
42 Journal Integrated Circuits and Systems 2010; v.5 / n.1:42-52

Tradeoff of FPGA Design of a Floating-point Library
for Arithmetic Operators

Daniel M. Muñoz1, Diego F. Sanchez1, Carlos H. Llanos1, and Mauricio Ayala-Rincón2

1Department of Mechanical Engineering, University of Brasilia, Brasilia, D.F., Brazil
2Departments of Mathematics and Computer Sciences, University of Brasilia, Brasilia, D.F., Brazil

e-mail: damuz@unb.br

1. INTRODUCTION

Most of the engineering and scientific applica-
tions involve the implementation of complex algo-
rithms that are based on arithmetic operators [1]. The
fixed-point arithmetic allows the computations to be
performed with a high precision according to the bit-
width representation. However, many applications
require to work not only with a high precision, but
also with a suitable format in order to represent large
and small real numbers [2], [3]. Therefore, the float-
ing-point arithmetic is a feasible solution for high per-
formance computer systems, providing an appropriate
dynamic range for representing real numbers and

capabilities to retain its resolution and accuracy [4].
Floating-point based algorithms are commonly

implemented as software and executed in micro-
processors. Typically this solution requires to pay a
performance penalty given that the conventional
approaches require to perform the data transfer
between the ALU and the program and the instruc-
tion memories [5]. This problem, well known as von
Neumann bottleneck, has been partially overcome by
using multicores microprocessors reducing the execu-
tion time.

Recently, Graphic Processor Units (GPUs) are
being widely used to implement complex algorithms
taking advantage of parallel floating-point arithmetic

ABSTRACT1

Many scientific and engineering applications require to perform a large number of arithmetic opera-

tions that must be computed in an efficient manner using a high precision and a large dynamic

range. Commonly, these applications are implemented on personal computers taking advantage of

the floating-point arithmetic to perform the computations and high operational frequencies. However,

most common software architectures execute the instructions in a sequential way due to the von

Neumann model and, consequently, several delays are introduced in the data transfer between the

program memory and the Arithmetic Logic Unit (ALU). There are several mobile applications which

require to operate with a high performance in terms of accuracy of the computations and execution

time as well as with low power consumption. Modern Field Programmable Gate Arrays (FPGAs) are

a suitable solution for high performance embedded applications given the flexibility of their architec-

tures and their parallel capabilities, which allows the implementation of complex algorithms and per-

formance improvements. This paper describes a parameterizable floating-point library for arithmetic

operators based on FPGAs. A general architecture was implemented for addition/subtraction and

multiplication and two different architectures based on the Goldschmidt’s and the Newton-Raphson

algorithms were implemented for division and square root. Additionally, a tradeoff analysis of the

hardware implementation was performed, which enables the designer to choose, for general pur-

pose applications, the suitable bit-width representation and error associated, as well as the area

cost, elapsed time and power consumption for each arithmetic operator. Synthesis results have

demonstrated the effectiveness of the implemented cores on commercial FPGAs and showed that

the most critical parameter is the dedicated Digital Signal Processing (DSP) slices consumption.

Simulation results were addressed to compute the mean square error (MSE) and maximum absolute

error demonstrating the correctness of the implemented floating-point library and achieving and

experimental error analysis. The Newton-Raphson algorithm achieves similar MSE results as the

Goldschmidt’s algorithm, operating with similar frequencies; however, the first one saves more logic

area and dedicated DSP blocks.

Index Terms: Floating-point arithmetic, FPGAs.

Tradeoff of FPGA Design of a Floating-point Library for Arithmetic Operators
Muñoz, Sanchez, Llanos, & Rincón

operators, increasing the throughput and achieving an
expressive speed-up [6], [7]. Although GPUs work
with a high frequency and improve the performance,
it is a microprocessor based solution and as a conse-
quence suffers of the von Neumann bottleneck when
all the source data are accessed from global memory
or when simultaneous accesses from different threads
to memory have to be addressesd. Additionally, GPUs
commonly operate at high frequencies increasing the
power consumption of the overall system, being a
drawback for embedded system applications.

Modern FPGAs are a suitable solution that pro-
vides hundred of thousand of logic elements and ded-
icated DSP blocks as well as several desired properties
such as intrinsic parallelism, flexibility, low cost and
customizable approaches. All this allows for a better
performance and accelerated execution of the
involved algorithms on mobile applications.

FPGA implementation of complex algorithms
can improve the performance by exploring the paral-
lel capabilities and using the required hardware re-
sources. However, FPGAs only provide integer or
fixed-point arithmetic, which implies that the compu-
tations are confined to a limited numeric range.
Therefore, a floating-point FPGA implementation of
arithmetic operators is an important issue for high
performance applications.

There are several previous works covering
FPGA implementations of floating-point arithmetic
operations and different algorithms for computing the
division and the square root [8], [9], [10]. Although,
there exist different contributions for the FPGA
implementations of floating-point addition and multi-
plication, support for division and square root have
remained uneven. Several implementations for float-
ing-point division and square root in FPGA are pre-
sented in [10], [11], [12], [13]. Wang [10] and
Kwon et al. [11] presented a Taylor series expansion
based approach. Shuang-yan et al. [12] applied a
Newton-Raphson method and [13] a high radix SRT
division algorithm and a binary restoring square root
algorithm. These works, however, did not give
enough attention to the tradeoff between the cost in
area against the bit-width representation, as well as, to
their respective error analysis and power consumption.
Reference [14] presents an FPGA implementation of
a floating-point library for arithmetic operations,
which uses the Goldschmidt’s algorithm for imple-
menting division and square root. In that work the
authors have included the accuracy as design criterion
based on an experimental study of the error. However,
the power consumption estimation of the implement-
ed circuits is not considered.

