
 Open access Book Chapter DOI:10.1007/11534273_34

Tradeoffs between branch mispredictions and comparisons for sorting algorithms
— Source link

Gerth Stølting Brodal, Gabriel Moruz

Institutions: Aarhus University

Published on: 15 Aug 2005 - Workshop on Algorithms and Data Structures

Topics: Branch misprediction, Branch predictor, Sorting algorithm and Sorting

Related papers:

 Super Scalar Sample Sort

 Dataflow analysis of branch mispredictions and its application to early resolution of branch outcomes

 How branch mispredictions affect quicksort

 Implementing Quicksort programs

 Optimal Sampling Strategies in Quicksort and Quickselect

Share this paper:

View more about this paper here: https://typeset.io/papers/tradeoffs-between-branch-mispredictions-and-comparisons-for-
h5sj43h3pt

https://typeset.io/
https://www.doi.org/10.1007/11534273_34
https://typeset.io/papers/tradeoffs-between-branch-mispredictions-and-comparisons-for-h5sj43h3pt
https://typeset.io/authors/gerth-stolting-brodal-2s14gbln8w
https://typeset.io/authors/gabriel-moruz-2y031upjyx
https://typeset.io/institutions/aarhus-university-2s1zo7wa
https://typeset.io/conferences/workshop-on-algorithms-and-data-structures-1ug1b4ke
https://typeset.io/topics/branch-misprediction-1ulmo5m9
https://typeset.io/topics/branch-predictor-168mdrcz
https://typeset.io/topics/sorting-algorithm-3ldtsrck
https://typeset.io/topics/sorting-pc6su59o
https://typeset.io/papers/super-scalar-sample-sort-ozft49417l
https://typeset.io/papers/dataflow-analysis-of-branch-mispredictions-and-its-w6z3qfy1fp
https://typeset.io/papers/how-branch-mispredictions-affect-quicksort-49z0o18pwp
https://typeset.io/papers/implementing-quicksort-programs-3gywlbqjop
https://typeset.io/papers/optimal-sampling-strategies-in-quicksort-and-quickselect-2h4ttcg85s
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/tradeoffs-between-branch-mispredictions-and-comparisons-for-h5sj43h3pt
https://twitter.com/intent/tweet?text=Tradeoffs%20between%20branch%20mispredictions%20and%20comparisons%20for%20sorting%20algorithms&url=https://typeset.io/papers/tradeoffs-between-branch-mispredictions-and-comparisons-for-h5sj43h3pt
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/tradeoffs-between-branch-mispredictions-and-comparisons-for-h5sj43h3pt
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/tradeoffs-between-branch-mispredictions-and-comparisons-for-h5sj43h3pt
https://typeset.io/papers/tradeoffs-between-branch-mispredictions-and-comparisons-for-h5sj43h3pt

Tradeoffs Between Branch Mispredictions and

Comparisons for Sorting Algorithms

Gerth Stølting Brodal1,⋆ and Gabriel Moruz1

BRICS⋆⋆, Department of Computer Science, University of Aarhus, IT Parken,
Åbogade 34, DK-8200 Århus N, Denmark. E-mail: {gerth,gabi}@daimi.au.dk

Abstract. Branch mispredictions is an important factor affecting the
running time in practice. In this paper we consider tradeoffs between
the number of branch mispredictions and the number of comparisons for
sorting algorithms in the comparison model. We prove that a sorting
algorithm using O(dn log n) comparisons performs Ω(n log

d
n) branch

mispredictions. We show that Multiway MergeSort achieves this tradeoff
by adopting a multiway merger with a low number of branch mispredic-
tions. For adaptive sorting algorithms we similarly obtain that an algo-
rithm performing O(dn(1 + log(1 + Inv/n))) comparisons must perform
Ω(n log

d
(1 + Inv/n)) branch mispredictions, where Inv is the number of

inversions in the input. This tradeoff can be achieved by GenericSort by
Estivill-Castro and Wood by adopting a multiway division protocol and
a multiway merging algorithm with a low number of branch mispredic-
tions.

