memory are hidden from the user and are avail-
able only upon request.

In the tele-operate LOA, the RAPs methods guide
the choice of which skills to use and when, but their ac-
tual execution is carried out by the human user. How-
ever, the RAPs enables essentially the same robot sens-
ing events to follow the actions of the human. In some
situations, the sensing may be for the same purpose
but uses a different sensor, as when the electrical on-
off toggle of a device is disabled and the human must
use a manual switch to turn the device on. In this
case, rather than use the electrical signal from the de-
vice, the robot may use a camera to watch the human
throw the switch. In this mode, to give the human
as much context as possible, both the agenda and the
RAP memory updates are displayed to the human.

The selection of a semi-autonomous LOA - perhaps
the most useful mode - causes the robot to query the
human before each primitive action as to whether the
human wishes the robot or the human to carry out
the action. The mode selected is exercised as in either
the autonomous or tele-operated LOAs, but only for
that primitive action. The user also has the option
at the query of reverting to either of the other two
modes, thus providing a "robot takes over" or "human
takes over" capability. Since this is a mode in which
the human may want to only control certain steps of
a task, only the RAPs agenda is made available to
provide task context to the user.

Let’s assume the situation is that the human wishes
to control the gripper of the robot during the first half
(the pick up) of the load task. In this case, the human
selects the semi-autonomous mode. The robot selects
RAPs to carry out the task and, since the left-arm
is already at the light to be loaded, decomposes them
down to the primitive level of the grasp operation. The
user selects tele-operate at the pop-up and the RAPs
system tells the user what to do and begins to monitor
for the grasp event.

The user will use the low level interface to the sim-
ulator to carry out the grasp operation. At this point,
however, let us assume that the user mistakenly com-
mands the right arm to grasp. If the right arm is at fire
extinguisher #2, it grasps that item. Since the RAPs
continue to monitor for the left-arm grasp action, the
robot waits for the human to execute the correct ac-
tion. Seeing the mistake, the human now commands

the left arm to grasp, RAPS notices the correct event,
and continues with the task.

When RAPs decomposes the next phase of the task
- putting the light in the ORU-pouch - it bottoms
out at a primitive arm-move action and again asks the
user which LOA he or she prefers. The user selects
"robot takes over", which sets the LOA to autonomous,
thus preventing any further queries from the system,
and the robot successfully stows the light in the ORU
pouch.

Now however, the right arm is holding an item. The
robot knows about this change because a RAP method
for using the human to carry out the grasp primitive
has been added to the arm-grasp RAP definition. That
method also contains eye-scan actions for the other
arms that could have been commanded to grasp any-
thing at that point in the task. These eye-scans will
update the RAP memory as to the new location of
the fire extinguisher. So the user now commands the
arm-empty RAP and the robot deposits the fire ex-
tinguisher in the ORU-pouch, the preferred put down
place for held items other than tools.

From our preliminary implementations we have iden-
tified several requirements for the sequencing layer of
the architecture:

¯ The level of autonomy (LOA), which resides in the
sequencing layer, must be adjustable both from the
planning layer and by the user.

¯ The LOA must be adjustable during sequence exe-
cution.

¯ Additional sensing tasks and queries must be added
to conditional sequences to determine inadvertent
changes made to the world during tele-operate mode.

¯ Sequence failures must be recognized (i.e., cognizant
failure) and special methods written to ask the hu-
man to intervene in these cases.

¯ Periodic RAP monitors must be used to update the
RAP memory in order to notice changes to the world
not expected by the specific traded control tasks.

¯ The sequencing layer must be able to accept updates
in beliefs from the human at a change in level of
autonomy. This capability is needed to inform the
robots of changes that cannot be sensed.

¯ The sequencing layer must allow for selecting groups
of tasks for autonomous execution, avoiding repeti-
tive queries to the user at each step in the task. Abil-
ity to insert breakpoints in autonomous sequences
where the sequencer requests if change is LOA is
desired.



Skills for traded control

If skills are written correctly, semi-autonomous control
can be easily implemented without major changes to
the existing autonomous control skills. For example, a
skill that flies the end effector of a manipulator while
avoiding obstacles could have inputs coming from an-
other autonomous skill that is generating set points or
from a human that is flying the end effector. Indepen-
dent of where the inputs come from, the skill just does
its job.

The skill level of the architecture also easily supports
traded control in the way that skills are partitioned
into two classes: blocks and events. Blocks are skills
that accomplish actions in the world. Events are skills
that monitor the world through the robot’s sensors and
report changes in state back to the sequencing layer.
Because control and monitoring are separate it is possi-
ble for the monitoring to continue even when the robot
is under human control. This is a key contribution of
our architecture to traded control.

User interfaces for traded control

An important capability for traded control is effective
human-machine communication. The control software
must be designed to make required information avail-
able as well as communicate this information effectively
to a human. The human and machine must (1) ex-
change information on the machine’s status, goals, be-
liefs, and intentions, (2) coordinate during joint/shared
tasks, and (3) update world views at task hand over.
This exchange includes both user-initiated informa-
tion queries and user-volunteered information updates.
These information updates can also be requested by
the robot. The user can (1) change what the robot
"intends" by altering goals, resource availability or al-
location, or constraints, or (2) change what the robot
"believes" by altering its perceived situation. Such up-
dates help establish a common understanding of events
by the human and intelligent machine (Roth, Malin,
& Shreckenghost 1996) and are particularly useful at
transitions between manual and autonomous task exe-
cution during traded control.

Key issues in designing for information exchange is
assisting the human in knowing what to tell the robot
and how to effectively communicate this information.
This requires providing the human a view of what the
robot currently understands (the current state of robot
memory) and knowledge about what the robot is "in-
terested" in or "needs to know." For example, verifying
that the success clauses of planned manual activities
hold true may be used to guide information queries at
the transition to autonomy. An activity history/log
that characterizes what robot observed about manual
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activities can assist in identifying and resolving incon-
sistencies, errors, and omission in RAPs memory.

Conclusions
We have just begun implementing traded control on
our robots. We have a simulated robot domain and a
real flight project. To date, all of our work has con-
centrated on the middle layer of our architecture, but
we expect to begin addressing traded control at the
planning level soon. At this point we expect to begin
researching more complex issues related to mixed ini-
tiative interaction including having the planner decide
when control shifts from robot to human, adjusting the
plan as a robot is taken off of a task and coping with
unexpected human intrusion. We see the domain of
human/robot teams as a rich problem space for mixed
initiative efforts and we see our autonomous control ar-
chitecture as a framework for successfully implemented
such human/robot teams.
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