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Abstract—In this paper, tradeoff content caching strategy is
proposed to jointly minimize the cell average outage probability
and fronthaul usage in cloud radio access network (Cloud-
RAN). At first, an accurate closed form expression of the outage
probability conditioned on the user’s location is presented, and
the cell average outage probability is obtained through the
composite Simpson’s integration. The caching strategy for jointly
optimizing the cell average outage probability and fronthaul
usage is then formulated as a weighted sum minimization
problem, which is a nonlinear 0-1 integer problem. Two heuristic
algorithms are proposed to solve the problem. Firstly, a genetic
algorithm (GA) based approach is proposed. Numerical results
show that the performance of the proposed GA-based approach
with significantly reduced computational complexity is close to
the optimal performance achieved by exhaustive search based
caching strategy, and the GA-based approach can improve
the performance by up to 47.5% on average than the typical
probabilistic caching strategy. Secondly, in order to further
reduce the computational complexity, a mode selection approach
is proposed. Numerical results show that this approach can
achieve near-optimal performance over a wide range of the
weighting factors through a single computation.

Index Terms—Caching strategy, Cloud-RAN, joint optimiza-
tion, outage probability, fronthaul usage.

I. INTRODUCTION

THE combination of network densification and coordi-

nated multipoint transmission is a major technical trend

in the fifth generation (5G) wireless mobile systems to improve

the overall system performance [2]–[5]. In the traditional radio

access network (RAN) architecture, each cell has its own base

station (BS), where the radio functionality is statically assigned
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to the base band processing module. Adding more base sta-

tions and introducing multiple input multiple output (MIMO)

technology will increase the complexity of the network and

result in higher total cost of ownership (TCO) for the mobile

operators [6], [7].

Consisting of centralized base band processing resources,

known as base band unit (BBU) pool, and distributed remote

radio heads (RRHs) or remote antenna units [8]–[10], cloud

radio access network (Cloud-RAN) becomes a new type

of RAN architecture to support multipoint transmission and

access point densification required by 5G systems [6], [7],

[11], [12]. The scalable, virtualized, and centralized BBU pool

is shared among cell sites, and its computing resources can

be dynamically allocated to different cells according to their

traffic. The RRHs are responsible for the radio processing task,

and they are connected with the BBU pool through fronthauls,

while the BBU pool performs the base band processing task

and it is connected to the core network through backhauls.

Thanks to the novel architecture, Cloud-RAN has many ad-

vantages such as cost effective, lower energy consumption,

higher spectral efficiency, scalability and flexibility etc., which

makes itself a promising candidate for the 5G deployment.

Particularly, Cloud-RAN is also a competitive solution for the

heterogeneous vehicular networks, which can provide better

quality of service (QoS) to intense vehicular users in an urban

environment [13], [14]. However, existing fronthaul/backhaul

of Cloud-RAN cannot meet the requirements of the emerging

huge data and signaling traffic in terms of transmission band-

width requirements, stringent latency constraints and energy

consumption etc. [15]–[17], which has become the bottleneck

of the evolution towards 5G.

Statistics showed that a large amount of the data traffic is

generated from a small amount of most popular content files.

These popular files are requested by a large amount of users,

which results in duplicated transmissions of the same content

files on the fronthaul and backhaul links. Therefore, content

caching in RAN can be a promising solution to significantly

reduce the fronthaul/backhaul traffic [18]–[20]. During off-

peak times, popular content files can be transferred to the

cache-enabled access points (macro base station, small cell,

relay node etc.). If the files requested by mobile users are

cached in the access points of the RAN, the files will be trans-

mitted directly from the RAN’s cache without being fetched

from the core network, which can significantly reduce the

fronthaul/backhaul traffic and meanwhile shorten the access

latency of the files, thus improve users’ quality of experience

(QoE). In Cloud-RAN, thanks to the ongoing evolution of
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fronthaul technology and function splitting between the BBU

and RRHs [16], [21], there comes possibility to realize content

caching in RRHs, which allows users fetching required content

files directly from RRHs and thus can further reduce fronthaul

traffic.

There are two stages related with caching: caching place-

ment stage and caching delivery stage [20]. Caching place-

ment, or known as caching strategy, is the stage to determine

which files should be stored in which cache-enabled access

points, and delivery stage refers to stage of transmitting the

requested files from access points to mobile users through

wireless channels. Among these two stages, caching placement

is performed for a relative long-timescale. Once a caching

placement is carried out, it will not change very frequently.

The reason is that the popularity of the content files will

remain the same for a relative long period such as several

hours, one day, or even longer time. On the other hand,

delivery stage runs in a short-timescale. In a delivery stage,

the wireless transmission scheme should be able to adapt to

the instantaneous channel state information (CSI) which varies

very rapidly.

There are many researches investigating the delivery stage

with the target of data association or/and energy consumption

optimization under a given caching strategy, such as [22]–

[24]. On the other hand, caching strategy is of importance

because it is the initial step to perform caching and obviously

it will have an impact on the performance of the delivery stage.

The researches investigating caching strategies generally focus

on reducing the file access latency [25]–[27], or minimizing

the transmission cost of the backhaul [28], [29], or both of

them [30]. However, the wireless transmission characteristics

such as fading were not considered in the aforementioned

researches, i.e., it was assumed that the wireless transmission

is error-free. The caching strategy will affect the wireless

transmission performance such as outage probability, which

is an important metric of the system’s performance. For

the fronthaul/backhaul traffic or average file access delay

reduction, caching different files in the RAN will be optimal,

however there is no transmit diversity to combat fading in the

file delivery stage, which may decrease the reliability of the

wireless transmission. Hence, caching strategy should be op-

timized by taking into consideration the wireless transmission

performance.

There are some papers considering wireless fading charac-

teristics when designing caching strategy [31], [32]. The au-

thors only considered small scale Rayleigh fading by assuming

that the user has the same large scale fading at any location.

However, in reality, several RRHs will jointly serve the user

in Cloud-RAN, and obviously the distance between each RRH

and the user will not be the same, so it is important to consider

large scale fading in wireless transmission. In addition, they

focused on single-objective optimization without considering

the fronthaul/backhaul usage.

The aim of caching in RRHs of Cloud-RAN is to sig-

nificantly reduce the fronthaul traffic. Fronthaul usage, i.e.,

whether the fronthaul is used, is a metric which can reflect not

only the file delivery latency but also the energy consumption

of the fronthaul. For example, lower fronthaul usage implies

there are more possibilities that mobile user can access the

content files in near RRHs, which will shorten the file access

latency, meanwhile the fronthaul cost (i.e., the energy con-

sumption) will be lower. On the other hand, outage probability

is an important performance metric of the system, which

reflects the reliability of the wireless transmission, i.e., whether

the requested content files can be successfully transferred to

the user, and it also reflects the utility of the wireless resources.

If replicas of certain content files are cached in several RRHs,

the outage probability will be reduced due to the transmit

diversity in wireless transmissions, while the fronthaul usage

will become higher because the total number of different files

cached in the RRHs are reduced and there is a high possibility

to fetch files from the BBU pool. On the other hand, caching

different files in the RRHs will reduce the fronthaul usage,

while the outage probability will become relatively higher due

to the decrease of wireless diversity. Therefore, there exists

tradeoff between fronthaul usage and outage probability.

In this paper, we investigate downlink transmission in a

virtual cell in Cloud-RAN, such as a hot spot area, shopping

mall, or an area covered by the Cloud-RAN based vehicular

network etc. The tradeoff caching strategy is proposed to

jointly minimize the cell average outage probability and the

fronthaul usage. A realistic fading channel is adopted, which

includes path loss and small scale Rayleigh fading. The

caching strategy is designed based on the long-term statistics

about the users’ locations and content file request profiles. The

major contributions of this paper are:

1) Closed form expression of outage probability conditioned

on the user’s location is derived, and the cell average outage

probability is obtained through the composite Simpson’s

integration. Simulation results show that the analysis is

highly accurate.