1 Introduction

Modern CPUs include branch predictors in their architecture. Increased CPU
pipelines enforce the prediction of conditional branches that enter the execution
pipeline. Incorrect predictions determine the pipeline to be flushed with the
consequence of a significant performance loss (more details on branch prediction
schemes can be found in Section 2).

In this paper we consider comparison based sorting algorithms, where we
assume that all element comparisons are followed by a conditional branch on the
outcome of the comparison. Most sorting algorithms satisfy this property. Our
contributions consist of tradeoffs between the number of comparisons required
and the number of branch mispredictions performed by deterministic comparison
based sorting and adaptive sorting algorithms.

We prove that a comparison based sorting algorithm performing O(dn log n)
comparisons uses Ω(n logd n) branch mispredictions. We show that a variant
of Multiway MergeSort adopting a d-way merger with a low number of branch
mispredictions can achieve this tradeoff.

⋆ Supported by the Carlsberg Foundation (contract number ANS-0257/20) and the
Danish Natural Science Foundation (SNF).

⋆⋆ Basic Research in Computer Science, www.brics.dk, funded by the Danish National
Research Foundation.

A well known result concerning sorting is that an optimal comparison based
sorting algorithm performs Θ(n log n) comparisons [4, Section 9.1]. However, in
practice, there is often the case that the input sequence is nearly sorted. In such
cases, one would expect a sorting algorithm to be faster than on random input
inputs. To quantify the presortedness of a given sequence, several measures of

presortedness have been proposed. A common measure of presortedness is the
number of inversions in the input, Inv, formally defined by Inv(X) = |{(i, j) |
i < j ∧ xi > xj}| for a sequence X = (x1, . . . , xn).

A sorting algorithm is denoted adaptive if its time complexity is a function
that depends both on the size of the input sequence and the presortedness exis-
tent in the input [14]. For a survey concerning adaptive sorting algorithms and
definitions of different measures of presortedness refer to [6].

For comparison based adaptive sorting algorithms we prove that an algorithm
that uses O(dn(1 + log(1 + Inv/n))) comparisons performs Ω(n logd(1 + Inv/n))
branch mispredictions. This tradeoff is achieved by GenericSort introduced by
Estivill-Castro and Wood [5] by adopting a d-way division protocol and d-way
merging that performs a low number of branch mispredictions. The division pro-
tocol is a d-way generalization of the binary greedy division protocol considered
in [1].

In [2] it was shown that the number of mispredictions performed by standard
binary MergeSort is adaptive with respect to the measure Inv. The number of
comparisons and branches performed is O(n log n) but the number of branch
mispredictions is O(n log(Inv/n)), assuming a dynamic prediction scheme that
predicts the next outcome of a branch based on the previous outcomes of the
same branch.

Sanders and Winkel [15] presented a version of distribution sort that ex-
ploited special machine instructions to circumvent the assumption that each
comparison is followed by a conditional branch. E.g. does the Intel Itanium 2
have a wide variety of predicated instructions, i.e. instructions that are executed
even if its predicate is false, but the results of that instruction are not committed
into program state if the predicate is false. Using predicated instructions Heap-
Sort [7, 16] can be implemented to perform O(n log n) comparisons, O(n log n)
predicated increment operations, and O(n) branch mispredictions (assuming a
static prediction scheme, see Section 2), by simply using a predicated increment
operation for choosing the right child of a node during the bubble-down phase
of a deletemin operation.

The rest of the paper is structured as follows. In Section 2 we give an overview
of the different branch predictions schemes implemented in the nowadays CPUs.
In Section 3 we prove lower bound tradeoffs between the number of compar-
isons and the number of branch mispredictions for comparison based sorting
and adaptive sorting algorithms. Matching upper bounds are provided in Sec-
tions 4 and 5, where we show how variants of multiway MergeSort and Generic-
Sort, respectively, achieve the optimal tradeoffs between comparisons and branch
mispredictions.

2 Branch prediction schemes

Branch mispredictions are an important factor affecting the running time in prac-
tice [9]. Nowadays CPUs have high memory bandwidth and increased pipelines,
e.g. Intel Pentium IV Prescott has a 31 stage pipeline. The high memory band-
width severely lowers the effect of caching over the actual running time when
computation takes place in the internal memory.