This paper describes the FPGA implementation
of an arithmetic floating-point library and presents a
tradeoff analysis between the bit-width representation
against the area cost, power consumption and the

error associated. Two different architectures, based on
the Goldschmidt’s and Newton-Raphson iterative algo-
rithms, have been implemented for division and
square root allowing for a comparison between these
approaches. This analysis allows the designer to
choose the better implementation and the bit-width
representation for general purpose applications. The
implemented cores are based on the IEEE-754 format
[15] and were described in VHDL (Very high speed
integrated circuits Hardware Description Language).
Synthesis results were performed for a commercial
Virtex5 FPGA device and have demonstrated high
throughput, high performance and low resources con-
sumption. Simulation results were performed for dif-
ferent bit-width representations using the ModelSim®

XE simulation tool [16] after the place and route
process and the results were compared with a Matlab®

R2008a implementation in order to compute the
Mean Square Error (MSE) and the maximum
absolute error.

This paper is organized as follows. Section 2
presents the related works covering FPGA implemen-
tations of floating-point arithmetic operators. Section
3 describes the general algorithm for addition/sub-
traction, multiplication and the Goldschmidt’s and
Newton-Raphson algorithms for division and square
root operators. The implementations of the proposed
architectures are described in Section 4 and before
concluding, Section 5 presents the analysis of the syn-
thesis and simulation results.

2. RELATED WORKS

On the one hand, early works on floating-point
arithmetic operations have been targeted to primitive
FPGAs only for adders and multipliers [17], [18],
[19]. However, given the reduced number of logic
elements in early FPGAs, the implementation of other
arithmetic operators such as division, square root and
even transcendental functions was impractical for
hardware designers. These early results point-out that
implementing IEEE single precision addition and
multiplication operations was feasible but impractical
on FPGAs.

On the other hand, modern FPGAs have hun-
dred of thousand of logic elements and several dedi-
cated DSP blocks, which allows for embedding more
complex computations and new algorithms [20].
Recently, FPGA floating-point arithmetic operations
have been implemented for both 32-bit single preci-
sion and 64-bit double precision [9], [21], [22].
However, many of the engineering applications need
different precision requirements; thus, parameteri-
zable floating-point libraries for arithmetic operations
in FPGAs are relevant for scientific applications. For
instance, finding a suitable weight precision and a fea-

43Journal Integrated Circuits and Systems 2010; v.5 / n.1:42-52

Tradeoff of FPGA Design of a Floating-point Library for Arithmetic Operators
Muñoz, Sanchez, Llanos, & Rincón

44 Journal Integrated Circuits and Systems 2010; v.5 / n.1:42-52

sible number of iterations of algorithms for comput-
ing division and square root is an important factor in
order to avoid over dimensioning hardware imple-
mentations.

Hardware architectures for computing division
and square root have been proposed in [13] and [23].
For instance, Wang and Nelson [13] implemented in
hardware the SRT method presenting results for iter-
ative and pipelined hardware implementations.
Montuschi and Mezzalama [24] presented an analysis
of different techniques such as direct algorithms, non-
restoring algorithms, SRT square rooting algorithms
and approaches based on Newton-Raphson and
CORDIC. References [8] and [9] describe parame-
terizable libraries for floating-point arithmetic opera-
tions, implementing Radix-4 and Radix-2 SRT algo-
rithms for computing division and square root,
respectively. Synthesis results for double precision are
presented in [8] and the aspects related to the area
consumption for different bit-width precision are pre-
sented in [9]. References [10] and [11] presented a
Taylor series expansion for computing division and
square root. Wang [10] described a variable-precision
floating-point implementation showing area con-
sumption results for different bit-width representa-
tion, exploring the capability of their applications on
image and signal processing. Kwon et al. [11] per-
formed a comparison among the Taylor series expan-
sion against the Intel Pentium 4 processor (that uses
the SRT algorithm) and the AMD K7 core (that uses
Goldschmidt’s technique).

In the hardware design of floating-point units it
is important to point-out two main aspects: (a) the
selection of a suitable bit-width in a such way that
dynamic range is large enough to guarantee that satu-
ration will not occur for a general-purpose application
and (b) the tradeoff between the level of precision of
the operators against their implementation cost in
logic area. To include the accuracy as design criterion
of digital circuits it is important to analyze behavioral
aspects in terms of the tradeoff between the cost in
logic area against the error associated as well as the
computing time and the power consumption.

Although different algorithms have been pro-
posed for computing addition/subtraction, multipli-
cation, division and square root, covering floating-
point arithmetic operations, which have been imple-
mented in FPGAs, these implementations have not
received enough attention with regard to the error
analysis. In this work, the authors also present an
experimental error analysis of the implemented float-
ing-point architectures, using the Matlab® R2008a,
which works in a double precision format, as statisti-
cal estimator. Different bit-width representations have
been implemented for each one of the arithmetic
operators and both the Goldschmidt’s and Newton-

Raphson algorithms (for division and square root)
have been simulated in order to compute the MSE
and maximum absolute error of the proposed circuits.

3. BACKGROUND

In this section the IEEE-754 standard format
for representing floating-point numbers and the gen-
eral algorithms for implementing the floating-point
addition/subtraction, multiplication, division and
square root are presented.

A. The IEEE standard

The IEEE-754 standard [15] is a floating-point
number representation in a bit string format, charac-
terized by three components: a sign S, a biased expo-
nent E with Ew bit-width, and a mantissa M with Mw
bit-width, as shown in Figure 1. A constant (bias) is
added to the exponent in order to make the expo-
nent’s range non negative. Additionally, the mantissa
represents the magnitude of the number.

Figure 1. The IEE-754 standard

This standard allows the user to work not only
with the 32-bit single precision and 64-bit double
precision, but also with a flexible and suitable preci-
sion according to the application requirements. This is
suitable for supporting variable precision floating-
point operations [10]. A higher precision means fewer
quantization errors in the final implementations, as
long as a lower precision leads to straightforward
designs, higher speed and reductions in area require-
ments and power consumption. Standard embedded
microprocessors, such as NIOS and Microblaze, work
only with single precision (generally in hardware) and
double precision (generally in software), limiting in
this way the flexibility of the implementations [25].
This problem can be solved by using parameterizable
floating-point operations directly in hardware.

B. The floating-point addition/subtraction

The steps for performing the floating-point
Addition/Subtraction are shown below.

1) Separate the sign, exponent and mantissa of
the inputs, and check whether the inputs are
zero, infinity or an invalid representation in
IEEE 754 standard. Add the hidden bit to
the mantissa.