2) The joint optimization problem is formulated as a weighted

sum minimization of cell average outage probability and

fronthaul usage, which is a 0-1 integer problem. Two

heuristic algorithms are proposed to solve the problem:

a) An effective genetic algorithm (GA) based approach

is proposed, which can achieve nearly the same per-

formance as the optimal exhaustive search, while the

computational complexity is significantly reduced.

b) In order to further reduce the computational complexity,

a mode selection approach is proposed. Simulation re-

sults show that it can achieve near-optimal performance

over a wide range of weighting factors through a single

computation.

The remainder of this paper is organized as follows. Section

II reviews the related works. System model is described in

Section III. The optimization problem is formulated in Section

IV and the cell average outage probability and fronthaul

usage are analyzed. The proposed GA-based approach and the

mode selection schemes are described in Section V. Numerical

results are given in Section VI and the conclusion is given in

Section VII.

Notations: E(·) denotes statistical expectation, and Re(·)
denotes the real part of a complex number. AL×N = {al,n}
denotes L × N matrix, al,n or A(l, n) represents the (l, n)-
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th entry of the matrix. R
+ denotes the set of positive real

numbers, and Z
+ denotes positive integer set. CN (µ, σ2)

represents complex Normal distribution with mean µ and

variance σ2, and χ2(k) is the central Chi-squared distribution

with k degrees of freedom.

II. RELATED WORKS

From the caching point of view, there exists significant sim-

ilarities between Cloud-RAN, small cell network, marcocell

network and some vehicular networks etc. There are many

researches investigating the delivery stage under a certain

caching strategy, and the main target was to optimize the data

association (e.g., RRH clustering and transmit beamforming),

such as [22]–[24]. In [22] and [23], optimal base station

clustering and beamforming were investigated to reduce the

backhaul cost and transmit power cost under certain caching

strategy. In addition, the performances of different commonly

used caching strategies, such as popularity-aware caching,

random caching, and probabilistic caching, were compared in

[23]. In [24], assuming there are several small base stations

in an orthogonal frequency division multiple access (OFDMA)

macro cell, the optimal association of the users and small base

stations was investigated to reduce the long-term backhaul

bandwidth allocation. In these researches, the caching strategy

was assumed to be fixed when designing the delivery schemes,

which is because the delivery stage runs in a much shorter

timescale than the caching placement stage.

On the other hand, caching strategy has attracted widely

concern recently, the related researches mainly focused on the

reduction of file access latency [25]–[27], fronthaul/backhaul

transmissions [28], [29], or both of them [30]. In [25], a collab-

orative strategy of simultaneously caching in BS and mobile

devices was proposed to reduce the latency for requesting

content files. The proposed optimal strategy was to fill the BS’s

cache with the most popular files and then cache the remaining

files of higher popularity in the mobile devices. In [26], a

distributed algorithm with polynomial-time and linear-space

complexity was proposed to minimize the expected overall

access delay in a cooperative cell caching scenario. The delay

from different sources to the user was modeled as uniformly

distributed random variables within a certain range. In [27],

the probabilistic caching strategy was optimized in clustered

cellular networks, where the limited storage capacity of the

small cells and the amount of transferred contents within the

cluster were considered as two constraints to minimize the

average latency. The optimized caching probability of each

content file was obtained.

In [28], a coded caching placement was proposed to min-

imize the backhaul load in a small-cell network, where mul-

ticast was adopted. The file and cache sizes were assumed to

be heterogeneours. In [29], to minimize the total transmission

cost among the BSs and from the core network, each BS’s

cache storage was divided into two parts, the first part of

all the BSs cached same files with higher popularity ranks,

while the second part of all the BSs stored different files.

The cache size ratio of the two parts was optimized through

particle swarm optimization (PSO) algorithm. In [30], caching

strategy was investigated in a Cloud-RAN architecture based

networks, and the average content provisioning cost (e.g., la-

tency, bandwidth etc.) was analyzed and optimized subjecting

to the sum storage capacity constraint. Analytical results of

the optimal storage allocation (how to partition the storage

capacity between the control BS and traffic BS) and cache

placement (decision on which file to cache) were obtained.

However, the aforementioned researches did not take wireless

transmission characteristics into consideration. In practice, the

caching strategy will have an impact on the performance of the

delivery stage, so wireless transmission performance should be

considered in order to optimize the caching strategy.

There are some papers considering wireless fading charac-

teristics when designing/investigating caching strategy [31]–

[34]. Stochastic geometry was used to analyze large scale

networks in [33], [34]. In [33], considering a cache-enabled

two-tier heterogeneous network with one macrocell BS and

several small-cell BSs, outage probability, throughput, and

energy efficiency (EE) were analyzed. Each of the BSs caches

the most popular content files until the storage is full filled.

Numerical results showed that larger small-cell cache capacity

may leads to lower network energy efficiency when the density

of the small cells is low. In [34], the performance of probabilis-

tic caching strategy was analyzed and optimized in a small-

cell environment, and the aim was to maximize the successful

download probability of the content files. However, only

probabilistic content placement can be obtained through using

the tool of stochastic geometry [35], that is, the probability of

a certain file should be cached in the access points. In [31],

optimal caching placement was obtained through a greedy

algorithm to minimize the average bit error rate (BER) in a

macro cell with many cache-enabled helpers and each helper

can cache only one file. The user selects one helper with

the highest instantaneous received signal to noise ratio (SNR)

among the helpers which cache the requested file. If none of

the helpers cache the requested file, the user will fetch the file

from the BS. In [32], cache-enabled BSs are connected to a

central controller via backhaul links. The aim was to minimize

the average download delay. Similar to [31], the user selects

the BS with the highest SNR in the candidate BSs caching the

requested files. In [31] and [32], the authors only considered

small scale Rayleigh fading by assuming that the user has the

same large scale fading at any location, which is unpractical. In

addition, they focused on single-objective optimization without

considering the fronthaul/backhaul usage.

Inspired by the aforementioned researches, in this paper,

outage probability is used to reflect the wireless transmis-

sion performance, and fronthaul usage is used to reflect

the transmission latency and power consumption etc. Outage

probability and fronthaul usage are jointly considered when

designing the caching strategy, which leverages the tradeoff

between caching the same content files to obtain lower out-

age probability or caching different content files to reduce

fronthaul usage. Considering the distances from each RRH

to the user are different in a Cloud-RAN environment, a more

practical fading channel model which includes both large and

small scale fading is adopted.
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III. SYSTEM MODEL

It is assumed that there are N cache-enabled RRHs in a

circular cell with radius R, and the set of RRH cluster is

denoted as N = {1, 2, · · · , N}. The file library with a total

of L content files is denoted as F = {F1, F2, · · · , FL}, where

Fl is the l-th ranked file in terms of popularity, i.e., F1 is the

most popular content file. The popularity distribution of the

files follows the Zipf’s law [36], and the request probability

of the l-th ranked content file is

Pl =
l−β

∑L
n=1 n

−β
, (1)

where β ∈ [0,+∞) is the skewness factor. The popularity is

uniformly distributed over content files when β = 0 (Pl =
1/L, ∀l) and becomes more skewed towards the most popular

files as β grows, while large popularity skewness is usually

observed in wireless applications.

