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T 
Abstract 

HE problem of efficient multirobot coordination has risen to the forefront of 
robotics research in recent years. The wide range of application domains 
demanding multirobot solutions motivates interest in this problem.  In 
general, multirobot coordination strategies assume either a centralized 

approach, where a single robot/agent plans for the group, or a distributed approach, where 
each robot is responsible for its own planning.  Inherent to many centralized approaches 
are difficulties such as intractable solutions for large groups, sluggish response to 
changes in the local environment, heavy communication requirements, and brittle 
systems with single points of failure.  The key advantage of centralized approaches is that 
they can produce globally optimal plans.  While most distributed approaches can 
overcome the obstacles inherent to centralized approaches, they can only produce 
suboptimal plans because they cannot take full advantage of information available to all 
team members. 
This work develops TraderBots, a market-based coordination approach that is inherently 
distributed, but also opportunistically forms centralized sub-groups to improve efficiency. 
Robots are self-interested agents with the primary goal of maximizing individual profits.  
The revenue/cost models and rules of engagement are designed so that maximizing 
individual profit has the benevolent effect of, on average, moving the team toward the 
globally optimal solution. This approach inherits the flexibility of markets in allowing 
cooperation and competition to emerge opportunistically.  The outlined approach 
addresses the multirobot coordination problem for autonomous robotic teams executing 
tasks in dynamic environments where it is highly desirable to produce efficient solutions.  
This dissertation details the first in-depth study of the applicability of market-based 
techniques to the multirobot coordination and provides a detailed study of the 
requirements for robust and efficient multirobot coordination in dynamic environments.  
Contributions of this dissertation are the first extensive investigation of the application of 
market-based techniques to multirobot coordination, the most versatile coordination-
approach for dynamic multirobot application domains, the first distributed multirobot 
coordination-approach that allows opportunistic optimization by “leaders”, the first in-
depth investigation of the requirements for robust multirobot coordination in dynamic 
environments, the most extensively implemented market-based multirobot coordination 
approach, and the first systematic comparative analysis of multirobot coordination 
approaches implemented on a robot team. 
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CHAPTER 1  

Introduction 

OORDINATING multiple robots to cooperatively complete a task is a 
difficult problem that has attracted much attention from the robotics 
research community in recent years.  This dissertation advances the state of 
the art in this research area, detailing a novel approach, “TraderBots”, 

specifically geared towards coordinating multiple robots to succeed in reliably 
completing a cooperative task in a dynamic environment.  The TraderBots approach 
capitalizes on the strengths of market economies that enable many agents to collectively 
execute complex tasks with access to limited/incomplete information under highly 
dynamic conditions.  The added capability of reliable and efficient coordination under 
dynamic conditions enabled by the TraderBots approach allows wider application of 
multirobot systems. 

1.1 Motivation 

In this digital age, the demand for technological solutions to increasingly complex 
problems is climbing rapidly.  With this increase in demand, the tasks which robots are 
required to execute also rapidly grow in variety and difficulty.  A single robot is no 
longer the best solution for many of these new application domains; instead, teams of 
robots are required to coordinate intelligently for successful task execution. For example, 
a single robot is not an efficient solution to automated construction, urban search and 
rescue, assembly-line automation, mapping/investigation of unknown/hazardous 
environments, and many other similar tasks.  Multirobot solutions are paramount for 
several reasons:  

1. A single robot cannot perform some tasks alone, a team is required for 
successful execution.  While in many cases it may be possible to design a single 
robot capable of executing all tasks, many problems are better suited to team-
execution.  For example, a single robot can accomplish moving heavy objects if 
the robot is designed appropriately.  However, in many cases, it is simpler to 
design a team of robots that cooperate to move the heavy objects efficiently.  
Other application domains such as robotic soccer require a team of robots and 
cannot be executed with a single robot. 

2. A robot team can accomplish a given task more quickly/efficiently than a single 
robot can by dividing the task into sub-tasks and executing them concurrently in 
application domains where the tasks can be decomposed.  Application domains 
such as mapping of unknown areas and searching for landmines require careful 
coverage of a large area.  Problems such as these can be easily decomposed into 
components such that a team of robots can divide the workload and execute 
sub-portions of the task concurrently, thus completing the overall task more 
efficiently. 

3. A team can make effective use of specialists designed for a single purpose (for 
example, scouting an area, picking up objects, or hauling payload), rather than 
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requiring that a single robot with versatile capabilities be a generalist, capable 
of performing all tasks.  This allows more flexibility in designing the robots 
since a robot that needs to haul heavy payloads can be built with a heavy base 
for stability and strength, while a robot providing visual feedback can be 
designed to be more agile and move around with greater speed. 

4. A team of robots can localize themselves more efficiently if they exchange 
localization and map information whenever they sense each other.  This allows 
more robust localization capabilities.  In an environment where a single robot 
would have to rely on landmarks of some sort for localization, a team could 
have the added advantage of being able to benefit from the localization 
information of their teammates. 

5. A team of robots generally provides a more robust solution by introducing 
redundancy, and by eliminating any single point of failure as long as there is 
overlap between the robots’ capabilities.  For example, a team of robots 
equipped with cameras, will be a more reliable system for constructing vision-
based maps of a dynamic environment because the failure of a single one of 
these robots will not jeopardize the entire mission. 

6. A team of robots can produce a wider variety of solutions than a single robot 
can, and hence a team can opportunistically respond to dynamic conditions in 
more creative and efficient ways.  Even if a team of robots does not overlap 
entirely in terms of specialization, the collective resources of the group can be 
used in creative ways to solve problems.  For example, if a diagnostic robot 
loses its camera during operation, another robot with a camera could aid the 
diagnostic robot to complete its tasks by providing visual feedback.  Similarly, 
if a rover gets stuck in the mud, one or more of its teammates can assist the 
stuck robot by pushing it out of the mud. 

Thus, for many applications, a team of robots can be used more effectively.  Briefly 
described below are some of the more prominent application domains that would benefit 
from efficient coordination of multirobot systems: 

§ Autonomous robot teams for operations in remote locations (Remote 

Operations):  

Many applications in the future will require a team of 
robots to autonomously execute complex tasks, while 
humans intervene remotely from time to time to alter 
the procedure of operations, remedy a situation 
beyond the capabilities of the robots, or coordinate 
with the robots to accomplish additional goals. 
Examples of such application domains are extra-
planetary exploration and construction, scientific 
exploration of hazardous environments, and crop 
cultivation in underwater environments. 
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§ Robotic aids for urban reconnaissance (Urban Reconnaissance): 

Military operations in urban terrain pose fierce 
constraints such as limited visibility, complex and 
expansive fortifications, limited intelligence, and 
the presence of native populations and other non-
combatants that prohibit deployment of large 
forces.  Moreover, the use of certain threats, e.g. 
biological and chemical agents, against both land 
forces and indigenous population in urban settings is an increasing likelihood. 
These conditions place both land forces and non-combatants in a highly non-
deterministic, dangerous, confrontational, and volatile environment. The 
development of robotics technology will enable minimally invasive and precise 
operations that reduce risk to both ground forces and non-combatants by removing 
humans from dangerous and sometimes confrontational tasks. Potential tasks for 
robotic systems include mapping/scouting, reconnaissance, security/monitoring, 
and communications infrastructure.  

§ Robotic aids for urban search and rescue (Urban Search 

And Rescue): 
Urban Search And Rescue (USAR) workers have forty-eight 
hours to find trapped survivors in a collapsed structure; otherwise 
the likelihood of finding victims still alive is nearly zero. 
Earthquake and other disaster mitigation require rapid and 
efficient search and rescue of survivors. As recently seen in the 
USA, Turkey and Taiwan, the magnitude of the devastation of 
urban environments exceeds the available resources (USAR specialists, USAR 
dogs, and sensors) needed to rescue victims within the critical first 48 hours. 
Moreover, the mechanics of how large structures collapse often prevent rescue 
workers from searching buildings due to the unacceptable personal risk and the 
added risk to survivors from further collapse of the building. Furthermore, both 
people and dogs are frequently too big to enter voids, limiting the search to no more 
than a few feet from the perimeter. Robots can make a significant impact in this 
domain if made capable of aiding humans in USAR efforts. 

§ Automated warehouse management (Warehouse 

Management): 

Warehouse operators face the competing challenges of 
reducing costs while improving customer responsiveness.  
Order picking represents one of the costliest processes 
within distribution centers because of high labor content 
and equipment investment.  Operators rely on humans to pick orders and either 
transport the material with manually driven industrial hand trucks (also known as 
pallet trucks or pallet jacks) or conveyor systems. An automated approach to case 
order picking has the potential to capture the benefits of manually driven pallet 
trucks and conveyor systems.  Automated/robotics pallet jacks can roam the 
distribution center under the warehouse management system’s global supervision 
and move to human pickers stationed to serve one or two aisles.  Pickers spend less 
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time traveling and more time picking; the pallets are built as cases are picked, and 
no major infrastructure changes are required. 

§ Intelligent Environments: 
Intelligent Environments are spaces in which 
computation is seamlessly used to enhance ordinary 
activity. They enable tasks historically outside the 
normal range of human-computer interaction by 
connecting computers to normal, everyday phenomena 
that have traditionally been outside the purview of 
contemporary user-interfaces.  Their applications are 
intelligent rooms and personal assistants. Many familiar environments such as 
office buildings, supermarkets, schoolrooms, and restaurants are highly likely to 
incrementally evolve into intelligent environments within the next couple of 
decades.  In these environments, agents can represent different resources and 
oversee efficient utilization of the resources.  These agents can also resolve any 
conflicts about resource utilization.  Moreover, the agents can keep track of 
maintenance requirements for all resources in the environment.  Finally, each 
human entering the environment can also have a personal representative agent 
whose goal is to optimize conditions in the environment for the user.  In the longer-
term robotic assistants can become part of the intelligent environments.  The robots, 
resource-management agents, and humans must integrate and cooperate seamlessly 
in these intelligent environments. 

§ Automated Construction: 

The application domain of automated construction 
involves the assembly of large-scale structures, such as 
terrestrial buildings, planetary habitats, or in-space 
facilities. Such domains need heavy lifting capabilities, 
as well as precise, dexterous manipulation to connect 
parts together. A motivating scenario is that of 
assembling the steel structure of a large building. In 
such cases, a large crane is used to lift beams and 
move them near their destinations; a worker near the destination uses hand signals 
to guide the crane operator; when the beam is close enough, the worker grabs the 
end and moves it into place. Terrestrial construction tasks, especially in more 
remote and hazardous areas, can benefit from the help of robotic construction 
teams.  The domain of automated construction, however, is not limited to terrestrial 
work.  Future space facilities, characterized by their immense size and the 
difficulties of human construction in space will be assembled in part by groups of 
robots.  
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§ Robotic educational and entertainment systems (Education and 

Entertainment): 
Robotic toys, educational tools, and entertainment 
systems are rapidly gaining popularity and will 
continue to do so in the future.  Many of these systems 
will require coordinated efforts by multiple robots.  An 
example in this domain is robotic soccer. “RoboCup” is 
an international research and education initiative that 
attempts to foster AI and intelligent robotics research 
by providing a standard problem, the soccer game, where a wide range of 
technologies can be integrated and examined and also used for integrated project-
oriented education.  In order for a robot team to play soccer various technologies, 
including design principles of autonomous agents, multi-agent collaboration, 
strategy acquisition, real-time reasoning, robotics, and sensor-fusion, must be 
seamlessly integrated. RoboCup is a cooperative task for a team of multiple fast-
moving robots under a dynamic environment.  

§ Automated production plants and assembly lines 

(Production): 
A growing trend in production plants is automation.  In 
order to increase production, decrease labor costs, 
improve efficiency, increase safety, and improve quality 
in general, more and more industries are seeking to 
automate their production facilities.  This trend demands 
efficient and robust coordination of heterogeneous multirobot systems. Advantages 
in the industrial automation domain are a highly controllable environment, well-
defined and well-specified tasks, and specifically designed robots. 

§ Robotic exploration of hazardous environments (Hazardous Exploration):  
Exploration of hazardous environments has long 
been a problem demanding robotic solutions.  
Some examples of robotic hazardous environment 
exploration are exploration of extra-planetary 
regions, exploration of volcanic regions, 
exploration of disaster zones, exploration and 
mapping of mines, and exploration of minefields.  
Many of these tasks require coverage of large spaces under dangerous conditions.  
Such tasks are best suited for execution by a team of robots. 

§ Robotic cleanup of hazardous sites (Hazardous Clean-

up): 

Robots continue to play an important role in cleanup of 
hazardous sites.  Some examples in this domain are robotic 
minesweeping, robotic cleanup of nuclear waste, and robotic 
cleanup of disaster zones.  Due to the high level of danger 
involved with these tasks they are highly unsuitable for human 
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execution, and hence desirable for robotic execution.  Furthermore, the dangerous 
circumstances of these applications make the domain more suited for a multirobot 
system with built-in redundancy. 

§ Agriculture: 

Many groups involved with agricultural work are 
now seeking automated solutions to their labor 
problems.  Due to the long hours, hard physical 
work in rough conditions, and tedious and repetitive 
nature of some of the tasks in this domain, a 
growing decline in the available pool of labor has 
become evident.  Spraying fields, harvesting, 
moving containers, and sorting plants are some examples of tasks that can be 
automated in this domain.  For many of these tasks, coordinated teams of robotic 
agricultural machines promise to provide efficient solutions. 

These and other application domains continue to demand more complex and higher 
standards of performance from automation technology/robotics.  These demands will 
continue to rise in the future.  Hence, multirobot coordination research must evolve to 
meet these demands.  While individual applications will make specific demands on a 
multirobot coordination approach, designing a new approach for each application is not 
cost effective or efficient.  A better methodology is to design one or more general 
approaches to multirobot coordination which are applicable across many domains, and 
which can be fine-tuned for specific applications.  In order to design such an approach, it 
is instructive to first understand the requirements of the domain.   

This dissertation focuses on multirobot coordination in dynamic environments for 
application domains such as long-duration operations in remote locations, urban search 
and rescue, reconnaissance, and exploration of hazardous environments.  The 
requirements of multirobot application domains in dynamic environments are explored in 
detail next.  

1.2 Understanding Multirobot Coordination in Dynamic 
Environments 

Many application domains demand high quality performance from multirobot 
systems as discussed above.  While applications of multirobot systems come in a wide 
variety, the focus of this dissertation is multirobot coordination in dynamic environments.  
Hence, it is instructive to examine what requirements must be fulfilled by a general 
multirobot coordination approach for such application domains.  The following 
characteristics are thought to be an exhaustive list of these requirements:  

§ Robustness  

Robust to robot failure; no single point of failure for the system: This is an 
important characteristic since most applications in dynamic environments rely on 
continued progress even if some components of the system fail.  .  For example, an 
urban search and rescue operation expects that several robots will malfunction or be 
destroyed during task-execution, and still require the overall mission to be 
completed in the best way possible given the remaining resources. Graceful 
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degradation of system performance with component failure is a highly desirable 
requirement for many applications in general. 

§ Speed  
Quick response to dynamic conditions:  Often in dynamic environments, a key to 
successful task execution is the ability to respond quickly to the dynamic 
conditions.  If information always needs to be channeled to another location for 
plan modification, conditions can change too rapidly for the planning to keep up.  In 
dynamic application domains that deal with hazardous environments the need for 
quick response times to dynamic conditions is much higher – slow response to 
dangerous changes in environmental conditions can have devastating results. 

§ Efficiency  

Opportunistically optimized response to dynamic conditions:  This characteristic is 
desirable in general, and required in some domains.  The prevalent dynamic 
conditions in the targeted application domains require the ability to 
opportunistically optimize the system response to these conditions for efficiency 
and success.  Often a strategy for executing a task or a strategy for distributing tasks 
among several robots will cease to be an efficient strategy due to a change in the 
prevailing conditions.  The multirobot system can quickly become highly inefficient 
if it cannot respond to these changes in conditions and re-strategize accordingly in 
an opportunistic manner. 

§ Information  

Ability to execute a task without complete/perfect information about the task or the 

environment:  A significant challenge in many dynamic multirobot application 
domains is the lack of complete and reliable information.  Coordination strategies 
need to be a lot more flexible if all information is not known a-priori.  In domains 
such as urban search and rescue and exploration, often much is unknown about the 
prevailing conditions of the environment.  Hence, robots need to rely on their 
sensors to discover these conditions.  Thus, the information will only be good as the 
sensing capability and thus uncertainty is introduced.  The dynamic nature of the 
environment further exacerbates the challenge since discovered information cannot 
be relied on as perfect or sustained.  A successful coordination mechanism needs to 
take all of this into account and deal with the challenges of imperfect information in 
an efficient manner.   

§ Communication  

Ability to deal with limited and imperfect communication:  In general, many 
application domains cannot realistically guarantee perfect communication among 
all robots at all times.  This characteristic is exacerbated in dynamic domains.  
Hence, any suitable coordination approach should be robust to communication 
failures and limits in bandwidth and range of communication. 

§ Resources 

Ability to reason about limited resources:  The ability to reason about the limited 
resources available in a robotic system is very important for optimization purposes.  
For example, in a scientific exploration task, it is undesirable to use the only robot 
with some very costly science sensor to perform a simple but risky scouting task.   
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Thus, the collective resources of the system and their relative worth must be taken 
into account during the task allocation process.  Also, when a robot is assigned a 
task, its planner must understand the resource requirements for that task in order to 
enable efficient scheduling.  The robot must also take into account events scheduled 
to occur in the future and the resources that will be required for those events before 
committing to any new tasks. 

§ Allocation 

Efficient allocation of tasks:  A key challenge in coordinating multiple robots is 
deciding who does what when.  Thus, the task allocation mechanism is an important 
factor in the design of the coordination approach.  Factors such as robot capabilities 
and resources, current commitments of the robots, priority and risk involved with 
different tasks, task constraints, environmental conditions and predictions for future 
conditions, and tradeoffs between planning time and execution time need to be 
considered in order to maximize the efficiency of the task allocation. 

§ Roles 

Efficient adoption of roles:  Similar to human teams, robot teams require each robot 
in the team to play a given role or a set of roles at any given time.  For example, a 
robot may act as a coordinator for a group of robots, by planning strategies for the 
group’s task allocation and execution, while also acting as a map-builder, by 
incorporating its sensor readings into a map of the environment, and also as a 
communication router, by passing messages between robots that are out of range 
from each other but within range of this robot.  In many coordination mechanisms 
robots are restricted to being able to play only a single role in the team at any given 
time, even if they possess the resources to be able to play multiple roles 
simultaneously.  Efficient role adoption will enable robots to play as many roles as 
required at any given time based on resource availability, and also allow robots to 
change in and out of different roles as conditions change.   

§ New Input 
Ability to dynamically handle new instructions from a human operator:  In many 
dynamic application domains, the demands on the robotic system can change during 
operation.  Hence, it may become necessary to assign new tasks, cancel previously 
assigned tasks, or alter existing tasks.  For example, in an urban search and rescue 
operation, new regions to be explored could be assigned to the robot team based on 
new information received, previously assigned exploration regions could be 
cancelled due to newly discovered dangers, and the priorities of different assigned 
regions for exploration could be altered based on newly discovered information of 
survivors.  A successful coordination mechanism will be able to accommodate all 
of these requirements. 

§ Fluidity 

Easily able to accommodate the addition/subtraction of robots during operation:  
Several applications require the ability to introduce new robots into the system 
during operation.  Conversely, robots can exit or malfunction during task execution, 
especially in hazardous and dynamic environments.  A successful coordination 
mechanism will be able to support these events gracefully. 
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§ Heterogeneity 

Ability to accommodate heterogeneous teams of robots:  Many multirobot 
coordination approaches assume homogeneity of the robot team for ease of 
planning.  The coordination problem is more difficult if the robots are 
heterogeneous.  Dynamic environments often require heterogeneous teams in order 
to be able to deal with the different conditions encountered.  Thus, a successful 
coordination approach will be able to accommodate any team regardless of its 
homogeneity or heterogeneity. 

§ Extensibility   
Easily extendable to accommodate new functionality:  A key characteristic to 
building a generalized system that can evolve with the needs of the different 
applications is the ability to easily add and remove functionality as needed.  This is 
identified as extensibility.  A common approach is to build the system in a modular 
fashion such that different modules can be altered or replaced relatively easily 
according to the requirements of the specific application. 

§ Flexibility 
Easily adaptable for different applications:  Since different applications will have 
different requirements, a widely applicable coordination approach will need to be 
easily configurable for the different problems it proposes to solve – this is known as 
flexibility.  Instructions and advice on how to reconfigure the mechanism for 
different applications will also be useful.  Identifying important parameters that 
need to be changed based on the application requirements, instructions on how to 
change them, identifying components of the mechanism that need to be 
added/changed based on application requirements, and instructions on how to make 
these alterations are all important elements of a successful coordination mechanism.  
A further bonus will be well-designed user interfaces and tools that allow plug and 
play alterations to the coordination mechanism and automated methods for 
parameter tuning. 

§ Tight-Coordination 

Ability to coordinate robots in maneuvers that require tight-coordination:  Some 
applications require robots to execute tasks in tight-coordination.  For example, if a 
group of robots have to cooperate to move a heavy object, it requires tight-
coordination.  While this characteristic is not always required, a generally 
applicable coordination mechanism will be able to support tasks that require tight-
coordination. 

§ Scalability 

Ability to coordinate large numbers of robots:  While most application domains 
don’t require large numbers of robots, and limits in resources often prevent 
deployment of large robot teams, scalability is an attractive quality for a 
coordination mechanism that aims to be widely applicable. 

§ Learning 

On-line adaptation for specific applications: While a generalized system is often 
more useful, its application to specific domains usually requires some parameter 
tuning.  The ability to tune relevant parameters automatically in an on-line fashion 
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is thus a very attractive feature that can save a lot of effort.  Thus, the integration of 
learning techniques to allow the robots to adapt to changing environments and 
different task domains can be a very powerful feature. 

§ Implementation 

Implemented and proven on robotic system:  As with any claim, a proven 
implementation is far more convincing.  Moreover, successful implementation of a 
coordination mechanism on a robotic system requires discovering and solving many 
details that are not always apparent in simulation and software systems. 

The characteristics described above represent requirements over a wide cross section of 
application domains.  The two tables below illustrates the subset of these requirement 
characteristics specific to the multirobot applications domains described in section 1.1: 

 

 
 
 

Application 

R
o
b

u
st

n
es

s 

S
p

ee
d

 

E
ff

ic
ie

n
cy

 

In
fo

rm
a

ti
o

n
 

C
o

m
m

u
n

ic
a
ti

o
n

 

R
es

o
u

rc
es

 

A
ll

o
ca

ti
o
n

 

R
o

le
s 

N
ew

 I
n

p
u

t 

Remote Operations Y Y Y Y Y Y Y Y Y 
Urban Reconnaissance Y Y Y Y Y Y Y Y Y 
Urban Search And Rescue Y Y Y Y Y Y Y Y Y 
Warehouse Management Y Y Y   Y  Y 
Intelligent Environments Y Y Y  Y Y 
Automated Construction Y Y Y   Y Y Y Y 
Education and Entertainment Y Y Y Y Y Y Y Y Y 
Production  Y    
Hazardous Exploration  Y Y Y Y Y Y Y Y Y 
Hazardous Clean-up Y Y Y Y Y Y Y Y Y 
Agriculture Y Y    

Table 1: Array of required characteristics for multirobot applications (Part I) 
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Remote Operations Y Y Y Y Y Y Y Y 
Urban Reconnaissance Y Y Y Y  Y Y 
Urban Search And Rescue Y Y Y Y Y Y Y 
Warehouse Management Y  Y Y  Y Y Y 
Intelligent Environments Y Y Y Y Y Y Y 
Automated Construction Y Y Y Y  Y 
Education and Entertainment Y Y Y Y  Y Y 
Production Plants Y Y Y Y Y Y Y 
Hazardous Exploration  Y Y Y Y Y Y 
Hazardous Clean-up Y Y Y Y Y Y Y 
Agriculture Y  Y Y Y Y Y 

Table 2: Array of required characteristics for multirobot applications (Part II) 

A brief explanation of why each of the listed application domains requires the 
characteristics illustrated in Table 1 and Table 2 is presented next: 

§ Remote Operations 

Robot teams carrying out operations in remote locations will require all of the listed 
characteristics.  The team will need to be robust to failures and malfunctions of 
some team members, able to accept new team members, be efficient and quick in 
their response to dynamic conditions in order to maximize accomplishments and 
minimize dangers, and able to deal with incomplete information because many of 
these operations will take place in regions about which we do not have complete 
information.  The robots will also have limited communication infrastructure and 
resources, and will need to take these limitations into account when deciding on 
task allocations and roles in the team.  The robot team will likely be heterogeneous 
to accommodate the different tasks and terrains, need to be capable of executing 
tightly coordinated tasks, and will need to be able to change their operations based 
on instructions from human operators and newly discovered information.  A 
successful coordination mechanism for this domain will be easily extended to 
include new types of tasks, flexible enough to be deployed in different locations, 
scalable to accommodate different team sizes, amenable to learning techniques for 
parameter tuning, and proven via implementation on a robotic system. 

§ Urban Reconnaissance 

Robot teams assisting with urban reconnaissance missions will require most of the 
listed characteristics.  The team will need to be robust to failures and malfunctions 
of some team members, able to accept new team members, be efficient and quick in 
their response to dynamic conditions in order to maximize accomplishments and 
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minimize malfunctions, and able to deal with incomplete information because many 
of these operations will take place in areas for which complete information is not 
known a-priori.  The robots will also have limited communication infrastructure and 
resources, and will need to take these limitations into account when deciding on 
task allocations and roles in the team.  The robot team will likely be heterogeneous 
to accommodate the different tasks and terrains and will need to be able to change 
their operations based on instructions from human operators and changing 
conditions.  A successful coordination mechanism for this domain will be easily 
extended to include new types of tasks, flexible enough to be deployed in different 
locations, scalable to accommodate different team sizes, and proven via 
implementation on a robotic system. It is unlikely that robots will need to, or have 
the time to, execute tightly coordinated tasks or be able to learn any parameters in 
this task domain due to its highly adversarial and dynamic nature. 