2) Compare the two inputs: a logical shift right
operation must be performed over the small-
er of the two numbers. The number of bits
of the mantissa shifted right, dependent on
the exponent’s difference, and this differ-
ence is a preliminary exponent calculation
result. Finally, add/sub the current mantis-
sas.

3) Shift left the achieved mantissa until its most
significant bit (MSB) is 1. For each shift
decreases the current exponent by 1. Finally,
concatenate the sign, exponent and mantissa
of the final results.

C. The floating-point multiplication

The steps for performing the floating-point
multiplication are shown below.

1) Separate the sign, exponent and mantissa of
the inputs, and check whether the inputs are
zero, infinity or an invalid representation in
IEEE-754 standard. Add the hidden bit to
the mantissas.

2) Multiply mantissas, add exponents, and
determine the product sign.

3) Whether the MSB is 1 in the mantissas mul-
tiplication result, hence, no normalization is
needed. The current mantissa is shifted left
until a 1 is achieved. For each shift operation
the current exponent is decreased by 1.
Finally, concatenate the sign, exponent and
mantissa of the final results.

D. The floating-point division

A generalized algorithm to calculate the divi-
sion is described in [14], whose steps are included
below.

1) Let X and Y be real numbers represented in
IEEE-754 standard, where X represents the
dividend and Y the divisor.

2) Separate the sign, exponent and mantissa of
X and Y, adding the 1 hidden bit to the
mantissa and detecting zero and invalid
inputs.

3) Calculate the mantissa result using the
Goldschmidt’s or Newton-Raphson algo-
rithms for division described below. In paral-
lel to this, evaluate the result exponent,
namely exponent(X) – exponent(Y) + Bias,
and evaluate the sign of the result.

1) The Goldschmidt’s algorithm for division

Assume two n-bit inputs N and D, which satis-
fy 1 ≤ N, D < 2. The idea of the Goldschmidt’s algo-
rithm is to calculate Q = N/D, starting from an ini-

tial seed equal to 1/D, and then to approximate the
quotient through successive multiplications of the
seed times N [26]. This work takes as reference the
algorithm presented in [1]:

1) Move the fixed point for N and D to loca-
tions such that N ≥ 1 and D < 2.

2) Start with an initial approximation to 1/D by
using a look-up table and call it L0.

3) Calculate the first approximation to q0 =
L0xN and the error term e0 = L0xD.

4) Refine the approximations using the follow-
ing iterative equations:

Li+1 = - ei (1a)
ei+1 = eixLi+1 (1b)
qi+1 = qixLi+1 (1c)

After each iteration of the algorithm, ei appro-
ximates to 1 (the denominator D is multiplied by
1/D) and qi approximates the true quotient Q. No-
tice that equations (1b) and (1c) can be computed in
a parallel approach.

2) The Newton-Raphson algorithm for division

The Newton-Raphson algorithm has two n-bits
inputs N and D, that satisfy 1 ≤ N, D < 2, starting from
an initial approximation to y0=1/D. Equations 1(a) and
1(b) must be executed in a iterative way [27].

p = Dxyi (2a)
yi+1 = yix(2-p) (2b)

After the ith iteration, multiplying Nxyi+1 is yield-
ing an approximation to N/D. The Newton-Raphson
iteration differs from Goldschmidt’s algorithm by refe-
rring to the initial divisor during each iteration [27].

E. The floating-point square root

A generalized algorithm to calculate the FP
square root is described in [14].

1) Let X be a real number represented in IEEE-
754 standard, whose square root is required.

2) Separate the sign, exponent and mantissa of
X adding the 1 hidden bit of the mantissa,
and detecting negative, zero and invalid
inputs. Whether the exponent of X is even
then multiply the mantissa of X by 2.

3) Calculate mantissa results using any of the
algorithms for calculating the square root
presented below. Parallel to this, evaluate the
result of the exponents that is equal to the
exponent of (X + Bias)/2.

4) Finally, concatenate the sign, exponent and
mantissa of the result and remove the hidden
bit of the resulting mantissa.

Tradeoff of FPGA Design of a Floating-point Library for Arithmetic Operators
Muñoz, Sanchez, Llanos, & Rincón

45Journal Integrated Circuits and Systems 2010; v.5 / n.1:42-52

Tradeoff of FPGA Design of a Floating-point Library for Arithmetic Operators
Muñoz, Sanchez, Llanos, & Rincón

46 Journal Integrated Circuits and Systems 2010; v.5 / n.1:42-52

This algorithm deals mainly with the mantissa
calculation because of the resulting exponent is
obtained in a straightforward way. Therefore, this
allows the designer to carry out the mantissa calcula-
tion using both addition and multiplication operations
in fixed-point only, obtaining therefore a less resource
consumption implementation.

1) The Goldschmidt’s algorithm for square root

For a given variable b, this algorithm calculates
sqrt(b), starting from an initial seed equal to 1/sqrt(b),
and the result is improved through an iterative process,
whose number or iterations is defined by the user. This
work takes as reference the algorithm introduced in
[27], who proposed the flowing steps.

Set b0 = b and let y0 be a suitable good approx-
imation to 1/sqrt(b0), such that 1/2 ≤ b0xy0

2 ≤ 3/2.
Set g0 = b0xy0, and h0 = y0/2. Then, for i > 0, in the
ith iteration compute:

ri-1 = 0.5 - gi-1xhi-1 (3a)
gi = gi-1 + gi-1xri-1 (3b)
hi = hi-1 + hi-1xri-1 (3c)

At each iteration, a closer value to sqrt(b) is
computed in g and the variable h approximates to
1/(2xsqrt(b)). This method eliminates the divisions
by two for each iteration and only needs three multi-
pliers and three addition/subtraction modules.
Notice, that a parallel calculation of the equations
(3b) and (3c) is possible.

2) The Newton-Raphson algorithm for square root

For a given b, this algorithm calculates sqrt(b),
starting from an initial seed equal to y0=1/sqrt(b) and
refining it with the following iteration.

yi+1 = 0.5xyix(3-bxyi
2) (4)

After the ith iteration, the variable yi+1 accumu-
lates a more accurate value of 1/sqrt(b). Finally, mul-
tiplying yi+1xb is obtained a value of sqrt(b) [28].