For simplicity, it is assumed that all content files have the

same size, and the file size is normalized to 1. Even though

the file size will not be equal in practice, each file can be

segmented into equal-sized chunks for placement and delivery

[19], [37]. Considering the BBU pool can be equipped with

sufficient storage space, it is assumed that all the L content

files are cached in the BBU pool 1. Some of the content files

can be further cached in the RRHs in order to improve the

system’s performance, and a file can be cached in one or more

RRHs depending on the caching strategy. The n-th RRH can

cache Mn files, and generally
∑N

n=1 Mn < L. That is, the

total caching storage space in all the RRHs is smaller than

that in the BBU pool. The caching placement of the content

files in the RRHs can be denoted by a binary placement matrix

A
L×N , with the (l, n)-th entry

al,n =

{
1, the n-th RRH caches the l-th file

0, otherwise
(2)

indicating whether the l-th content file is cached in the n-th

RRH, and
∑L

l=1 al,n = Mn, ∀n.

Single user scenario is considered in this paper. However,

the proposed algorithms can be applied in practical multiuser

systems with orthogonal multiple access technique such as

OFDMA system, in which each user is allocated with different

subcarriers and there is no interference [38]–[40]. It is assumed

that the user can only request for one file at one time, and

all the RRHs caching the requested file will serve the user.

If none of the RRHs caches the requested file, the file will

be transferred to all the RRHs from the BBU pool through

fronthauls, and then to the user from all the RRHs through

1Generally speaking, the backhaul connecting the BBU pool and the core
network will have larger transmission bandwidth than the fronthaul, so only
the fronthaul usage reduction is considered in this paper. In practice, the BBU
pool can not cache all the content files originated in the Internet, however, if
the requested file is not cached in the BBU pool, it can be fetched from the
core network through using backhaul, then it is the same as the file is already
cached in the BBU pool as we only focus on the fronthaul usage rather than
backhaul usage.

BBU pool

RRH with cache

Mobile user

1

2

3
4

File l22

 

 
 

 
 

File l22

 

All L 

content files
File l1

 

1

 

Fig. 1. System model and file delivery scheme. Red dashed and green solid
lines represent the file fetching routes when user requests for the l1-th and
l2-th content file, respectively.

wireless channels. The service RRH set for the user with

respect to (w.r.t.) the l-th file is denoted as

Φl =

{
{n|al,n = 1, n ∈ N} , ∃n such that al,n = 1

N , al,n = 0 for ∀n
,

(3)

with cardinality |Φl|∈ {1, 2, · · · , N}, (l ∈ {1, 2, · · · , L}). The

system model and file delivery scheme are illustrated in Fig.1.

For example, when the user requests for the l1-th file which

is not cached in any of the RRHs, the file will be transferred

from the BBU pool to all the RRHs through fronthauls and

then transmitted to the user. Then the user’s service RRH set

is Φl1 = {1, 2, 3, 4}. When the user requests for the l2-th file

which is already cached in RRH 2 and RRH 3 via caching

placement, the service RRH set is Φl2 = {2, 3}.

The wireless channel is assumed to be block-fading, i.e.,

the channel’s gain is kept as constant within the duration

of a block, and different blocks experience independent and

identically distributed (i.i.d.) fading. When being requested,

a file would be transmitted through different blocks of the

wireless channel. Assuming that both the RRH and the user’s

device are equipped with single antenna, the user’s received

signal from the service RRH set when requesting for the l-th
file can be expressed as

y =
∑

n∈Φl

√

pTKd−α
n hns+ noise, (4)

where pT is the transmit power of each RRH, K is a constant

depending on the antenna characteristics and the average

channel attenuation, dn is the distance between the n-th RRH

and the user, α is the path loss exponent, hn ∼ CN (0, 1)
represents complex Gaussian small scale fading, s represents

the transmitted symbol and E
[
|s|2
]
= 1, and noise denotes

complex additive white Gaussian noise (AWGN) with zero

mean and variance σ2.

The main modeling parameters and notations are summa-

rized in Table I.
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TABLE I
MODELING PARAMETERS AND NOTATIONS

Symbol Definition

N Number of RRHs
L Number of content files
Pl Request probability of the l-th file
β Skewness factor of the Zipf’s distribution
Mn The number of files that the n-th RRH can cache

A
L×N Caching placement matrix

al,n Binary variable indicating whether the l-th file is

cached in the n-th RRH, (l, n)-th entry of AL×N

Φl The service RRH set for the user w.r.t. the l-th file
pT Transmit power of each RRH
dn Distance between the n-th RRH and the user

IV. PROBLEM FORMULATION AND ANALYSIS

A. Problem Formulation

Define the normalized fronthaul usage w.r.t. the l-th file as

Tl(A) =

N∏

n=1

(1− al,n) =

{
1, al,n = 0 for ∀n
0, ∃n such that al,n = 1

,

(5)

which indicates that if there is at least one copy of the

requested file cached in the RRHs, there will be no fronthaul

usage, i.e., Tl = 0, while if the requested file is not cached in

any of the RRHs, there will be fronthaul usage, i.e., Tl = 1.

Note that Tl does not depend on the user’s location.

The caching strategy should be designed according to the

long-term statistics over the user’s locations and content file

requests. The joint optimization problem can be formulated

through a weighted sum of the objectives [41],

min fobj(A) = η

L∑

l=1

PlEx0

[

P
(l)
out(x0)

]

︸ ︷︷ ︸

cell average outage probability

+(1− η)

L∑

l=1

PlTl

︸ ︷︷ ︸

fronthaul usage

,

(6a)

s.t.

L∑

l=1

al,n = Mn, (6b)

al,n ∈ {0, 1}. (6c)

where η ∈ [0, 1] is a weighting factor to balance the tradeoff

between outage probability and fronthaul usage, Ex0
denotes

expectation in terms of the user’s location x0, P
(l)
out(x0) is the

outage probability when the user requests for the l-th file at

location x0. Constraint (6b) describes the caching limit of each

RRH, and constraint (6c) indicates the joint optimization as a

0-1 integer problem.

Different values of η will lead to different balances between

outage probability and fronthaul usage. Given η, the caching

strategy can be determined through solving the optimization

problem in (6). In practice, η is chosen by the decision

maker (e.g., RAN’s operator) according to the system’s long-

term statistics of outage probability and fronthaul usage. For

example, when the fronthauls’ average payload is heavy, a

small value of η should be chosen to reduce the fronthaul

usage, and the price is to increase the outage probability. On

the other hand, when the cell average outage probability is

high, a large value of η should be chosen to reduce the outage

probability, so that the price is to increase the fronthaul usage.

B. Outage Probability Analysis

When the user requests for the l-th file at location x0, the

SNR of the received signal is given by

γl(x0) =
∑

n∈Φl

pT
σ2

Kd−α
n |hn|

2=
∑

n∈Φl

γ0Sn|hn|
2=

∑

n∈Φl

γn,

(7)

where γ0 = pT

σ2 is SNR at the transmitter of each RRH,

Sn = Kd−α
n is the large scale fading, and γn = γ0Sn|hn|

2

represents the received SNR from the n-th RRH. For a specific

file, without ambiguity, we omit the subscript of file index l
and the user’s location x0 in the following analysis.

In the service RRH set Φ with cardinality |Φ|, the RRHs

with the same distance to the user are grouped together.

Assuming there are I (I ≤ |Φ|) groups, the number of RRHs

in the i-th group is denoted by Ji, and
∑I

i=1 Ji = |Φ|. The

distance between the user and the RRH in the i-th group is

denoted by di (i ∈ {1, 2, 3, · · · , I}). Letting λi = 1
γ0Kd

−α

i

,

the probability density function (PDF) of the received SNR

can be obtained as

fγ(γ) =
I∑

i=1

Ji∑

j=1

λj
iAij

(j − 1)!
γj−1e−λiγ , (8)

and the cumulative distribution function (CDF) is given by

Fγ(γ) =

I∑

i=1

Ji∑

j=1

λj−1
i Aij

(j − 1)!

·

[

(j − 1)!

λj−1
i

−

(

e−λiγ

j−1
∑

k=0

(j − 1)!