§ Urban Search And Rescue 

Robot teams assisting with urban search and rescue missions will also require most 
of the listed characteristics.  The team will need to be robust to failures and 
malfunctions of some team members, able to accept new team members, be 
efficient and quick in their response to dynamic conditions in order to maximize 
accomplishments and minimize failures, and able to deal with incomplete 
information because many of these operations will take place in situations where 
complete information of the disaster zone is not known a-priori.  The robots will 
also have limited communication infrastructure and resources, and will need to take 
these limitations into account when deciding on task allocations and roles in the 
team.  The robot team will likely be heterogeneous to accommodate the different 
tasks and terrains, need to be capable of executing tightly coordinated tasks such as 
moving large obstacles and jointly maneuvering over difficult terrain, and will need 
to be able to change their operations based on instructions from human operators 
and changing conditions.  A successful coordination mechanism for this domain 
will be easily extended to include new types of tasks, flexible enough to be 
deployed in different locations, scalable to accommodate different team sizes, and 
proven via implementation on a robotic system. It is unlikely that robots will have 
the time to learn any parameters in this task domain due to its highly dynamic 
nature and limited repeatability of environmental factors. 

§ Warehouse Management 

Since warehouses are relatively highly controlled environments, automated teams 
of palette jacks assisting with order picking will not require most of the listed 
characteristics.  The team will still need to be robust to failures and malfunctions of 
some team members, able to accept new team members, and be efficient and quick 
in their response to dynamic conditions such as blocked intersections and toppled 
crates in order to prevent collisions and other damage.  Since the environment is 
controlled and the tasks well specified, information, communication infrastructure 
and resources will be well known a-priori, and not be limited as much as the 
previous application domains. Prevailing conditions will still need to be taken into 
account when deciding on task allocations.  The robot team will likely be 
homogenous and only play a single role. The team will also not need to execute 
tightly coordinated tasks and it is unlikely that tasks will change during execution.  
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New tasks will however emerge as new orders arrive at the warehouse.  A 
successful coordination mechanism for this domain will be easily extended to 
include new types of tasks, flexible enough to be deployed in different warehouses, 
scalable to accommodate different team sizes, amenable to learning techniques for 
parameter tuning, and proven via implementation on a robotic system.  

§ Intelligent Environments 
Intelligent environments are also relatively highly controllable environments and 
hence will not require many of the listed characteristics.  The system will still need 
to be robust to failures and malfunctions of some team members, able to smoothly 
accept new team members and exit current members, and be efficient and quick in 
their response to dynamic conditions such as changes in schedules, cancelled 
meetings, power failures, etc.  Since the environment is controlled and the tasks 
well specified, information, communication infrastructure, task allocations, and 
roles will be well known a-priori, and not be limited as much as some previous 
application domains. The robot team will likely be heterogeneous and each team 
member will probably be designed to play a specific role. The team will not need to 
execute tightly coordinated tasks but it is highly likely that tasks will change often.  
New tasks will also emerge as new events get scheduled and resources get used.  A 
successful coordination mechanism for this domain will be easily extended to 
include new tasks, flexible enough to be deployed in different environments, 
scalable to accommodate different team sizes, amenable to learning techniques for 
parameter tuning, and proven via implementation on a robotic system. 

§ Automated Construction 

Automated construction will usually happen within a relatively contained and 
controlled environment, and hence will not require some of the listed 
characteristics.  The system will still need to be robust to some level of 
malfunctions of some team members, but it is unlikely that the composition of the 
team will change.  The team needs to be efficient and quick in their response to 
dynamic conditions such as misalignment of beams and changes in weather 
conditions.  However, since the environment is somewhat controlled and the tasks 
well specified, environmental information and communication infrastructure will be 
well known a-priori, and not be limited as much as some previous application 
domains.  The robots will also have limited communication infrastructure and 
resources, and will need to take these limitations into account when deciding on 
task allocations and roles in the team.  The robot team will likely be heterogeneous 
to accommodate the different tasks and terrains and will need to be able to change 
their operations based on changing conditions and possibly instructions from human 
operators.  The team will mostly need to execute tightly coordinated tasks due to 
the nature of construction but it is highly unlikely that tasks will change often.  A 
successful coordination mechanism for this domain will be easily extended to 
include new tasks, flexible enough to be deployed in different environments, and 
proven via implementation on a robotic system. It is unlikely that team sizes will 
change much and that learning techniques for parameter tuning will help much in 
this domain. 
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§ Education and Entertainment 

Education and entertainment robotics will require most of the listed characteristics.  
These teams, for example in the robot soccer domain, will need to be robust to 
failures and malfunctions of some team members, able to accept new team 
members, be efficient and quick in their response to dynamic conditions in order to 
maximize accomplishments and minimize damages, and able to deal with 
incomplete information.  The robots will also have limited communication 
infrastructure and resources, and will need to take these limitations into account 
when deciding on task allocations and roles in the team.  The robot team will likely 
be heterogeneous to accommodate the different tasks and will need to be able to 
change their operations based on instructions from human operators.  It is highly 
unlikely that the team will need to execute tightly coordinated tasks or that the team 
size will be very large. A successful coordination mechanism for this domain will 
be easily extended to include new types of tasks, flexible enough to be deployed in 
different locations, amenable to learning techniques for parameter tuning, and 
proven via implementation on a robotic system.  

§ Production 

Production plants and assembly lines are highly controlled environments and hence 
will not require most of the listed characteristics.  The team will not need to be 
robust to failures and malfunctions or accept new team members or be efficient in 
dealing with dynamic conditions since the environment will be highly controlled 
and humans will most likely deal with any malfunctions.  The robots however will 
need to be quick in their detection and response to dynamic conditions such as 
malfunctioning parts and obstacles in their path in order to prevent damage.  Since 
the environment is controlled and the tasks well specified, information, 
communication infrastructure, task allocations, and roles will be well known a-
priori, and not be limited as much as some previous application domains. The robot 
team will likely be heterogeneous and each team member will probably be designed 
to play a specific role. The team will mostly need to execute tightly coordinated 
tasks due to the nature of production but it is highly unlikely that tasks will change 
often.  A successful coordination mechanism for this domain will be easily 
extended to include new types of tasks, flexible enough to be deployed in different 
facilities, scalable to accommodate large team sizes, amenable to learning 
techniques for parameter tuning, and proven via implementation on a robotic 
system. 

§ Hazardous Exploration  
Robot teams assisting with hazardous exploration missions will require most of the 
listed characteristics.  The team will need to be robust to failures and malfunctions 
of some team members, able to accept new team members, be efficient and quick in 
their response to dynamic conditions in order to maximize exploration and 
minimize malfunctions, and be able to deal with incomplete information because 
many of exploration by nature deals with situation where complete information is 
not known a-priori.  The robots will also have limited communication infrastructure 
and resources, and will need to take these limitations into account when deciding on 
task allocations and roles in the team.  The robot team will likely be heterogeneous 
to accommodate the different tasks and terrains and will need to be able to change 
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their operations based on instructions from human operators and changing 
conditions.  A successful coordination mechanism for this domain will be easily 
extended to include new types of tasks, flexible enough to be deployed in different 
locations, scalable to accommodate different team sizes, and proven via 
implementation on a robotic system. It is unlikely that robots will need to execute 
tightly coordinated tasks or be able to learn any parameters in this task domain due 
to its highly dynamic and low repetitious nature. 

§ Hazardous Clean-up 

Robot teams assisting with hazardous clean-up missions will also require most of 
the listed characteristics.  The team will need to be robust to failures and 
malfunctions of some team members, able to accept new team members, be 
efficient and quick in their response to dynamic conditions in order to maximize 
accomplishments and minimize failures, and able to deal with incomplete 
information because many of these operations will take place in situations where 
complete information of the disaster zone is not known a-priori.  The robots will 
also have limited communication infrastructure and resources, and will need to take 
these limitations into account when deciding on task allocations and roles in the 
team.  The robot team will likely be heterogeneous to accommodate the different 
tasks and terrains, need to be capable of executing tightly coordinated tasks such as 
moving large obstacles and jointly maneuvering over difficult terrain, and will need 
to be able to change their operations based on instructions from human operators 
and changing conditions.  A successful coordination mechanism for this domain 
will be easily extended to include new types of tasks, flexible enough to be 
deployed in different locations, scalable to accommodate different team sizes, and 
proven via implementation on a robotic system. It is unlikely that robots will have 
the time to learn any parameters in this task domain due to its highly dynamic 
nature and limited repeatability of environmental factors. 

§ Agriculture 

Agriculture is a relatively controlled environment and hence will not require some 
of the listed characteristics.  A team of agricultural robots will need to be robust to 
failures and malfunctions of some team members but will not need to be able to 
accept new team members or be efficient in dealing with dynamic conditions since 
the environment will be highly controlled and humans will most likely deal with 
any unusual conditions.  The robots however will need to be quick in their detection 
and response to dynamic conditions such as malfunctioning parts and obstacles in 
their path in order to prevent damage.  Since the environment is controlled and the 
tasks well specified, information, communication infrastructure, task allocations, 
and roles will be well known a-priori, and not be limited as much as some previous 
application domains. The robot team will likely be homogenous and only play a 
single role. The team will also not need to execute tightly coordinated tasks and it is 
unlikely that tasks will change during execution. A successful coordination 
mechanism for this domain will be easily extended to include new types of tasks, 
flexible enough to be deployed in different locations, scalable to accommodate 
different team sizes, amenable to learning techniques for parameter tuning, and 
proven via implementation on a robotic system.  
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The descriptions above indicate that the more dynamic application domains require more 
of the listed characteristics, while the application domains with more controlled 
environments have less requirements.  Thus, a multirobot coordination approach designed 
to address the requirements of dynamic environments needs to incorporate all of the 
listed characteristics in order to be successful in a wide range of application domains.  
Therefore, designing a robust coordination mechanism for multirobot systems in dynamic 
environments is a highly challenging task. 

1.3 Thesis Statement 

This thesis asserts that the use of market techniques in the TraderBots multirobot 
coordination mechanism enables efficient and robust multirobot coordination in dynamic 
environments. 

1.4 Thesis Roadmap 

This dissertation presents a novel market-based approach to multirobot 
coordination, TraderBots, designed to satisfy all of the characteristics required for 
efficient and robust multirobot coordination in dynamic environments.  Chapter 2 
explores the problem description and related work in more detail, followed by a detailed 
description of the TraderBots approach in Chapter 3.   
The principal benefits of the TraderBots approach are examined in detail next; Chapter 4 
examines the different means by which robustness is ensured.  Chapter 5 examines 
proposed solutions to encouraging efficient solutions, focusing on the benefits and 
challenges of introducing coalitions and leaders.   

A comparative study of the TraderBots approach and two other fundamental approaches 
that bracket the solution space for the multirobot coordination problem is explored in 
Chapter 6, and a presentation and analysis of overall experimental results can be found in 
Chapter 7.  This dissertation concludes in Chapter 8 with a summary of this thesis, a list 
of contributions made by this dissertation towards advancing the state of the art in 
robotics literature, the impact of this dissertation on other research efforts, and a 
description of future work. Appendix 1 presents details of the different implementations 
to date of the TraderBots approach.  
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T 

CHAPTER 2  

 Problem Description 

HE past decade has witnessed a growing emphasis in research topics 
highlighting coordination of multirobot systems.  This emphasis is generated 
by the increasing demand for automation in application domains where a 
single robot is no longer capable of performing the necessary tasks, and/or 

multiple robots can accomplish the same tasks more efficiently.  Coordinating a 
multirobot system is more complicated than controlling a single robot, not only because 
of the increased number of robots to be coordinated, but also due to the added 
complication of requiring the robots to work together in an intelligent manner to achieve 
assigned goals efficiently and robustly.  Dynamic environments, malfunctioning robots, 
communication disruptions, and multiple user requirements add to the complexity of the 
multirobot coordination problem. Cao et al. [24], Dias and Stentz [40] and Matari  [74] 
explore some of these issues, and present summaries of some of the principal efforts in 
this field of research.  

2.1 Problem Statement 

Prior to the work detailed in this dissertation, the multirobot coordination problem 
had not been solved for dynamic domains where highly sub-optimal solutions can be very 
costly and a single point of failure is unacceptable. Mainly lacking in the prior work is a 
multirobot coordination approach that reasons in an efficient fashion about resource 
utilization and task allocation while maintaining the ability to respond quickly and 
robustly to dynamic conditions.  This dissertation details the design and implementation 
of a novel market-based approach, TraderBots, which solves the multirobot coordination 
problem in dynamic environments in a robust and opportunistically efficient manner, and 
enables a detailed analysis of the effectiveness of applying economic strategies to solve 
the multirobot coordination problem.  The TraderBots approach is designed to satisfy all 
of the characteristics in the previous chapter identified as being necessary for addressing 
the problem of efficient and robust coordination of multiple robots in dynamic 
environments. 
A principal advantage of the TraderBots approach is its ability to opportunistically 
optimize resource utilization.  A simple example is illustrative. Consider a system where 
we want two items to be retrieved.  Two robots are available to do the task.  
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Figure 1: An illustration of simple reasoning 

The robots incur costs in driving, as indicated by the numerical labels in Figure 1.  The 
agent who owns the two tasks holds an auction to determine the allocation of these tasks.  
Lets assume that the robots are only capable of reasoning about single-task bids.  Hence, 
the robots bid on each of the tasks separately.  Robot 1 bids the cost, plus a profit of 20 
for task A (120).  Robot 2 cannot compete for this task since its costs alone are 220.  If 
the auctioneer agent allocates the tasks in a greedy fashion, Robot 1 wins task A and, for 
similar reasons, Robot 2 wins Task B.  Both robots are happy, since each makes a profit.  
The auctioneer is happy, since the tasks are allocated quickly and with reasonable 
efficiency in terms of the cost.   

Figure 2: An illustration of more complex reasoning 

Now the robots will continue to auction their incomplete tasks among themselves, always 
seeking a more profitable solution.  Thus, consider the case when Robot 2 puts up Task B 
for auction.  Robot 1 must now reason about its complete tour.  Thus, if Robot 1 adds 
Task B immediately after Task A before returning to its base as illustrated in Figure 2, an 
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additional cost of 110 is incurred.  If Robot 2 can subcontract Task B, it will save 150 in 
cost.  Therefore, it will do so if it pays out less than 150.  Thus, Robot 2 can place a 
reservation price of 150 on Task B notifying the bidders that it will not pay more than 
150 for subcontracting Task B.  Robot 1 determines that the new route will add 110 in 
cost to its expenses and sees that this additional cost is lower than the reservation price.  
Therefore, it will take the subcontract if it will receive more than 110.  A reasonable 
strategy is for Robot 1 to bid 130 and win Task B from Robot 2.  Both robots are happy, 
since they increased their profits, and the system produces a more efficient solution 
because the global task was accomplished at lower cost.   

Note that the same solution could be achieved if Robot 2 was playing acting as a leader 
and ascertained through observation or via communication that a better plan was to 
offload Task B to Robot 1.  Robot 2 wouldn’t lead by coercion; instead, it can use the 
additional profit to “buy off” the participant, Robot 1, and thus convince Robot 1 to 
complete both tasks.  Good plans generate more profits that can be used to gain 
participants.  Note further that this plan could also have been proposed to both robots by 
a third robot playing a leader role. 

The TraderBots approach is not, however, the optimal solution for all multirobot 
application domains.  One concern is that there may be difficulties designing appropriate 
cost and revenue functions to represent some problems accurately.  Furthermore, 
centralized approaches will work best for multirobot applications in static environments 
where there are only a few robots required to execute a task – in such scenarios a 
centralized approach can often produce optimal solutions to the multirobot coordination 
problem.  Similarly, reactive methods will provide less complicated coordination-
approaches for multirobot applications where efficiency is not a paramount concern.   
Thus, the TraderBots approach is best suited for multirobot tasks in dynamic 
environments where efficient solutions are highly preferred.  The principal assumptions 
made in this dissertation, and the resulting limitations, are addressed in the following 
section.  Different approaches to solving the multi-agent coordination problem are 
reviewed in sections 2.3, 2.4, and 2.5. 

2.2 Assumptions 

In order to limit the scope of this dissertation, several assumptions are made.  
These assumptions and the resulting limitations are discussed next.  Other work that 
addresses these limitations is also noted for the interested reader. 

§ Cooperative Tasks 

This dissertation only addresses application domains where robots are assigned 
cooperative tasks; the overall mission does not require robots to interact in an 
adversarial manner. The TraderBots approach itself, however, is not limited to 
being suitable for cooperative tasks.  Bererton et al. ([10], [11]) investigate the 
application of market-based techniques for adversarial multirobot coordination 
domains (laser-tag).  

§ Truthful Agents 

The complications that arise from deceitful agents are beyond the scope of this 
dissertation.  This assumption is made predominantly due to the fact that the 
designer of the robot team can ensure that the robots are truthful in the examined 
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application domains.  While the topic of deceitful agents has not been directly 
addressed for market-based approaches in multirobot domains to date, many 
relevant lessons can be learned from related research in the domain of software 
agents and on-line auctions.  A relevant example is work by Brainov and Sandholm 
([17], [18]). 

§ Discernible Cost and Revenue Structures 
Discerning the structure of costs and revenues for some application domains can be 
complicated.  This concern is not directly addressed in this dissertation.  
Application domains chosen for testing the TraderBots approach in this dissertation 
are limited to easily identifiable cost and revenue structures. Recent work by 
Bererton et al. [10] (based on work by Guestrin and Gordon [60]) address this 
concern by introducing techniques to discern suitable reward functions for 
multirobot coordination using market-based techniques. 

§ Ability to Align Local and Global Costs and Revenues 

The principal limitation of this dissertation stems from the assumption that local 
and global costs and revenues can be aligned.  That is, the work done to date 
assumes that individual robots maximizing individual profits can be utilized to 
maximize team profits and thereby provide efficient solutions.  This assumption 
trivially holds true for application domains where the team cost and team revenue 
can be discerned by a summation of the individual costs and individual revenues 
respectively.  Application domains involving Traveling Salesman Problem (TSP)-
like task structures are amenable to this assumption.  Since many multirobot 
coordination application domains addressed in the literature to date fall within this 
category, this assumption does not excessively limit the applicability of the work 
presented in this dissertation.  Moreover, research by Tumer and Wolpert [121] in 
the domain of Collectives present techniques for applying reinforcement learning 
methods to derive functions that align local and global revenue functions. 

§ Simple Tasks  
A final assumption made in this dissertation concerns the structure of tasks assigned 
to the robots.  This dissertation does not address issues of task decomposition or 
complex tasks that require multiple robots to work in tight coordination in order to 
accomplish the task.  All tasks considered to date in the application of the 
TraderBots approach assume that tasks are primitive tasks independently executable 
by a single robot.  However, the TraderBots approach is not limited in capability to 
handling simple tasks.  Research by Zlot and Stentz ([128], [129], [130]) 
demonstrates the ability to handle task decomposition and loosely coordinated tasks 
using market-based techniques, and Kalra and Stentz [67] explore techniques for 
accomplishing tight-coordination within the framework of market-based multirobot 
coordination.  

2.3 Centralized Approaches 

The benefits of using multiple robots to accomplish certain tasks are many, as 
described in Chapter 1.  However, simply increasing the number of robots assigned to a 
task does not necessarily solve a problem more efficiently; multiple robots must 
cooperate to achieve efficiency.  The difficulty arises in coordinating many robots to 
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perform a single, global task. One approach is to consider the robot team to be a single 
robot “system” with many degrees of freedom. That is, a single robot or central computer 
is designated as the “leader” and is responsible for planning the actions of the entire 
group.   This leader coordinates the group to perform the specified task. The members of 
the group convey relevant state information to the leader, and execute the plans generated 
by the leader, as illustrated in Figure 3.  Some examples of such centralized approaches 
can be found in work done by Caloud et al. [23], Chaimowicz et al. [26], Jensen and 
Veloso [65], Brummit and Stentz [21], Simmons et al. [104], Švestka and Overmars 
[115], and Burgard et al. [22].  

Figure 3: Illustration of centralized coordination of a team 

The principal advantage of such centralized approaches is that optimal plans can be 
produced if the team size is sufficiently small and the environment is sufficiently static.  
Under these conditions, the leader can take into account all the relevant information 
conveyed by the members of the team and generate an optimal plan for the team. 
However, centralized approaches suffer from several disadvantages.   

In a centrally coordinated system, the system response to changes in the environment is 
sluggish since all relevant information must be conveyed to the leader before any action 
can be taken.  Another weakness with this approach is that it produces a highly 
vulnerable system.  That is, if the leader (the central planning unit) malfunctions, a new 
leader must be available or the entire team is disabled.  Due to this reason, design of the 
architecture is made more complex because the designer must decide how many agents 
should be capable of being leaders.  If all agents are able to be leaders, the potential for 
wasted resources is high since only a single leader is usually required at any given time.  
However, if only one agent is able to be a leader, the system is made highly vulnerable.  
Finally, the approach often has stringent and heavy communication requirements because 
information is required from all agents in order to compute efficient plans.   If the system 
is required to produce optimal solutions, the difficulty is increased.  

Optimal coordination is computationally difficult—the best-known algorithms are 
exponential in complexity. Thus, an approach striving to compute globally optimal 
solutions becomes intractable for teams larger than a few. Additionally, the approach 
assumes that all relevant information about the robots and their environment can be 
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transmitted to a single location for processing and that this information does not change 
during the time that an optimal plan is constructed. These assumptions are unrealistic for 
problems in which the environment is unknown and/or changing, communication is 
limited, and robots behave in unpredictable ways. 

2.4 Distributed Approaches 

Local and distributed approaches address the problems that arise with centralized, 
globally coordinated methods by distributing the planning responsibilities among all 
members of the team. Each robot operates largely independently, acting on information 
that is locally available through its sensors. Thus, each robot plans its course of action 
based on its local observations.   
This allows fast response to dynamic conditions and decreases the communication 
requirements. A robot may coordinate with other robots in its vicinity, perhaps to divide a 
problem into multiple sub-problems or to work together on a sub-task that cannot be 
accomplished by a single robot.  Typically, little computation is required, since each 
robot only plans and executes its own activities. Also, less stringent constraints on 
communication are required, since the robots only communicate with others in their 
vicinity, as illustrated in Figure 4. The robots are better able to respond to unknown or 
changing environments, since they sense and respond to the environment locally. 
Moreover, the system is more robust since the entire team’s performance no longer 
depends on the guidance of a single leader. In general, no single point of failure exists for 
distributed systems and the approach scales easily to accommodate large numbers of 
robots.  The approach works best for problems that can be decomposed into largely 
unrelated sub-problems, or problems for which a desired group behavior results from the 
aggregate of individual behaviors and interactions.   

Figure 4: Illustration of distributed coordination of a team 

Many research efforts have modeled distributed systems inspired by biology ([5], [20], 
[29], [30], [75], [101]).  Others have designed systems based on fluidics and similar 
physics-based concepts ([12], [28], [36], [124], [126]). Some have chosen to pursue rule-
based, heuristic-based and model-based approaches ([34], [56], [117]).  Economy-based 
models have inspired still others ([57], [92], [107], [111], [126]).  In general, cooperation 
in distributed approaches can be divided into two categories: fortuitous cooperation and 
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planned cooperation.  Work done by Arkin and Balch [5], Matari,  [75], Goldberg and 
Matari,  [54], Brooks [20], Salido et al. [91], Schneider-Fontán and Matari,  ([101], 
[102]), Arkin ([3], [4]), Parker ([83], [84]), Maio and Rizzi [73], Goldman and 
Rosenschein [56], Desai et al. [36], Böhringer et al. [12], Alur et al. [1], Osawa [79], and 
Pagello et al. [80] are examples of distributed systems in the fortuitous cooperation 
category.  Some examples in the planned cooperation category are work done by 
Kaminka and Tambe [68], Decker and Lesser [34], Tambe et al. [119], Tambe [117], 
Weiß [125], Jennings and Kirkwood-Watts [63], Veloso et al. [123], Noreils [78], 
Bonasso et al. [13], Stentz and Dias [111], Golfarelli et al. [57], Sandholm [92], Smith 
[107], Gibney et al. [53], Collins et al. [31], and Jennings and Arvidsson [62]. All of 
these approaches aim to solve the multirobot/multiagent coordination problem in a 
distributed manner so that the difficulties inherent in a centralized system are 
circumvented.   

However, the principal drawback of many distributed approaches is that they often result 
in highly sub-optimal solutions because all plans are often based solely on local 
information. Stentz and Dias [111] propose a market-based approach which aims to 
opportunistically introduce pockets of centralized optimal planning into a distributed 
system, thereby exploiting the desirable properties of both distributed and centralized 
approaches.        

2.5 Economy-based Approaches 

Smith [107] first introduced the concept of using an economic model to control 
multiagent systems as the Contract Net protocol.  Many groups have since adopted 
similar strategies for controlling multiagent systems. Work done by Krovi et al. [70], 
Faratin et al. [46], Jung et al. [66], Brandt et al. [19], Wellman and Wurman [126], Smith 
[107], Gibney et al. [53], Collins et al. [31], Jennings and Arvidsson [62], Sandholm [92], 
and Sycara and Zeng [116] are examples of economy-based sofware-agent systems.  In 
contrast, work done by Laengle et al. [71], Simmons et al. [105], Botelho and Alalmi 
[15], Dias and Stentz [39], Gerkey and Matari,  [49], and Golfarelli et al. [57] are 
examples of economy-based control-architectures applied to multirobot systems.   
Economic approaches are not without their disadvantages.  Negotiation protocols, 
mapping of task domains to appropriate cost functions, and introducing relevant de-
commitment penalty schemes can quickly complicate the design of a control-architecture.  
Furthermore, some negotiation schemes can drastically increase communication 
requirements.  

Many research efforts have focused on developing optimization techniques applicable to 
distributed multiagent systems.  Sandholm and Lesser [93], Sandholm et al. [99], and 
Excelente-toledo et al. [45] have proposed methods of allowing breaching of contracts as 
an optimization mechanism in economy-based approaches.  Sandholm and Suri [96] 
examine the use of combinatorial auction schemes for optimizing negotiation.  

2.6 Multi-agent versus Multirobot Coordination 

Many characteristics differentiate software-agent domains from situated-agent 
(robotic) domains [100].  Some principal differences between robotic systems and 
software systems are highlighted next.  
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Tasks assigned to robotic agents can vary significantly from tasks in software domains. 
Also, robotic agents often deal with more restricted resources and robotic systems often 
have to deal with more restricted communication. Failures occur with higher frequency, 
and in a wider variety in robotic systems.  Partial observability due to limits in sensing 
capability, and more prominent manifestations of latencies due to interactions with 
hardware systems are other distinguishing features of robots from software agents.  
Furthermore, robotic systems have to be able to accommodate larger error bounds in 
performance since they often deal with faulty sensors and interact with real-world 
environments. Finally, robotic systems often require very different solutions to recover 
from faults (for example, one robot pushing another robot that is stuck, two robots 
cooperating to lift a heavy obstacle, etc.).  Thus, controlling multirobot systems can be a 
significantly different problem compared to controlling multiple software agents.  