When a conditional branch enters the execution pipeline of the CPU, its out-
come is not known and therefore must be predicted. If the prediction is incorrect,
the pipeline is flushed as it contains instructions corresponding to a wrong exe-
cution path. Obviously, each branch misprediction results in performance losses,
which increase with the length of the pipeline.

Several branch prediction schemes have been proposed. A classification of
the branch prediction schemes is given in Figure 1.

GAg

Static

Local

Dynamic

Global

gshare

Branch prediction schemes

gselect · · ·

Fig. 1. A classification of the branch prediction schemes. The most popular branch
predictors in each category are emphasized.

In a static prediction scheme, every branch is predicted in the same direction
every time according to some simple heuristics, e.g. all forward branches taken,
all backward branches not taken. Although simple to implement, their accuracy
is low and therefore they are not widely used in practice.

The dynamic schemes use the execution history when predicting a given
branch. In the local branch prediction scheme (see Figure 2, left) the direction of
a branch is predicted using its past outputs. It uses a pattern history table (PHT)
to store the last branch outcomes, indexed after the lower n bytes of the address
of the branch instruction. However, the direction of a branch might depend on the
output of other previous branch instructions and the local prediction schemes
do not take advantage of it. To deal with this issue global branch prediction
schemes were introduced [17]. They use a branch history register (BHR) that
stores the outcome of the most recent branches. The different global prediction
schemes vary only in the way the prediction table is looked up.

Three global branch prediction schemes proved very effective and are widely
implemented in practice [13]. The GAg (Figure 2, middle) uses only the last m
bits of the BHR to index the pattern history table, while gshare address the PHT

by xor-ing the last bits n of the branch address with the last m bits of the BHR.
Finally gselect concatenates the BHR with the lower bits of the branch address
to obtain the index for the PHT.

n m m n

outcomeoutcomeoutcome

predictionpredictionprediction

PCBHRBHRPC

PHT PHTPHT

XOR

gsharelocal GAg

Fig. 2. Branch misprediction schemes.

The predictions corresponding to the entries in the PHT are usually obtained
by the means of two-bit saturating counters. A two-bit saturating counter is an
automaton consisting of four states, as shown in Figure 3.

Not taken Not taken Not taken Not taken

TakenTakenTakenTaken

Predicted Taken Predicted not taken

00011011

Fig. 3. Two-bit saturating counter.

Note that for the dynamic branch prediction schemes the same index in
the PHT might correspond to several branches which would affect each other’s
predictions, constructively or destructively. This is known as the aliasing effect

and reducing its negative effects is one of the main research areas in branch
prediction schemes design.

Much research has been done on modeling branch mispredictions, especially
in static analysis for upper bounding the worst case execution time (also known
as WCET) [3, 11]. However, the techniques proposed involve too many hardware

details and are too complicated to be used for giving branch misprediction com-
plexities for algorithms. For the algorithms introduced in this paper, we show
that even using a static branch prediction scheme, we can yield algorithms that
achieve the lower bound tradeoffs between the number of comparisons and the
number of branch mispredictions performed.

3 Lower bounds for sorting

In this section we consider deterministic comparison based sorting algorithms
and prove lower bound tradeoffs between the number of comparisons and the
number of branch mispredictions performed, under the assumption that each
comparison between two elements in the input is immediately followed by a
conditional branch that might be predicted or mispredicted. This property is
satisfied by most sorting algorithms.

Theorem 1 introduces a worst case tradeoff between the number of compar-
isons and the number of branch mispredictions performed by sorting algorithms.

Theorem 1. Consider a deterministic comparison based sorting algorithm A
that sorts input sequences of size n using O(dn log n) comparisons, d > 1. The

number of branch mispredictions performed by A is Ω(n logd n).