4. HARDWARE IMPLEMENTATIONS

In this section the hardware implementations
of the floating-point arithmetic operators are des-
cribed. All the components are based on the IEEE-
754 standard, supporting exceptions and are parame-
terizable by bit-width for all the arithmetic operators
and also are parameterizable by the number of itera-
tions for both the Goldschmidt’s and the Newton-
Raphson algorithms (in case of division and square
root).

A. FPGA implementation for division

Figures 2a and 2b show the developed
Goldschmidt’s and Newton-Raphson architectures
respectively, for a division operator. As described in
Section 3.D this algorithm operates over mantissa.
Therefore the range of the inputs values is [1,2) and
the seeds (1/D) are stored in a look-up table for dif-
ferent bit-width representations. In this approach, the
number of the seeds to be stored is computed by
dividing the range by the size of the look-up table
(number of words). Successive iterations for refine-
ment of the initial approximation are then executed,
using a Finite State Machine (FSM) controller.

Figure 2. Iterative architecture for division (a) Goldschmidt’s
algorithm (b) Newton-Raphson algorithm

Figure 3. Iterative architecture for square root (a) Goldschmidt’s
algorithm (b) Newton-Raphson algorithm

Initially, the Goldschmidt’s architecture chooses
as initial approximation L1=1/D (stored in the LUT
of seeds) and uses the first two parallel fixed-point
multipliers to compute the values of the quotient
approximation q1=L1xN and the error e1=L1xD. At

the first iteration, the two parallel multiplexers select
between the values of q1 and e1 and a two-comple-
ment operation is performed in order to compute the
value L2 = -e1. Afterward, two parallel fixed-point mul-
tipliers are used to compute the new quotient appro-
ximation q2= q1xL2 and the new error e2 = e1xL2.
Finally, two parallel multiplexers allow the algorithm
to feedback the current approximation and then the
new quotient approximation qi=qi-1xLi and the new
error ei = ei-1xLi are computed. The FSM evaluates
possible exceptions, controls the number of the itera-
tion and synchronizes the hardware components.
After a suitable number of iterations, previously set-up
by the user, the quotient result (qi) represents the
mantissa value result.

The Newton-Raphson architecture starts with
the initial approximation y1=1/D (stored in the LUT
of seeds). The multiplexer selects the first approxima-
tion and then, the fixed-point multiplier is used to
compute the value of p=Dxy0. Afterward, the two-
complement operation is used to compute the value of
(2-p). Finally, a last fixed-point multiplier computes
the value of the new approximation y2=y1x(2-p). This
approximation value is used to compute a new p value
p=Dxy1, which is used to compute the next approxi-
mation yi+1 = yix(2-p). The FSM evaluates possible
exceptions, synchronizes the hardware components
and controls the number of iterations. After a correct
number of iterations, previously set-up, the same
fixed-point multiplexer is used to evaluate the final
approximation Nxyi+1, which represents the mantissa
value result.

It can be observed that Goldschmidt’s architec-
ture yields at each iteration a new approximation of
the final result (namely, N/D), whereas in the
Newton-Raphson architecture each iteration refines
the value of y = 1/D and after n iterations the appro-
ximation to N/D is performed multiplying yxN.

B. FPGA implementation of square root

Figures 3a and 3b respectively show the architec-
ture for computing the square root using Goldschmidt’s
and Newton-Raphson algorithms. According to the gen-
eral algorithm for computing square root, the range of
the input values is [1,4) (where 2M [1,4)) and the seed
(1/sqrt(M)) is stored in the look-up table, being M the
mantissa. Look-up tables of 8, 16, 32, 64 and 128
addressable words are used for storing different initial
seeds that were computed splitting the previous defined
input range depending on the size of the look-up table
(namely, the number of addressable word). Successive
refinements over the partial results are executed in an
iterative process for improving the result. The overall
process is controlled by a FSM, which allows for sharing
multipliers and adders in order to reduce the resources
consumption.

As explained in Section 3, the Goldschmidt’s
architecture operates over the mantissa and computes
the value of sqrt(M). In this case, it selects a an initial
approximation y0=1/sqrt(M) (stored in a LUT of
seeds), the first sqrt(M) approximation is performed
by computing g0 = y0xM and the value h0=y0/2 is
obtained by using a right shift register. Afterward, the
iterative process starts and two parallel multiplexers
select between the first stage approximation and the
next stages approximations. The values g0xh0 and
r1=0.5-g0xh0 are computed in a sequential way.
Finally, two parallel fixed-point multipliers and two
parallel fixed-point adders are used to compute
g1=g0+g0xr0 and h1=h0+h0xr0 in a parallel approach,
where g1 is the new square root approximation. The
FSM supports the exceptions, synchronizes the differ-
ent hardware components and feedback the g1 and h1

values in order to start a new iteration. After a suitable
number of iterations, previously defined by the user,
the value of gi=gi-1+gi-1xri-1 represents the mantissa
value result of the square root.

The Newton-Raphson architecture operates over
the mantissa and computes the value of sqrt(M) as fol-
low. An initial approximation equal to y0 = 1/sqrt(M)
(stored in a LUT of seeds) is upload and the algorithms
starts to iterate. One multiplexer chooses between the
approximation at the first iteration or the other approx-
imations computed on the consecutive iterations.
Afterward, one fixed-point multiplier is used to com-
pute the value of y0

2 and then this result is used to com-
pute the value Mxy0

2. The next two stages compute the
value y1 = y0 (3-Mxy0

2). Finally, a right shift register is
used to divide by two the current result, obtaining a
new square root approximation value that is used in the
next iteration. After a suitable number of iterations,
previously defined by the user, the last approximation
value (yi) represents the mantissa value result of the
square root.

In the Goldschmidt’s algorithm for computing
square root, each iteration approximates a new value
of sqrt(b), as long as in the Newton-Raphson architec-
ture, each iteration refines the value of y=1/sqrt(b) and
after n iterations, the approximation to sqrt(b) is
obtained by multiplying yxb.

5. RESULTS

This section summarizes the synthesis and
simulation results of the proposed circuits. All the
arithmetic cores are based on the IEEE-754 standard
and were validated using four different bit-width
representations (including the simple and double
precision formats) that were implemented, synthe-
sized and simulated in order to obtain the area cost,
elapsed time, power consumption and accuracy of
the proposed circuits.