2.7 Matrix of Technical Problems Solved in Related Work 

The following matrix illustrates the accomplished characteristics of the best-
known multirobot coordination architectures developed to date (Note that only 
publications pertaining to the design of a complete multirobot coordination architecture 
were evaluated in this matrix): 

§ Robustness:  Robust to robot failure; no single point of failure for the  

     system 

§ Speed:  Quick response to dynamic conditions 

§ Efficiency:   Opportunistically optimized response to dynamic  

     conditions 

§ Information: Ability to execute a task without complete/perfect  

     information about the task or the environment 

§ Communication: Ability to deal with limited and imperfect  

    communication 

§ Resources:  Ability to reason about limited resources 

§ Allocation:  Efficient allocation of tasks 

§ Roles:  Efficient adoption of roles 

§ New Input:   Ability to dynamically handle new instructions from a  

     human operator 

§ Fluidity:   Easily able to accommodate the addition/subtraction of  

     robots during operation 

§ Heterogeneity: Ability to accommodate heterogeneous teams of robots 

§ Extensibility: Easily extendable to accommodate new functionality 

§ Flexibility:   Easily adaptable for different applications 

§ Tight- 

Coordination Ability to coordinate robots in maneuvers that require  

     tight-coordination 

§ Scalability  Ability to coordinate large numbers of robots 

§ Learning:   On-line adaptation for specific applications 

§ Implementation:  Implemented and proven on robotic system 

    (N- no implementation, S - simulation or software  

    agents, P – partially implemented on a robotic system,  

    Y - fully implemented on a robotic system) 
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N = Not accomplished, P = Partially accomplished, Y = Fully accomplished, F = Five 
robots or less, T = Tens of robots, H = Hundreds of robots  
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[1] Y Y N Y Y N N N Y Y Y Y Y Y Y Y Y 

[5] Y Y N Y Y N N N Y Y Y Y Y Y Y Y Y 

[12] N N N N Y Y Y Y N N P P N Y Y N Y 

[15] Y Y Y P P N Y N N N Y Y P N Y N S 

[21] N N Y Y N N Y N Y P N P N N N N S 

[22] N N Y Y N N Y N N P P P N N N N Y 

[23] P P P Y Y P P N P Y Y Y Y N Y N P 

[26] P Y P Y P N P P N P Y P P Y Y N Y 

[28] P P P P Y N P N N N N N N Y N N N 

[36] N Y P P Y N N N N N N N N Y Y N S 

[45] P P P P Y N Y Y Y P Y P Y P Y N S 

[49] Y Y P Y P Y P P P Y Y Y Y Y Y N Y 

[56] P N P Y Y N N N N P Y P P P Y N S 

[57] P P P P Y N N N P N Y Y P P Y N S 

[61] P N N Y Y N N N N P P N P P Y N S 

[63] Y Y P Y Y N N N P Y Y Y P Y Y N Y 

[65] N P Y Y N N P N N P Y Y Y N N N S 

[66] P P P Y P P P N N P Y Y Y Y Y N S 

[71] P Y Y Y Y P Y P P Y Y Y P Y P N Y 

[73] N Y N Y Y N N N N P N N N N Y N S 

[78] P Y P N Y P P N P P Y Y Y Y N N Y 

[79] N P N Y Y N P Y N N P P P Y Y N S 

[80] P Y N Y Y N N N N N P P P P Y N S 

[83] Y P P Y Y N P P P Y Y Y Y Y Y Y Y 

[102] Y P P Y Y N P N P Y P P N P Y N Y 

[104] N N N N N N Y N P N Y P P Y N N Y 

[105] Y Y P Y Y P Y N N Y P Y P Y N N P 

[115] N P P N Y N Y N N N N N N N N N S 

[117] Y Y Y Y P N Y P P Y Y Y Y Y P P P 

[119] Y Y Y Y P N Y P P Y Y Y Y Y Y Y P 

[123] Y Y P P Y N P N N N P N N P Y N Y 

Table 3: The coverage of characteristics required by multirobot applications by 

multirobot coordination architectures designed to date 
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2.8 Multirobot Coordination 

A closer examination of the architectures that satisfied many of the desired characteristics 
is useful. Note that many others (for example [44]) have published coordination schemes 
geared towards specific domains such as the soccer domain – these are not explored in 
detail here.   

Arkin [4] provides a biologically inspired architecture where individual agents make 
reactive decisions based on motor-schema.  Introducing cooperation through recruitment 
behaviors enhances the resulting fortuitous group-behavior.  This eliminates the necessity 
for direct communication between agents.  However, this system is incapable of 
optimizing its response to dynamic conditions.  The agents also do not explicitly reason 
about optimal use of their limited resources, optimal adoption of roles, and optimal task 
distribution among the group.  Furthermore, the group of agents cannot easily 
accommodate new tasks, resources, and roles assigned to the group. Finally, this work 
does not include implementation results from a robotic system – results are all in 
simulation.  

Caloud et al. [23] introduce another successful architecture, “GOPHER”.  The 
architecture is broken down into four layers: task decomposition, task allocation, motion 
planning, and execution.  The task allocation process is partially centralized by involving 
a central task processing system (CTPS) which announces tasks to all available robots 
within communication range.  There is no apparent plan however to recover from failure 
or malfunction in the CTPS.  Moreover, although robots make bids for different tasks 
offered by the CTPS, it is not clear how these bids are formed, or on what basis the costs 
are computed.  Furthermore, any robot in the midst of executing a task will not 
participate in any other transactions until it has completed its current tasks.  These 
characteristics detract from optimal resource utilization and optimized reaction to 
dynamic conditions.  Also, no explicit reasoning about optimal utilization of limited 
resources and corresponding adoption of roles is evident.  Finally, the implementation of 
the architecture is at preliminary stages, and no method of on-line adaptation for specific 
applications is discussed.   

Chaimowicz et al. [26] present an architecture for tightly coupled multirobot 
coordination.  The architecture is based on the concept of at least one leader being 
identified at any give time within a group, and the others being followers.  Some of the 
followers can be leaders for other agents in the group – so a hierarchy could exist.  (In the 
implementation only a single leader was present at any time).  Leadership can be changed 
by request and by resignation.  Conflicts are resolved using a priority-based approach.  If 
any deadlock is detected, command is relinquished to a human operator.  No discussion is 
presented about what would happen if a leader is disabled before it can resign.  Thus, the 
system is not fully robust.  Also, since a robot could be assigned as a leader, even though 
it isn’t optimally placed to become a leader, due to the current leader’s resignation, the 
system will not always produce an optimal response to dynamic conditions.  No 
consideration is provided about optimal management of resources.  The roles are limited 
to leaders and followers.  On-line optimization/adaptation schemes are not discussed, and 
extensibility, flexibility and fluidity of the system are limited. 
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Gerkey and Matari,  ([49], [52]) present “MURDOCH”; a completely distributed, 
resource-centric, publish/subscribe communication model.  A key feature in this approach 
is that all communication is resource-centric, and never name-based.  Thus, the claim is 
that all messages are addressed in terms of the resources required to do the task.  All tasks 
are allocated based on a single-round auction scheme.  The auctioneer determines a 
winner and notifies the bidders.  The winner is awarded a time-limited contract to 
complete the task.  The auctioneer is responsible for monitoring the progress of the task 
execution.  To do this, the auctioneer periodically sends contract renewal messages to the 
winner, which sends back corresponding acknowledgements.  These messages will have 
to be addressed by name and will increase the communication requirements of the system 
since the auctioneer and winner will have to remain within communication range (or 
periodically return to positions within communication range) to renew the contract.  
Furthermore, since the auctioneer assumes a fault if a renewal message is not 
acknowledged and reassigns the task, several robots could attempt to complete the same 
task if acknowledgements are not received on time or some acknowledgement messages 
are lost.  The instantaneous greedy task scheduling in MURDOCH does not allow for 
opportunistic optimization. Also, no discussion of on-line adaptation is presented. 

Laengle et al. [71] introduce KAMARA, a distributed control-architecture for controlling 
the different components of a complex robot.  This architecture could arguably be applied 
to the multirobot coordination problem.  The architecture is based on the concept of 
generating an agent that represents each component of the robot.  Each agent is composed 
of a communicator that handles communication, a head that is responsible for the 
planning and action selection, and a body which handles execution.  Each body consists 
of one or more executive components which can be agents themselves.  The agents can 
form teams to execute cooperative tasks when tight coordination is not necessary.  If tight 
coordination is required, a special agent is generated which oversees the coordination of 
the agents involved by seizing control of these agent bodies from their heads.  Task 
allocation occurs via negotiation where mediation is carried out by a selected agent in the 
candidate group for executing the task.  Although disabled agents are compensated for 
because they cannot participate in the negotiation and hence cannot be assigned tasks, no 
method of ensuring completion of tasks assigned to the disabled agent is presented.  
Moreover, each agent is only able to execute a single task at a time.  This can be highly 
sub-optimal in multirobot coordination because either resource utilization will be non-
optimal, or an agent will be required to represent each resource on each robot which will 
drastically increase the required negotiation between agents.  Also, the presented 
architecture has no method for on-line optimization. 

Parker [83] designed ALLIANCE to be a fault-tolerant and adaptive multirobot 
coordination architecture.  Essentially a behavior-based system, ALLIANCE has the 
added benefit of motivational behaviors such as impatience and acquiescence which 
prompt the robots to complete tasks when other robots fail to execute them, and to give 
up on tasks they cannot complete.  While these motivational behaviors allow robot teams 
to be fault tolerant and adaptive, they do not enable the robots to respond to dynamic 
conditions in a quick and opportunistically optimal manner.  Furthermore, the robots do 
not reason about the limited resources available to them and attempt to optimize 
utilization of these resources.  No allocation of tasks is performed in this architecture.  
Instead, the high-level tasks are programmed into the behavior sets of the robots.  This 
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scheme does not promote optimized task allocation, and doesn’t allow new types of tasks 
to be dynamically assigned.  Parameterized learning methods are explored for on-line 
optimization.  In Parker’s discussion of other multirobot coordination schemes, her main 
argument against negotiation schemes is that they have not been proven on robotic 
systems.  The proposed work for this Ph.D. thesis aims to overcome Parker’s challenge. 

“Teamcore”, developed by Tambe et al. [119] is a most successful architecture included 
in Table 3 in terms of satisfying the largest number of the identified criteria.  The general 
idea of this approach is to provide the architecture with general-purpose teamwork 
coordination capabilities and to adapt these capabilities for specific applications via 
machine learning.  The architecture is formed by generating Teamcore proxies to 
represent each participant in the group (the participants can be robots, humans, or 
software agents).  Each proxy is equipped with a general teamwork model, STEAM 
[117], which automates its coordination with other proxies on its team.  STEAM is based 
on a hierarchical reactive plan architecture, with teamwork capabilities inserted as 
reactive team plans which instantiate joint intentions [64] for the team.  The proxies can 
then adapt at four different levels: autonomy, execution, monitoring, and information 
requirements.  While this system is highly adaptable and successful in satisfying many of 
the criteria in Table 3, it lacks the ability to reason about and optimize the use of limited 
resources available to the robots.  Further, it has not been implemented and proven on a 
robotic system.  

In summary, although many multirobot coordination approaches have been implemented 
on robotic systems with varying levels of success, no approach that satisfies all of the 
criteria for efficient multirobot coordination in dynamic domains has been designed and 
implemented to date.  Mainly lacking are approaches that are capable of efficient and 
robust coordination of teams of robots in dynamic environments.  Furthermore, no in-
depth analysis has been carried out to investigate the applicability of economic methods 
to the multirobot coordination problem. 

Stentz and Dias [111] first envisioned the TraderBots approach in 1999.  This was the 
first detailed investigation of the concept of using a market approach to coordinate 
multiple robots to cooperatively complete a task.  This work builds on the contract net 
protocol by Smith [107], its extension by Sandholm and Lesser [98], and the general 
concepts of market-aware agents developed by Wellman and Wurman [126].  This work 
investigated the methodology of applying market mechanisms to intra-team robot 
coordination (i.e. in typically non-competitive environments) as opposed to competitive 
multirobot domains and competitive inter-agent interactions in domains such as E-
commerce. Simulation results using this approach were produced by Dias and Stentz [39] 
and by Thayer et al. [120], and robot results were presented by Zlot et al. [131].  Dias and 
Stentz [40] further developed the TraderBots methodology and started a detailed 
investigation of the multirobot coordination problem in dynamic environments, which is 
completed in this dissertation.  Numerous further enhancements of the TraderBots 
approach have been investigated and implemented in simulation and on robots ([37], 
[41], [43], [55], [106]) culminating in the most sophisticated implementation to date of 
the approach on robots described in a recent publication by Dias et al. [43].  Further 
extensions of the TraderBots approach are being investigated by Zlot and Stentz ([128], 
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[129], [130]) and Kalra and Stentz [67].  Details of the TraderBots approach are 
presented in the next chapter. 
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I

CHAPTER 3   

TraderBots Approach 

T is now instructive to examine in detail the TraderBots approach presented in 
this dissertation. TraderBots is a coordination mechanism designed to inherit the 
efficacy and flexibility of a market economy, and to exploit these benefits to 
enable robust and efficient multirobot coordination in dynamic environments. 

Consider a team of robots assembled to perform a set of tasks in a dynamic environment.  
Consider further, that the team of robots is modeled as an economy, and each robot in the 
team is modeled as a self-interested trader in this economy. Thus, the goal of the team is 
to complete the tasks successfully while maximizing overall profits (i.e. the difference 
between revenue and cost), while each robot will aim to maximize its individual profit. 
Thus, robots will hold auctions and submit bids to determine task allocations within the 
team, and the different tasks and information will be the commodities traded in the 
economy.  A system such as this will inherit many desirable characteristics from the 
market methodology.  The competitive element of the robots bidding for different tasks 
enables the system to decipher the competing local information of each robot (note that 
there is no central agent evaluating information and planning for the entire system), while 
the common currency provides grounding for the competing local costs in relation to the 
global priorities/value of the tasks being performed.  Presented next is a more detailed 
examination of these characteristics. 
An economy is essentially a population of agents (i.e., citizens) producing a global 
output. The agents coordinate with each other to produce an aggregate set of goods. 
Centralized economies suffer from an inability to gather all salient information, 
uncertainty in how to optimize with gathered information, and sluggish responsiveness to 
changing conditions.  Additionally, if economic output is divided equally amongst the 
entire population, individuals have little incentive to work harder or more efficiently than 
what is required to minimally comply with the economic plan. Individual input is de-
coupled from individual output. The net effect is a sluggish, brittle, and inefficient 
economy.  

Market economies are generally unencumbered by centralized planning; instead, 
individuals are free to exchange goods and services and enter into contracts as they see 
fit. Despite the fact that individuals in the economy act primarily to advance their own 
self-interests, the aggregate effect is a highly productive society. Individuals are often in 
the best position to understand their needs and the means to satisfy them. Thus, 
individuals reap the direct benefits of their own good decisions and suffer the direct 
consequences of their bad ones. At times they cooperate with other members of the 
society to achieve an outcome greater than that possible by each member alone. At times 
they compete with other members to provide goods or services at the lowest possible 
cost, thus eliminating waste and inefficiency. But at every turn, the individual members 
act to reap the greatest profit for themselves. This dissertation presents a method for 
applying these powerful techniques to the task of coordinating a team of robots in 
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dynamic environments. An important aspect of the TraderBots approach is that the robots 
are self-interested.  Note however that the robots are only self-interested within the 
domain of capabilities allowed to them.  Since we design the system, we are able to 
influence the actions and capabilities of the robots/traders to a large extent.  For example, 
robotic dishonesty is not allowed in order to simplify architectural component design and 
overall system complexity.  

While other approaches have adopted cooperative models for robot coordination, it is not 
clear that cooperative motivations in general have any significant advantage over the 
presented approach.  Designing generic incentives to motivate cooperation in multirobot 
applications is not trivial, although such schemes could be better suited for some 
applications.  Furthermore, it is not clear that cooperative incentives would not lead to 
interference between robots for some applications.  While designing appropriate cost and 
revenue models can also be non-trivial for some applications, in many multirobot 
application domains the TraderBots approach enables efficient and robust coordination 
by providing a mechanism that inherits the flexibility and many benefits of market 
mechanisms as described next. 

3.1 Cost, Revenue, and Profit 

Costs and revenues dictate to a large extent the performance of a market-based 
approach.  A function, trev, is needed to map possible task outcomes onto revenue 
values. Another function, tcost, is needed that maps possible schemes for performing the 
task onto cost values. As a team, the goal is to execute some plan P such that profit, 
trev(P) – tcost(P), is maximized.  Note that trev and tcost are not always simple 
functions – they can potentially be complex functions involving statistical distributions 
and vectors of different components (for example, the cost function can be a combination 
of time spent, fuel expended, and CPU cycles utilized, and the revenue function can be a 
combination of the priority placed on the task by the operator, the risk involved with 
executing the task, and the extent to which specialized resources are required for task 
execution).  The cost and revenue functions are designed to reflect the nature of the 
application domain.  Thus, these functions need to reflect characteristics important to the 
domain such as priorities for task completion, hard deadlines for relevant tasks, and 
acceptable margins of error for different tasks.  
But it is not sufficient to define just the revenue and cost functions for the team. These 
functions must provide a means for distributing team revenue and assessing team costs to 
individual robots. Preferably, these individual revenues and costs are assigned based on 
factors over which the individuals have direct control. For example, if the task is to find 
and retrieve a set of objects, the team’s revenue, trev, could be the number of objects 
retrieved (converted to a “cash” value), and the team’s cost, tcost, could be the amount of 
energy consumed by the entire team to find the objects. The individual robot revenues 
and costs, rrev and rcost, could be the cash value of the number of objects turned in, and 
the energy expended, respectively, by that individual robot.  Therefore, in this case, the 
sum of the individual revenues and costs equals the team’s revenues and costs. However, 
the distribution is not even: individuals are compensated in accordance with their 
contribution to the overall task, based on factors that are largely within the control of the 
individual. An important point to note is that each robot does not estimate costs based 
solely on resource consumption (for example fuel spent or time taken) but can also 
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include estimates of opportunity cost in this computation.  The opportunity cost can take 
into account factors such as what other opportunities are available to the robot, what 
competition it faces for winning a given task, and what special capabilities the robot 
possesses (for example the team may only have one robot with a gripper which makes 
that robot’s time more valuable and that robot should give preference to gripper-related 
tasks unless there is a pressing need for it to execute a task that can be executed by 
another robot).  An individual that maximizes its own personal production and minimizes 
its own personal cost receives a larger share of the overall profit. Note that the 
revenue/cost models and rules of engagement are designed so that maximizing individual 
profit has the benevolent effect of moving the team toward the globally optimal solution. 
This is a crucial element to prevent unfavorable interactions between individual and team 
profit maximization.  Therefore, by acting strictly in their own self-interests, individual 
robots maximize not only their own profit but also the overall profit of the team.   

It is instructive to note that since costs and revenues drive its design, the TraderBots 
approach can be easily applied to many different applications.  Another important feature 
of this approach is its ability to accommodate several revenue providers.  That is, a 
number of operators could connect to a single group of robots and offer the robots 
revenue in return for different services.  This also prevents the revenue provider from 
becoming a single point of failure for the system.  If for some reason the connection from 
the operator to the team of robots is disabled (a likely scenario in application domains 
such as urban reconnaissance), a different connection can be established if necessary, but 
any tasks (whose completion don’t require the connection) conveyed to the robot team 
before the communication failure can be completed even if the connection cannot be re-
established. 

3.2 Bidding, Price, and Negotiation 

Robots receive revenue and incur costs for accomplishing a specific team task, 
but the team’s revenue function is not the only source of income. A robot can also receive 
revenue from another robot in exchange for goods or services. For example, a robot may 
not be equipped to find objects for which the team function provides revenue, but it can 
transport the objects to the goal once they have been found. Therefore, this haulage robot 
provides a service to the robots that find the objects, and it receives payment for 
performing such a service.  
In general, two robots have incentive to deal with each other cooperatively if they can 
produce more aggregate profit together than apart—such outcomes are win-win rather 
than zero-sum. The price dictates the payment amount for the good or service. 
Determining this price is an important aspect of the TraderBots approach. Assume that 
robot A would like to purchase a service from robot B. Robot B incurs a cost Y for 
performing the service. Robot A can make additional revenue of X if B performs the 
service for it. Therefore, if X > Y, both parties have an incentive to execute the deal. But 
how should the composite profit, X - Y, be divided amongst the two parties? It may 
sound fair to split the winnings (X - Y) / 2 by setting the price at (X + Y) / 2. This is 
certainly a possibility.  But robots A and B may have other opportunities—they may be 
considering other deals that contend for the same money and resources. Since these 
factors may be hidden or complex, a common approach is to bid for a good or service 
until a mutually acceptable price is found. For example, robot A could start by bidding a 
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price of Y (i.e., robot A receives the entire profit). Robot B could decline and counter 
with a bid of X (i.e., robot B receives the entire profit). The idea is to start by bidding a 
price that is personally most favorable, and then successively retreat from this position 
until a price is mutually agreed upon.  Note that a given robot can negotiate several 
potential deals at the same time. It begins by bidding the most favorable price for itself 
for all of the deals, successively retreats from this position with counter bids, and closes 
the first deal that is mutually acceptable.  The deal will be mutually acceptable only if it 
results in increased profits for both robots.  Thus, the deal will move the global solution 
towards its optimal.   

Note also that a deal can be multi-party, requiring that all parties agree before any part of 
the deal is binding.  Since multiple rounds of negotiations could be time-consuming, time 
restrictions will have to be imposed on all bidding.  These time restrictions can vary from 
bid to bid, and between application domains.   Based on basic economic intuition, the 
negotiated price will tend toward the intersection of the supply and demand curves for a 
given service.  However, several rounds of bidding can still be too time-consuming for 
some applications – especially in dynamic environments.  Hence, another possibility is to 
hold single-round auctions where each robot bids a price that is higher than its estimated 
cost for completing the task (this could include opportunity cost calculations) and low 
enough to be competitive by its estimates.   

If a service is in high demand or short supply, we can expect that the negotiated price will 
be high. This information will prompt other suppliers to enter the fray, driving the price 
down. Likewise, if demand is low or supply high, the low price will drive suppliers into 
another line of business. Thus, price serves to match supply to demand.  Note that in an 
efficient market with perfect information, the price will optimize the matching of supply 
and demand. Finally, it is important to note that price and bidding are low bandwidth 
mechanisms for communicating aggregate information about costs. When consumers 
decide between purchasing apple juice or orange juice for breakfast, they do not analyze 
land acreage dedicated to the two crops, the costs of producing each, the demand for 
each, and the impact of weather and pest infestations. Instead, they merely look at the 
price of each and weigh them against their own personal preferences. The price, however, 
encodes all of these factors in a concise fashion that enables them to make a locally 
optimal decision based on low-bandwidth information available at the point of sale. 

3.3 Cooperation and Competition 

As described in the previous section, robots interact with each other to exchange 
goods and services. Two robots are cooperative if they have complementary roles; that is, 
if both robots can make more profit by working together than by working individually. 
Generally, robot teams foster cooperation between members of different types 
(heterogeneous). For instance, a robot able to grasp and lift objects and a robot able to 
transport objects could team together to provide a pick-and-place service that neither one 
could offer independently.  
Conversely, two robots are competitive if they have the same role; that is, if the amount 
of profit that one can make is negatively affected by the presence of the other robot. 
Generally, robot teams foster competition amongst members of the same type 
(homogeneous). For instance, two robots that are able to transport objects compete for the 
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services of a given grasping robot, thus driving the price down. Either one could charge 
more money if the other were not present. 

These delineations are not strict however. Subgroups of heterogeneous robots could form 
that provide a given service. These subgroups would compete with each other, thus 
providing an example where robots of different types compete rather than cooperate with 
each other.   Heterogeneous robots could also compete if the same task can be 
accomplished in different ways. Conversely, two robots of the same type may cooperate 
by agreeing to segment the market. Homogeneous robots can also cooperate if 
accomplishing a specific task requires more than one robot.  For example, several robots 
with grasping capability may need to cooperate in order to move a heavy object. The 
flexibility of the market-model allows the robots to cooperate and compete as necessary 
to accomplish different tasks, regardless of the homogeneity or heterogeneity of the team. 

3.4 Self Organization 

Conspicuously absent from the market is a rigid, top-down hierarchy. Instead, the 
robots organize themselves in a way that is mutually beneficial. Since the aggregate profit 
amassed by the individuals is directly tied to the success of the task, this self-organization 
yields the best results. 
Consider a group of ten robots. An eleventh robot, A, offers its services as their leader. It 
does not become their leader by coercion or decree, but by convincing the group that they 
will make more money by following its plans than by acting individually or in subgroups. 
A does this by investigating plans for utilizing all ten robots. If A comes up with a truly 
good plan, it will maximize profit across the whole group. The prospective leader can use 
this large profit to bid for the services of the group members, and of course, retain a 
portion of the profit for itself. Note that all relevant robots will have to commit to the plan 
before it can be sold.  The leader may be bidding not only against the individuals’ plans, 
but also against group plans produced by other prospective leaders.  Note that the leader 
acts both as a benevolent agent and a self-interested agent; it receives personal 
compensation for efforts benefiting the entire group. 

But there is a limit to this organization. As the group becomes larger, the combinatorics 
become intractable and gathering all of the relevant information to produce a good plan 
becomes increasingly difficult. A leader will realize this when it can no longer convince 
its subjects (via bidding for their services) to follow its plans.  The process of building 
coalitions/sub groups and enabling leaders to do an efficient job can be a complex 
endeavor.  These topics are explored in more detail in Chapter 5.  Fully centralized and 
fully distributed reactive approaches are two extremes along a continuum of solutions to 
the multirobot coordination problem.  The introduction of leaders and coalitions allows 
the TraderBots approach to slide along this continuum in the direction of improved 
efficiency in an opportunistic manner. 