Proof. Let T be the decision tree corresponding to A (for a definition of decision
trees see e.g. [4, Section 9.1]). By assumption, each node in the tree corresponds
to a branch that can be either predicted or mispredicted. We label the edges
corresponding to mispredicted branches with 1 and the edges corresponding to
correctly predicted branches with 0. Each leaf is uniquely labeled with the labels
on the path from the root to the given leaf. Assuming the depth of the decision
tree is at most D and the number of branch mispredictions allowed is k, each
leaf is labeled by a sequence of at most D 0’s and 1’s, containing at most k 1’s.
By padding the label with 0’s and 1’s we can assume all leaf labels have length
exactly D + k and contain exactly k 1’s. It follows that the number of labelings
is at most the binomial coefficient

(

D+k
k

)

and therefore the number of leaves is

at most
(

D+k
k

)

.

Denoting the number of leaves by N ≥ n!, we obtain that
(

D+k
k

)

≥ N , which

implies log
(

D+k
k

)

≥ log N . Using log
(

D+k
k

)

≤ k(O(1) + log D
k

) we obtain that:

k

(

O(1) + log
D

k

)

≥ log N . (1)

Consider D = δ log N and k = ε log N , where δ ≥ 1 and ε ≥ 0. We obtain:

ε log N

(

O(1) + log
δ

ε

)

≥ log N ,

and therefore ε
(

O(1) + log δ
ε

)

≥ 1. Using δ = O(d) we obtain ε = Ω(1/ log d).
Taking into account that log N ≥ log(n!) = n logn − O(n) we obtain k =
Ω(n logd n). ⊓⊔

Manilla [12] introduced the concept of optimal adaptive sorting algorithms.
Given an input sequence X and some measure of presortedness M , consider
the set below(X, M) of all permutations Y of X such that M(Y) ≤ M(X).
Considering only inputs in below(X, M), a comparison based sorting algorithm
performs at least log |below(X, M)| comparisons in the worst case. In particu-
lar, an adaptive sorting algorithm that is optimal with respect to measure Inv
performs O(n(1 + log(1 + Inv/n))) comparisons [6].

Theorem 2 introduces a worst case tradeoff between the number of compar-
isons and the number of branch mispredictions for comparison based sorting
algorithms that are adaptive with respect to measure Inv.

Theorem 2. Consider a deterministic comparison based sorting algorithm A
that sorts an input sequence of size n using O(dn(1 + log(1 + Inv/n))) compar-

isons, where Inv denotes the number of inversions in the input. The number of

branch mispredictions performed by A is Ω(n logd(1 + Inv/n)).

Proof. We reuse the proof of Theorem 1 by letting N = |below(X, M)|, for an
input sequence X .

Using (1), with the decision tree depth D = δn(1 + log(1 + Inv/n)) when
restricted to inputs in below(X, M), k = εn(1 + log(1 + Inv/n)) branch mispre-
dictions, and log N = Ω(n(1 + log(1 + Inv/n))) [8], we obtain:

εn

(

1 + log

(

1 +
Inv

n

)) (

O(1) + log
δ

ε

)

= Ω

(

n

(

1 + log

(

1 +
Inv

n

)))

.

This leads to:

ε

(

O(1) + log
δ

ε

)

= Ω(1) ,

and therefore ε = Ω (1/ log δ). Taking into account that δ = O(d) we obtain that
ε = Ω(1/ log d), which leads to k = Ω(n logd(1 + Inv/n)). ⊓⊔

Using a similar technique, lower bounds for other measures of presortedness
can be obtained. For comparison based adaptive sorting algorithms, Figure 4
states lower bounds on the number of branch mispredictions performed in the
worst case, assuming the given upper bounds on the number of comparisons. For
definitions of different measures of presortedness, refer to [6].

4 An optimal sorting algorithm

In this section we introduce Insertion d-way MergeSort. It is a variant of d-way
MergeSort that achieves the tradeoff stated in Theorem 1 by using an insertion
sort like procedure for implementing the d-way merger. The merger is proven to
perform a linear number of branch mispredictions.