∋

Tradeoff of FPGA Design of a Floating-point Library for Arithmetic Operators
Muñoz, Sanchez, Llanos, & Rincón

47Journal Integrated Circuits and Systems 2010; v.5 / n.1:42-52

Tradeoff of FPGA Design of a Floating-point Library for Arithmetic Operators
Muñoz, Sanchez, Llanos, & Rincón

48 Journal Integrated Circuits and Systems 2010; v.5 / n.1:42-52

A. Synthesis results

The floating-point cores have been described in
VHDL hardware description language using the Xilinx
ISE 10.1 development tool [29]. Table I presents the
synthesis results of the arithmetic operators using a
Xilinx Virtex5 FPGA family (device xc5vlx110T).

associated to the Goldschmidt’s and Newton-Raphson
implementations for division and square root have
demonstrated that the first algorithm requires more
logic area than the second one.

However, the NR algorithm requires to per-
form more fixed-point multiplications and as a conse-
quence more dedicated DSP blocks are used. It can be

Table I. Synthesis results.

Bit-width Floating-point FF LUTs DSP48Es Freq.
(Exp,Man) core 69120 69120 64 MHz

Add/sub 53 561 8 201.11
Multiplier 27 59 5 587.98

24 Division GS 197 372 10 153.14
(6,17) Division NR 173 279 11 120.59

Square root GS 206 344 14 141.73
Square root NR 128 239 13 144.42

Add/sub 69 962 8 184.58
Multiplier 35 74 5 576.45

32 Division GS 257 496 10 153.14
(8,23) Division NR 227 375 11 120.59
single Square root GS 270 448 14 141.73

precision Square root NR 168 313 13 143.94

Add/sub 91 1420 8 184.19
Multiplier 46 95 7 569.17

43 Division GS 338 648 14 102.82
(11,31) Division NR 300 482 17 87.04

Square root GS 356 646 20 97.50
Square root NR 222 407 22 98.53

Add/sub 134 3150 6 185.67
64 Multiplier 67 250 15 568.10

(11,52) Division GS 527 1256 29 78.65
double Division NR 468 1114 40 70.10

precision Square root GS 568 1907 50 60.16
Square root NR 352 1527 62 60.50

The area cost in registers (FF), Look-up Table
(LUTs) and embedded DPS blocks as well as the per-
formance (given in Mega-Hertz) are presented for dif-
ferent bit-width representations. A Goldschmidt’s im-
plementation is represented by GS and a Newton-
Raphson implementation is represented by NR. These
results were achieved by using 16-addressable words
LUT in the cases of division and square root for both
the Goldschmidt’s and Newton-Raphson architectures.

As expected, large bit-width representations
have a higher area cost and low performance than the
small bit-width representations. The synthesis tool
reports a high performance for the multiplier core
(around 568 MHz). However it is important to take
into account that the large clock frequency supported
by the FPGA device is 500MHz. The GS algorithm
achieves best operational frequency than the NR algo-
rithm for division operator. It can be explained due to
the two parallel approaches for implementing equa-
tions (1b) and (1c). The GS and NR algorithms pres-
ent similar performance for square root operator.

Figures 4, 5 and 6 show that the area cost has
an exponential behavior with the bit-width represen-
tation. All the floating-point cores are feasible imple-
mented in terms of registers (Flip-flops), LUTs, and
DSP48E blocks.

It can be observed that the addition/subtrac-
tion core is more expensive than the other operators.
A comparison between the experimental cost in area

Figure 4. Flip-flops consumption

Figure 5. LUTs Consumption

Figure 6. DSP48Es consumption

observed that in the case of a double precision format
(64-bit), the square root core consumes a significant
number of DSP blocks, specifically for Newton-
Raphson implementation, limiting the hardware
resources for applications where a large number of
arithmetic operations are required.

This problem can be overcome by implement-
ing the floating-point multipliers using the available
logic area. However, in this case a low performance
penalty must be considered due to the fact that the
implemented multipliers over the Configurable Logic
Blocks will have lower performance than the dedicat-
ed ones (which are implemented in the DSP blocks).

The XC5VLX110T is not the largest device
from the Virtex5-LX FPGA family. However, according
to the synthesis results, there are around 97% of the
available FF and LUTs to implement other hardware
components or pipeline architectures. Although large
bit-width representations allow high precision compu-
tations, the large area cost associated to the floating-
point solution is a critical problem if compared with
fixed-point approaches [30], [31], [32], [33].

As shown in Section 3, the developed architec-
tures for division and square root are based on itera-
tive algorithms. Therefore, in order to analyze the
tradeoff between area cost and error associated in the
FPGA design of floating-point arithmetic cores is
important to address simulation results for different
bit-width and number of iterations.

B. Simulation results

The implemented operators were simulated
using the ModelSim 6.3g simulator tool [16] after the
placement and routing (PAR) process. A simulation
environment to validate the behavior of the floating-
point units was developed in Matlab® R2008a. One
hundred random floating-point test vectors for each
bit-width representation were used for each experi-
ment and afterward the same were addressed as inputs
of each arithmetic operator. The binary floating-point
results were analyzed in the simulator environment in
order to calculate the MSE of the implemented cores,
for which the Matlab® results (which operates in a
double precision format) were used as an statistical
estimator.

Table II and III present the MSE and maximum
absolute error achieved for each arithmetic core using
different bit-width representations. Addition/ subtrac-
tion, multiplication and division cores were evaluated
using 100 random input values between -1000 and
1000 and the square root core was tested using 100
random input values between 0 and 1000. The division
and square root operators were calculated using 5 iter-
ations and a 16-addressable words look-up table. As
expected the best error results were achieved in the case
of a double precision format and large errors are pre-

sented when using the 24 bit-width representation,
specifically for the multiplier core, in which errors are
introduced due to truncation problems.

The simple extended precision (43-bit imple-
mentation) achieves satisfactory results taking advan-
tage of a small area cost which allows for increasing
the throughput and performance, being suitable for a
wide range of embedded applications.