3.5 Learning and Adaptation 

The robot economy can learn new behaviors and strategies as it executes its tasks. 
This learning applies to both individual behaviors and negotiations as well as to those of 
the entire team. Individual robots may learn that certain strategies are not profitable, or 
that certain robots are apt to break a contract by failing to deliver the goods or proper 
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payment. Individuals may also learn successful bidding strategies or which deals to offer 
when. The robot team may learn that certain types of robots are in over-supply, indicated 
by widespread bankruptcy or an inability to make much money. Conversely, the robot 
team may learn that certain types of robots are in under-supply, evidenced by excessive 
profits captured by members of the type. Thus, the population can learn to exit members 
of one type and enter members of another.  Moreover, in this approach, successful agents 
are able to accumulate wealth and perpetuate their winning strategies because of their 
ability to offer higher payments to other agents.  The different ways in which learning can 
benefit the TraderBots approach are explored in greater detail in Chapter 6. 
One of the greatest strengths of the TraderBots approach is its ability to deal successfully 
with dynamic conditions.  Since a market economy does not rely on a hierarchical 
structure for coordination and task assignment, the approach is highly robust to changes 
in the environment, including malfunctioning robots.  Disabling any single robot does not 
jeopardize the system’s performance.  By adding escape clauses for “broken deals”, any 
tasks undertaken by a robot that malfunctions can be re-bid to other robots, and the entire 
task can be accomplished. Also, escape clauses will provide the robots with further 
flexibility to adapt to dynamic conditions and accept more attractive offers that are 
generated, although some caution is necessary here to maintain stability and prevent 
cycles of broken deals.  Thus, the TraderBots model allows the robots to deal robustly 
with dynamic environments in an opportunistic and adaptive manner.  A more detailed 
examination of how the TraderBots approach is designed to ensure robustness is 
presented in Chapter 4. 

Due to its distributed nature, the TraderBots approach can respond quickly (within the 
time constraints placed on bidding) to dynamic conditions. An added benefit with this 
approach is that it can also respond efficiently in terms of specified cost-criteria to 
dynamic conditions.  The challenges encountered and solutions proposed for encouraging 
higher levels of efficiency in the design and implementation of TraderBots are explored 
in greater detail in Chapter 5.  Finally, a key factor for efficiency and flexibility in the 
TraderBots approach is the agents’ ability to efficiently manage their resource utilization 
and role adoption. This approach allows for efficient resource and role management, 
because each agent is driven to make individual-rational decisions at any given time and 
because resource and role constraints are taken into account during cost estimation before 
making bids.  Furthermore, no artificial limits are placed on the robots in terms of how 
many roles they can play or how many resources they can use at any given time.   

The TraderBots approach can be further illustrated via a couple of examples of its 
application in multirobot task domains.  Two such examples are presented next. 

3.6 Illustrative Example I 

The first chosen example is that of a warehouse with automated pallet jacks that 
work in conjunctions with humans to pick and package orders; a less dynamic application 
domain where some control over the environment is possible.  Controlling multiple 
automated pallet jacks in a warehouse is a challenging task.  The underlying challenge is 
to provide efficient scheduling and coordination of the pallet jacks to maximize 
throughput and minimize labor costs.  This involves maximizing the time spent by human 
workers picking orders, the operation most difficult to automate, and minimizing their 
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unproductive travel time.  Thus, the workers are dedicated to specific storage areas in the 
warehouse and the pallet jacks drive themselves from worker to worker in the necessary 
sequence to fill orders.  
If the TraderBots approach is applied to the automated warehouse domain, agents 
representing the pallet jacks (PJ-traders) will trade to win order filling, delivery, and 
other tasks the pallet jacks are capable of performing.  The PJ-traders will negotiate with 
agents representing restrictive areas on their routes (toll-traders) so that they are able to 
make cost-effective bids and reach their goals with minimal delays.  The toll-traders will 
be responsible for controlling traffic in these areas and thereby preventing collisions, 
bottlenecks, and delays.  Agents representing human workers (HW-traders) will negotiate 
on their behalf for loading, sorting, and other such tasks that will maximize the efficiency 
and utility of the laborers. Finally, agents representing the Warehouse Management 
System (WMS) will be responsible for announcing orders issued by the WMS and 
orchestrating efficient execution of other instructions from the WMS.  

Each agent can choose to play one or more complementary roles at any point in time if 
the agent is managing the set of resources required by those roles.  Maximizing 
individual profit will be each agent’s motivation for choosing whether or not to adopt a 
particular role.  The following roles will correspond to the duties of the different agents 
specified above: 

§ Loader  – loading pallets (needs to be done by a human) 

§ Transporter – transporting pallets (can be done by a human or a pallet  

       jack) 

§ Order Filler – efficiently filling an order (can be done by any agent with  

        sufficient computing capability) 

§ Leader   – computing efficient plans for a group of agents (can be done  

                   by any agent with sufficient computing capability) 

§ Computer  – utilizing computing resources for evaluation of a problem 

      (can be done by any agent with sufficient computing  

        capability) 

§ Traffic Cop  – monitoring a given area to prevent collisions and traffic  

        congestion (can be done by any agent with sufficient  

       computing capability) 

Let’s assume that only pallet jack agents and WMS agents manage sufficient computing 
resources to adopt multiple roles. The agents representing laborers and restrictive areas 
don’t have sufficient computing resources to manage more than a single role.  In general, 
an agent will be able to assume more roles if it has access to more resources.  Agents 
orchestrate efficient planning and scheduling by switching between these roles as 
necessary.  For example, an agent assuming the Order Filler role can plan a sequence of 
routes through the warehouse assuming that there is no contention for resources (i.e., 
human loaders, intersections, one-way routes etc.).  If it can't "buy" everything it needs, it 
will need to modify its plans.  On the other hand, if it can get what it needs but the prices 
are high, then that is an opportunity to assume the role of a Coordinator.  As a 
Coordinator it can coordinate Order Filler plans with Loader and Transporter plans to 
produce a globally more efficient solution and sell the results to the participants. The 
more computing time/resources available, the more complicated that reasoning could be, 
involving many agents and resulting in even greater global efficiency. The system is thus 
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an "anytime" system, producing good results that get better if time permits.  Examined 
next is a more specific scenario in the automated warehouse domain. 

Consider the case of two automated pallet jacks (J1 and J2) working in a warehouse.  The 
warehouse also employs two human laborers (H1 and H2) for picking orders, and has a 
Warehouse Management System (W) that oversees order picking.  H1 is assigned to pick 
orders from a storage location (S1) that contains tomatoes and cabbages, while H2 is 
assigned to a storage area (S2) containing tomatoes, eggs, and potatoes.  Two 
intersections (I1 and I2) and one passageway (P) in the warehouse only allow for a single 
pallet jack to pass though at a time.  In this scenario the above warehouse components 
would be represented by the agents j1, j2, h1, h2, w, i1, i2, and p respectively.  Assume 
all costs are time-based.  For example, the cost for traveling from a start position to a goal 
is directly proportional to the time it takes to move from start to goal.  For simplicity, let 
as assume the WMS designates sufficiently high, equal rewards for all orders.  Note that 
in reality, the reward offered for each assignment can vary depending on factors such as 
the urgency of the order, the size and complexity of the order, and the relationship with 
the customer.  Also assume that the agents determine the bid price as a percentage of the 
difference between the offered reward and the cost.  Let the cost of loading one unit of 
any of the produce also be fixed.  Figure 5 below shows the layout of a simplistic 
warehouse as described above, the costs of all possible routes, the locations of the key 
components in the warehouse, and the different items stored in the storage areas.  In this 
scenario the agents j1 and j2 reside on the corresponding pallet jacks, the agents h1 and 
h2 reside in the storage areas S1 and S2 respectively, the agents i1, i2, and p reside on 
computers with access to surveillance capabilities in I1, I2, and P, and the agent w resides 
on the central computing system which supports W.  Let us further assume that 
communication is possible at all times between all agents, either point-to-point or routed 
through a central computer. 

Figure 5: Illustration of warehouse setting 

Now consider the case where W receives an order for cabbages and tomatoes.  Agent w 
will play the role of order filler and auction the order transportation to j1 and j2.  Agents 
j1 and j2 will estimate their costs to carry out the order and choose the route which 
allows them to fill the order with the lowest cost.  Thus, j1 and j2 will both choose the 
route to S1 and back which will cost each of them 42 and 48 respectively.  Based on this 
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estimate, plus the estimate payment to get the pallets loaded, j1 is able to make a lower 
bid and hence will win the assignment from w to play the role of transporter.  Once the 
assignment is won, w, based on the route chosen by j1, will negotiate with i1 for the right 
of passage through I1 during the estimated required time intervals, and also with h1 for 
the services of H1 to pick and load the appropriate units of produce into the pallet.  
Assuming no conflicts, i1 will charge the standard cost, 2, for each pass through I1, and 
h1 will charge the standard cost per unit of produce loaded into the pallet.  Then i1 and 
h1 will reserve the relevant time slots in their schedules while playing the roles of traffic 
cop and loader respectively.  Thus, an efficient solution will be produced. 

However, this is a simplistic scenario.  Consider the slightly more complex scenario 
where the order is for eggs and tomatoes.  Once again, j1 will win the assignment, but 
this time will choose to deal entirely with S2.  But what happens if H2 is currently 
occupied and hence causes a delay?  This will translate to a greater cost for J1 to 
complete the order.  If the increase in cost is sufficiently high (the delay is sufficiently 
long), j1 will choose the alternate route of first heading to S1 for the tomatoes and then to 
S2 for the eggs.  Thus, the added cost of traveling to S1 is offset by the lower delay at S2 
and hence the overall cost of completing the order is minimized; that is, efficiency is 
achieved.  Other possible scenarios include j2 being able to fulfill part of the order due to 
its current schedule overlapping with that of j1’s schedule – for example, if j1 was filling 
an order at S1 and had to travel to S2 for its next order, it could carry the tomato portion 
of j1’s order to S2 with it which would then only need to be transferred to J1 at S2.  This 
would of course be done for a price paid by j1 to j2.  Note that in a more sophisticated 
system, an idle agent assuming the role of leader could realize through monitoring that a 
large number of orders requiring stops at S2 are queuing up and produce a plan where H1 
moves to S2 temporarily.  If this plan results in greater profits for all involved parties, the 
leader agent will be able to easily sell the plan to the participating agents thus improving 
efficiency in the warehouse operations.  Many other complex scenarios can be explored 
in this domain; the more dynamic the scenario, the more creative the agents will need to 
be in their trading and planning in order to generate efficient solutions for filling the 
arriving orders.  However, many aspects of the automated warehouse domain are 
controllable, and it is likely that the daily stream of orders will be somewhat predictable 
and hence prior planning and availability of the necessary resources will help facilitate 
efficient solutions for most of the order filling without the need for many optimization 
techniques.  The next example explores the application of TraderBots in the remote 
operations domain, which is more dynamic and less controllable. 

3.7 Illustrative Example II 

In this example we explore a scenario in the remote operations domain.  Domains 
in which complex tasks must be performed in environments that are largely inaccessible 
to humans motivate this scenario.  The applicability of the TraderBots approach to this 
scenario is explored in detail by Dias et al. [41] in a previous publication.  Robots, largely 
autonomously, performing the required tasks becomes necessary because the 
environment is largely inaccessible to humans.  From within this domain, we choose the 
scenario of a team of robots maintaining and operating a Martian outpost. For this 
scenario (which can include tasks such as exploration, habitat construction, space facility 
construction, and maintenance operations), the tasks can be performed safer, better, 
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faster, and cheaper using teams of heterogeneous robots similar to the manner in which 
our society utilizes workforces consisting of specialists in diverse fields to perform 
similar tasks. 
For the foreseeable future, mobile robots will serve as the remote sensors and data 
collectors for scientists.  To create an outpost for such long-term exploration, the robots 
need to assemble solar power generation stations, map sites and collect science data, and 
communicate with Earth on a regular basis.  In this scenario on the order of ten robots are 
sent many with different capabilities.  Some of the robots specialize in heavy moving and 
lifting, some in science data collection, some in drilling and coring, and some in 
communication.  The rovers have different, but overlapping, capabilities – different 
sensors, different resolutions and fields of view, even different mobility, such as wheeled 
and aerial vehicles.  Figure 6 is a NASA artist’s depiction of such a scenario. 

Figure 6: Conceptual Illustration of a Multirobot Martian Outpost 

(Illustration produced by courtesy of Jet Propulsion Laboratory) 

The rovers cooperatively search for a location suitable in size and terrain for a base 
station.  Once such a location is found, rovers with appropriate capabilities form several 
teams to construct the base station capable of housing supplies and generating energy.  
Two rovers carry parts, such as solar panels, that are too large for a single rover.  
Complementary capabilities are exploited – for example, to align and fasten trusses 
rovers with manipulators receive assistance from camera-bearing rovers that position 
themselves for advantageous viewing angles. 

Meanwhile, other rovers begin general exploration of the region.  To start, several 
scouting robots (perhaps joined by aerial vehicles) quickly survey the region.  Scientists 
on Earth (and perhaps the rovers themselves) identify sites within the region that have 
high likelihood to contain interesting science data.  Rovers with specialized sensing 
instruments are sent to investigate.  If a particular subtask requires more intensive 
scrutiny, additional rovers with appropriate capabilities are brought in.  For instance, to 
perform a seismographic test, one rover could transmit pulses into the ground while other 
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rovers further away receive the reflected signals.  Meanwhile, several rovers move to 
high ground to provide an inter-robot communications network.  The exploration teams 
dynamically reconfigure depending on what is found and which rovers are available to 
help. 

Rover failures are addressed by dispatching a rover with diagnostic capabilities.  The 
diagnostic rover can use its cameras to view the failed robot to see if it can be aided in the 
field (e.g., if it has a stuck wheel or is high-centered), or it may drag the rover back to the 
base station to be repaired by replacement of failed modules.  In the meantime, another 
robot with the same (or similar) capabilities can be substituted, so as to complete the 
original task with minimal interruptions. 

At any given time, different teams of rovers may be involved in exploration, base-station 
construction/maintenance, and rover diagnosis/repair. Many tasks will be time critical, 
requiring execution within hard deadlines (e.g., repair of a failed power generation 
station) or synchronization with external events (communication satellite visibility, 
periods of sunlight). The teams form dynamically, depending on the task, environment, 
and capabilities and availability of the various robots to best meet mission requirements 
over time.  The rovers negotiate their individual roles, ensure safety of the group and 
themselves, and coordinate their actions, attempting as a group to avoid unnecessary 
travel time, to minimize reconfiguration and wait time, and to prefer more reliable 
alternatives in cases of overlapping capabilities.  The challenge is to keep all the robots 
healthy and busy in appropriate tasks in order to maximize the scientific data collected. 

Similar scenarios exist for domains such as habitat construction and in-space facility 
construction and maintenance.  For instance, consider an inspection robot that has 
identified a failed component on the Space Station.  It tries to assemble a team of robots 
to replace the failed component.  After negotiation, a courier robot (capable of retrieving 
the necessary replacement part) and a repair robot (capable of swapping-out the failed 
device) take responsibility for the repair task, leaving the inspection robot free to 
continue inspection.  While the courier collects the replacement part, the repair robot 
evaluates the problem and plans its course of action, possibly seeking additional aid if it 
encounters unexpected difficulties it is unable to resolve.  Upon arrival with the 
replacement part, the courier and repair robot coordinate to complete the task. 

While these descriptions demonstrate the highly dynamic nature of the remote operations 
domain, it is more instructive to explore a more simplistic example in this domain. Thus, 
we explore the scenario of applying the TraderBots approach to a heterogeneous group of 
robots stationed at an extra-planetary outpost for scientific exploration of the region.  The 
initial task assigned to the team is as follows: 

Map a designated region (large-scale) and characterize any interesting sites as follows: 

If at any site "X1", “X2”, … or “Xn” is observed, perform the 

corresponding science experiment and if the experiment results in "Y1", 

“Y2”, … or “Yn”, analyze a sample and record the analysis. 

The scenario unfolds in four stages: 

1. The robots able to climb slopes well will disperse to the highest points within 
sight and scout out the area at high level 
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2. Based on the findings of the first stage, small teams of scouts will deploy to 
explore designated areas in greater detail 

3. Based on the findings of the second stage, designated sites will be further 
characterized by the performance of science experiments 

4. Based on the findings of the third stage, sample returns to the processing 
facility at the base station will be recommended 

Furthermore, communication with the earth will only be available within a specific 
window of time each day.  During this window, the robot with the most powerful antenna 
available will be required to locate to a high point in order to be able to successfully 
communicate with operators on earth.  The team of robots will only have a fixed data 
storage capacity, and hence have high incentive to offload the gathered data to earth each 
day.  All robots will be able to communicate only within a limited range.  Included in the 
team are the following robots: 

Robots:   Resources: 
R1, R2, R3  Radio, 2 cameras, 1 laser 
R4, R5, R6  Radio, 1 camera, 1 manipulator, science instrument, fast  
      computer 
R7, R8, R9  Radio, tool-kit, 2 manipulators, 1 camera 

 
These robots will be able to adopt the following roles if they have the necessary 
resources: 

Roles:   Required Resources: 
Communicator   Radio 
Mapper   2 cameras + laser 
Leader   Fast computer 
Diagnoser/Fixer  1 camera, 2 manipulators, tool kit 
Sampler/Scientist  1 camera, science instrument, 1 manipulator, fast computer  

 
The execution of the scenario will include the following activities: 

§ Exploration tasks are distributed among robots, and robots deploy, keeping in mind 
their maximum range for communication.   

§ Optimization by leaders can happen with respect to positioning communicators and 
distribution of exploration tasks to robots.   

§ New robots can enter the scene at any point during operations. 
§ Whenever an "X" is detected, a capable robot has to perform the required science 

experiment and collect a sample if the result is a "Y". 
§ Some robots can be disabled and its assignments will have to be re-distributed. 
§ The disabled robots will also have to enlist the aid of a diagnoser/fixer robot. 
§ Some disabilities will not be fixable, and creative solutions will emerge to complete 

the task.  For example, one of the scientists could lose a camera and have to cooperate 
with a robot with a camera to do its experiments 

The costs for this scenario will be based on fuel consumption and time.  The commodity 
of value will be information (or scientific data).  Each task is assigned a reward based on 
the value if the task being accomplished.  Each robot houses a robot trader (RT) that 
participates in the TraderBots economy on behalf of the robot.  The base station is built 
on a high location appropriate for communicating with earth and the main computer in 
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the base station houses an operator trader (OT) that participates in the TraderBots 
economy on behalf of the earth-bound team of scientists. 

During the first stage of the scenario, the OT auctions out scouting positions to be visited 
by robots capable of playing the mapper role to the group of RTs.  Each scouting task is 
assigned a reward proportional to the estimated information to be gained from that 
particular position.  RT1, RT2 and RT3 will bid for these tasks based on the estimated 
cost of executing the scouting tasks and thus the scouting tasks are distributed among the 
robots with the necessary resources for executing the task.  Based on the findings of the 
scouts, new scouting tasks could be generated.  For example, an area assigned for a 
scouting task can prove to be inaccessible and hence need to be removed from the list.  
Similarly, an area assigned as good for scouting can prove to be occluded by a previously 
unknown obstacle and hence become less useful.  Conversely, the view from an assigned 
scouting location can reveal another location that can provide valuable information, and 
thus generate a new scouting task. 

The operations in the second, third, and fourth stages depend to a large extent on the 
limits in computation and the range of communication. If communication range limits are 
sufficiently large to accommodate robots being in communication with each other and 
with the base station at all times (or most of the time), stages two, three, and four can 
occur simultaneously.  That is, the exploration regions identified by OT in stage 1, based 
on the requirements of the scientists and the findings of R1, R2, and R3, are auctioned off 
to R1, R2, and R3 who play the mapper role and examine the specified targets searching 
for observations X1 through Xn.  If any of these observations are made, a new task is 
generated to perform the necessary experiment.  These experimentation tasks are 
auctioned out to R4, R5, and R6 who can play the sampler/scientist role and perform the 
necessary experiments, and if the experiment results in any of the specified Y1 through 
Yn results, they can return a sample to the base station.  If communication range is 
limited but computation is not very limited, robots can be offered tasks that require them 
to play the role of communicator such that a link of communication is maintained 
between the OT and the robots at all times (or most of the time) even if each robot is not 
within the required communication range.  If both communication range and computation 
is very limited, the latter three stages will more likely unfold as three separate stages 
rather than in parallel.   

Note that many things can go wrong in the scenario described above.  Robots could have 
malfunctions or get stuck and require the aid of R7, R8, or R9 acting as a diagnoser/fixer.  
This is accomplished by a diagnose/fix task being generated by the malfunctioning robot 
and auctioned off to R7, R8, or R9.  Note that the robots with diagnose/fix capabilities 
can perform other tasks such as acting as a communicator and assisting with sample 
returns.  However, these robots charge a higher price (taking into account their 
opportunity cost) for doing tasks other than diagnosis and fixing for which they are best 
suited since it is crucial that these robots remain available for dealing with malfunctions.  
If a robot is completely disabled a diagnoser will discover this and announce its death to 
the other robots and OT, who in turn will seek to redistribute tasks they had awarded to 
the dead robot.  All gathered information is stored at the base station and the OT decides 
what information should be discarded if storage capacity is exceeded.  The OT can also 
decide to cancel awarded tasks if storage capacity is close to being exceeded, and 
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generate communication-to-earth tasks when the window of opportunity is present.  The 
priority of communicating information to earth, and hence the reward offered for the task, 
will depend on the current state of events and requirements to communicate with 
operators on earth.  Finally, any of the RTs or the OT can choose to play the role of a 
leader at any given time if they are idle or if they believe they can earn more profit by 
providing a new strategy for a group of robots executing tasks.   

This example thus illustrates how the TraderBots approach can accommodate many of 
the requirements identified for successful multirobot coordination in dynamic 
environments.  The means by which TraderBots satisfies each of the identified 
requirements is explored in more detail next. 

3.8 Proof Of Concept 

An initial version of the market-based architecture was developed and tested as a 
proof of concept for a distributed sensing task in a simulated interior environment1. A 
group of robots, located at different starting positions in a known simulated world, are 
assigned the task of visiting a set of pre-selected observation points for sensing tasks.  

This problem is equivalent to a variation of the distributed traveling salesman 
problem (TSP), where the observation points are the cities to visit. The robot colony is 
structured as illustrated below (Figure 7 shows a snapshot of the robot colony at a given 
time and the double-headed arrows indicate communication channels). 

Each robot is equipped with a map of the world, which enables it to calculate the 
cost associated with visiting each of these cities. The costs are the lengths of the shortest 
paths between cities in an eight-connected grid, interpreted as money.  Let cij be the cost 
for the jth robot to visit the ith city from the (i-1th) city in its tour (where the 0th city is the 
starting location).   
The robot cost function for the jth robot is computed as follows: 

where nj is the number of cities in the tour for robot j.  The team cost function is: 

where m is the number of robots.  The team revenue and robot revenue functions, trev 
and rrev, are determined by the negotiated prices.  The maximum available team revenue 
is chosen to exceed team costs for reasonable solutions to the problem. 

 

                                                 
1 This work was published in IAS-6 (Dias and Stentz [39]). 
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Figure 7: Organizational structure for robots engaged in distributed mapping 

All robots (bidders) adopt the same simplistic strategy of bidding a fixed percentage of 
the maximum profit they can obtain. According to this strategy, if a task is on offer for a 
maximum price of r, and the cost to carry out the task is c, a robot computes its bid b as 
follows: 

    b = 0.9*(r-c) + c 
Thus, the robots bid for each city based on their estimated costs to visit that city.   

The interface between the human operator and the team of robots is a software agent, the 
operator trader (OpTrader). The OpTrader conveys the operator’s commands to the 
members of the team, manages the team revenue, monitors the team cost, and carries out 
the initial city assignments. Being a self-interested agent, the OpTrader aims to assign 
cities quickly while minimizing revenue flow to the team.  In our initial implementation 
(Implementation 1 in Chapter 7), the OpTrader adopts the following greedy algorithm for 
assigning tasks: 

§ Announce all cities to all robots and wait for all incoming bids 
§ Insert each incoming bid in a priority queue with the lowest bid claiming the   

      highest priority 
§ Assign m cities (one to each robot) starting with the highest priority bid. (Note,  

      once a city is assigned from the priority queue, all other bids for that city and all  
      other bids submitted by that robot are removed from the queue before making  
      the next assignment) 

§ Delete all bids, and call for re-bids for all remaining cities 
§ Repeat procedure until all n cities are assigned 
Once the OpTrader has completed the initial city assignments, the robots negotiate 
amongst themselves to subcontract city assignments. Unlike a bartering system where 
robots can only make “city-for-city” deals, the TraderBots approach allows robots to 
make “city-for-revenue” deals, thereby enabling transactions between robots that have a 
task distribution where only a one-way task transfer reduces cost, and by enabling 
transactions that reduce team costs but increase a robot’s individual costs.  Each of the 
robots, in turn (the initial implementation is fully synchronous), offer all the cities on its 
tour (individually) to all the other robots for a maximum price equal to the offerer’s cost 
reduction by removing that city from its tour.  Each bidder then submits a bid for that city 
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greater than the cost for adding the city to its tour. Note that a bidder only submits a bid 
for a city if it can make at least a fixed minimum profit by inserting that city into its tour.  
In order to estimate the additional cost of inserting a city into its tour, the bidder 
evaluates the cost of inserting that city at each point of the tour and picks the point of 
insertion that results in the lowest cost increase. In this initial implementation, only 
single-city deals are considered, and the robots continued to negotiate amongst 
themselves until no new, mutually profitable deals are possible.  Thus, negotiations cease 
once the system settles into a local minimum of the global cost. 

A few experiments were carried out to evaluate the performance of the TraderBots 
approach implemented in simulation: 

Experiment 3.1:  A comparison of the global solution with and without inter-robot 
trading 

Figure 8: Initial assignments and final tours for 2 robots and 8 cities  (14.7% 

decrease in team cost) 

Figure 9: Initial assignments and final tours for 4 robots and 20 cities 
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Experiment 3.2:  Plot of global cost versus number of trades 

Figure 10: Team cost reduction during inter-robot negotiation for the 

example in Figure 9 

Note that the reported decrease in team costs was calculated on the operator executive’s 
initial greedy assignment and not on a random assignment that would have resulted in a 
significantly higher initial team cost on average.  Further comparisons to globally optimal 
solutions and other greedy solutions will be carried out in the near future.  Although 
many features of the market-based architecture were not implemented in this preliminary 
version, initial experiments clearly show effective global plans with low team costs. 

Experiment 3.3: Preliminary testing was also carried out to evaluate the system response 
to dynamic conditions in a scenario similar to exploration of a partially known world2.  
The operator designated a set of observation points to be visited in a simulated world. 
Robots began their exploration based on the tours they won after negotiations had ceased.  
Whenever a robot approached a doorway, a new observation point was dynamically 
triggered inside the “newly observed” room.  When a new goal was triggered, the robots 
ceased their current tours and began negotiations to determine new tours that were most 
profitable in light of the new information. Thus, they were able to adapt to the 
dynamically added input.   