We maintain two auxiliary vectors of size d. One of them stores a permutation
π = (π1, . . . , πd) of (1, . . . , d) and the other one stores the indices in the input
of the current element in each subsequence i = (iπ1 , . . . , iπd

), such that the

Measure Comparisons Branch mispredictions

Dis O(dn(1 + log(1 + Dis))) Ω(n log
d
(1 + Dis))

Exc O(dn(1 + Exc log(1 + Exc))) Ω(nExc log
d
(1 + Exc))

Enc O(dn(1 + log(1 + Enc))) Ω(n log
d
(1 + Enc))

Inv O(dn(1 + log(1 + Inv/n))) Ω(n log
d
(1 + Inv/n))

Max O(dn(1 + log(1 + Max))) Ω(n log
d
(1 + Max))

Osc O(dn(1 + log(1 + Osc/n))) Ω(n log
d
(1 + Osc/n))

Reg O(dn(1 + log(1 + Reg))) Ω(n log
d
(1 + Reg))

Rem O(dn(1 + Rem log(1 + Rem))) Ω(nRem log
d
(1 + Rem))

Runs O(dn(1 + log(1 + Runs))) Ω(n log
d
(1 + Runs))

SMS O(dn(1 + log(1 + SMS))) Ω(n log
d
(1 + SMS))

SUS O(dn(1 + log(1 + SUS))) Ω(n log
d
(1 + SUS))

Fig. 4. Lower bounds on the number of branch mispredictions for deterministic com-
parison based adaptive sorting algorithms for different measures of presortedness, given
the upper bounds on the number of comparisons.

sequence (xiπ1
, . . . , xiπd

) is sorted. During the merging, xiπ1
is appended to the

output sequence and iπ1 is incremented by 1 and then inserted in the vector i
in a manner that resembles insertion sort: in a scan the value y = xiπ1

to be
inserted is compared against the smallest elements of the sorted sequence until
an element larger than y is encountered. This way, the property that the elements
in the input sequence having indices iπ1 , . . . , iπd

are in sorted order holds at all
times. We also note that for each insertion the merger performs O(1) branch
mispredictions, even using a static branch prediction scheme.

Theorem 3. Insertion d-way MergeSort performs O(dn log n) comparisons and

O(n logd n) branch mispredictions.

Proof. For the simplicity of the proof, we consider a static prediction scheme
where for the merging phase the element to be inserted is predicted to be larger
than the minimum in the indices vector.

The number of comparisons performed at each level of recursion is O(dn),
since in the worst case each element is in the worst case compared against d− 1
elements at each level. Taking into account that the number of recursion levels
is ⌈logd n⌉, the total number of comparisons is O(dn logd n) = O(dn log n).

In what concerns the number of branch mispredictions, for each element In-
sertion d-way MergeSort performs O(1) branch mispredictions for each recursion
level. That is because each element is inserted at most once in the indices array
i at a given recursion level and for insertion sort each insertion is performed by
using a constant number of branch mispredictions. Therefore we conclude that
Insertion d-way MergeSort performs O(n logd n) branch mispredictions. ⊓⊔

We stress that Theorem 3 states an optimal tradeoff between the number of
comparisons and the number of branch mispredictions. This allows tuning the
parameter d, such that Insertion d-way Mergesort can achieve the best running
time on different architectures depending on the CPU characteristics, i.e. the
clock speed and the pipeline length.

5 Optimal adaptive sorting

In this section we describe how d-way merging introduced in Section 4 can be
integrated within GenericSort by Estivill-Castro and Wood [5], using a greedy-
like division protocol. The resulting algorithm is proved to achieve the tradeoff
between the number of comparisons and the number of branch mispredictions
stated in Theorem 2.

GenericSort is based on MergeSort and works as follows: if the input is
small, it is sorted using some alternate sorting algorithm; if the input is already
sorted, the algorithm returns. Otherwise, it splits the input sequence into d
subsequences of roughly equal sizes according to some division protocol, after
which the subsequences are recursively sorted and finally merged to provide the
sorted output.

The division protocol that we use, GreedySplit, is a generalization of the
binary division protocol introduced in [1]. It partitions the input in d + 1 sub-
sequences S0, . . . , Sd, where S0 is sorted and S1, . . . , Sd have balanced sizes. In
a single scan from left to right we build S0 in a greedy manner while distribut-
ing the other elements to subsequences S1, . . . , Sd as follows: each element is
compared to the last element of S0, if it is larger, it is appended to S0; if not,
it is distributed to an Sj such that at all times the ith element in the input
that is not in S0 is distributed to S1+i mod d. It is easy to see that S0 is sorted
and S1, . . . , Sd have balanced sizes. For merging we use the insertion sort based
merger introduced in Section 4.