Figure 7 summarizes the best MSE values
achieved for different bit-width representations. It can
be observed that the MSE for the multiplier and the
add/sub cores is bigger than for the MSE of the divi-
sion and the square root operators. This behavior can
be explained because the successive refinements per-
formed by Goldschmidt’s and Newton-Raphson algo-
rithms for computing the division and the square root
accelerate convergence (and thus precision) of the
computations based on these methods.

Figure 7. MSE order of magnitude

Table II. MSE results. 16 LUT size and 5 Iterations

Floating-point
Core Bit-width (Exp,Man)

24 (6,17) 32 (8,23) 43 (11,31) 64 (11,52)

Add/sub 2.27E-07 2.76E-11 3.24E-15 1.26E-17
Multiplier 9.53E-04 1.53E-07 1.49E-11 5.87E-16
Division GS 9.27E-11 3.71E-12 3.16E-23 1.99E-25
Division NR 5.10E-11 3.82E-13 8.70E-24 1.99E-25
Square root GS 2.91E-08 8.62E-12 3.31E-20 1.94E-24
Square root NR 3.04E-08 8.48E-12 8.86E-21 1.94E-24

Table III. Maximum absolute error. 16 LUT size and 5 Iterations

Floating-point
Core Bit-width (Exp,Man)

24 (6,17) 32 (8,23) 43 (11,31) 64 (11,52)

Add/sub 1.02E-02 1.70E-04 1.15E-06 9.30E-07
Multiplier 9.09E-02 1.43E-03 1.19E-05 6.83E-06
Division GS 7.23E-04 6.32E-06 5.34E-07 1.90E-08
Division NR 5.15E-04 2.02E-06 2.95E-07 1.90E-08
Square root GS 7.60E-04 1.39E-5 6.32E-08 1.89E-08
Square root NR 4.91E-04 7.38E-06 3.00E-08 1.89E-08

Tradeoff of FPGA Design of a Floating-point Library for Arithmetic Operators
Muñoz, Sanchez, Llanos, & Rincón

49Journal Integrated Circuits and Systems 2010; v.5 / n.1:42-52

The MSE and area cost for division and square
root operators can be slightly adjusted by modifying
the size of the LUT to store the initial seeds. Table IV
shows the MSE achieved for different size of look-up

Tradeoff of FPGA Design of a Floating-point Library for Arithmetic Operators
Muñoz, Sanchez, Llanos, & Rincón

50 Journal Integrated Circuits and Systems 2010; v.5 / n.1:42-52

table, using a simple precision implementation (32
bits). The division core achieves the lower MSE using
a LUT of 8 and 16-addressable words for Gold-
schmidt’s and Newton-Raphson implementations
respectively. The MSE for square root presents similar
behavior for both Goldschmidt’s and Newton-Raphson
architectures, achieving the lower order of magnitude
by using a LUT of 16-addressable words. It is
observed that the LUT size does not affect signifi-
cantly the MSE value; however, it can increase the area
cost large enough to affect the performance of the
arithmetic operator itself [14].

Taking into account the results presented in
Tables II, III and IV the best tradeoff between area
cost and error associated can be achieved by using a
single format or single extended format, a LUT of 8-
addressable words in the case of the division using the
Goldschmidt’s algorithm and a LUT of 16-addressable
words for the other cases. Therefore, these conditions
can be used for addressing several simulations in order
to analyze the tradeoff between the elapsed time
against the error associated.

Table V shows the MSE behavior for different
number of iterations, denoted by NI, using the best
conditions described above. It can be observed that
the lower order of magnitude of MSE is achieved for
3 iterations in all cases. The MSE grows slowly due to
the round error propagated from the initial approxi-
mation. The error due to round-off after i iterations
may be slightly over i/2 ulp (Unit of Least Precision)
[27]. Additionally, the elapsed time given in clock
cycles and denoted by cc, is presented for the
Goldschmidt’s and Newton-Raphson algorithms com-
puting the division and square root operators. As
expected, the number of clock cycles increases linear-
ly with the number of iterations. The square root
operator requires more clock cycles than the division
operator.

High-performance embedded systems require
to operate not only with high frequency and high
accuracy computations, but also with a low power
consumption. Therefore, one important design crite-
ria in the hardware implementation of digital circuits
is the power consumption. Table VI presents the
power consumption estimation for the developed
architectures for different bit-width representations.
Each one of the arithmetic operators were simulated
(post-placement and routing process) using the same
testbench to generate the respective Value Change
Dump (VCD) files, which were used to provide stim-
ulus data and toggle rates as input model of the
Xpower Analyzer® tool (XPA) [34]. The XPA tool
determines the total quiescent device power and
dynamic power consumption. The quiescent power is
represented by the addition of two main components,
(1) the power consumed by the device when it is pow-

ered up without programming the user logic and (2)
the power consumed by the user logic when the
device is programmed and without any switching
activity. On the other hand, the dynamic power con-
sumption represents the power consumed when there
is switching activity.

According to the power consumption estima-
tion, the multiplier core requires more quiescent
power than the addition/subtraction core, even
requiring a less dynamic power. As expected, the dou-
ble-precision format (64-bit) requires more power
than the other bit-width representations. A compari-
son between the Goldschmidt’s and Newton-Raphson
architectures shows that both algorithms present sim-
ilar quiescent power consumption. However, the first
one requires more dynamic power for the division
core, where as the Newton-Raphson approach requires
more dynamic power consumption for the square root
operator.

There is a tradeoff between four main variables,
namely, area cost, error, elapsed time and power con-
sumption, which can be improved by selecting a suit-
able value for three parameters, namely: bit-width pre-
cision, number of iterations and size of look-up table.
The tradeoff analysis between the bit-width against
cost in area and experimental error associated have
pointed out that the Newton-Raphson architecture
performs better than the Goldschmidt’s one. The
Newton-Raphson implementation achieves small error
results than the Goldschmidt’s implementation and
requires less logic area and DSP blocks. Table VII
shows a qualitative analysis among the three design
parameters and the main variables for circuit design of
arithmetic operators.