Figure 11: Results from Dynamic re-negotiations 

                                                 
2 This work was published in SPIE 2000 (Thayer et al. [120]) 

19000

21000

23000

25000

27000

29000

31000

33000

Deals Made

T
e
a
m

 C
o

s
t 40.2% decrease 

in team cost

x

x 

x

x

x

x
x x

x x 

x

x

x

x

x
x

x

x x

x

x

x 

x

x

x
x x

x

x

x
x

x x

x

x

x 

x

x

x

x
x x

x x 

x

x

x

x

x
x

x

x x

x



 
 

64

The illustration above shows the evolution of four robots’ tours in a 20-city exploration 
scenario.3  Initially the operator designated 14 cities.  Whenever a robot reached a 
doorway, a city was triggered in the “newly discovered” room.  Thus, six additional cities 
were triggered and the robots adapted their tours to allow visiting all the cities. 

An initial version of the approach was also implemented on the Cognitive Colonies 
robotic system.  Many valuable lessons for architectural design, especially regarding 
communication and real-time system issues, were learned through the process of this 
implementation. The aim of the Colonies project was to build a group of robotic aids for 
urban reconnaissance. Ten PioneerII-DX robots, built by Activmedia Incorporated, 
(described in greater detail as Implementation 2.1 in Appendix 1) are used in the project.  

Figure 12: Pioneer Robot Team 

The robots are each equipped with onboard computing as well as 16 sonar sensors for 
obstacle detection and a forward pointing camera for map construction.  The distributed 
TSP scenario is tested using 4 of these robots in a cluttered environment.  The robots only 
negotiate with the OpTrader in this implementation.  Inter-robot negotiation was not 
implemented due to some communication problems that have since been sorted out.  The 
operator is able to specify goals to be visited via a GUI.  These goals are then bid out to 
the robots by the OpTrader and assigned according to the greedy algorithm described in 
the simulation implementation above.   

The robots start at different positions in the Field Robotics Center (FRC) high-bay at 
Carnegie Mellon University and are able to complete the assigned tours.  Robots are also 
able to dynamically handle new tasks assigned during execution as shown in Experiment 
3.3.4 

This initial implementation of TraderBots on the Pioneer robots was further enhanced by 
Zlot et al. [131] (described in further detail as Implementation 2.2 in Chapter 7) and 
tested on a distributed exploration and mapping task. In this implementation, the 
TraderBots approach seeks to maximize benefit (information gained) while minimizing 
costs (in terms of the collective travel distance), thus aiming to maximize utility. The 
system is robust in that exploration is completely distributed and can still be carried out if 
some of the team members lose communications or fail completely.  All communications 
are asynchronous. 

                                                 
3 A movie of this evolution is available at http://www.frc.ri.cmu.edu/projects/colony/frcworld.shtml 
4 Some videos of robots performing a distributed sensing task are available at 
http://www.frc.ri.cmu.edu/projects/colony  
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The effectiveness of this approach was demonstrated through successful mapping results 
obtained with the team of robots. Zlot et al. [131] found that by allowing the robots to 
negotiate using the market architecture, exploration efficiency was improved by a factor 
of 3.4 for a four-robot team.   

Thus, initial implementations proved the TraderBots approach to be a highly promising 
solution for efficient and robust multirobot coordination.  These key characteristics of 
robustness and efficiency, as applied to the TraderBots approach, are explored in greater 
detail in the following chapters. 
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CHAPTER 4  

Ensuring Robustness 

OBUSTNESS is crucial for any robot team, especially when operating in 
dynamic environments.  The physicality of robotic systems and their 
interactions with the environment make them highly prone to malfunctions 
of many kinds.  Three principal categories in the possible space of robot 

malfunctions are communication failures, the loss of the use of some robot resources (or 
partial robot malfunction), and robot death.  This chapter addresses these three categories 
and explores means by which the TraderBots approach ensures robustness and promotes 
graceful degradation in team performance when faced with malfunctions.  

4.1 Introduction 

Many multirobot applications demand some level of robustness to malfunctions.  
The requirement for robustness becomes increasingly crucial when the application 
domain requires the robots to interact within a highly dynamic environment and where 
prior information about the environment is sparse.  Applications such as urban 
reconnaissance, urban search and rescue, planetary exploration, and hazardous cleanup 
inherently include hazardous conditions that will cause robotic malfunctions with high 
probability.  Key to the success of these applications is the team’s ability to gracefully 
degrade their performance and maximize the efficiency with which the available 
resources are used to complete the task.  Many multirobot coordination approaches deal 
with malfunctions in different ways.  The three main categories of malfunctions, 
identified above, are explored next.   

4.1.1 Communication Failures 

Communication failures are abundant in many application domains.  These 
failures can vary from occasional loss of messages to complete loss of 
communication.  Different approaches handle losses in communication using a 
variety of strategies.  Balch and Arkin [7] study the importance of communication 
in team coordination using reactive approaches.  They study the effectiveness of 
three types of communication, no communication, state communication, and goal 
communication, for three kinds of tasks, foraging, consuming, and grazing.  Note 
that grazing is a task with implicit/environmental communication since the 
completion of the task alters the environment and thus implicitly communicates 
that the task has been done and prevents repetition.  Balch and Arkin draw three 
conclusions from their study: communication significantly improves performance 
in tasks with little or no environmental communication, explicit communication is 
not essential for tasks that result in implicit communication, and more complex 
communication strategies offer little improvement over simple communication.  

As described by Balch and Arkin, some approaches forego communication 
altogether and robots make action decisions entirely independent of decisions 
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made by teammates ([84], [90]). Other approaches forego explicit 
communication, but instead, coordinate team actions by basing action selection on 
observed environmental clues [7], by choosing actions based on anticipated 
actions of teammates [122], or by socially attentive monitoring of teammates to 
gauge their progress in task execution, and intervening if necessary [68].  Yet 
another approach without explicit communication is to select actions based on a 
set of pre-defined rules, triggered by environmental cues or observation of 
specific team formations or actions.  An example of such an approach is the 
locker-room-agreement used by Stone and Veloso [112] in the robotic soccer 
domain.  None of these coordination approaches are affected by failures in 
communication.  However, they are also unable to effectively use information that 
can improve team performance if shared with teammates.  Roth et al. [89] and 
Vail and Veloso [122] show that teams can perform more effectively if teammates 
coordinate and share information.   

If the robots explicitly communicate with each other, there are still several 
methods to ensure graceful degradation in performance with communication 
failures and limitations.  Stone and Veloso ([112], [113]) present a set of 
techniques for dealing with communication-based coordination of robot teams in 
adversarial environments with unreliable, high-cost communication.  They 
address five challenges of communication: identifying messages targeted to a 
specific robot, dealing with active interference from hostile agents due to sharing 
a single communication channel, effectively sharing a low-bandwidth 
communication channel, being robust to lost messages, and maximizing the 
likelihood that the team is operating based on a cohesive strategy despite 
unreliable communication and autonomous team-members.  Each message is 
equipped with a field identifying its target to meet the first challenge.  Hostile 
agent interference is avoided by encrypting the time-stamp on the message 
according to a pre-determined locker-room-agreement. The team shares the low-
bandwidth channel by responding to messages after a pre-defined delay specific 
to each member’s ID, and is robust to message loss because each member is 
always active regardless of what messages it receives or not, and because 
communication is used to improve task execution rather than enable it.  Finally, a 
cohesive team-strategy is maintained by following a pre-defined strategy based on 
environmental cues, enhanced by time-stamped messages indicating switches in 
strategy when possible. 

Not all domains are adversarial.  Parker’s ALLIANCE architecture [83] does not 
reason about hostile agents, but encourages fault tolerance in several ways.  The 
use of broadcast communication (as opposed to point-to-point communication) 
and the design of behaviors such that robots announce their current intentions but 
never require responses, eliminate the dependence of coordination on multi-step 
communication, thus improving robustness.  Furthermore, the team uses time-
slice communication so that each agent gets exclusive use of the single 
communication channel periodically.   

Today, communication for robot teams is not always limited to low-bandwidth, 
single-channel communication.  A method to ensure robustness to message loss in 
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less stringent application domains is the use of acknowledgements, as in the 
original Contract Net Protocol by Smith [107].  In this approach, the receiver 
acknowledges the receipt of each message.  While this approach adds a level of 
robustness to message loss, some limitations are evident.  The acknowledgement 
can be lost as easily as the message, the acknowledgements add to the 
communication load, and the approach does not explicitly deal with the scenario 
of complete loss of communication.  

4.1.2 Partial Robot Malfunction 

Relatively little work has been done to investigate efficient use of partially 
malfunctioning robots. When a robot malfunctions partially, it loses the ability to 
effectively use some of its resources but retains the ability to use others.  Inherent 
in this definition of partial malfunction is the robot’s ability to plan for itself of 
the ability to communicate with a planning agent; if the robot loses this capability, 
it is considered dead.  Many reactive and behavioral approaches (for example 
Arkin [4], Balch and Arkin [7], Parker [83], and Rus et al. [90]) are resilient to 
partial robot malfunctions because robots execute tasks independent of what other 
team members do, and hence all tasks with no specific time deadlines are 
accomplished as long as at least one capable robot remains active.  Gerkey [49] 
demonstrates a fault-tolerant auction scheme that decomposes a cooperative box-
pushing task into short-duration pusher and watcher/coordinator tasks.  Since the 
tasks span only a short duration, the team re-evaluates the progress of the task 
frequently and thus recovers from faults by reassigning short duration tasks 
designed to adapt to the most current state. However, these approaches do not 
reason about efficient utilization of remaining active resources on the partially 
malfunctioning robots.    

One of the difficulties in dealing with partial robot malfunctions is detecting the 
malfunction.  A host of literature on fault detection and identification demonstrate 
different techniques that enable robots to detect and identify their own faults.  
However, relatively little work has been done to address handling detected faults 
in a team.  Techniques such as socially attentive monitoring (Kaminka and Tambe 
[68]) and regular monitoring of the task/environment state and adapting to it 
(Gerkey [49] and Rus et al. [90]) allow teammates to discover faults that the robot 
cannot detect itself.   

Once a fault is detected, fewer techniques have been proposed to deal with them.  
Bererton and Khosla ([9], [11]) analyze the merits and challenges of repairing 
robots when failures are detected.  Some investigated strategies are towing faulty 
robots to a base station, cooperative repair, and self-repair.  Another common 
scenario that can be viewed as a partial robot malfunction is the loss of robot 
energy.  Since low battery power interferes with task execution, and since robots 
can plan to recover from this condition by recharging, it fits the category of partial 
robot malfunctions.  Michaud [77] and Gerkey [49] both investigate recharging 
techniques for robot teams.  
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4.1.3 Robot Death 

Robot death is similar to the case of partial robot malfunction, except that the 
affected robot cannot aid in the recovery from the malfunction in any way.  Most 
of the research in fault tolerance (Parker [83], Gerkey [49], and Rus et al. [90] for 
example) deals with robot death. As with partial robot malfunctions, many 
reactive and behavioral approaches are resilient to robot death because robots 
execute tasks independent of what other team members do, and hence all tasks 
with no specific time deadlines are accomplished as long as at least one capable 
robot remains alive.   

The detection problem is more difficult for robot death since the dead robot 
cannot detect its own death and reallocate its tasks.  A common method of 
detecting robot death is to monitor a heartbeat (a periodic signal) from robots and 
assume the robot is dead if the heartbeat is not detected.  Other methods of 
monitoring such as Kaminka’s and Tambe’s socially attentive monitoring [68] can 
also be used to detect the death of teammates.  

Once a dead robot is discovered, any tasks assigned to that robot must be 
reassigned or the dead robot must be repaired.  Bererton’s and Khosla’s work on 
robot repair ([8], [11]) can be applicable to some cases of robot death.  Note that 
in the cases where malfunctioning robots or dead robots can be repaired and 
return to the team, the coordination approach needs to be fluid in order to 
accommodate both the exit of the dead robots and the entrance of the repaired 
robots. 

The TraderBots approach is capable of handling all three categories of robot 
malfunctions.  The different strategies used in the TraderBots approach to gracefully 
handle these malfunctions are examined in detail next. 

4.2 Handling Communication Failures 

The TraderBots approach does not depend on communication to complete tasks.  
Communication mainly plays the role of enabling improved efficiency in the generated 
solutions.  If the robots in the team are presented with a task they need to execute, they 
are able to execute the task without communication if the tasks do not explicitly require 
communication.  However, the availability of communication can dramatically improve 
the efficiency of task allocation if the robots are allowed to trade.  Zlot et al. [131] 
investigate the performance degradation of the team, in the TraderBots approach, given 
the absence of communication.  The reported results show that inter-robot trading 
improves efficiency of the solution by a multiple of 3.4 for a team of 4 robots if 
communication is flawless, in comparison to the case where no communication is 
allowed.  However, even in the absence of communication the task is complete.   
Newer implementations of the TraderBots approach are made more robust to 
communication failures.  Message loss is expected and often witnessed resulting in only 
minor degradations in solution efficiency.  Strategies used to improve robustness are: 
frequent auctioning and bidding which help reallocate tasks among robots, the absence of 
assumptions that all robots will participate in any auction, monitoring of communication 
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connectivity to robots that have subcontracted tasks, and constant scheduling of assigned 
tasks for execution. 

However, in a case where only the OpTrader is aware of all tasks, and the tasks are 
divided among the robots, a scenario such as a combination of communication failure 
between the OpTrader and all robots, plus the death of a robot with assigned tasks can 
result in the task assigned to the dead robot to remain incomplete.  Thus, domains where 
completion of the global task (i.e. all tasks assigned to the team) must be guaranteed (if 
resources are available) require a somewhat different strategy. A possible strategy for 
these domains is to disseminate knowledge of all tasks to all robots, as would be the case 
in many reactive approaches.  If each robot maintains a list of all tasks assigned to the 
team, and if each task completion results in an announcement of all completed tasks to all 
robots within communication range, robots can choose to execute tasks not awarded to 
them after they have completed the tasks awarded to them and negotiate payment for the 
tasks via the OpTrader. Whenever a robot chooses to execute a task that wasn’t assigned 
to it, an announcement of this intention can improve efficiency since other robots would 
no attempt to execute the same task.  This strategy guarantees that all tasks are completed 
with the possible inefficiency of some tasks being repeated depending on communication 
fidelity.  Note that this strategy is only required if specific tasks are assigned to the team.  
In the case where robots dynamically generate tasks (i.e. where the same tasks can be 
generated by other robots given the necessary time), as in work published by Zlot et al. 
[131], such strategies are unnecessary. 

4.3 Handling Partial Robot Malfunctions 

Detecting partial robot malfunctions in the TraderBots approach is achieved by 
monitoring the resources available to the robots.  While specific algorithms for fault 
detection and identification are beyond the scope of this dissertation, in general, the 
resource manager’s loss of access to a particular resource, the trader’s loss of access to its 
resource manager, the discovery of an unforeseen depletion of a resource, or the 
discovery that the accrued cost in attempting to complete a task surpasses the estimated 
cost for that task, can indicate a partial robot malfunction.   
Once a trader discovers a partial robot malfunction, it attempts to sell all tasks it cannot 
complete to other robots even if it has to take a loss for some of the trades.  If however 
trading becomes impossible due to a coupling with loss of communication, then the 
relevant strategy described in the previous section needs to be used for the case where a 
static set of tasks, all of which must be completed, is assigned to the team.  Thus, graceful 
degradation with malfunctions of team performance is achieved.  If the malfunction 
occurs with the trader, then it falls into the category of robot death. 

4.4 Handling Robot Death 

Once a robot is incapable of trading, it is considered dead.  In this case, the robot 
cannot aid in the detection or recovery process.  Several methods can be employed to 
allow teammates to discover robot death as discussed above in section 4.1.3. The 
TraderBots approach can deal with detected robot deaths by attempting to discover all 
trades that affected the dead robot.  This can be done in several ways.  Some possibilities 
are explored next.  Each trader can keep track of awards it makes and receives.  Thus, if a 



 
 

72

robot death is detected, each trader checks to see if it has awarded any tasks to the dead 
robot, or if it has won any tasks from the dead robot.   
If a robot A has awarded a task to the dead robot, D, it makes an announcement to the 
remaining robots to find out if the robot D has traded that task to another robot.  If such a 
trade is discovered, the robot that is currently committed to executing the task, robot B, 
compares costs with robot A.  The robot that can execute the task more profitably gets 
awarded the task.  However, robot B may not have won the task directly from robot D, 
but instead won it from robot C, who in turn won it from robot D.  One possibility for 
dealing with this scenario is for robot B to pay a breach penalty to robot C and generate a 
new contract directly with robot A.  Another possibility is for robot C to cut its losses and 
for robot A and robot B to make a deal profitable to both of them.  Yet another simpler 
strategy is for robot A to simply be satisfied that the task will be executed by robot B and 
hence simply update its information that the task will be executed by robot B.  Many 
other similar solutions are possible.  If on the other hand robot A cannot discover any 
robot that is currently committed to executing that task, the task is added back to robot 
A’s commitment list.  Note that this can result in the task being repeated since robot A 
may simply not have been able to discover the robot executing the task due to 
communication limitations, or since robot D may have completed executing the task 
before it died.  The premise of such an implementation would be that it is better to repeat 
the execution of a task rather than leave any task incomplete if possible. 

If robot C realizes it has won a task from the dead robot D, a simple strategy is for robot 
C to complete the task at a loss even though it will not be compensated by robot D.  A 
slightly more complex strategy is for robot C to attempt discovering robot A that awarded 
the task to robot D and attempt to get paid by robot A for completing the task.  If robot C 
cannot discover robot A, it can attempt to get paid directly by the OpTrader for 
completing the task.  Numerous such strategies can be applied to guarantee task 
completion if sufficient robots remain active.  The best strategy can be picked depending 
on the demands of the particular application domain.  Finally, note that the TraderBots 
approach easily accommodates fluidity by allowing repaired robots or new robots to enter 
the team since any available robot can participate in the frequently conducted auctions. 

4.5 Implementation 

An implementation of the TraderBots approach on a team of Pioneer II DX robots 
enables investigation of how successfully TraderBots deals with robot failures in each of 
the three categories described above.  The details of the robotic system used in this 
implementation, and the details of the TraderBots implementation itself are found in 
Appendix 1.  Details specific to the study of robustness are presented in this section.  In 
the robotic implementation, each robot navigates using a basic set of behaviors as 
described in Appendix 1.  When the robots are not executing tasks, they remain stationary 
at their current locations.  Implementation details for each of the three categories are 
detailed next.  

4.5.1 Handling Communication Failures 

The TraderBots approach does not depend on communication to complete 
tasks.  Communication mainly plays the role of enabling improved efficiency in 
the generated solutions.  Zlot et al. [131] investigate the performance degradation 
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of the team, in the TraderBots approach, given the absence of communication. 
Newer implementations of the TraderBots approach are made more robust to 
communication failures.  Message loss is expected and often witnessed resulting 
in only minor degradations in solution efficiency.  Strategies used to improve 
robustness are: frequent auctioning and bidding which help reallocate tasks 
among robots more efficiently, the absence of assumptions that all robots will 
participate in any auction, monitoring of communication connectivity to robots 
that have subcontracted tasks, and continuous scheduling of assigned tasks for 
execution as tasks are completed. 

However, in a case where only the OpTrader (an interface agent responsible for 
trading on behalf of the operator) is aware of all tasks, and the tasks are divided 
among the robots, a scenario such as a combination of communication failure 
between the OpTrader and all robots, plus the death of a robot with assigned tasks 
can result in the task assigned to the dead robot remaining incomplete.  Thus, 
domains where completion of the global task (i.e. all tasks assigned to the team) 
must be guaranteed (if resources are available) require a different strategy. A 
possible strategy for these domains is to disseminate knowledge of all tasks to all 
robots, as would be the case in many reactive approaches. Note that this strategy 
is only required if specific tasks are assigned to the team.  In the case where 
robots dynamically generate tasks (i.e. where the same tasks can be generated by 
other robots given sufficient time), as in work published by Zlot et al. [131], this 
strategy is unnecessary.   

In the current implementation, it is possible for more than one robot to believe it 
is responsible for executing the same task if communications are imperfect.  For 
example, when robot A awards a task to another (robot B), an acknowledgment is 
sent from B to A.  If the acknowledgment is lost, then robot A does not know if B 
has accepted the task.  In that case both A and B will maintain responsibility for 
completing the task.  It is also possible that this duplication of tasks can be 
repaired: one of the robots may subsequently try to auction the task, in which case 
the other will be likely to win it as its marginal cost for the task is 0.  

4.5.2 Handling Partial Robot Malfunctions 

Detecting partial robot malfunctions in the TraderBots approach is 
achieved by monitoring the resources available to the robots.  While specific 
algorithms for fault detection and identification are beyond the scope of this 
paper, in general, the TaskExec’s (the module responsible for task execution) loss 
of access to a particular resource, the Trader’s loss of access to its TaskExec, the 
discovery of an unforeseen depletion of a resource, or the discovery that the 
accrued cost in attempting to complete a task surpasses the estimated cost for that 
task, can indicate a partial robot malfunction. Once a Trader discovers a partial 
robot malfunction, it attempts to sell all tasks it cannot complete to other robots 
even if it has to take a loss for some of the trades.  (The trader still attempts to 
maximize profit, so any losses will be minimized). If however trading becomes 
impossible due to a coupling with loss of communication, then the relevant 
strategy described in the previous section needs to be used for the case where a 
static set of tasks, all of which must be completed, is assigned to the team.  Thus, 
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graceful degradation with malfunctions of team performance is achieved.  If the 
malfunction occurs with the Trader, then it falls into the category of robot death.  
In this implementation, robots were able to detect malfunctions caused by 
disconnection of the on-board SICK laser used for obstacle detection and 
mapping, and gyro errors caused by sudden drastic rotations of the robot due to a 
wheel getting stuck. Ongoing implementation efforts also include detection and 
appropriate handling of low battery conditions that require the robot to head back 
to a re-charging station. 

4.5.3 Handling Robot Death 

Once a robot is incapable of trading, it is considered dead.  In this case, the 
robot cannot aid in the detection or recovery process.  Several methods can be 
employed to allow teammates to discover robot death as discussed above in 
section 4.1.3. The TraderBots approach can deal with detected robot deaths by 
attempting to discover all trades that affected the dead robot.  Each trader can 
keep track of awards it makes and receives.  Thus, if a robot death is detected, 
each trader checks to see if it has awarded any tasks to the dead robot, or if it has 
won any tasks from the dead robot.   
If a robot has awarded a task to the dead robot, it makes an announcement to the 
remaining robots to find out if they subcontracted that task from the dead robot.  
If such a trade is discovered, the two robots re-negotiate their deal with respect to 
that task.  If a robot cannot discover any robot that is currently committed to 
executing that task, the task is added back to its commitment list.  Note that this 
can result in the task being repeated due to communication limitations.  The 
premise of such an implementation would be that it is better to repeat the 
execution of a task rather than leave any task incomplete, if available resources 
permit.  Ongoing implementation efforts include enabling the TraderBots 
approach to gracefully and robustly accommodate robot death.  Results in 
detecting and handling robot death will be added in final submission of this paper 
if it is accepted for publication. Finally, note that the TraderBots approach easily 
accommodates fluidity by allowing repaired robots or new robots to enter the 
team since any available robot can participate in the frequently conducted 
auctions.  Initial experiments demonstrating this capability are reported in results 
accepted for publication in the proceedings of the 2004 conference on Intelligent 
Autonomous Systems [43]. A limitation in the current implementation is that 
detection of a robot death is indistinguishable from a severe communications 
failure since the only way robots detect one another is via communication.  It 
would be possible to improve this if the robots additionally had some other mode 
of detecting/monitoring each other (for example, by using a camera or some other 
sensor). 
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4.6 Experiments 

An implementation of the TraderBots approach on a team of 3 Pioneer robots 
enables the reported results. The robot team consists of a homogenous set of off-the-shelf 
mobile robot platforms outfitted with additional sensing and computing.  The chosen 
application is a distributed sensing problem where 3 robots are tasked with gathering 
sensory information from 23 designated locations of interest in a large dynamic 
environment. This translates into a version of the traveling salesman problem (TSP) with 
the robots being represented by multiple salesmen following paths instead of tours (i.e. 
without the requirement that robots need to return to their starting locations) and where 
all the robots can start from different base locations – this is known as the multi-depot 
traveling salesman path problem (MD-TSPP). The tasks can be considered as cities to be 
visited where the costs are computed as the time taken to traverse between cities.  A task 
is completed when a robot arrives at a city.  The global task is complete when all cities 
are visited by at least one robot.  The global cost is computed as the summation of the 
individual robot cost, and the goal is to complete the global task while minimizing the 
number of robot-hours consumed.  When the robots are not executing tasks, they remain 
stationary at their current locations.  

Figure 13: Photograph of test-site 

Figure 14: Map of environment showing assigned goals and robot paths  

(grid squares = 1mx1m) 
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Each robot is responsible for optimizing its own local schedule (i.e. given a set of tasks, 
the robots attempt to find the optimal TSPP solution to their local problem instance).  In 
general, the TSPP is NP-hard, so approximation algorithms are often used when the 
problem instances encountered are large. In the implemented TSPP scenario, all 
valuations are derived from inter-point distance costs.  These costs are estimated using a 
D* path planner [108] with the robot’s local map as input. The experiments performed, 
using this implementation, are described next.  

§ Communication Failures 

Experiment 4.1: Communication statistics over several runs with fixed set of tasks 

Figure 15: Trading-Related Communication Traffic 

Figure 15 shows an analysis of communication traffic sent by one trader using the 
TraderBots approach.  Figure 6a illustrates the evolution of the data rate, in 
kilobytes/second, over time, in seconds, and Figure 6b shows the cumulative data 
transmitted, in kilobytes, over the same time period.  Message types are auctions, 
bids, hunts, awards, and acknowledgments.  When the robot is first deployed, 
communication peaks as a result of the initial auction. As tasks are executed and 
knowledge is gathered, tasks continue being traded at a lower rate.  The steady state 
communication rate is due to the continuing trading mechanism (auctions, bids, 
awards) and messages to maintain knowledge of trader state (hunts, 
acknowledgments). 