Lemma 1 generalizes Lemma 3 in [1] to the case of d-way splitting.

Lemma 1. If GreedySplit splits an input sequence X in d + 1 subsequences

S0, . . . , Sd, where S0 is sorted and d ≥ 2, then

Inv(X) ≥ Inv(S1) + · · · + Inv(Sd) +
d − 1

4
(Inv(S1) + · · · + Inv(Sd)) .

Proof. Let X = (x1, . . . , xn) and Si = (si1, . . . , sit), for 1 ≤ i ≤ d. For each sij

denote by δij its index in the input. By construction, Si is a subsequence of X .
For some subsequence Si consider an inversion sii1 > sii2 , with i1 < i2. By

construction we know that for each subsequence Sk, with k 6= i, there exists
some skℓ ∈ Sk such that in the input sequence we have δii1 < δkℓ < δii2 , see
Figure 5. We prove that there exists at least an inversion between skℓ and sii1 or
sii2 in X . If skℓ < sii2 < sii1 then there is an inversion between skℓ and sii1 ; if
sii2 < skℓ < sii1 then there are inversions in the input between skℓ and both sii1

and sii2 ; finally, if sii2 < sii1 < skℓ, there is an inversion between skℓ and sii2 .
Let skℓ1 , . . . , skℓz be all the elements in Sk such that i1 < δkℓ1 < · · · < δkℓz < i2,
i.e. all the elements from Sk that appear in the input between ranks δii1 and δii2 .

We proved that there is an inversion between skℓ⌊(1+z)/2⌋
and at least one of

sii1 and sii2 . Therefore, for the inversion (sii1 , sii2) in Si we have identified an
inversion in X between an element in Sk and an element in Si that is not present
in any of S1, . . . , Sd. But this inversion can be counted for at most two different
pairs in Si, namely (sii1 , sii2) and (sii1 , si(i2+1)) if there is an inversion between

SkSi

X

δii2δii1

sii1 sii2

δkℓ

skℓ

i1 i2 ℓ

Fig. 5. Greedy division protocol. Between any two elements in Si there is at least one
element in Sk in the input sequence.

sii1 and skℓ⌊(1+z)/2⌋
or (sii1 , sii2) and (si(i1−1), sii2) otherwise. In a similar manner

in Sk the same inversion can be counted two times. Therefore, we obtain that
for each inversion in Si there is an inversion between Si and Sk that can be
counted four times. Taking into account that all the inversions in S1, . . . , Sd are
also in X , we obtain:

Inv(X) ≥ Inv(S1) + · · · + Inv(Sd) +
d − 1

4
(Inv(S1) + · · · + Inv(Sd)) .

⊓⊔

Theorem 4. GreedySort performs O(dn(1 + log(1 + Inv/n))) comparisons and

O(n logd(1 + Inv/n)) branch mispredictions.

Proof. We assume a static branch prediction scheme. For the division protocol
we assume that at all times the elements are smaller than the maximum of S0,
meaning that branch mispredictions occur when elements are appended to the
sorted sequences. This leads to a total of O(1) branch mispredictions per element
for the division protocol, because the sorted sequences are not sorted recursively.
For the merger, the element to be inserted is predicted to be larger than the
minimum in the indices vector at all times. Following the proof of Theorem 3, we
obtain that splitting and merging take O(1) branch mispredictions per element
for each level of recursion.

We follow the proof in [10]. First we show that at the first levels of recursion,
until the number of inversions gets under n/d, GreedySort performs O(dn(1 +
log(1+Inv/n)) comparisons and O(n(1+logd(1+Inv/n)) branch mispredictions.
Afterwards, we show that the remaining levels consume a linear number of branch
mispredictions and comparisons.

We first find the level ℓ for which the number of inversions gets below n/d.
Denote by Invi the total number of inversions in the subsequences at level i.