(j − 1− k)!λk
i

γj−1−k

)]

,

(9)

where

Aij =
(−λi)

Ji−j

(Ji − j)!

dJi−j

dsJi−j

[

Mγ(s)

(

1−
1

λi

· s

)Ji

] ∣
∣
∣
∣
∣
s=λi

,

(10)

and

Mγ(s) =
∏

n∈Φ

1

1− γ0Sn · s
. (11)

The derivations of (8) and (9) are given in Appendix A.

When the distance between any service RRH and the user

is distinct, i.e., dn 6= dm, ∀n 6= m ∈ Φ, (8) and (9) are written

as

fγ(γ) =
∑

n∈Φ

1

γ0Sn






∏

m∈Φ
m 6=n

Sn

Sn − Sm




 exp

(

−
γ

γ0Sn

)

(12)

and

Fγ(γ) =
∑

n∈Φ






∏

m∈Φ
m 6=n

Sn

Sn − Sm






[

1− exp

(

−
γ

γ0Sn

)]

,

(13)

respectively.
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Fig. 2. CDF of the user’s received SNR at a fixed location.

The accuracy of the derived CDF of (9) (written as (13) in

special case) is illustrated in Fig. 2 through three scenarios.

Assuming there are 6 service RRHs for the user, and the

distances between the service RRHs and the user are denoted

by a vector D. The three different scenarios are (1) scenario 1:

D1 = [0.8R, 0.8R, 0.8R, 0.8R, 0.8R, 0.8R], (R is the cell ra-

dius), i.e., all the RRHs are with the same distance to the user;

(2) scenario 2: D2 = [0.6R, 0.7R, 0.7R, 0.8R, 0.8R, 0.8R],
i.e., some of the RRHs have same distance with the user;

(3) scenario 3: D3 = [0.5R, 0.6R, 0.7R, 0.8R, 0.9R, 1.0R],
i.e., all the RRHs are with different distances to the user.

It can be seen from Fig. 2 that the analytical results match

the simulation results, which demonstrates the accuracy of the

derived expression of (9).

The outage probability according to a certain SNR threshold

γth is

Pout(γth) = Fγ(γth). (14)

It is difficult to find a closed form solution of the cell aver-

age outage probability w.r.t. the l-th file, i.e., Ex0
[P

(l)
out(x0)].

However, we can use the composite Simpson’s integration

in forms of polar coordinates, where the user’s location is

denoted by (ρ, θ) and x0 = ρejθ.

Ex0

[

P
(l)
out(x0)

]

=

∫ 2π

0

∫ R

0

P
(l)
out(ρ, θ)fx0

(ρ, θ)ρdρdθ

≈
∆h∆k

9

U∑

u=0

V∑

v=0

wu,vρuP
(l)
out(ρu, θv)fx0

(ρu, θv),

(15)

where R is the cell radius, even integers U and V are

chosen such that ∆h = R/U and ∆k = 2π/V meeting the

requirement of calculation accuracy, ρu = u∆h, θv = v∆k,

fx0
(ρ, θ) is the probability density function of the user’s

location, which is 1/πR2 when the user’s location is uniformly

distributed in the cell, and {wu,v} are constant coefficients

(please refer to [42] and Chapter 4 in [43]).

Substituting (5), (9), (14) and (15) into (6a), the opti-

mization problem is formulated as a function of the caching

placement matrix A
L×N = {al,n}. However, the problem is

a 0-1 integer nonlinear problem, and it is difficult to obtain a

closed form solution. The following section will focus on how

to solve this problem.

V. CACHING PLACEMENT SCHEME

In this section, two efficient approaches are proposed to

solve the joint optimization problem: one is GA-based ap-

proach and the other is mode selection approach.

A. Genetic Algorithm Based Approach

Genetic algorithm is inherently suitable for solving opti-

mization problems with binary variables [44]. The algorithm

structure is shown in Fig. 3. Firstly, Np candidate caching

placement matrices are generated, known as the initial popu-

lation (with population size Np), and each matrix is called

an individual. Then the objective value of each individual

is evaluated through (6a). Ne individuals with best objective

values are chosen as elites and passed into next genera-

tion (children of current generation population) directly. The

rest of the next generation population are generated through

crossover and mutation operations. The crossover function

operates on two individuals (known as parents) and generates

a crossover child, and the mutation function operates on a

single individual and generates a mutation child. The num-

ber of individuals generated through crossover and mutation

operations are denoted as Nc and Nm, respectively, where

Ne + Nc + Nm = Np, and the crossover fraction is defined

as fc = Nc

Nc+Nm

. The selection function selects 2Nc and

Nm individuals from the current generation for the crossover

and mutation function, respectively, where some individuals

will be selected more than once. Stochastic uniform sampling

selection [45] is adopted, and individuals with lower objective

values in current generations will have a higher probability to

generate offsprings. Repeat the evaluation-selection-generation

procedures until termination criterion is reached. Finally, the

best individual in the current population is chosen as the output

of the algorithm. The initial population, crossover function and

mutation function of the proposed GA approach are described

as follows.

1) Initial Population: The initial population is created as a

set of {AL×N}. For each column in each individual, Mn out

of the first L′ entries (i.e., {a1,n, a2,n, · · · , aL′,n}) are set to

be one randomly, and all the remaining entries are set to be

zero, where

L′ =
∑N

n=1
Mn < L (16)

is based on the fact that the total different files with higher pop-

ularity can be cached in the RRHs are {Fl|l = 1, 2, · · · , L′}.

There is no benefit to cache files {Fl|l > L′} with lower

popularity.

2) Crossover Function: The crossover function generates

a child Ac from parents A1 and A2. A two-point crossover

function is used, which is described in Algorithm 1, in which

steps 9 to 14 are heuristic operations to meet constraint (6b).
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Fig. 3. Genetic algorithm structure.

Algorithm 1: Crossover function

1 Get parent A1 = {a
(1)
l,n} and A2 = {a

(2)
l,n} from selection

function, initialize their child Ac = {a
(c)
l,n} = 0

L×N .

2 for n = 1, 2, · · · , N do

3 Generate random integers l1, l2 ∈ [1, L′], l1 6= l2
4 if l1 < l2 then

5 Replace a
(1)
l,n , l = {l1, l1 + 1, · · · , l2} of A1 with

a
(2)
l,n , l = {l1, l1 + 1, · · · , l2} of A2, and then set

a
(c)
l,n = a

(1)
l,n , ∀l ∈ {1, 2, · · · , L}.

6 else

7 Replace a
(2)
l,n , l = {l2, l2 + 1, · · · , l1} of A2 with

a
(1)
l,n , l = {l2, l2 + 1, · · · , l1} of A1, and then set

a
(c)
l,n = a

(2)
l,n , ∀l ∈ {1, 2, · · · , L}.

8 end

9 while
∑L

l=1 a
(c)
l,n > Mn do

10 Set nonzero a
(c)
l,n to 0 in descending order of l.

11 end

12 while
∑L

l=1 a
(c)
l,n < Mn do

13 Set zero a
(c)
l,n to 1 in ascending order of l.

14 end

15 end

3) Mutation Function: The mutation function operates on

a single individual and generates its mutation child. For each

column of the individual, one of the first L′ entries is randomly

selected and the value is set to be the opposite (0 to 1 and

vice versa), then steps 9 to 14 described in Algorithm 1

are executed to meet constraint (6b). The mutation operation

reduces the probability that the algorithm converges to local

minimums.

If Ng generations are evaluated, there is a total of NpNg

calculations of the objective values. In order to further reduce

the computational complexity of caching strategy, a mode

selection approach is proposed in next subsection.

B. Mode Selection Approach

There are two particular caching placement schemes: one

is the most popular content (MPC) caching, and the other one

is the largest content diversity (LCD) caching [32], [46], [47].