Experiment 4.2:  A set of exploration runs with staged communication failures 
ranging from 100% of messages being delivered to 0% of fidelity, with a fixed set 
of tasks. Communications between robots are blocked at different percentage levels 
(20%, 40%, 50%, 60%, 80%, and 100%) and the corresponding performance is 
reported. 
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Figure 16: System Performance with Communication Failures 

The first set of experiments investigates the effect of communication failures on the 
team performance.  Inter-robot communication is blocked at different percentages 
and the resulting solution recorded. Figure 16 shows the variation of solution cost 
with the percentage of message loss.  While the solution cost increases with loss of 
communication until approximately 60% loss, further communication loss has little 
added effect on performance.   The reason for this is that when the loss rate is 
significant but not too large, it is often the case that tasks are subcontracted, but 
their award acceptance acknowledgement message does not reach the seller.  When 
this happens, the task ends up being duplicated, thereby increasing the global cost. 
When the loss rate is high, the trades do not progress to this stage as often and this 
effect is not seen as frequently (e.g. the bids or the award are already lost, so the 
task is not awarded).  Since our initial solution based on the initial OpTrader 
auctions is reasonably good, the result is that we sometimes can do better with 
100% loss rate than with 60% loss.  We hypothesize that if we start off with a worse 
solution (for example, an initial random allocation), then we would expect that this 
function would be more monotonic.  Also, if we enable the robot death handling, 
then there would be more duplications of tasks at the high loss rates when a death 
was detected and robots try to make up for the tasks of the “dead” robots. 
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§ Partial Robot Failures 

Experiment 4.3: A set of exploration runs, with staged randomly induced partial 
malfunctions, with a fixed set of tasks. The laser is turned off or a gyro error is 
introduced at a specific point during execution and the resulting performance is 
reported. 

Figure 17: Nominal Performance 

Figure 18: Partial Robot Malfunction  

Figure 17 and Figure 18 show the variation in the number of tasks assigned to each 
robot over time for a nominal run and a partial robot failure run respectively.  While 
the number of tasks gradually decreases with time as tasks are executed in a 
nominal run, when a partial failure occurs, that robot immediately trades away all of 
its tasks attempting to minimize its losses, and hence the malfunctioning robot has a 
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sudden loss in the number of assigned tasks.  The other two robots have a sudden 
gain since they are assigned the unfinished tasks of the malfunctioning robot. 

The results from all experiments are reported in Table 4 below.   

 
Cost (m) 

 

Tasks (#) 

Description Average +/- Success Failure 

Nominal 121 12 21.0 2.0 
Partial Failure 140 5 22.0 1.0 
20% msg. loss 140 5 24.0 0.3 
40% msg. loss 153 3 24.7 2.0 
50% msg. loss 149 10 24.0 0.7 
60% msg. loss 162 9 25.3 0.7 
80% msg. loss 151 3 22.3 0.7 
100% msg. loss 159 5 21.0 2.0 

Table 4: Performance Statistics 

For each experiment, the mean cost, the standard deviation in the cost over the three runs 
of the experiment, the number of tasks that succeeded, and the number of tasks that failed 
are shown.  Note that tasks can fail for several reasons due to the dynamic environment 
and conditions.  Note further that tasks are sometimes duplicated and hence the addition 
of succeeded and failed tasks sometimes exceeds the number of assigned tasks (23). 
Future implementations will be able to better deal with duplicate tasks as follows.  If a 
trader is selling task x and another robot already has committed to task x then that robot 
will bid very low for the task and win it (its marginal cost is 0).  When the robot is 
awarded the task, it should check if it is a duplicate, and if so it should be discarded. 

4.7 Limitations and Future Work 

This chapter presents a comprehensive study of how the TraderBots approach is 
robust to failures.  Three categories of failure are identified and explored in this study: 
communication failures, partial robot failures, and robot death.  All three categories of 
failure are studied for a team of 3 Pioneer robots assigned a distributed sensing task.  
Ongoing work introduces random combination of failures at random times during the 
experiment, to gauge the effect on the overall performance.  Introduced failures include 
communication failures, partial robot malfunctions, and robot deaths.  Some robots are 
also re-introduced into the team following a simulated revival from death.   
Disallowing robots to recover from failures and not investigating cooperative means of 
robot repair thus far limits this study.  Adversarial domains are not addressed either.  
Future work includes developing techniques for more efficient use of partially 
malfunctioning robots, examining strategies for cooperative recovery from failures, and 
more rigorous testing of the robustness of TraderBots in different scenarios. 
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CHAPTER 5  

Encouraging Efficiency 

HE work presented in this chapter explores different methods of encouraging 
efficient solutions when applying the TraderBots approach.  Considered 
strategies include frequent trading, some effects of opportunistic optimization 
with leaders in market-based multirobot coordination, and negotiation 

strategies for improving solution efficiency, namely the capability to perform different 
combinations of multi-party and multi-task trades.   

5.1 Introduction 

Efficiency is another key requirement of many multirobot coordination domains.  
While a few applications do not require efficient solutions, many applications require 
efficiency in automated solutions, and most applications benefit greatly from increased 
efficiency.  However, often a tradeoff exists between efficiency, robustness, resources, 
and latency.  Producing the optimal solution can be a long and computationally expensive 
process and often requires a centralized solution that can degrade robustness.  Dynamic 
environments further exacerbate the requirements for producing optimal solutions.  
Hence, a more reasonable strategy, applicable to more application domains, is to 
introduce strategies for opportunistically encouraging efficiency in the produced 
solutions while maintaining robustness in the system.  This chapter explores some 
strategies for opportunistic methods of encouraging solution efficiency in the TraderBots 
approach.    
Many groups have pursued different optimization methods.  Coalition formation 
techniques to optimize multi-agent coordination have been proposed by Sandholm and 
Lesser [94], Sandholm et al. [97], Zlotkin and Rosenschein [132], and Shehory and Kraus 
[103]. Tambe [118] proposes tracking behavior of other agents as an optimization 
technique.  Rosin and Belew [88], and Matos and Sierra [76] adopt evolutionary methods 
for enhancing performance. Other optimization techniques have been proposed by Lux 
and Marchesi [72], Huber and Durfee [61], Castelfranchi and Conte [25], Panzarasa and 
Jennings [81], Sandholm and Lesser [98], Khuller et al. [69], Cheng et al. [27], and 
Andersson and Sandholm [2]. 

An important contribution of this work is the development of a “leader” role that allows a 
robot with the necessary resources to assess the current plans of a group of robots and 
provide more optimal plans for the group. The leader can gain knowledge of the group’s 
current state via communication or some form of observation. A prospective leader can 
use the profits generated by an optimized plan to bid for the services of the group 
members, and retain a portion of the profit for itself. The leader may bid not only against 
the individuals’ plans, but also against group plans produced by other prospective leaders. 
In this work we implement a preliminary version of the leader capability by means of a 
combinatorial exchange, as proposed in [40].  Centralized and distributed approaches are 
two extremes along a continuum. The introduction of leaders allows the market-based 
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approach to slide along this continuum in the direction of improved profitability in an 
opportunistic manner.  Furthermore, this work addresses one of the key limitations of our 
early implementation of this approach: the restriction of negotiations to single-party, 
single-task deals.  In many cases, this restriction limits the global cost reduction, since the 
robots do not have the negotiation tools to reason their way out of shallow, local minima. 
The work presented here extends these tools to permit multi-party and multi-task deals 
with better global cost reduction potential.  

5.2 Frequent Inter-Robot Trading 

The TraderBots approach allows robots to auction tasks in their commitment list 
to other robots if a profitable trade can be made.  The frequency at which robots opt to 
auction their tasks can affect the efficiency of the solution.  In our most current 
implementation, robots offer for auction all tasks that are not scheduled for execution 
every 10-15 seconds.  The implementation also encourages staggered auctions so that all 
robots are not holding auctions in synchrony.  This allows robots to participate in a 
variety of auctions without complicating bid-estimation by requiring that bidders estimate 
their chance of winning bids submitted to different auctions.  Robots are allowed to 
participate in multiple auctions without waiting for the outcome of any single auction.  
Due to the frequency of re-auctioning, and the dynamic nature of the environment that 
affects the cost estimation for bids, the solution efficiency does not suffer greatly because 
the robots do not take into account bids that have been submitted but not yet awarded. 
Experiments to determine the effects of different levels of participation in auctions are 
shown next. In these experiments, run in simulation by the FIRE project group (see 
Appendix 1 for further details) with special thanks to Dani Goldberg, execution is 
delayed until market quiescence.  In other words, when every RoboTrader that wants to 
(or can) participate in auctions has done so for every auction available, and no tasks have 
been bought or sold, then the market is deemed to have quiesced.  This means that a 
stable allocation (or local minimum) has been found.  Only after quiescence do the 
RoboTraders execute their tasks.  Delayed execution is useful in that it allows us to study 
the performance of the market under different parameters without the confounding effect 
of having tasks executing, and thus disappearing, from the market. 

The experimental parameters we examined form a progression in terms of 
participation in RoboTrader auctions.  The parameters are: 

§ Maximum Awards Per Auction (MAPA):  

The maximum number of tasks awarded by the OpTrader in a single auction, 
influencing the quality of the initial allocation. 

§ No RoboTrader Auctions (RTno):  
RoboTraders never auction their tasks, so the OpTrader allocation is never altered. 
Participation in RoboTrader auctions is nonexistent. 

§ OpTrader Auctions First (OTfirst):  

The OpTrader auctions all of its tasks first, and only when it is finished do the 
RoboTraders conduct their own auctions.  Participation in RoboTrader auctions is 
limited to occur only after OpTrader auctions. 
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§ Trader Auctions May Conflict (Tconf):  

The OpTrader and RoboTraders conduct simultaneous auctions.  In order for the 
RoboTraders to be able to assess their costs accurately and clear their auctions, the 
following constraint is imposed: a RoboTrader may participate as a bidder in at 
most one external auction and that auction must terminate before its own auction is 
cleared. Participation in RoboTrader auctions may occur during the entire trial, but 
it is limited by conflicts. 

§ Round Robin Auctions (Trobin):  

The OpTrader and RoboTraders participate in a round robin series of auctions, 
where each trader has the exclusive right to hold an auction during its turn.  While 
not necessarily efficient or realistic, the round robin auction-synchronization 
mechanism enables full participation in RoboTrader auctions while maintaining 
accurate costing. 

§ Relaxed Participation (RTrelax):  

Each RoboTrader is allowed to participate as a bidder in all external auctions, 
regardless of how many there are and how they overlap with its own auction.  
Similar to Trobin, this allows full participation in RoboTrader auctions, but with the 
possible drawback of inaccurate costing. 

For each of the MAPA values of 1, 3, and 6, we performed experiments with each of the 
five other parameters, giving 15 experimental combinations.  We ran 5 trials of each 
combination, with the completion criterion that all 50 rocks be characterized.  The 
experimental data collected for each trial included: the final total cost of the solution, the 
degree of participation in RoboTrader auctions, and the number of RoboTrader trades 
made (Table 1).  In all experiments, task execution was delayed until auction quiescence. 
As a baseline for comparison with our cost values, we ran experiments to find an optimal 
solution to our problem using a genetic algorithms (GA) approach.  The best total cost 
achieved was 777. 

Figure 19: Team Cost for different auction participation schemes 

Cost 

Limited Participation: 

initial allocation only 

Full Participation: 

serialized auctions 

Relaxed Participation: 

simultaneous auctions 
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Figure 20: Time to reach solution for different auction participation schemes 

There are a number of general trends in the data that are notable in the cost data of Table 
5, Table 6, and Table 7. One trend is that the quality of the solution degrades (i.e., total 
cost increases) as the MAPA value increases. The reasons for this are fairly 
straightforward.  In each auction in our system, the OpTrader never awards more than a 
single task to each RoboTrader bidder, possibly producing inefficiencies.  For example, if 
the OpTrader awards three tasks in a particular auction (MAPA ≥ 3), they are to three 
different RoboTraders, when a better allocation might have had two of the tasks going to 
the same bidder.  Thus, smaller MAPA values tend to lead to better initial allocations, 
though more OpTrader auctions must be held. 

A good solution, given the current limitations of our system, relies significantly on the 
quality of the initial allocation made by the OpTrader (i.e., with a low MAPA value).  
When MAPA=1, the allocations provided by all of the variations are essentially equally 
good.  When the initial OpTrader allocation degrades (at MAPA values of 3 and 6), 
having RoboTraders auctions tends to improve the solution, as is evident from comparing 
RTno to OTfirst, Tconf, Trobin, and RTrelax. 

In addition to conducting RoboTrader auctions, Table 5, Table 6, and Table 7 show that 
increased participation in those auctions tends to improve the solution.  One item of note 
is that even though Trobin and RTrelax show full participation, for MAPA=6 the cost of 
RTrelax is significantly greater (at a p-value of 0.01).  This may be attributed to the 
inaccurate costing that can arise in the RTrelax case. 

 
 
 
 
 
 

Maximum number of tasks Awarded Per Auction (MAPA) 

Time 
(sec) 

Full Participation: 

serialized auctions 

Relaxed Participation: 

simultaneous auctions 
Limited Participation: 

initial allocation only 
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 Mean Total Cost 

MAPA 6 3 1 

Rtno 967 
(6.1) 

836 
(26.6) 

795 
(1.7) 

Otfirst 920 
(15.7) 

809 
(7.2) 

795 
(1.5) 

Tconf 921 
(17.3) 

837 
(40.3) 

795 
(4.4) 

Trobin 826 
(19.9) 

798 
(5.3) 

798 
(4.4) 

RTrelax 875 
(24.8) 

800 
(9.9) 

794 
(2.0) 

Table 5:  Mean total cost of the solution.  Standard deviations are shown in 

parentheses. 

 Mean Number of Participants per 

Auction 

MAPA 6 3 1 

Rtno 0 

(0) 

0 
(0) 

0 
(0) 

Otfirst 1.3 

(1.5) 

1.4 
(1.7) 

1.6 
(1.8) 

Tconf 1.1 
(1.5) 

1.1 

(1.4) 

1.7 
(1.9) 

Trobin 5.0 
(0) 

5.0 
(0) 

5.0 
(0) 

RTrelax 5.0 

(0) 

5.0 
(0) 

5.0 
(0) 

Table 6: Mean number of participants in each RoboTrader auction.  Standard 

deviations are shown in parentheses. 

 Number of Tasks Sold in 

RoboTrader Auctions 

MAPA 6 3 1 

Rtno 0 
(0) 

0 
(0) 

0 
(0) 

Otfirst 3.2 
(1.5) 

1.6 
(0.9) 

0 
(0) 

Tconf 4.6 

(2.9) 

2.0 
(1.0) 

1.4 
(1.1) 

Trobin 14.6 

(1.1) 

4.0 
(0.7) 

0 
(0) 

RTrelax 23.2 

(1.8) 

7.0 
(4.6) 

0.4 
(0.5) 

Table 7:  Mean number of tasks sold between RoboTraders.  Standard deviations 

are shown in parentheses. 



 
 

86

Table 7 shows at least part of the reason why greater participation in RoboTrader 
auctions helps to improve the solutions.  Improved participation tends to facilitate tasks 
being sold between RoboTraders, as is clear by comparing the values for Trobin and 
RTrelax to the other cases.  This increase in trades is particularly significant and 
important with high MAPA values because of the potential for inefficiencies in the 
OpTrader allocation.  Thus, with high participation, the RoboTraders have the ability to 
improve the solution before it irrevocably settles into an inefficient local minimum. 

5.3 Clustering Tasks 

The capability to negotiate multi-task deals greatly enhances the market approach 
because it allows a robot to escape some local minima in task allocation solutions.5 
However, if the robots bid on every possible combination of tasks, the number of bids 
submitted will grow exponentially with the number of tasks.  Consequently, processing 
these bids will be impossible for more than a few tasks. Hence, some form of clustering 
algorithm is necessary to determine the clusters of tasks to bid on.  The possibilities for 
such clustering algorithms are numerous [82].  The work shown in this chapter was 
published in 2002 by Dias and Stentz [37]. 

The clustering algorithm used in this work is chosen to ensure a span in size (from single-
task clusters to a wholly inclusive cluster) and task membership (i.e. ensure that every 
task is included in at least one cluster).  These properties are important because a robot 
cannot necessarily predict the interaction of the clusters it offers with the tasks of other 
bidders, and hence, needs to give the allocator ample flexibility in offloading tasks.  The 
chosen clustering algorithm operates as follows: 

1. Create a list of edges spanning all tasks on offer (N), where each edge joins 
two tasks and the cost of the edge represents the distance in cost space 
between the two tasks. A low edge value implies, but does not guarantee, that 
two tasks can be performed more cost-effectively together than apart. 

2. Sort the edge list from lowest to highest cost. 
3. Form the first group of clusters by creating a single-task cluster for each task 

on offer. 
4. For cluster sizes ranging from 2 to N, recursively form new clusters by adding 

the next best available edge (an edge is unavailable if it is either already 
included in a previous cluster or if the edge connects two tasks which are not 
included in any of the previous clusters) to a cluster in the previous cluster-
list.  (Note, when new clusters are formed, all previous clusters are preserved).  
Thus, recursively form a forest of minimum spanning trees (MSTs) [32] 
ranging in size from 1 to N.   

This algorithm can be applied in general to determine which tasks are best dealt with in 
clusters, without computing every possible cluster.  Suitable variations of this algorithm 
(or others) can be chosen to enable multi-task negotiations in different task domains. The 
presented work is verified on a multi-depot distributed traveling salesman problem (TSP), 
and hence, the MSTs are decomposed into tours as follows.   If a newly added edge 
breaks the continuity of the tour, the MST is adjusted by removing one of the edges 
connecting to the newly added edge and adding the necessary edge to preserve the 
                                                 
5 Demange et al. [35] present a more detailed examination of multi-item auctions.   
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continuity of the tour with the least addition to the cost of the tour.  Note that this change 
still preserves the bounds of the MST, which guarantees that the cost of the tour does not 
exceed twice the optimal cost.  This holds true for metric cost spaces where the triangle 
inequality is preserved.   

Allowing robots to include the offloading of an owned cluster when bidding to accept a 
new cluster of tasks further enhances the bidding capability of the robots.  

5.4 Using Leaders 

In this work we implement a preliminary version of the leader capability by 
means of a combinatorial exchange, as proposed in [40].   

5.4.1 Combinatorial Exchange for Multi-Party Optimizations 

A combinatorial exchange (a market where bidders can jointly buy and sell a 
combination of goods and services within a single bid) is chosen to enable multi-
party optimizations for a team.  A combinatorial exchange enables a leader to 
locally optimize the task assignments of a subgroup of robots and to potentially 
achieve a greater global cost reduction. Many researchers including Sandholm 
and Suri [95] have presented valuable insight on how to efficiently implement and 
clear combinatorial exchanges for E-commerce applications.  However, many of 
these tools are relatively complex and are not used in this work for simplicity. 
Instead, the basic recommendation of searching a binary bid tree is applied. The 
chosen implementation for clearing the combinatorial exchange in this work is a 
depth first search on a binary tree where each node of the tree represents a bid and 
the binary aspect of the tree represents accepting or rejecting that bid.   The tree is 
pruned to disallow accepting multiple bids from any single bidder, and to disallow 
exchanging of any single task more than once.  Note that the pruning does not 
affect the solution except by improving the runtime.  

The preliminary version of the leader role in the market approach is implemented 
as follows.  A leader queries surrounding robots to discover what tasks they have 
to offer and their current states, and re-allocates tasks within the group using the 
combinatorial exchange mechanism.  Note that this is just one way in which the 
leader can reduce the cost within the group (and thereby the global cost).  Other 
schemes could involve the leader using different mechanisms to re-distribute tasks 
and even generating new tasks to coordinate the group more efficiently.  
Moreover, some tasks (for example, cooperative automated construction and 
cooperative maneuvering of large objects) may require tight coordination where a 
leader has to closely monitor the progress of individual team members and 
accordingly direct the efforts of other members of the team. 

5.4.2 Competing Local Groups 

When leaders are allowed to opportunistically optimize sub-groups, occasions 
could arise where two leaders are in competition for the services of the robots that 
overlap between the two groups.  If a robot bids on tasks from both leaders, it 
could win both bids and be unable to perform them or find it unprofitable to do 
so. There are several ways to address this “synchronization” issue. For example, 
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broken deals with a penalty can be allowed, or bids can be stamped with an 
expiration time during which they are valid and offers can be dealt with on a first-
come-first-serve or last-come-first-serve basis.  In the work presented here, the 
groups are allowed to negotiate in round robin fashion, thus forcing serial 
synchronization. 

5.5 Implementation 

The proposed multi-task and multi-party enhancements are developed and tested 
in a simulated distributed sensing task. A group of robots, located at different starting 
positions in a known simulated world, are assigned the task of visiting a set of pre-
selected observation points. This problem is a variation of the multi-depot distributed 
traveling salesman problem, where the observation points are the cities to visit.  Note that 
many multirobot application domains require an effective solution to the distributed 
traveling salesman problem. The costs are the lengths of the straight-line paths between 
locations, interpreted as money.  Let cij be the cost for the jth robot to visit the ith city 
from the (i-1th) city in its tour (where the 0th city is the starting location).   
The robot cost function for the jth robot is computed as follows: 

where nj is the number of cities in the tour for robot j.   

The team cost function is: 

where m is the number of robots.   

The team revenue and robot revenue functions are determined by the negotiated prices.  
All robots (bidders) adopt the same simplistic strategy of bidding a fixed 10% markup 
above the cost of completing the task. According to this strategy, if an announced task 
costs c to execute, a robot computes its bid as 1.1 c.  Thus, the robots bid for each city 
based on their estimated costs to visit that city. Similarly, if a robot offers up a task that 
will cost it c to execute, in an attempt to buy the services of another robot to complete 
that task, the maximum price it offers for this service is set as 0.9 c. 

Tasks and robot positions are randomly generated within a 100x100 world, and initial 
task allocations are made by randomly distributing the tasks among the robots. 
Heterogeneous robot capabilities are considered by restricting some robots’ capabilities 
such that they can only process single-task (ST) deals, while other robots can process 
multi-task (MT) deals.  Robots capable of playing leader roles are allowed the additional 
capability of performing multi-party (MP) optimizations via either a single-goods 
exchange or a combinatorial exchange, depending on their capability.  Sections 5.5.1 
through 5.5.4 describe in detail the scenarios of robots negotiating in the absence of a 
leader (TPST and TPMT) and the optimization scenarios with leaders (MPST and 
MPMT).  Section 5.5.5 describes the scenario where robots have limited communication 
range and hence can only trade within subgroups. 
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5.5.1 Two-Party, Single-Task (TPST) Negotiations 

In this case, once the initial random task assignments are made, each of the 
robots, in turn, offers all its assigned tasks to all the other robots, in turn. Thus, 
interactions are limited to two parties at any given time as illustrated in Figure 21.  

Figure 21: TPST Illustration 

Each bidder then submits a bid for each task. In order to estimate the additional 
cost of inserting a task into its queue, the bidder uses the cluster generation 
algorithm described above to generate an MST with its current queue of tasks plus 
the offered task, and computes the cost difference between the resulting and 
original queues. The offerer accepts the most profitable bid it receives.  The cost 
of the offerer’s resulting queue is computed by removing from its queue the task 
that was transferred through the winning bid, clustering the remaining tasks using 
the clustering algorithm, and computing the cost of the resulting queue. Hence, in 
the TPST scenario, only single-task (ST) deals are considered, and pairs of robots 
continue to negotiate amongst themselves in round-robin fashion until no new, 
mutually profitable deals are possible.  Therefore, negotiations cease once the 
system settles into a local minimum for the global cost function. 
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5.5.2 Two-Party, Multi-Task (TPMT) Negotiations 

In this case, the previous case is repeated with clusters of tasks being the atomic 
unit of the negotiations as shown in Figure 22.   

Figure 22: TPMT Illustration 

That is, the initial assignments are followed by each of the robots, in turn, 
offering all of its assigned tasks to all the other robots, in turn.  The robots then 
bid for clusters of these tasks.   Once again, costs are computed by using the 
clustering algorithm to cluster all tasks under consideration and compute the cost 
of the resulting queues, and negotiations are always between two robots.  

5.5.3 Leader Performing Multi-Party Single-Task (MPST) 
Optimizations 

A leader, whose capability is restricted to dealing in single-task deals, is 
introduced in this case.  The leader queries all the robots, and gathers all the tasks 
of all the robots along with each robot’s state information.  The leader then sets up 
an exchange by formulating single-task bids for the robots in the sub-group based 
on the gathered information. The exchange used in the MPST scenario is a single-
task exchange (i.e. a single bid can contain buying of a single task and selling of 
another single task).  The exchange is then cleared to maximize the leader’s 
profit.  These interactions are illustrated in Figure 23. 
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Figure 23: MPST Illustration 

This process is repeated until the exchange cannot produce any further profit, and 
the corresponding task re-allocation is proposed to the sub-group of robots.  If the 
leader’s plan reduces the global cost, the resulting excess profit can be distributed 
among the entire subgroup (including the leader) such that the robots in the 
subgroup accept the leader’s task re-allocation.   

5.5.4 Leader Performing Multi-Party, Multi-Task (MPMT) 
Optimizations 

Figure 24: MPMT Illustration 

Here, the previous case was repeated with the added capability of the leader to 
process MT bids as shown in Figure 24.  That is, the leader sets up and clears a 
combinatorial exchange to determine the re-allocation of tasks.  In a 
combinatorial exchange, clusters of tasks can be bought and sold within a single 
bid.  
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5.5.5 Multiple Competing Local Groups 

This set of experiments involved 8 robots divided into 3 groups of 4 robots each 
(with the middle group overlapping the other two groups) and 10 tasks.  Trading 
and optimization with leaders are restricted to within the subgroups.  The robots 
are evenly spread throughout a 2000x2000 world and the cities (tasks) are 
randomly generated.  Scenarios with and without leaders, and with ST-capable 
and MT-capable robots are considered. 

5.6 Experiments 

Experiment 5.1: Different negotiation strategies described above. 
Figure 25 and Figure 26 show the final tours of each robot for a 2-robot, 10-city 
TSP and a 4-robot, 10-city TSP respectively.  In both figures, the robots are 
shown as circles and the cities are shown as squares.   