Table IV. MSE for variable LUT sizes and 3 iterations

Core LUT size MSE Gold- MSE Newton-
schmidt's Raphson

Division 4 3.63E-11 3.41E-11
8 3.67E-13 1.19E-11
16 3.71E-12 3.82E-13
32 3.87E-12 3.81E-13
64 1.57E-12 1.57E-12

Square root 4 2.14E-11 1.81E-11
8 8.62E-12 8.48E-12
16 7.45E-12 6.71E-12
32 7.24E-12 6.25E-12
64 1.24E-11 5.93E-12

Table V. MSE and elapsed time in clock cycles (cc) for variable itera-tions
(NI) and a 32-bits implementation.

NI Goldschmidt's Newton-Raphson
division cc sqrt cc division cc sqrt cc

3 3.7E-13 10 8.62E-12 25 3.82E-13 11 8.48E-12 16
5 7.7E-12 14 2.70E-11 34 3.72E-13 15 6.96E-12 24
7 3.4E-11 18 3.63E-11 43 3.72E-13 19 6.31E-12 32
9 8.1E-11 22 3.63E-11 52 3.72E-13 23 6.30E-12 40
11 1.5E-10 26 3.63E-11 61 3.72E-13 27 6.96E-12 48

6. CONCLUSIONS

This work describes an FPGA implementation
of a floating-point library for arithmetic operators,
including addition/subtraction, multiplication, divi-
sion and square root. The floating-point cores for
division and square root were developed using the
Goldschmidt’s and Newton-Raphson algorithms. The
implemented cores are based on the IEEE-754 format
and were described in VHDL.

A tradeoff analysis was performed allowing the
designer to choose, for general purpose applications,
the suitable bit-width representation and error associ-
ated, as well as the area cost, elapsed time and power
consumption for each arithmetic operator. The addi-
tion/subtraction core requires more hardware
resources than the multiplier core. However the last
one consumes more embedded DSP blocks for large
bit-width representations. The addition core requires
more dynamic power consumption than the multipli-
er; however, due to the large DSP blocks required by
the multiplier it is more expensive in terms of quies-
cent power consumption. Although the MSE presents
similar behavior for both, Goldschmidt’s and Newton-
Raphson iterative architectures, the main advantage of
the Newton-Raphson architecture is the lower hard-
ware resources consumption (Flip-flops and LUTs)

where as the Goldschmidt’s architecture requires less
dynamic power consumption. The tradeoff between
bit-width representation and error associated demon-
strates that the LUT size does not affect significantly
the MSE value. However, it can increase the area cost
large enough to affect the performance of the arith-
metic operator itself.

Synthesis results have demonstrated that FPGAs
are a feasible solution for implementing floating-point
arithmetic operators. The logic area consumption is sat-
isfactory in all the cases allowing the algorithms to be
implemented using a pipeline approach. However, the
large number of dedicated DSP blocks required by
large bit-width representations is a critical parameter.
Satisfactory performance results were achieved for all
the arithmetic cores. The square root cores have the
lower performance, around 60 MHz for a double-pre-
cision implementation and around 143 MHz for a sin-
gle-precision implementation.

As future works we intend to include rounding
methods for improving the accuracy of the arithmetic
operators. Also, an optimized compromise between
the tradeoff variables can be performed in order to
minimize the area cost, error, elapsed time and power
consumption of the arithmetic operators.

REFERENCES

[1] S. Kilts, Advanced FPGA Design, Architecture,
Implementation and Optimization, John Wiley & Sons, New
Jersey, United States: 2007, pp. 117-139.

[2] U. Meyer-Baese, Digital Signal Processing with Field
Programmable Gate Arrays, Springer, Berlin, Germany:
2001, pp. 29-79.

[3] Y. Kung, K. Tseng, H. Sze and A. Wang, “FPGA implementa-
tion of inverse kinematics and servo controller for robot
manipulator,” in Proceedings of the IEEE Conference on
Robotics and Biomimetics, 2006, pp. 1163-1168.

[4] M. Ibne, S. Islam and M. Sulaiman, “Pipeline floating point
ALU design using VHDL,” in Proceedings of the IEEE
Conference on Semiconductor Electronics, 2002, pp. 204-
208.

[5] S. Hauck and A. Dehon, Reconfigurable Computing. The
Theory and Practice of FPGA-based Computing, Elsevier,
Burlington, United States: 2008, pp. 62-63.

[6] Y. Zhou and Y. Tan, “GPU-based parallel particle swarm opti-
mization,” in Proceedings of the IEEE Conference on
Evolutionary Computation, 2009, pp. 1493-1500.

[7] L. Veronese and R. Krohling, “Swarms’s Flight: Accelerating
the particles using C-CUDA,” in Proceedings of the IEEE
Conference on Evolutionary Computation, 2009, pp. 3264-
3270.

[8] G. Govindu, R. Scrofano and V. Prasanna, “A Library of para-
meterizable floating-point cores for FPGAs and their appli-
cation to scientific computing,” in Proceedings of the IEEE
Conference on Engineering of Reconfigurable Systems and
Algorithms, 2005, pp. 137-148.

[9] B. Lee, and N. Burgess, “Parameterizable Floating-point
operations on FPGA,” in Proceedings of the Conference on
Signals, Systems and Computers, 2002, pp. 137-148.

[10] X. Wang, Variable Precision Floating-point Divide and

Table VI. Power consumption (Watts)

Floating- Bit-width (Exp,Man)
point Core

Power 24 32 43 64
(6,17) (8,23) (11,31) (11,52)

Add/sub Quiescent 0.959 0.959 0.959 0.961
Dynamic 0.011 0.011 0.016 0.033

Total 0.970 0.970 0.975 0.994

Multiplier Quiescent 1.095 1.095 1.095 1.095
Dynamic 0.006 0.006 0.009 0.013

Total 1.101 1.101 1.104 1.108

Division Quiescent 0.960 0.960 0.960 0.964
Gold- Dynamic 0.018 0.023 0.021 0.062
schmidt's Total 0.978 0.983 0.981 1.025

Division Quiescent 0.959 0.959 0.960 0.963
Newton- Dynamic 0.013 0.016 0.023 0.059
Raphson Total 0.972 0.975 0.983 1.023