In MPC, each RRH caches the most popular files, i.e., the n-

th RRH caches {Fl|l = 1, 2, · · · ,Mn}, which will have low

outage probability while high fronthaul usage. In the LCD

scheme, a total of L′ =
∑N

n=1 Mn (< L) different most

popular content files are cached in the RRHs, which can have

lowest fronthaul usage while relatively high outage probability.

If the LCD scheme is adopted in Cloud-RAN, the impact of

locations of caching content files on the cell average outage

probability needs to be considered. Assuming the locations of

the user are uniformly distributed in the cell, caching the most

popular files in the RRH nearest to the cell center will achieve

better outage probability performance, which is similar to the

RRH placement problem [48]. Therefore, for Cloud-RAN, we

improve the LCD scheme and propose a location-based LCD

(LB-LCD) scheme which is described in Algorithm 2.

Algorithm 2: Proposed LB-LCD caching strategy

1 Sort the RRH set as

Ns = {ni|i = 1, 2, · · · , N, Dn1
≤ Dn2

≤ · · · ≤ DnN
},

where Dni
denotes the distance between the ni-th RRH

and the cell center.

2 Fill the cache of the RRH set Ns in sequence from n1 to

nN with content files {Fl|l = 1, 2, · · · ,
∑N

n=1 Mn} in

ascending order of l.

For example, there are 3 RRHs {1, 2, 3}, and each RRH can

cache 3 files, so that all the RRHs can cache 9 different content

files. The distance between RRH i and the cell center is Di,

assuming D1 < D2 < D3. The LB-LCD caching strategy is

illustrated in Table II.

TABLE II
EXAMPLE OF THE LB-LCD CACHING STRATEGY

RRH 1 2 3

Files
cached

F1

F2

F3

F4

F5

F6

F7

F8

F9

Proposition 1. The objective value of both the MPC scheme

and the LCD scheme is linear with η. When η is small, i.e.,

minimization of the fronthaul usage is weighted more, the LCD
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scheme is superior to the MPC scheme. When η is large, i.e.,

minimization of the cell average outage probability is weighted

higher, the MPC scheme is superior to the LCD scheme. There

exists a crossover point of the two schemes, the weighting

factor of the crossover point is

η0 =
1

1 +

∑L
l=1 PlEx0

[

P
(l)
out,MPC(x0)− P

(l)
out,LCD(x0)

]

∑L
l=1 Pl (Tl,LCD − Tl,MPC)

.

(17)

When Mn = M, ∀n, η0 can be further expressed as

η0 =
1

1 +

∑NM
l=1 PlEx0

[

P
(l)
out,LCD(x0)− P

(l)
out,MPC(x0)

]

∑NM
l=M+1 Pl

.

(18)

Proof. Please refer to Appendix B. �

Based on proposition 1, we propose a mode selection

caching strategy. The RAN can make a decision of the tradeoff

according to the statistics of cell average outage probability

and fronthaul usage in the cell, and a tradeoff weighting

factor η is chosen. When η ≤ η0, select the LB-LCD caching

scheme, while when η > η0, select the MPC caching scheme.

C. Computational Complexity Analysis

The number of objective function calculations w.r.t. a certain

value of η is evaluated to measure the complexities of the

exhaustive search method, the proposed GA approach and

the proposed mode selection approach. The complexity of

exhaustive search is
∏N

n=1

(
L

Mn

)
. When Mn = M, ∀n, it is

clear that the complexity of exhaustive search is exponential

w.r.t. the number of RRHs, i.e.,
(
L
M

)N
. The complexity of the

proposed GA is NpNg , where Np and Ng are the population

size and the number of generations evaluated, respectively. Ng

is determined by the convergence behavior of the GA. While

the complexity of the proposed mode selection scheme is only

2. The reason is that, once the value of η0 is solved from (17),

the RAN can choose a mode between MPC and LCD based

on whether η > η0, and 2 objective function calculations are

involved in solving the equation. Further more, once η0 is

obtained, caching schemes for all values of η are obtained.

The computational complexities of the three approaches are

summarized in Table III.

TABLE III
COMPUTATIONAL COMPLEXITY

Scheme Objective function calculations

Exhaustive search
∏N

n=1

(

L

Mn

)

Proposed GA-based approach NpNg

Proposed mode selection approach 2

VI. NUMERICAL RESULTS

In this section, the performances of the proposed two

caching strategies are investigated through some representative

numerical results. Firstly, the accuracy of the cell average

outage probability and fronthaul usage analysis are verified

by evaluating two typical caching schemes, i.e., the MPC and

the LB-LCD schemes. Then the effectiveness of the proposed

GA approach is verified by comparing its performance with

exhaustive search, where the Pareto optimal solutions [41] of

the joint optimization problem are presented. In the proposed

GA approach, placement matrices of the MPC and the LB-

LCD schemes are added into the initial population to further

improve the performance. Finally, performances of different

caching strategies are compared and the convergence behavior

of the proposed GA is presented.

The MATLAB software is used for the Monte-Carlo simula-

tions and numerical calculations. Throughout the simulation, it

is assumed that each RRH has the same cache size Mn = M .

The transmit power of each RRH is pT = P
N

, where P is the

total transmit power in the cell and P
σ2 = 23 dB. The constant

K in (4) is chosen such that the received power attenuates

20 dB when the distance between the RRH and the user is R
[49]. In such setting, the outage probability does not depend

on the absolute value of R, that is, R can be regarded as

the normalized radius. The main simulation parameters are

summarized in Table IV.

TABLE IV
SIMULATION PARAMETERS

Parameter Value

Path loss exponent α 3
P/σ2 23 dB
SNR threshold γth 3 dB
User location distribution uniform
U and V in Simpson’s integration 6, 6
Population size Np in GA 50
Selection function stochastic universal sampling
Number of elites Ne 10
Crossover fraction fc 0.85

A. MPC and LB-LCD Caching Placements

Cell average outage probability (
∑L

l=1 PlEx0
[P

(l)
out(x0)])

and average fronthaul usage (
∑L

l=1 PlTl) of the MPC and LB-

LCD schemes are shown in Fig. 4 and Fig. 5, respectively.

There are L = 50 files, N = 7 RRHs with one RRH located

at the cell center and the other 6 RRHs evenly distributed on

the circle with radius 2R/3 [23], [50], and each RRH can

cache M = 5 files. Both the simulation and numerical results

are shown in this subsection. In the Monte-Carlo simulations,

there are 104 realizations of the user’s different locations and

content file requests.

Cell average outage probability with different SNR thresh-

old γth and popularity skewness factor β is illustrated in Fig.

4. It can be seen that the outage probability of both the MPC

and the LB-LCD schemes increases with the increase of γth,

and the outage probability of the MPC scheme is lower than

that of the LB-LCD scheme. The MPC curves of different

values of β coincide. The reason is as follows: according to

the file delivery scheme and the MPC caching strategy, no

matter whether the requested file is cached in the RRHs or

not, the file will be transmitted to the user from all the RRHs,
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Fig. 4. Cell average outage probability. L = 50,M = 5, N = 7.

thus the cell average outage probability w.r.t. any l-th file is

the same, denoting as Ex0
[P

(l)
out(x0)] = Pcell,out, then the cell

average outage probability expected on all the file requests is

L∑

l=1

PlEx0
[P

(l)
out(x0)] = Pcell,out ·

L∑

l=1

Pl = Pcell,out, (19)

which is not related to β, i.e., no matter how the popularity is

distributed over the files, the cell average outage probability

is kept as a constant.

For the LB-LCD scheme, cell average outage probability

reaches the minimum value when β = 0, and it increases as

β increases and approaches the maximum value when β is

large enough, e.g., β = 2, 2.5, 3. The reason is explained as

follows. According to the file delivery scheme and the LB-

LCD caching strategy, if the requested file is not cached in

any of the RRHs, the file will be fetched from the BBU

pool, and then transmitted to the user from all the RRHs.