Using the result in Lemma 1, we obtain Invi ≤
(

4
d+3

)i

Inv. The level ℓ should

therefore satisfy:
(

4

d + 3

)ℓ

Inv ≤
n

d
,

implying ℓ ≥ log d+3
4

Inv·d
n

.

Taking into account that at each level of recursion the algorithm performs
O(dn) comparisons and O(n) branch mispredictions, we obtain that for the first
ℓ = ⌈log d+3

4

Inv·d
n

⌉ levels we perform O(dn logd(Inv/n)) = O(dn log(Inv/n)) com-

parisons and O(n logd(Inv/n)) branch mispredictions.
We prove that for the remaining levels we perform a linear number of com-

parisons and branch mispredictions.
Let L(x) be the recursion level where some element x is placed in a sorted

sequence and L(x) ≥ ℓ. For each level of recursion j, where ℓ ≤ j < L(x), x is
smaller than the maximum in the sorted subsequence S0 and therefore there
is an inversion between x and the maximum in S0 that does not exist in the
recursive levels j+1, j+2, It follows that L(x)− ℓ is bounded by the number
of inversions with x at level ℓ.

Taking into account that the total number of inversions at level ℓ is at
most n/d and that for each element at a level we perform O(d) comparisons, we
obtain that the total number of comparisons performed at the levels ℓ+1, ℓ+2, . . .
is O(n). Similarly, using the fact that for each element at each level O(1) mispre-
dictions are performed, we obtain that the total number of branch mispredictions
performed for the levels below ℓ is O(n/d). ⊓⊔

Acknowledgment

We would like to thank Peter Bro Miltersen for very helpful discussions.

References

1. G. S. Brodal, R. Fagerberg, and G. Moruz. Cache-aware and cache-oblivious adap-
tive sorting. In Proc. 32nd International Colloquium on Automata, Languages, and
Programming, Lecture Notes in Computer Science. Springer Verlag, 2005.

2. G. S. Brodal, R. Fagerberg, and G. Moruz. On the adaptiveness of quicksort. In
Proc. 7th Workshop on Algorithm Engineering and Experiments. SIAM, 2005.

3. A. Colin and I. Puaut. Worst case execution time for a processor with branch
prediction. Real-Time Systems, Special issue on worst-case execution time analysis,
18(2):249–274, april 2000.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, 2nd Edition. MIT Press, 2001.

5. V. Estivill-Castro and D. Wood. Practical adaptive sorting. In International
Conference on Computing and Information - ICCI, pages 47–54. Springer Verlag,
1991.

6. V. Estivill-Castro and D. Wood. A survey of adaptive sorting algorithms. ACM
Computing Surverys, 24(4):441–475, 1992.

7. R. W. Floyd. Algorithm 245: Treesort3. Communications of the ACM, 7(12):701,
1964.

8. L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts. A new representa-
tion of linear lists. In Proc. 9th Ann. ACM Symposium on Theory of Computing,
pages 49–60, 1977.

9. J. L. Hennesy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kauffman, 1996.

10. C. Levcopoulos and O. Petersson. Splitsort – an adaptive sorting algorithm. In-
formation Processing Letters, 39(1):205–211, 1991.

11. X. Li, T. Mitra, and A. Roychoudhury. Modeling control speculation for timing
analysis. Real-Time Systems Journal, 29(1), January 2005.

12. H. Manilla. Measures of presortedness and optimal sorting algorithms. IEEE
Trans. Comput., 34:318–325, 1985.

13. S. McFarling. Combining branch predictors. Technical report, Western Research
Laboratory, 1993.

14. K. Mehlhorn. Data structures and algorithms. Vol. 1, Sorting and searching.
Springer Verlag, 1984.

15. P. Sanders and S. Winkel. Super scalar sample sort. In Proc. 12th European Sym-
posium on Algorithms (ESA), volume 3221 of Lecture Notes in Computer Science,
pages 784–796. Springer Verlag, 2004.

16. J. W. J. Williams. Algorithm 232: Heapsort. Communications of the ACM,
7(6):347–348, 1964.

17. Y.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive
branch prediction. In ACM International Symposium on Computer Architecture
(ISCA), 1992.