Sqrt Quiescent 0.960 0.960 0.960 0.964
Gold- Dynamic 0.017 0.017 0.025 0.065
schmidt's Total 0.977 0.977 0.985 1.029

Sqrt Quiescent 0.960 0.960 0.962 0.977
Newton- Dynamic 0.016 0.020 0.050 0.218
Raphson Total 0.976 0.980 1.012 1.195

Table VII. Qualitative tradeoff dependence

Parameter / variable Area cost Error Elapsed time Power

Bit-width pre-cision High High Not depend High

Number itera-tions Not depend High High Not depend

LUT size Low Low Low Low

Tradeoff of FPGA Design of a Floating-point Library for Arithmetic Operators
Muñoz, Sanchez, Llanos, & Rincón

51Journal Integrated Circuits and Systems 2010; v.5 / n.1:42-52

Tradeoff of FPGA Design of a Floating-point Library for Arithmetic Operators
Muñoz, Sanchez, Llanos, & Rincón

52 Journal Integrated Circuits and Systems 2010; v.5 / n.1:42-52

Square Root for Efficient FPGA Implementation of Image
and Signal Processing Algorithm, Doctoral Thesis,
Northeastern University, 2007.

[11] T. Kwon, J. Sondeen and J. Draper, “Floating-Point division
and square root implementation using a Taylor-series expan-
sion algorithm with reduced look-up tables,” in Proceedings
of the IEEE Symposium on Circuits and Systems, 2008, pp.
954-957.

[12] C. Shuang-yan, W. Dong-hui, Z. Tie-jun and H. Chao-huan,
“Design and implementation of a 64/32-bit floating-point divi-
sion, reciprocal, square root, and inverse square root unit,”
in Proceedings of the IEEE Conference on Solid-Stated and
Integrated Circuit Technology, 2006, pp. 1976-1979.

[13] X. Wang and B. Nelson, “Trade-off of designing floating-point
division and square root on Virtex FPGAs,” in Proceedings of
the IEEE Symposium on Field Programmable Custom
Computing Machines, 2003, pp. 195-203.

[14] D. Sánchez, D. Muñoz, C. Llanos, and M. Ayala-Rincón,
“Parameterizable floating-point library for arithmetic opera-
tions in FPGAs,” in Proceedings of the ACM Symposium on
Integrated Circuits and System Design, 2009, pp. 253-258.

[15] IEEE standards Board, “IEEE standard for binary floating-
point arithmetic,” Technical Report ANSI/IEEE Std. 754-
1985, The Institute of Electrical and Electronic Engineers,
1985.

[16] ModelSim, 2009, [Online]: <http://www.model.com>

[17] B. Fagin and C. Renard, “Field programmable gate arrays
and floating point arithmetic,” in IEEE Transactions on VLSI
Systems, vol. 2, no. 3, 1994, pp. 365-367.

[18] L. Louca, T. Cook and W. Johnson, “Implementation of IEEE
single precision floating point addition and multiplication on
FPGAs,” in Proceedings of the IEEE Symposium on FPGAs
Custom Computing Machines, 1996, pp. 107-116.

[19] W. Ligon, S. McMillan, G. Monn, K. Schoonover, F. Stivers
and K. Underwood, “A re-evaluation of the practicality of
floating-point operations on FPGAs,” in Proceedings of the
IEEE Symposium on Field Programmable Custom
Computing Machines, 1998, pp. 206-215.

[20] M. Beauchamp, S. Hauck, K. Underwood and K. Hemmert,
“Embedded floating-point units in FPGAs,” in Proceedings of
the ACM Symposium on Field Programmable Gate Arrays,
2006, pp. 12-20.

[21] J. Liang, R. Tessier and O. Mencer “Floating point unit gen-
eration and evaluation for FPGAs,” in Proceedings of the
IEEE Symposium on Field Programmable Custom
Computing Machines, 2003, pp. 185-194.

[22] K. Underwood, “FPGAs vs. CPUs: Trends in Peak Floating-
point performance,” in Proceedings of the ACM Symposium
on Field Programmable Gate Arrays, 2004, pp. 171-180.

[23] Y. Li and W. Chu, “Implementation of single precision floating
point square root on FPGAs,” in Proceedings of the IEEE
Symposium on Custom Computing Machines, 1997, pp.
226-232.

[24] P. Montuschi and P. Mezzalama, “Survey of square rooting
algorithms,” in IEEE Transactions on Computers and Digital
Techniques, vol. 137, no. 1, 1990, pp. 31-40.

[25] Processor Architecture, NIOS II Reference Handbook, 2008,
[Online]: <http://www.altera.com>

[26] R. Goldschmidt, Applications of division by convergence,
Master’s Thesis, Massachusetts Institute of Technology,
1964.

[27] P. Markstein, “Software division and square root using
Goldschmidt’s algorithms,” in Proceedings of the Conference
on Real Nambers ans Computers, 2004, pp. 146-157.

[28] P. Soderquist and M. Leeser, “Division and square root
choosing the right implementation,” in IEEE Micro, vol. 17,
no. 4, 1997, pp. 56-66.

[29] ISE 10.1 Development tool, Quick Start Tutorial, 2009,
[Online]: <http://xilinx.com>

[30] G. Sutter, J. Deschamps, “High speed fixed point dividers for
FPGAs,” in Proceedings of the IEEE Conference on Field
Programmable Logic and Applications, 2009, pp. 448-452.

[31] J. Piromsopa, C. Aporntewan and P. Chongsatitvatana, “An
FPGA implementation of a fixed-point square root opera-
tion,” in Proceedings of the IEEE Symposium on communi-
cation and Information Technologies, 2001, pp. 587-589.

[32] J. Mailloux, S. Simard, R. Beguenane, “Implementation of
division and square root using XSG for FPGA-based vector
control drivers,” in IEEE Transactions on Electrical and
Power Engineering, vol. 5, no. 1, 2007, pp. 524-529.

[34] J. Deschamps, G. Bioul and G. Sutter, Synthesis of
Arithmetic Circuits, John Wiley & Sons, New Jersey, United
States: 2006, pp. 109-165.

[35] Xpower Tutorial: FPGA Design, 2009 [Online]: <ftp://ftp.xil-
inx.com/pub/documentation/tutorials/>