The outage probability will then achieve the minimum value

due to wireless diversity. While if the requested file is cached

in the RRH (only cached in one of the RRHs), the file

will be transmitted to the user from only one RRH, and the

outage probability will be relatively higher. When β = 0,

Pl = 1/L, ∀l, i.e., the request probability is the same for all

the content files, which means that the cell average outage

probability depends evenly on the outage probability of each

file, and the outage probability of the files which are not

cached in the RRHs is lower than that of the files cached

in the RRHs. As β increases, the more skewness of the

popularity will toward the first few files with high ranks, i.e.,

the cell average outage probability depends more on these

files, and there is a higher probability that there is only one

copy for each of these files cached in one certain RRH, and

the corresponding outage probability is high, so the outage

probability increases as β increases and the curve with β = 0
is the lower bound. Note that

5∑

l=1

Pl =







0.90, β = 2.0

0.96, β = 2.5

0.99, β = 3.0

(20)
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Fig. 5. Cell average fronthaul usage. L = 50,M = 5, N = 7.

which means when β is large enough (β > 2.0), the cell

average outage probability depends mainly on the first 5 most

popular files. These 5 files are cached in the RRH located at

the cell center, and the cell average outage probability w.r.t

any one of the 5 files is the same, so the cell average outage

probability is nearly the same for different values of β (> 2.0),
which approaches the maximum value.

Fig. 5 shows the fronthaul usage of the two caching

schemes. Because the fronthaul usage is independent of γth,

the curve versus different values of the skewness factor β is

evaluated. The LB-LCD scheme has lower fronthaul usage

than the MPC scheme, which is because that the LB-LCD

scheme caches a total of MN = 5 × 7 = 35 different files

in the RRHs while the MPC scheme caches only M = 5
different files. The average fronthaul usage of both the MPC

and LB-LCD scheme decreases with the increase of β, which

is due to the same reason that as β increases, the popularity

becomes more skewed towards the first few files with higher

ranks, and there is a higher probability that these few files

are cached in the RRHs. As shown in (20), when β = 3, the

fronthaul usage almost depends on the first 5 popular files,

since they are all cached in the RRHs under both the MPC

and the LB-LCD caching strategies, the fronthaul usages of

both schemes approach zero.

It is seen from Fig. 4 and Fig. 5 that the analytical results

are highly consistent with the simulation results. Therefore,

analytical results will be used instead of time-consuming

simulations in the following evaluations.

B. Tradeoffs between Cell Average Outage Probability and

Fronthaul Usage

Tradeoffs between cell average outage probability and fron-

thaul usage obtained by exhaustive search and the proposed

GA-based approach are shown in this subsection. There are

three RRHs, and the polar coordinates of which are
(
R
4 , 0
)
,

(
R
3 ,

2π
3

)
, and

(
R
2 ,

4π
3

)
, respectively. There are L = 9 content

files, and the popularity skewness factor β = 1.5.
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optimal solutions of the joint optimization problem.

Fig. 6 is focused on the scenario when the cache size

M is equal to 2. All tradeoffs between cell average outage

probability and fronthaul usage are given by exhaustive search.

Since the popularities of the content files {Pl}, the fronthaul

usage {Tl} and the outage probability {P
(l)
out} are all discontin-

uous values w.r.t. integer l, the cell average outage probability

and average fronthaul usage region of all caching placements

is a set of discrete points as shown in the figure, where

each red point corresponds to a caching placement. The 5

points emphasized by small blue circles are the Pareto optimal

solutions (nondominated set [41]) of the joint optimization

problem, i.e., there is no other point dominating with the

Pareto optimal solutions in terms of both the cell average

outage probability and fronthaul usage.

The cell average outage probability is minimized when the

files cached in each RRH are the same, and the popularity of

these cached files will have an impact on the average fronthaul

usage. The corresponding points of these caching placements

lie on the line segment AD, i.e., line segment AD represents

the lower bound of the cell average outage probability. The

MPC scheme represented by point A achieves the minimum

fronthaul usage among these caching placements. The reason

is that the MPC scheme caches the most popular files which

can reduce the fronthaul usage to a minimum value among

these caching placements.

The fronthaul usage is minimized when all RRHs cache

different files with higher popularity ranks, and the cache

locations of these files will have an impact on the cell average

outage probability. The corresponding points of these caching

placements lie on the line segment BC, i.e., line segment BC
represents the lower bound of the average fronthaul usage.

The LB-LCD scheme represented by point B achieves the

minimum cell average outage probability among these caching

placements. The reason is that the LB-LCD scheme caches

the files with higher ranks in the RRHs near to the cell center,
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i.e., η = {0.1, 0.2, · · · , 1}.

which has the minimum cell average outage probability among

these caching placements.

Fig. 7 shows the Pareto optimal tradeoffs between the

cell average outage probability and the fronthaul usage with

different cache size M . The results obtained through the

proposed GA approach are almost the same as exhaustive

search, which means that the proposed GA approach can

achieve near-optimal performance. The minimum cell average

outage probability is achieved at point A1 when M = 1,

A2 when M = 2, and A3 when M = 3, respectively. The

minimum cell average outage probability represented by the

three points are the same, and the corresponding caching

placements of the three points are the MPC scheme. The

reason is that according to the file delivery scheme and the

MPC caching placement, all the RRHs will serve the user no

matter how many files the RRHs can cache. It is also seen that

the corresponding fronthaul usage of the three points decrease

as M increases, which is obvious because larger cache size

can cache more files thus the fronthaul usage can be reduced.

On the other hand, the minimum fronthaul usage is achieved

at point B1 when M = 1, B2 when M = 2, and B3 when

M = 3, respectively. The corresponding caching placements

of the three points are the LB-LCD scheme. Obviously, the

corresponding fronthaul usage of the three points decreases as

M increases. The fronthaul usage is zero at point B3 when

M = 3, the reason is that all the RRHs can cache a total

of MN = 3 × 3 = 9 files, which is equal to the number

of files in the file library, i.e., all the files are cached in the

RRHs. The corresponding cell average outage probability of

the three points increases as M increases. The reason is that

according to the file delivery scheme and the LB-LCD caching

strategy, more different files can be cached in the RRHs as M
increases, however, there is only one copy of each file and

the outage probability w.r.t. these cached files will be higher,

i.e., more different files cached in the RRHs, higher the cell

average outage probability is.
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Note that as the cache size M increases, the GA-based

approach should evaluate more values of η in order to obtain

all the Pareto optimal solutions of the joint optimization

problem. For example, when M = 3, additional values of

η = 0.15 and η = 0.45 are evaluated to obtain the Pareto

optimal solutions represented by point C and D.

Table V shows all the optimal caching placements obtained

by the proposed GA-based approach when M = 2. For

illustration, we use a M ×N matrix to represent the caching

placement, with the (m,n)-th entry bm,n ∈ {1, 2, 3, · · · , L}
denotes the file index cached in the m-th cache space of

the n-th RRH. From (18), η0 = 0.3312. It can be seen

that the LB-LCD scheme is the optimal placement when

η = 0, 0.1 < η0, while the MPC scheme is the optimal solution

when η = 0.6 ∼ 1.0 > η0, and some files are duplicately

cached in the RRHs when η = 0.2 ∼ 0.5.