Figure 25: Solutions to a 2-robot, 10-task TSP with  

and without leader-optimization 

 
 

 

 

Table 8: Performance averaged over 100 randomly generated  

2-robot, 10-task TSPs 

 Cost Itns Improved Opt. Error 
Random 351 - 0.0 % 65.6 % 
No Leader      
2 ST 256 2 25.9 % 21.4 % 

2 MT 231 1 33.0 % 9.0 % 
ST Leader 245 2 29.0 % 16.2 % 
MT Leader 227 1 34.4 % 7.0 % 
Optimal 212 - 38.6 % 0.0 % 
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Two-Party Single-TaskRandom

Multi-Task Leader/Optimal
Single-Task Leader

Figure 26: Solutions to a 4-robot, 10-task TSP with and  

without leader-optimization 

The first illustration in each figure shows the tours after the initial random 
allocation of tasks.  The second illustration shows the resulting tours after the 
robots have completed TPST deals and reached a local minimum in global cost.  
The third and fourth illustrations show the results of the MPST and MPMT 
scenarios.  In the illustrated cases, the optimal allocation is reached in the MPMT 
scenario.   

 
 Cost Itns Improved Opt. Error 
Random 411 - 0.0 % 124.6 % 
No Leader     
4 ST 230 5 42.7 % 27.7 % 
2ST+2MT 222 5 44.6 % 23.3 % 
1ST+3MT 209 4 47.8 % 16.2 % 
4MT 197 4 50.9 % 9.7 % 
ST Leader 218 3 45.8 % 21.1 % 
MT Leader 193 2 51.8 % 7.5 % 
Optimal 183 - - 0.0 % 

Table 9: Results averaged over 100 randomly generated  

4-robot (heterogeneous), 10-task TSPs  

 

Table 8, Table 9, and Table 10 report the performance averaged over 100 
randomly generated task distributions for the 2-robot-10-task case, the 4-robot-10-
task case, and the 4-robot-20-task case respectively. As evident from these results, 
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on average, an MT-capable leader can improve the profit of the group 
significantly.  An ST-capable leader can only improve the profit of the group on 
average for groups of robots where there are at most 50% MT-capable robots. 

 
 Cost Iterations Improved 

Random 725 - 0.0% 
No Leader    
4 ST 400 10 44.1% 
2ST+2MT 388 9 45.7% 
1ST+3MT 359 7 49.8% 
4MT 336 5 53.0% 
ST Leader 373 6 47.7% 
MT Leader 322 3 54.9% 

Table 10: Performance averaged over 100 randomly generated 4-robot 

(heterogeneous), 20-task TSPs  

Experiment 5.2: Overlapping groups 
Figure 27 and Table 11 illustrate preliminary results for the competing subgroup 
scenario.  The subgroups of robots are circled in Figure 27, which depicts the 
results of a single run.  Table 11 reports the performance averaged over 100 
randomly generated task distributions. Again, the results show that on average the 
local optimization with leaders improves the global profit. 

 
 Cost Iterations Improved 

Random 9091 - 0.0% 
No Leader    
4 ST 4598 8 48.9% 
2ST+2MT 4379 9 51.2% 
ST Leader 4312 6 52.1% 
MT Leader 3687 6 58.9% 

Table 11: Performance averaged over 100 randomly generated 8-robot 

(heterogeneous), 10-task TSPs with 3 overlapping groups of 4 robots each 
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Figure 27: Solution for TSP with 3 overlapping subgroups of 4 robots each and 10 

tasks 

5.7 Limitations and Future Work 

Presented results show that leaders can considerably reduce global costs in 
market-based multirobot coordination.  Initial experiments for optimizing within robot 
sub-groups with leaders also proved promising. Future work includes implementing these 
capabilities on a robot team and further extensions of the market approach.  Proposed 
enhancements include more detailed analysis of optimizing with leaders, dealing with 
time constraints, and experimentation with different task domains.   The goal of this work 
is to produce an efficient and robust market-based multirobot coordination architecture. 
The presented work only addresses scenarios where leaders run exchanges to optimize 
task allocation within a group of robots.  Some leaders are also capable of clustering tasks 
and hence can conduct combinatorial exchanges. It is also possible to have combinatorial 
exchanges and leaders as distinct entities within the economy. For example, there could 
be a leader that simply clusters tasks and sells these cluster plans to a combinatorial 
exchange. Note that the leader is not selling the actual cluster of tasks—just a plan for 
which tasks to cluster. The exchange could then buy all of the component tasks, sell off 
the resultant cluster, and pay a fee to the leader.  The presented results indicate that the 
benefit from the ability to cluster tasks and participate in multi-task negotiations exceeds 
the benefit from the ability to perform multi-party negotiations.  Leaders could also use 
other approaches to generate plans for a subgroup of robots.  Finally, a leader could 
simply act as a means of enabling trade between subgroups of robots who are otherwise 
unable to communicate, thus enriching the possible trades. 
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CHAPTER 6  

Comparison of Three Coordination Mechanisms 

HIS chapter presents first steps towards a comparative study of three 
multirobot coordination schemes that span the spectrum of coordination 
approaches.  On one end of the spectrum is a fully centralized approach, 
where the leader runs on a more powerful computer and can produce optimal 

solutions.  On the other end of the spectrum of approaches is a fully distributed 
behavioral approach with minimal planned interaction between robots.  Finally, in the 
middle of the spectrum is the TraderBots market approach.  The dimensions for 
comparison are chosen based on the characteristics identified in Chapter 1 of this 
dissertation as being important for multirobot coordination.  Evaluations are based on the 
performance of each approach in accomplishing a distributed sensing task. This is a new 
direction of research and hence only preliminary results are presented in this chapter.  
Thus three selected approaches are implemented in simulation and compared across only 
two of the identified dimensions to date.  

6.1 Motivation 

The growing demand for robotic solutions to increasingly complex and varied 
problems has dictated that a single robot is no longer the best solution for many 
application domains; instead, teams of robots must coordinate intelligently for successful 
task execution. Driven by these demands, many research efforts have focused on the 
challenge of multirobot coordination.  Chapter 1 in this dissertation presents a detailed 
description of multirobot application domains and their demands, and show that robot 
teams are more effective than a single robot in many application domains. Simply 
increasing the number of robots assigned to a task does not necessarily solve a problem 
more efficiently; multiple robots must cooperate to achieve high efficiency.  The 
difficulty arises in coordinating many robots to perform a complex, global task. Dynamic 
environments, malfunctioning robots, and multiple user requirements add to the 
complexity of the multirobot coordination problem as detailed in Chapter 1.  
Multirobot coordination mechanisms span a spectrum of approaches ranging from fully 
centralized approaches to fully distributed approaches.  At one end of the spectrum, 
centralized approaches design the team so that a single robot or central computer acts as a 
“leader” and is responsible for planning the actions of the entire group.   This 
methodology usually requires that the group members report most recent state 
information to the leader who uses this information to coordinate the group.  The 
principal advantage of such centralized approaches is that they allow optimal planning 
since the decision-making agent has access to all relevant information when planning for 
the group.  However, it is commonly considered that they suffer from several 
disadvantages including sluggish response to dynamic conditions, intractable solutions 
for large teams, communication difficulties, and the leader becoming a central point of 
failure.   If the environment is highly dynamic, the leader may not be able to generate 
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plans at a sufficiently fast rate to keep up with changes in state information from the 
group members.  Furthermore, the robots, dependent on the leader for action-decisions, 
may not be able to avoid dangerous situations in time.  Also, the ability to generate 
optimal solutions for a complex group-coordination problem diminishes drastically as the 
size of the group grows.  Another important consideration in multirobot systems is 
communication.  A fully centralized approach demands that all group members remain in 
communication with the leader at all times so that the leader can re-plan whenever a new 
situation is encountered.  Fully centralized approaches also require high-bandwidth 
communication because the robots have to communicate all their state information to the 
leader on a regular basis so that the leader can generate informed plans.  Finally, in a 
fully centralized system, the success of the group is tightly coupled to the performance of 
the leader.  Hence, if the leader malfunctions or is disabled, the entire group becomes 
ineffective.  For all of these reasons, fully centralized approaches seem best suited for 
small groups of robots operating in controlled, static environments with global 
communication. 

On the other end of the spectrum, fully distributed, reactive approaches address many of 
the problems inherent to a centralized approach by distributing the planning 
responsibilities amongst all members of the team. Each robot operates independently, 
relying on its local sensory information and planning its actions accordingly. Any 
cooperation between team members is often fortuitous and each robot tends to act as 
though it is the only member of the team.  Many research efforts have modeled such 
distributed systems inspired by biology. The principal drawback of these reactive 
approaches is that they often result in highly sub-optimal solutions because all plans are 
based solely on local information and hence, efficient execution of the global goal, by 
coordinating the resources of the team, isn’t prioritized in the local planning.  However, 
to their advantage, reactive approaches are often very simple to implement and overcome 
many of the disadvantages of fully centralized approaches. 

Recently, economy/market-based multirobot coordination has gained popularity. The 
general concept of these market-based approaches is that the robots act largely 
independently in terms of planning for themselves, but are able to take into account team 
resources by trading tasks with team members.  Communication is limited to offers and 
awards of tasks, and bids for tasks, and hence often consists of low-bandwidth 
communication.  Economic approaches can also maintain the benefits of distributed 
approaches and opportunistically incorporate pockets of centralized optimization [37]. 
However, economic approaches are not without their disadvantages.  Negotiation 
protocols, mapping of task domains to appropriate cost functions, and introducing 
relevant de-commitment penalty schemes can quickly complicate the design of a 
coordination approach.  Furthermore, some negotiation schemes can drastically increase 
communication requirements.  Thus, all of these factors must be considered when 
designing a market-based approach. 

The goal of this chapter is to report on a new direction is our research that aims to 
conduct a meaningful comparison between three approaches that span the spectrum of 
multirobot coordination mechanisms discussed above.  The three chosen approaches are a 
fully centralized approach, a fully distributed behavioral approach and our TraderBots 
market-based approach.  Rabideau et al. [85] conduct a similar comparative study 
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between a centralized planner that does not guarantee the optimal solution, a distributed 
planner, and a single-round-auction Contract Net approach [107].  They evaluate these 
coordination schemes for a simulated 3-rover, 20-rock, geological science scenario where 
rovers sample spectra of rocks on Mars.  They conclude that the Contract Net approach 
performs best but takes up the most CPU cycles.  The work presented in this paper differs 
in that the market approach used is not limited to a single round of bidding, the chosen 
approaches span the spectrum of those currently used, and the chosen approaches are 
evaluated along many different dimensions.  Also, the comparison is carried out not only 
in simulation, but also on a robotic system. 

An early paper by Rus et al. [90] evaluates four approaches for a furniture-moving task: a 
global planning approach, a local planning approach, a behavioral approach with 
communication, and a behavioral approach without communication.  The goal of the 
paper however is not to compare methods of coordination, but instead to investigate what 
manipulative tasks can be done by robots without global control, communication, 
planning, or synchronization.  

Another recently published multirobot comparative study is that of Gerkey and Matari,  
([50], [51]).  This work aims to compare different multirobot coordination schemes in 
terms of complexity and optimality.  However, the proposed framework for comparison 
makes the limiting assumption that only one task can be assigned to any robot. Thus, the 
framework limits the performance and hence the analysis of some of the approaches 
under consideration, where the approaches do not limit task assignment to a single task 
per robot. 

Bererton [11] proposes a comparison between the Guestrin Gordon MDP solution to 
multirobot coordination and a market approach inspired by the TraderBots approach.  
The proposed comparison is in the adversarial laser-tag game.  However, to date, none of 
the proposed comparative work is published.   In previous work, Bererton and Khosla [9] 
present comparison results in simulation between a repairable team of robots and a non-
repairable team, and show that repairable robots have a higher average mean time to 
failure for larger team sizes.   

Finally, Parker’s seminal work on fault tolerant multirobot coordination using the 
ALLIANCE architecture [83] devotes a section to a comparison with negotiation-based 
coordination approaches.  While no comparative results are presented, Parker argues that 
the principal disadvantage of negotiation-based approaches is that they have not been 
proven on robotic systems.  This dissertation addresses Parker’s criticism by presenting a 
detailed study and implementation of a negotiation-based multirobot coordination 
approach.  Furthermore, this chapter extends Parker’s comparative analysis, and presents 
an implemented comparison between the TraderBots negotiation-based approach, a 
centralized approach, and a behavioral approach. 

The comparison work in this chapter spans many more dimensions than published in any 
previous work and presents the first comparative analysis implemented on robots.  
Comparisons such as these are extremely useful for determining the strengths and 
weaknesses of different approaches when choosing a suitable approach for a given 
application. 
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6.2 Dimensions of Comparison 

The scope of this comparison is limited to evaluating the performance of three 
approaches that span the spectrum of multirobot coordination mechanisms as described in 
the previous section. The selected approaches will be evaluated along the dimensions 
identified in Chapter 1 as being important to multirobot application domains.  These 
dimensions are listed below, along with the corresponding questions to be answered by 
the comparison. (Note that this is a new direction in our research and hence the presented 
results are limited to comparisons along only two of the identified dimensions).   

§ Robustness:  
Can the approach deal with robot death and partial robot malfunction? 

§ Speed:    
How quickly can the approach respond to dynamic conditions? 

§ Efficiency:    

How does the efficiency of the solution vary for this approach? 

§ Information:   

Can the approach handle dealing with an unknown and changing environment, by 
relying on sensor feedback from robots to gather information about the world? 

§ Communication: 

Can the approach deal with limited-range and limited-bandwidth communication 
between robots? 

§ Resources:   
Does the approach reason about limited resources? 

§ Allocation:   

How efficiently does the approach allocate tasks? 

§ Roles:   

Does the approach allow for efficient adoption of roles? 

§ New Input:   
Can the approach handle new assignments and changes to current assignments from 
the operator during execution? 

§ Fluidity:    
Is the approach able to accommodate the addition/subtraction of robots during 
operation? 

§ Heterogeneity:  

Can the approach handle heterogeneous teams of robots? 

§ Extensibility:   
Is the approach easily extendable to accommodate new functionality? 

§ Flexibility:    

Is the approach easily adaptable for different applications? 

§ Tight-Coordination:  

Can the approach handle tightly coordinated tasks?  
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§ Scalability:   

How well does the approach scale with the number of robots? 

§ Learning:    
Can the approach be integrated with learning techniques for on-line adaptation to 
specific application environments? 

§ Implementation:   

Can this approach be validated via implementation on a robot team? 

This chapter presents a comparative analysis of three selected approaches that span the 
spectrum of solutions to the multirobot coordination problem across the 17 dimensions 
listed above.  While most of the dimensions are explored by an implementation in 
simulation or an implementation on a robotic system, some of the dimensions are 
examined by examples of other implementations, or by argument due to the nature of the 
characteristic, or the complexity of the required implementation to investigate that 
characteristic.  Note that the 17th dimension is necessarily covered due to all three 
approaches being implemented both in simulation, and on a robotic system. 

6.3 Scenario And Implementation Details 

The chosen application is that of a distributed sensing problem where robots are 
tasked with gathering sensory information from various designated locations of interest.  
This translates into a version of the multirobot traveling salesman problem (MTSP) with 
paths instead of tours (i.e. without the requirement that robots need to return to their 
starting locations) and where all the robots can start from different base locations – this is 
known as the multi-depot vehicle routing problem.  Hence, the tasks can be considered as 
cities to be visited where the costs are computed as the time taken to traverse between 
cities.  A task is completed when a robot arrives at a city.  The global task is complete 
when all cities are visited by at least one robot.  The global cost is computed as the 
summation of the individual robot costs.  Thus, the goal is to complete the global task 
while minimizing the number of robot-hours consumed.  The implementation of the three 
approaches in simulation and on a team of robots is described next. 

Due to the preliminary nature of this work, the comparisons are analyzed via an 
implementation of the three chosen approaches in simple simulation. In the simulation 
implementation, each robot travels by taking a fixed step (based on its speed) each 
control-loop-cycle along the straight line connecting its current position to the next city 
on its task queue.  When the robots are not executing tasks, they remain stationary at their 
current locations.  Implementation details for each of the three approaches are presented 
below.  The key challenge in the implementation is to allow each approach to maximize 
its benefits and minimize its disadvantages while maintaining the fundamental 
philosophy of the approach and while keeping the playing field leveled in order to make a 
useful comparison.  There are numerous ways to implement such a comparison, and no 
matter which implementation is chosen, there will be limitations.  Hence, this work 
attempts to choose the least contentious methodology for the comparison.  Thus, the team 
of robots is kept the same across approaches.  That is, the comparison is based on the 
common scenario where a team of robots is available for executing a task and the 
comparisons are based on coordinating the team in different ways to successfully execute 
the task.  In order to keep the playing field level, the algorithms used for the centralized 
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approach are also used for individual tour queue optimization in the market and 
behavioral approaches. This is explained in more detail in the following sections. 

§ Centralized Approach 
The centralized approach is implemented with one robot in the team acting as the 
leader who does all the planning for the group.  The centralized planner is 
implemented using an exhaustive depth-first search (DFS) with some pruning, 
which produces an optimal solution for the task allocation problem. The robots 
transmit state information to the leader, the leader generates a plan based on this 
information, and the team executes the instructions of the leader to the best of its 
ability. In the centralized approach all robots do not start execution until the leader 
completes planning for the group.  Thus, it is assumed that the leader alone does all 
the planning-related computation. 

§ Behavioral Approach 
The behavioral approach is implemented with each robot planning and executing all 
its actions independently.  Each robot uses the same DFS optimization algorithm 
used in the centralized approach to plan the optimal scheduling of its own tasks. 
The robots all plan to execute all tasks since no team coordination is planned. 
However, to level the playing field somewhat, as each robot completes a task, it 
announces the completion of that task to all the other robots.  When a robot learns 
that a task has been completed, it removes that task from its queue and re-schedules 
its task-queue accordingly. In the behavioral approach, each robot stops execution 
until its own planning/re-planning is complete and then resumes execution of any 
remaining tasks.   

§ Market (TraderBots) Approach 

The market approach is implemented with an OpTrader agent (the OpTrader is 
assumed to reside on one of the robots) that is responsible for translating and 
trading on behalf of the operator.  The robots can all plan for themselves using the 
same algorithm as in the behavioral approach.  The robots can also trade their tasks 
with other robots during execution.  In this implementation, only single-task trades 
are allowed and hence the market solution can get stuck in local minima.  In the 
market approach, execution is not started until initial negotiations with, and 
allocations by, the OpTrader are completed.  Thereafter the robots keep trading 
tasks during execution as opportunities for profitable trades arise.  Each robot has a 
specified frequency at which it trades.  In this implementation, all robots trade with 
the same frequency (once every 5 steps), but at staggered intervals.  The OpTrader 
uses a greedy algorithm for auction clearing, where the N best allocations are made 
each round, one award per bidder, where N is the number of robots in the team.  
Any tasks not auctioned off in a round are re-announced and cleared during 
subsequent rounds of auctioning.  During the inter-robot trading, each robot 
announces all of its current tasks for auction, and awards the task corresponding to 
the single most profitable bid it receives. 

All interactions among the robots occur in a synchronous manner in this simulation.  
Each robot is allowed a time-slice within a large time-cycle to carry out its computation 
and execution.  The experiments performed, using this implementation, are described 
below in section 6.4.  



 
 

103

6.4 Comparisons 

This section describes the relevant comparisons of the three chosen approaches 
along the dimensions identified in section 6.2.  For all the experiments, a fixed set of 
randomly generated observation tasks are assigned to the robots, and the global task is 
complete as soon as all the observation points are visited by at least a single robot.  If for 
some reason the global task fails, a percentage of completion is determined using the 
percentage of observation points visited.  If a generated observation point is inaccessible 
due to obstruction, the inability to complete that task is not considered a failure.  Robots 
will give up trying to reach a goal if the accrued cost to reach the goal exceeds the 
estimated cost by a significant percentage. 

All experiments used a set of randomly generated tasks in a 2000m by 2000m 
obstacle-free world.  The robots start off in random positions within this world.  The 
operator announces all tasks to the group at the beginning.  In all the approaches, the 
robots stop execution during their planning stage.  

6.4.1 Heterogeneity:  

Experiment 8.1:  In keeping with the chosen scenario, heterogeneity is introduced 
into the system by allowing different robots to move at different speeds in 
simulation.   

The goal in this comparison is to study the performance of the three approaches 
when the group of robots is heterogeneous.  The chosen aspect of heterogeneity is 
robot speed.  Since the optimized quantity is the number of robot-hours, the speed 
of each robot will affect the quality of the solution. 

Figure 28: Heterogeneous Teams 

Figure 28 shows the variation in total time for solutions produced by the three 
approaches for teams of 4 robots with varying degrees of heterogeneity where 
robots can have speeds of either 1m/s or 5m/s.  On the far left all 4 robots have 
the minimum speed of 1m/s and on the far right all 4 robots have the maximum 
speed of 5 m/s.   The 3 points in the middle represent the cases of mixed speeds 
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where the points from left to right indicate scenarios where 1, 2, and 3 robots have 
a speed of 5m/s respectively, while the others have speeds of 1m/s. 

 

 5 Runs 100 Runs 

BEH 3451 3049 
MKT 1834 1545 
CNT 1206 1129 

Table 12:  Results For Heterogeneous Teams With Speeds Randomly 

Allocated Between The Minimum Speed Of 1m/S And The Maximum Speed 

Of 5m/S 

Table 12 shows a summary of results where each robot is assigned a random 
speed between the max and min.  All three approaches are able to improve cost by 
taking into account heterogeneity.  The performance ranking of the three 
approaches remains the same as in the previous section. 

6.4.2 Scalability:   

Experiment 8.2 

The goal in this comparison is to study the performance of the three approaches 
for different team sizes.  It is assumed that one of the robots acts as the leader in 
the centralized approach and as the OpTrader in the market approach.  All robots 
are otherwise assumed to be homogeneous. 

Figure 29: Cost Comparison For A Single Run 

Figure 29 shows a plot of the global cost versus the team size for a single run each 
for different team sizes ranging from 2 to 10.  The plot shows data gathered for 
the same randomly generated set of 10 tasks. As expected the optimal solution 
cost is achieved by the centralized approach. The behavioral method produces 
fairly sub-optimal solutions as predicted, and the market method sits in between.  
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(Note that this comparison was only run for one set of randomly generated task 
distributions because of the high time consumption of the centralized method for 
larger team sizes.)   

Figure 30: Total Time Comparison For Single Run 

However, if we observe the total time taken, including computing time, then the 
centralized approach exceeds the cost of the solution generated by the market 
approach for team sizes exceeding 5, as seen Figure 30.  The behavioral method 
still exceeds the cost of the other two approaches.    

The same experiments were then repeated averaged over 100 runs.  Here too we 
see a similar trend when looking at the solution cost (see Figure 31) and the total 
time taken including the computation time (see Figure 32). 

Figure 31: Solution Costs Averaged Over 100 Runs 

Note once again that we were only able to generate results for up to 5-robot teams 
for the centralized approach due to time constraints.  Hence we were unable to 
observe how close the total time taken by the centralized and market methods 
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compare as the number of robots grows.  However, based on time performance 
for a smaller number of runs, it is highly probable that the market approach 
matches if not exceeds the performance of the centralized approach for larger 
numbers of robots. 

Figure 32: Total Time Averaged Over 100 Runs 

Another interesting aspect to notice is that the global cost increases with the 
number of robots for the behavioral approach.  This is because there are more 
robots moving towards the same goals until the robot that gets there first 
eliminates them from the task queues.  Interestingly though, if the average 
execution time per robot is monitored (see Figure 33) it is clear that this reduces 
with the number of robots for all three approaches.  Thus, it is clear that all three 
approaches are tending towards reducing the number of robot-hours spent. Thus 
far, it appears that the centralized and market approaches perform best.  However, 
one benefit of the behavioral approach is that it requires very low computation 
time. Therefore, it is informative to observe the average computation time per 
robot for the presented results. Figure 34 shows the variation of the computation 
time for the different approaches plotted against the number of robots.  This figure 
clearly shows the centralized method at a disadvantage compared to the other two 
methods.  Although the difference is small in comparison to that with the 
centralized approach, the behavioral approach on average takes slightly less time 
than the market approach to generate solutions.  This makes sense because in 
addition to computing the optimal arrangement of its tasks, the robots in the 
market approach spend some computation time on announcing, clearing, and 
submitting bids to task auctions.  
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Figure 33: Average Execution Time Per Robot 

Figure 34: Average Computation Time Per Robot 

Thus, overall, the market method can provide solutions with significantly 
better global costs than the behavioral approach using computation time 
significantly less than the centralized approach.  Note however that for 
applications where the optimal solution must be generated, the centralized 
approach will suit best.  Also, for applications where optimality of the 
solution is of no consequence, the behavioral method is fast and simple and 
hence becomes the approach of choice.  Note that the market approach can 
generate better solutions if allowed to trade clusters of tasks [37].  However 
this improvement will increase computation time somewhat. 
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6.5 Limitations and Future Work 

This chapter presents a comparative study between three multirobot coordination 
schemes that span the spectrum of coordination approaches; a fully centralized approach 
that can produce optimal solutions, a fully distributed behavioral approach with minimal 
planned interaction between robots, and a market approach which sits in the middle of the 
spectrum.  Several dimensions for comparison are proposed based on characteristics 
important to multirobot application domains, and experiments to compare the three 
approaches along each of the identified dimensions are presented.  The study is aimed at 
providing useful information for determining the strengths and weaknesses of these 
approaches when choosing a suitable approach for a given multirobot application. The 
comparative study thus far is limited to comparisons along only two of the identified 
dimensions, by implementation only in simulation, by simple implementations of the 
three approaches, and by a single fixed scenario.  Future work will address these 
limitations and will also extend the methodology to perform comparisons that were 
beyond the scope of this dissertation, including comparisons with more sophisticated 
implementations of the three coordination approaches and a wider variety of scenarios. 
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CHAPTER 7  

Overall Performance of TraderBots 

HIS chapter reports the overall performance of the TraderBots approach.  
Each of the 17 characteristics identified in Chapter 1 are revisited here and 
examined with respect to the TraderBots approach.  This chapter serves to 
summarize the overall capability of the TraderBots approach and to illustrate 

its ability to satisfy all identified requirements for successful multirobot coordination in 
dynamic environments.  Some experiments showcasing the versatility of the approach are 
also presented here. 

7.1 Satisfying the Required Characteristics 

Chapter 1 identifies several characteristics required for successful multirobot 
coordination in dynamic environments.  This section examines how the TraderBots 
approach addresses these identified requirements.  

§ Robustness  

Since the TraderBots approach has no single leader it has no single point of failure.  
Note that although a single agent (OT) could represent the operator, if one OT fails 
for some reason, a new one can be initiated and it can gather information from the 
robot traders (RTs) to assess their current operational status.  Thus, although some 
information may be lost with the failure of agents or robots, the system performance 
will degrade gracefully and the robot team will always aim to complete the assigned 
tasks with the functioning resources if possible.  Different means of ensuring 
robustness in the TraderBots approach are explored in Chapter 4 of this dissertation. 