TABLE V
OPTIMAL CACHING STRATEGY OBTAINED BY THE PROPOSED GA

η = 0
fobj = 0.0689
[

1 3 5
2 4 6

]

η = 0.1
fobj = 0.1186
[

1 3 5
2 4 6

]

η = 0.2
fobj = 0.1651
[

1 1 4
2 3 5

]

η = 0.3
fobj = 0.1938
[

1 1 1
2 3 4

]

η = 0.4
fobj = 0.2087
[

1 1 1
2 3 4

]

η = 0.5
fobj = 0.2144
[

1 1 1
3 2 2

]

η = 0.6
fobj = 0.2077
[

1 1 1
2 2 2

]

η = 0.7
fobj = 0.1905
[

1 1 1
2 2 2

]

η = 0.8
fobj = 0.1733
[

1 1 1
2 2 2

]

η = 0.9
fobj = 0.1561
[

1 1 1
2 2 2

]

η = 1.0
fobj = 0.1390
[

1 1 1
2 2 2

]

L = 9
M = 2
N = 3
β = 1.5

According to the above evaluations, the MPC and LB-

LCD caching schemes are two special solutions of the joint

optimization problem when η = 1 and η = 0, respectively. The

former can achieve the lowest cell average outage probability

while the latter can achieve the minimum fronthaul usage. The

proposed GA-based approach can achieve different tradeoffs

between the cell average outage probability and fronthaul us-

age according to different weighting factors, which can achieve

better performance than the MPC and LB-LCD schemes.

C. Performances of the GA-based Approach and Mode Selec-

tion Approach

The performances of the proposed GA-based approach and

the mode selection approach are analyzed in this subsection.

Besides the MPC and the LB-LCD caching schemes, two other

widely used caching strategies are evaluated for comparison,

one is random caching, where each RRH caches the content

files independently and randomly regardless of the files’

popularity distribution, the other one is probabilistic caching,

where each RRH caches the files independently and randomly

according to the files’ popularity distribution, i.e., high-ranked

files have higher probability to be cached [23], [51]. There are
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Fig. 8. Objective function value versus weighting factor η. L = 50,M =
5, N = 7.

L = 50 files 2, N = 7 RRHs with one RRH located at the cell

center and the other 6 RRHs evenly distributed on the circle

with radius 2R/3, and β = 1.5.

Fig. 8 shows the objective value of different caching strate-

gies with M = 5. It can be seen from the figure that as the

weighting factor η increases, i.e., more focus on minimization

of outage probability, the objective value of MPC decreases

linearly, while the objective value of the LB-LCD scheme

increases linearly. The horizontal coordinate of the crossover

point of the MPC and LB-LCD scheme (η0) approaches zero

as the popularity skewness factor β increases. This is because

that when β increases, the requesting probability Pl of the first

few popular files increase significantly, then
∑NM

l=M+1 Pl → 0
in (18), thus η0 → 0. That is, as β increases, the MPC

scheme will dominate with most values of η. This can also be

explained as follows. When β increases, the average fronthaul

usage will depend more and more on the few files with higher

ranks. These files can be cached in the RRHs under both

of the MPC and the LB-LCD schemes, thus the MPC and

the LB-LCD schemes are equivalent in terms of fronthaul

usage, while the MPC can achieve lower outage probability.

Therefore the MPC scheme is superior to the LB-LCD scheme.

The crossover point η0 = 0.23 when β = 1.5 calculated

through (18) exactly matches the simulation results. The above

mentioned results are consistent with Proposition 1.

The random caching strategy has a relative poor perfor-

mance for all values of η, which is because the files cached

in the RRHs are selected randomly, there is neither a high

probability to cache the same file for reducing the outage prob-

ability nor to cache different high-ranked files for reducing the

fronthaul usage. While the probabilistic caching strategy can

achieve better performance than the proposed mode selection

approach in the middle range of η, e.g., for η = 0.2 ∼ 0.4,

2Alougth there is a huge amount of content files in practice, they can
be classified into different categories [46], and the number of files in each
category (or subcategory) is relatively limited, so the proposed algorithms can
be performed on each category, the number of files evaluated in the simulation
will not lose meaningful insights of the tradeoff caching optimization.
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factor η. L = 50,M = 5, N = 7, β = 1.5.

where both the cell average outage probability minimization

and the fronthaul usage reduction are treated approximate

equally. Which is because that, in probabilistic caching, each

RRH will cache the high-ranked files with a higher probability,

so there is a high probability for different RRHs to cache

the same high-ranked files, which can reduce the cell average

outage probability, and meanwhile the inherent randomness

in the placement makes it possible to cache different files to

reduce the fronthaul usage. It is also seen that the proposed

GA-based approach can achieve better performance than the

other caching strategies, for instance, the objective function

value of the proposed GA algorithm is 18.25% lower than

a typical probabilistic caching scheme when η = 0.4, and

this improvement goes up to 87.9% when η = 1, the average

improvement over all values of η is 47.5%.

Cell average outage probability and fronthaul usage of

the proposed GA and the proposed mode selection approach

versus weighting factor are shown in Fig. 9. Note that the

mode selection scheme is actually the LB-LCD scheme when

η ≤ η0 and the MPC scheme when η > η0, respectively.

For the proposed GA approach, the solution is exactly the

LB-LCD scheme when η = 0, as η increases, the cell

average outage probability decreases and the fronthaul usage

increases, and they reach the lower and upper bounds when

η > 0.6, respectively, where the solution is the MPC scheme.

The proposed GA approach can adjust the caching placement

according to different weighting factors η while the mode

selection scheme only chooses a caching placement between

the MPC and the LB-LCD schemes based on whether η > η0,

so the proposed GA approach can achieve better performance

than the mode selection scheme. However, the computational

complexity of the mode selection scheme is extremely low.

Fig. 10 shows the performance of the proposed GA and the

mode selection scheme with different cache size M . It can

be seen from the figure that the mode selection scheme can

achieve near-optimal performance over a wide range of the

weighting factor η. The vertex of the mode selection scheme,

i.e., the crossover point of the MPC and the LB-LCD schemes
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moves toward the origin as the cache size M increases, i.e.,

the MPC scheme will dominate with most values of η as

M increases. The reason is explained as follows. When M
increases, more content files can be cached in the RRHs. The

fronthaul usage depends mostly on the first few popular files

cached in the RRHs, so the fronthaul usage will tend to be

the same between the two schemes as M increases. The MPC

scheme can achieve lower outage probability, further more,

the cell average outage probability of the LB-LCD scheme

increases as M increases, so the objective value of the MPC

scheme will be much lower than that of the LB-LCD scheme,

and the MPC scheme is superior to the LB-LCD scheme with

most values of η.

Fig. 11 shows the convergence behavior of the proposed GA

approach. It can be seen from the figure that the mean objective

value of the population converges within average 8 genera-

tions. The computational complexity is NgNp = 8×50 = 400.

While the computational complexity of the exhaustive search
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is
(
50
5

)7
= 1.92 × 1044, which is not feasible in practice. As

stated earlier, the popularity of the content files will remain the

same for a relative long period, so the convergence behavior

of the caching placement algorithm is not time-critical. Unlike

the delivery stage, which needs to make an instant decision

for coping with the dynamics of mobile networking systems,

e.g., the rapid change of channel state information, it is not

necessary for the caching strategy to make an instant decision

due to the slow change of the statistics data (e.g., the request

probabilities of the files). In addition, if parallel computing is

adopted, the population size of the proposed GA approach can

be increased without introducing additional execution time,

while the converging speed of the GA will be accelerated.

Thus, the GA approach can perform well with a satisfying

converging speed in practice.

VII. CONCLUSION

In this paper, we have investigated tradeoff caching strategy

in Cloud-RAN for future mobile communications. In order

to jointly minimize the cell average outage probability and

fronthaul usage, the optimization problem is formulated as a

weighted sum of the two objectives, with weighting factor

η (and 1 − η). Analytical expressions of cell average outage

probability and fronthaul usage have been presented and

verified through simulations. Performances of two particular

caching strategies have been analyzed, namely the MPC and

the LB-LCD schemes. When the minimization of the cell

average outage probability is more focused on, the MPC

scheme is superior to the LB-LCD scheme, while the latter

is superior to the former in the opposite situation, i.e., where

the reduction of average fronthaul usage is more focused on.

When the content files’ popularity skewness factor β is larger,

or the cache size of each RRH increase, the MPC scheme

will dominate in a wide range of η. Two heuristic approaches

have been proposed to solve the joint optimization problem:

one is the GA based approach which can achieve nearly the

same optimal performance of exhaustive search, while the

computational complexity is significantly reduced; the other

is the mode selection approach with extremely low computa-

tional complexity, which can obtain near-optimal performance

within a wide range of η. Compared with a typical probabilistic

caching scheme, the proposed GA approach can reduce the

objective function value by up to 45.7% on average and the

proposed two mode selection caching strategy can provide an

average improvement of 36.9%. In practice, the RAN can

make a decision of the tradeoff according to the system’s

statistics of fronthaul traffic and outage probability, and then

adopt caching strategy through the proposed schemes.

APPENDIX A

DERIVATIONS OF (8) AND (9)

For a specific file Fl, the subscript of file index l and

the user’s location x0 are omitted without ambiguity. In (7),

|hn|
2∼ χ2(2), and the PDF is given by [52]

f|hn|2(x) = exp(−x), x > 0. (A.1)

Then the PDF of γn = γ0Sn|hn|
2 is

fγn
(γ) =

1

γ0Sn

exp

(

−
γ

γ0Sn

)

, γ > 0, n ∈ Φ. (A.2)

The moment generation function (MGF) [53] of the random

variable γn is

Mγn
(s) =

∫ ∞

0

fγn
(γ)esγdγ

=

∫ ∞

0

1

γ0Sn

exp

(

−
γ

γ0Sn

)

esγdγ

=
1

1− γ0Sn · s
,

(A.3)

and the range of convergence (ROC) is Re (s) < 1
γ0Sn

. Since

the RRHs are distributed at different locations, {γn, n ∈ Φ}
is independent of each other, the MGF of received SNR γ =
∑

n∈Φ γn is given by

Mγ(s) =
∏

n∈Φ

Mγn
(s) =

∏

n∈Φ

1

1− γ0Sn · s
, (A.4)

and the ROC is
⋂

n∈Φ Re (s) < 1
γ0Sn

.

Since there are I distinct distances d1 6= d2 6= · · · 6= di 6=
· · · 6= dI between the service RRHs and the user, and the i-th
distance has multiplicity of Ji, (A.4) can be rewritten as

Mγ(s) =
1

(

1−
1

λ1
s

)J1
(

1−
1

λ2
s

)J2

· · ·

(

1−
1

λI

s

)JI

,

(A.5)

where λi = 1
γ0Kd

−α

i

, i ∈ {1, 2, · · · , I} is the i-th pole of

multiplicity Ji of Mγ(s), using partial fraction expansion,

Mγ(s) can be expressed as

Mγ(s) =

I∑

i=1

Ji∑

j=1

Aij
(

1−
1

λi

s

)j
, (A.6)

where {Aij} are the undetermined coefficients. Multiplying

(1− 1
λi

s)Ji to both sides of (A.6), then calculating the (Ji−j)-
th order derivate for both sides and let s = λi, we have

dJi−j

dsJi−j

[

Mγ(s)

(

1−
1

λi

s

)Ji

] ∣
∣
∣
∣
∣
s=λi

=
dJi−j

dsJi−j








I∑

i=1

Ji∑

j=1

Aij
(

1−
1

λi

· s

)j

(

1−
1

λi

s

)Ji








∣
∣
∣
∣
∣
∣
∣
∣
∣
s=λi

=(Ji − j)!

(

−
1

λi

)Ji−j

Aij .

(A.7)

Thus Aij is obtained as (10).

The PDF of γ can be obtained by inversely transforming

the MGF in (A.6). Considering a general form of the PDF,

f(γ) = γne−aγ , γ ≥ 0, (A.8)
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where n ∈ {0} ∪ Z
+, a ∈ R

+. The MGF of f(γ) can be

obtained by continuously using the method of integration by

parts.

M(s)

=

∫ ∞

0

γne−aγesγdγ

= −
1

a− s

∫ ∞

0

γnde−(a−s)γ

= −
1

a− s

(

γne−(a−s)γ
∣
∣
∣

∞

0
− n

∫ ∞

0

e−(a−s)γγn−1dγ

)

...

=
n!

(a− s)n+1
, (A.9)

and the ROC is Re (s) < a. Denote the pair of the PDF and

its corresponding MGF as

f(γ) = γne−aγ ⇐⇒ M(s) =
n!

(a− s)n+1
. (A.10)

The CDF can be calculated in the same manner,

F (γ) =

∫ γ

0

f(γ)dγ

=

∫ γ

0

γne−aγdγ

=
1

a

[

n!

an
−

(

e−aγ

n∑

k=0

n!

(n− k)! ak
γn−k

)]

.

(A.11)

According to (A.6) and (A.10), the PDF of the received

SNR is obtained, as shown in (8). According to (A.11), the

CDF of the received SNR is obtained as shown in (9).

APPENDIX B

PROOF OF PROPOSITION 1

Without loss of generality, it is assumed that Mn =
M, ∀n ∈ N , |N |> 1. According to (6a), it is obvious that

the objective functions of the MPC and LCD schemes fMPC
obj

and fLCD
obj are linearly (thus monotonic) continuous function

of η on closed interval [0, 1].

When η = 0, fobj =
∑L

l=1 PlTl. The objective values of

the two schemes are

fMPC
obj =

M∑

l=1

PlTl
↑
0

+

L∑

l=M+1

PlTl
↑
1

=

L∑

l=M+1

Pl ,

fLCD
obj =

NM∑

l=1

PlTl
↑
0

+

L∑

l=NM+1

PlTl
↑
1

=

L∑

l=NM+1

Pl .

(B.1)

Note that
∑L

l=1 Pl = 1 and P1 > P2 > · · · > PL, where

equality holds if and only if β = 0. Thus

fMPC
obj

∣
∣
∣
η=0

> fLCD
obj

∣
∣
∣
η=0

. (B.2)

When η = 1, fobj =
L∑

l=1

PlEx0

[

P
(l)
out(x0)

]

. Denoting

Ex0

[

P
(l)
out(x0)

]

as Pcell,out(l), then

fMPC
obj =

NM∑

l=1

PlP
MPC
cell,out(l)

︸ ︷︷ ︸

C

+

L∑

l=NM+1

PlP
MPC
cell,out(l)

︸ ︷︷ ︸

D

,

fLCD
obj =

NM∑

l=1

PlP
LCD
cell,out(l)

︸ ︷︷ ︸

E

+

L∑

l=NM+1

PlP
LCD
cell,out(l)

︸ ︷︷ ︸

F

.

(B.3)

According to the wireless transmission strategy, D = F , where

D and F correspond to the scenario that all the RRHs serve

the user, while E > C because E denotes there is only one

RRH serving the user, while C corresponds to all the RRHs

serving the user. Thus

fMPC
obj

∣
∣
∣
η=1

< fLCD
obj

∣
∣
∣
η=1

. (B.4)

According to (B.2), (B.4) and the linearity of fMPC
obj and

fLCD
obj , there exists a crossover point η0 ∈ [0, 1] of the two

objective functions. When η < η0, the LCD scheme is superior

to the MPC scheme, while when η > η0, the MPC scheme is

superior to the LCD scheme.

Substituting {al,n} of the MPC and LCD schemes into (6a),

respectively, a linear equation of η is formulated, and the

solution is shown as in (17). Because M = Mn, ∀n, (17)

can be further written as (18).

The proof can be extended to the case that Mn is different

with n.
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