§ Speed  

Since each robot in the TraderBots approach will make decisions for itself, the 
system as whole can respond more quickly to dynamic conditions than if new 
information had to be conveyed to a central leader agent and the robot had to wait 
for a new plan from its leader before acting. 

§ Efficiency  

The TraderBots approach can respond to dynamic conditions efficiently since the 
prevailing conditions are taken into account during negotiations and since the 
traders continue to seek profitable new trades and re-trades frequently.  For 
example, if new conditions arise which make an assigned task no longer profitable 
for a robot it will try to sell that task to another robot who may find it profitable due 
to/in spite of the new conditions. Different means of encouraging efficiency in the 
solutions produced by the TraderBots approach are examined in Chapter 5 of this 
dissertation. 
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§ Information  

The TraderBots approach does not require a-priori complete information.  Since 
trading occurs frequently and repeatedly, new information can be taken into account 
during negotiations as it is received.  At any point in time the robots will use the 
best information they have to plan and execute assigned tasks in an 
opportunistically efficient manner.  Most experiments performed to date with the 
TraderBots approach, and presented throughout this dissertation, do not assume the 
availability of a-priori information about the environment. 

§ Communication  
TraderBots rely on communication to trade.  However, the robots will execute 
opportunistically efficient plans based on the available communication.  Hence, the 
tasks will still be completed, albeit more inefficiently, even if the robots cannot 
trade – i.e. the system degrades gracefully with degradations in communication.  At 
no point is the system reliant on perfect communication due to the requirements of 
the TraderBots approach.  The ability of the TraderBots approach to deal with 
imperfect communication is examined in greater detail in Chapter 4 of this 
dissertation. 

§ Resources 

The available resources on the robots are always taken into account when 
estimating costs and savings for tasks being traded in this approach.  Furthermore, 
the TraderBots approach allows for an executive that can monitor the addition and 
depletion of resources and roles on the robots and notify the trader of changes to the 
robot capability so that the current capabilities of the robot are taken into account 
during negotiations.  Traders can also take into account their opportunity costs 
when estimating bids.  Thus, a robot with a more specialized capability will bid 
higher on a risky mundane task even if it can do it and hence will be less likely to 
be assigned a task not suitable for its expertise. 

§ Allocation 
In the TradeBots approach, factors such as robot capabilities, risks, and task 
constraints can be considered when estimating costs and savings for tasks during 
trading.  Note that different cost and revenue functions can result in different 
allocations of tasks.  Hence, designing appropriate cost and revenue functions can 
be very important in this approach.  However, imperfect cost and revenue functions 
could be altered to some extent via learning.  Task allocation in the TraderBots 
approach has been evaluated in comparison to numerous other approaches with 
highly favorable results.  A comparison to the optimal solution for simpler 
allocation problems is shown in Chapter 5 of this dissertation.  Comparisons to 
allocations made by a centralized approach and allocations made by a reactive 
approach are examined in Chapter 6 of this dissertation.  Finally, comparisons to 
greedy and random allocations are shown in the results section of this chapter.   

§ Roles 
In this approach, robots are not restricted to being able to play a limited number of 
roles at any given time.  Robot capabilities are derived at any time from available 
resources at that time and commitments in the future.  If a robot needs to switch out 
of a current role, it can decide to do so by selling the tasks that require it to play that 
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role or deciding to default on its commitment and paying a penalty.  
Implementation of role management is beyond the scope of this dissertation.  
However, an action selection method such as Stroupe’s MVERT [114] can be used 
to efficiently manage multiple roles in conjunction with the Trader Bots approach. 

§ New Input 

In many dynamic application domains, the demands on the robotic system can 
change during operation.  Hence, it may become necessary to assign new tasks, 
cancel previously assigned tasks, or alter existing tasks.  In the TraderBots 
approach, new task assignments can be handled if they can be communicated to a 
capable robot, and changes to existing tasks and/or cancellations can be handled as 
long as it is communicated to the relevant robot in time for the change to be made 
before execution.  Some changes can be accommodated even if the robot is notified 
during execution of the altered task, depending on how far the execution has 
progressed.  The ability of the TraderBots approach to successfully handle new 
input is demonstrated in experiments reported at the end of Chapter 3 and in the 
results section of this chapter. 

§ Fluidity 

If a new robot enters the team, it can join the team activities by participating in any 
on-going trading.  If the failure of a robot can be detected (by means of a heart-beat 
or occasional pinging of the robot) all tasks assigned to that robot could be re-
auctioned to other robots thereby assuring the completion of tasks as long as the 
necessary resources are available.  If a robot’s malfunction is only partial, it can 
subcontract portions of a task it can no longer complete to other capable robots, or 
transfer the whole task to another robot via an auction.  Some experiments 
demonstrating the TraderBots ability to accommodate changes in team size during 
operation are shown in Chapter 4, Chapter 6, and the results section of this chapter. 

§ Heterogeneity 

The TraderBots approach makes no assumptions about the heterogeneity or 
homogeneity of the team.  Each trader will make decisions about trading based on 
the resources of the robot.  Hence the approach works well on heterogeneous teams 
as well as on homogeneous teams.  Preliminary experiments demonstrating the 
TraderBots approach applied to a heterogeneous team are reported in Chapter 6 of 
this dissertation. 

§ Extensibility   

The TraderBots approach allows for the addition and subtraction of different levels 
of functionality in a modular fashion since all of its components are implemented in 
a modular fashion.  The tasks, resources, roles, cost functions, reward functions, 
and trading capabilities can be tailored to the specific needs of each application. 

§ Flexibility 
The TraderBots approach is not specifically geared to a single application domain.  
While the modularity of the TraderBots approach allows the approach to be applied 
to different task domains, an on-line learning capability can enhance the flexibility 
of the approach by autonomously tuning the market parameters to adapt to the 
application domain.  Many publications, including this dissertation, provide 
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instructions and guidance for implementing the TraderBots approach for different 
applications.  One current implementation of TraderBots is being improved to 
include a user interface and tools to allow plug-and-play system that can be used 
easily in many application domains. 

§ Tight-Coordination 

This dissertation does not specifically address tight coordination between multiple 
robots.  However, the TraderBots approach can accommodate tasks that require 
tight coordination in different ways including those applied by Kalra and Stentz 
[67] and Gerkey and Matari,  [49].  The basic idea is that the overall tightly 
coordinated task can be decoupled into subtasks and auctioned out to different 
participants.  The task description can include information about the task 
decomposition by representing tasks as decomposable trees as shown by Zlot and 
Stentz ([128], [129], [130]).  One of the subtasks of the tightly coordinated task 
could be a monitoring task that allows a robot to watch the progress of the task and 
stop execution if one or more participants fail or get out of synchrony.  This 
increases the robustness of the task execution. 

§ Scalability 

While most application domains don’t require large numbers of robots, and limits in 
resources often prevent deployment of large robot teams, scalability is an attractive 
quality and needs to be understood for any approach before it is adopted.  
TraderBots does not intrinsically place limits on the number of robots it can 
accommodate due to its distributed nature.  However, some auction clearing 
algorithms can take a lot longer based on how many robots participate in the 
auction, and hence, some optimization techniques become less efficient as the 
number of robots on the team grows.  However, even with a large team of robots, 
the TraderBots approach is applicable and can produce robust and reasonably 
efficient solutions if sufficient resources are available.  A preliminary examination 
of the scalability of the TraderBots approach is reported in Chapter 6 of this 
dissertation. 

§ Learning 

The TraderBots approach is designed as a generalized approach to multirobot 
coordination and hence its application to specific domains usually requires some 
parameter tuning.  Some of these parameters can be tuned automatically via an on-
line learning module.  A learning module can enable the robots to autonomously 
tune certain important parameters according to the prevailing conditions, and 
thereby improve efficiency in performance.  Learning techniques can also help with 
recognizing partial malfunctions by building correlations between failures and 
specific types of assignments that require a small set of common resources. 

§ Implementation 

The TraderBots approach has been successfully implemented, tested, and proven in 
simulation and on a robot team.  Some initial experiments that serve as a proof of 
concept are examined next.  More detailed experiments and implementation details 
are reported in Appendix 1 of this dissertation. 
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Thus, the TraderBots approach is designed to satisfy all of the characteristics necessary to 
successfully coordinate multiple robots in dynamic environments.   

7.2 Experiments, Results, and Discussion 

Many application domains demand high quality performance from multirobot 
systems.  Chapter 1 identifies several requirements for a successful multirobot 
coordination approach.  Some of these requirements are used to evaluate the versatility of 
the current implementation of the TraderBots approach.  The following characteristics are 
examined: the robustness to malfunctions, the ability to execute a task with incomplete 
information about the environment, the ability to deal with imperfect communication, the 
ability to dynamically handle new instructions from the operator during execution, the 
flexibility to execute different types of tasks, and the ability to accommodate the addition 
of a robot to the team during operation. The chosen application is a distributed sensing 
problem where robots are tasked with gathering sensory information from various 
designated locations of interest.  Figure 4a shows a graph of the 25mx45m area in which 
30 cities (tasks), illustrated as triangles, are assigned to a team of robots to visit. Figure 
4b shows a photograph of the cluttered dynamic environment, graphed in Figure 4a, 
where the reported experiments were carried out. This translates into a version of the 
traveling salesman problem (TSP) with the robots being represented by multiple 
salesmen following paths instead of tours (i.e. without the requirement that robots need to 
return to their starting locations) and where all the robots can start from different base 
locations – this is known as the multi-depot traveling salesman path problem (MD-
TSPP). The tasks can be considered as cities to be visited where the costs are computed 
as the time taken to traverse between cities.  A task is completed when a robot arrives at a 
city.  The global task is complete when all cities are visited by at least one robot.  The 
global cost is computed as the summation of the individual robot cost, and the goal is to 
complete the global task while minimizing the number of robot-hours consumed.  When 
the robots are not executing tasks, they remain stationary at their current locations.  

Figure 35: Distributed Sensing Tasks and Experimental Environment  
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Each robot is responsible for optimizing its own local schedule (i.e. given a set of tasks, 
the robots attempt to find the optimal TSPP solution to their local problem instance).  In 
general, the TSPP is NP-hard, so approximation algorithms are often used when large 
problem instances are encountered. Additionally, the problem encountered is an online 
variant of the TSPP – cities are arriving whenever a robot is awarded a task in an auction 
and are being removed whenever a task is traded to another robot.  When adding a task to 
the tour, it is inserted into the tour at the location that results in the smallest increase in 
marginal cost.  Insertion heuristics have been shown to have constant factor 
approximation guarantees for some point orderings, but in general they have a 
performance guarantee of (logn + 1) for n-city tours [6].  Tours are also optimized as a 
whole whenever tasks are added or removed.  If the number of tasks is at most 12, the 
optimal solution is computed using a depth first search-based algorithm.  If the number of 
tasks exceeds 12, computing the optimal solution is too time-intensive, and hence a 
minimum spanning tree-based 2-approximation algorithm is used [33] if the resulting 
tour has a lower cost than the current tour.  Tour optimization is also performed whenever 
a task is completed or failed as costs between cities may have changed due to new map 
information from recent sensor readings.  In the implemented TSPP scenario, all 
valuations are derived from inter-point distance costs.  These costs are estimated using a 
D* path planner [108] with the robot’s local map as input.  

Experiment 1:  This experiment measures the performance, averaged over a set of 3 runs, 
of the nominal case for 4 robots engaged in a distributed sensing task. 
Experiment 2:  This experiment investigates how a partial robot malfunction (simulated 
by killing the TaskExec process) at a random time during a run affects the nominal 
performance.  Reported results are averaged over a set of 3 runs for 4 robots engaged in a 
distributed sensing task. 
Experiment 3:  This experiment investigates how communication failures (simulated by 
deleting 10% of messages passed between robots) affect the nominal performance.  
Reported results are averaged over a set of 3 runs for 4 robots engaged in a distributed 
sensing task. 
Experiment 4: This experiment investigates the effect of new operator input during 
execution (where 4 random tasks are cancelled at random times during execution). 
Reported results are averaged over a set of 3 runs for 4 robots engaged in a distributed 
sensing task. 
Experiment 5:  This experiment investigates the performance for the 3-robot case using a 
random allocation for comparison with the TraderBots allocation. Reported results are 
averaged over a set of 3 runs for 3 robots engaged in a distributed sensing task. 
Experiment 6:  This experiment investigates the performance for the 3-robot case using a 
greedy allocation for comparison with the TraderBots allocation. Reported results are 
averaged over a set of 3 runs for 3 robots engaged in a distributed sensing task.  
Experiment 7:  This experiment investigates the nominal performance for the 3-robot 
case, for comparisons in efficiency with random and greedy allocations reported in 
experiments 5 and 6. Reported results are averaged over a set of 3 runs for 3 robots 
engaged in a distributed sensing task. 
Experiment 8:  This experiment investigates the effect of adding a new robot to the team 
at a random time during execution. Reported results are averaged over a set of 3 runs for 
a distributed sensing task. 
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Experiment 9:  This experiment investigates the flexibility of the implemented 
TraderBots approach by applying it to an exploration task where a set of 4 robots 
dynamically generate locations to be visited in order to cooperatively build a map of a 
previously unknown world.  Reported results are averaged over a set of 3 runs, each of 5-
minute duration. 
 

 

Table 13: Experimental Results 

 Table 13 reports the results of experiments 1-9.  Experiment 1 shows a team of robots 
able to accomplish the 30 assigned tasks with a cumulative cost of ~150 robot-seconds 
nominally.  Experiment 2 shows that an induced malfunction in one of the robots is 
handled gracefully without loss to solution efficiency.  Experiment 3 shows that a 10% 
loss in communication raises the solution cost to ~190 robot-seconds, mainly due to 
repeated tasks because of lost acknowledgements, but does not prevent the handling of 
any of the tasks.  Experiment 4 results in a drop in the solution cost due to the 
cancellation of 4 tasks during the experiments – note that on average only 3 of the tasks 
were cancelled before execution since tasks were chosen at random to be cancelled and a 
task chosen for cancellation was on average completed prior to the time of cancellation.   

Figure 36: Generated Map From Exploration Task and Comparison of Allocations 

Experiment 8 shows that the TraderBots approach can accommodate the addition of a 
robot during operations.  However, the new robot was started in a different start position 

 # Robots Tasks 

Assigned 

Tasks 

Handled 

Team Cost 

Experiment 1 4 30 30 154.4 
Experiment 2 4 30 30 150.3 
Experiment 3 4 30 30 190.0 
Experiment 4 4 30-4 27 140.9 
Experiment 5 3 30 30 232.1 
Experiment 6 3 30 30 162.0 
Experiment 7 3 30 30 139.0 
Experiment 8 3+1 30 30 139.1 
Experiment 9 4 22 22 154.8 

TraderBots Greedy Random 



 
 

116

from the previous experiments and hence the resulting costs cannot be compared.  
Experiment 9 shows the results when the robots are tasked with generating suitable 
observation points in order to collectively build a map of the environment. Figure 34a 
shows an example of a map collaboratively generated by the robots. Figures 34b, 34c, 
and 34d show a graphical comparison of allocations made using random, greedy, and 
TraderBots approaches in experiments 5-7.  Note that the robot paths overlap the least in 
the TraderBots allocation and they overlap the most in the random allocation as expected.  
This result is reflected in the corresponding costs shown in Table 13. In previous 
publications Dias and Stentz report comparisons, in simulation, of the efficiency of the 
TraderBots allocation to the optimal allocation [37], to a centralized allocation [38], and 
to a fully distributed allocation [38].  Implementations of the TraderBots approach to date 
have proved to be highly successful in multirobot coordination, especially in dynamic 
environments.  Movies showing successful mapping of different environments by a team 
of robots coordinated using the TraderBots approach can be viewed at the CTA web site: 
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/cta/www/ 
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CHAPTER 8  

Conclusion 

HIS dissertation describes a market-based architecture for coordinating a 
group of robots to achieve a given objective.  The architecture is inherently 
distributed, but also opportunistically forms centralized sub-groups to improve 
efficiency, and thus approach optimality. Robots are self-interested agents, 

with the primary goal of maximizing individual profits.  The revenue/cost models and 
rules of engagement are designed so that maximizing individual profit has the benevolent 
effect of moving the team toward the globally optimal solution. This architecture inherits 
the flexibility of market-based approaches in allowing cooperation and competition to 
emerge opportunistically. Therefore, this approach is well suited to address the 
multirobot control problem for autonomous robotic colonies carrying out complex tasks 
in dynamic environments where it is highly desirable to optimize to whatever extent 
possible.  Future work will develop the core components of a market-based multirobot 
control-architecture, investigate the use of a negotiation protocol for task distribution, 
design and implement resource and role management schemes, and apply optimization 
techniques to improve system performance.   

8.1 Summary 

This dissertation describes a market-based architecture for coordinating a group of 
robots to achieve a given objective.  The architecture is inherently distributed, but also 
opportunistically forms centralized sub-groups to improve efficiency, and thus approach 
optimality. Robots are self-interested agents, with the primary goal of maximizing 
individual profits.  The revenue/cost models and rules of engagement are designed so that 
maximizing individual profit has the benevolent effect of moving the team toward the 
globally optimal solution. This architecture inherits the flexibility of market-based 
approaches in allowing cooperation and competition to emerge opportunistically. 
Therefore, this approach is well suited to address the multirobot control problem for 
autonomous robotic colonies carrying out complex tasks in dynamic environments where 
it is highly desirable to optimize to whatever extent possible.  Future work will develop 
the core components of a market-based multirobot control-architecture, investigate the 
use of a negotiation protocol for task distribution, design and implement resource and 
role management schemes, and apply optimization techniques to improve system 
performance. 
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8.2 Contributions 

The contributions of this dissertation to the robotics literature are as follows: 
§ Most comprehensive study to date of the requirements of multirobot 

coordination in dynamic environments    
This dissertation reports the most comprehensive study, to date, of the 
requirements for successful multirobot coordination in dynamic environments.  
Chapter 1 of this dissertation examines several application domains that benefit 
from multirobot coordination, and identifies several characteristics required of a 
successful coordination approach. 

§ First extensive investigation of the application of market-based techniques 

to multirobot coordination    

This dissertation also accomplishes the first extensive investigation of applying 
market-based techniques to coordinate multiple robots engaged in cooperative 
tasks.  Results reported in this dissertation clearly show that market techniques, 
applied in the form of the TraderBots approach, can be highly successful in 
coordinating multirobot systems in dynamic environments. 

§ Most widely applicable coordination-approach for dynamic multirobot 

application domains that require efficient solutions 
The TraderBots approach detailed in this dissertation demonstrates the 
capability to satisfy all of the identified characteristics required for successful 
multirobot coordination in many application domains.  An examination of other 
multirobot coordination approaches shows that no other approach satisfies all 
the identified requirements.  Thus, the TraderBots approach is the most widely 
applicable multirobot coordination, currently available. 

§ First distributed multirobot coordination-approach that allows 

opportunistic optimization by “leaders” 

Opportunistic optimization using leaders, as described in Chapter 5 of this 
dissertation, is a highly promising strategy for encouraging efficiency that has 
not been explored in previous work.  This strategy will be further investigated in 
future implementations of the TraderBots approach. 

§ Most extensively implemented market-based multirobot coordination 

approach 

While other groups have implemented different variations of market-based 
techniques, this dissertation reports the most extensively implemented market-
based multirobot coordination approach, to date.  The numerous 
implementations of the TraderBots approach are detailed in Appendix 1, and the 
features of all these implementations are highlighted throughout the chapters of 
this dissertation. 
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8.3 Impact of Dissertation Work 

The methodology introduced by this dissertation has inspired research carried out 
by many other groups.  Highlights of the impact of this dissertation are summarized 
below. 

§ Task Abstraction in the TraderBots framework by Rob Zlot and Anthony 

Stentz 

Zlot and Stentz ([128], [129], [130]) investigate task abstraction using tree 
structures within the TraderBots framework.  The participants in the market are 
permitted to bid on nodes representing varying levels of task abstraction, 
thereby enabling distributed planning, task location, and optimization among 
the robot team members.  Results in simulation and on a robot team demonstrate 
that this approach can introduce a significant improvement on the total solution 
cost for the team. 

§ Tighlty Coordinated Tasks within the TraderBots framework by Nidhi 

Kalra and Anthony Stentz 

Klara and Stentz [67] investigate methods of applying market-based techniques 
to domains that require tightly coupled, distributed coordination of multiple 
robots.  The robots achieve tight coordination by repeatedly evaluating fine-
grained actions, reacting to their team members' actions in the process.  

§ Other research inspired by the TraderBots approach 

Several other groups are also engaged in research inspired by the TraderBots 
approach presented in this dissertation. Some examples are a comparison of 
market-based techniques and Markov Decision Process (MDP) techniques for 
multirobot cooperative repair by Bererton and group [11], the use of market-
based techniques in conjunction with Reib graphs to ensure coverage for de-
mining purposes by Ioannis Rekleitis and Ai Peng New in Howie Choset’s 
biorobotics lab at Carnegie Mellon University (http://voronoi.sbp.ri.cmu.edu/), 
and an examination of specialization in a multirobot team coordinated using a 
market approach carried out by Gabe Reinstein and Austin Wang at the 
Massachusetts Institute of Technolosgy (presentation: 
http://www.ai.mit.edu/courses/6.834J/lectures/advanced%20lecture_11.6.ppt, 
document:http://www.ai.mit.edu/courses/6.834J/final%20projects/Austin_Treas
ureHunt%20Paper.doc ).  

§ References  

Publications of the TraderBots approach serve as reference material for many 
academic courses, and are favorably referenced in numerous publications on the 
topic of multirobot coordination. 

8.4 Future work 

This dissertation describes in detail a successful implementation of market-based 
techniques, in the form of the TraderBots approach, to coordinating multiple robots 
engaged in cooperative tasks in dynamic environments.  The work presented in this 
dissertation can be extended in many ways.  The goal of the future work continues to be 
producing a fully functional market-based coordination approach capable of efficient and 



 
 

120

robust multirobot coordination in dynamic environments.  Important extensions to be 
considered in future extensions of this dissertation are: 

§ Reasoning more completely about resources 

§ Implementation of roles 

§ Investigation of more sophisticated techniques for optimizing with leaders 

§ Extension of the TraderBots approach to accommodate tasks with deadlines and 
domains that require non-linear cost functions 

§ Testing the TraderBots approach on tightly-coordinated tasks, more heterogeneous 
teams, and more complex tasks 

§ Testing the performance of the TraderBots approach over longer-duration, and more 
complex missions 
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A

APPENDIX 1  

Implementing TraderBots 

PPENDIX 1 details the different considerations that should be taken into 
account when implementing the TraderBots approach, and also reports 
details of the evolution to date of implementation of the TraderBots 
approach in simulation and on robots. 

Architectural Framework 

The architectural structure for the TraderBots approach can be viewed as shown 
below in Figure 38. The illustration is tailored to the distributed mapping application and 
shows the architectural form for each robot in the team.  It is organized in layers.  In the 
bottom layer are the resources under the robot’s control, such as sensors, computers, and 
communication devices.  These resources are available to the robot to perform its tasks—
some unused resources can be leased to other robots in the team if there is a demand for 
them (although this feature has not yet been implemented).  For example, if a robot is not 
using its entire computing capacity, it can do another robot’s data processing for a fee. 
The next layer consists of the agent’s roles for accomplishing tasks.  This layer has not 
been fully implemented to date.  Roles are application-specific software modules that 
implement particular robot capabilities or skills required for members in the team, such as 
acting as a communication router or generating optimal plans for the team as a leader.  
The roles utilize resources in the layer below to execute tasks that require a robot to adopt 
those roles.  Roles execute tasks that match their specific capabilities.  They receive 
assignments from the trader and can be monitored by an executive. As they execute their 
tasks they may generate other tasks or subtasks to be bid out to the other robots.  These 
new tasks are communicated to the trader.   
At the top layer in the architecture, the RoboTrader coordinates the activities of the agent 
and its interactions with other agents.  All of the planning is carried out at this top layer.  
The trader bids on tasks for the robot to perform and offers tasks for sale.  It passes on 
tasks it wins to an executive who matches tasks to roles, schedules the roles to run, and 
resolves any contention for resources.  The trader could be equipped with an on-line 
learning module (not implemented to date) that enables it to perform better over time by 
adapting to the specific application and environment.  But the architecture for a single 
robot does not complete the picture. 
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Figure 38: Architectural management of resources, tasks, and roles on a 

single robot 

Figure 39 below illustrates potential high-level interaction between a group of robots and 
two users: 

Figure 39: Interaction between robots and operator 

As shown above, the operators can communicate high-level tasks to the interface agents 
known as the “Operator Traders” (or the OpTraders).  The OpTraders then interpret the 
operator’s commands and translate them into tasks that the robots can recognize.  Next 
these tasks are bid out to the RoboTraders on the robots within communication range.  
The OpTraders could also negotiate amongst themselves. 
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Architectural Components 

The architectural components interact with each other as illustrated in Figure 38.  
A crucial component of implementing the approach will be investigating different 
designs for cost and revenue models that reflect the requirements of the chosen 
application domain. They could potentially be complex functions involving statistical 
distributions and vectors of different components (for example, the cost function could be 
a combination of time spent, fuel expended, and CPU cycles utilized).  These functions 
will need to reflect aspects such as priorities for task completion, hard deadlines for 
relevant tasks, and acceptable margins of error for different tasks.  Other factors to be 
considered here are rewards for partially completed tasks, compensation for imperfect or 
incomplete state information, and errors in task execution.  The negotiation protocol will 
require bids, calls for bids, and contracts to allow negotiation.  Also, bidding mechanisms 
are necessary to compute bids and determine when to place a bid, and when to wait.  
Finally, penalty mechanisms could become necessary to allow agents to break deals when 
profitable.   
The OpTrader will need to communicate with the operator(s), the robots, and any other 
OpTrader(s).  Through these communications, the OpTrader will receive assignments that 
will be decomposed into tasks that will be bid out to the robots via the negotiation 
protocol. An OpTrader may also subcontract assignments it receives to other OpTraders.  
Thus, each OpTrader will maintain a portfolio of tasks to be assigned to the robots and 
subcontracts.  An auction mechanism and perhaps some form of scheduler will be 
necessary to determine how best to match robots to assignments.  Finally, each OpTrader 
will keep track of its wealth by updating its personal account after each relevant 
transaction.  The core components of the trader are illustrated below in Figure 40: 

Figure 40: Core components of a trader 

The robot traders will need to communicate with the other robots and the OpTrader(s).  
Through these communications, the robots will receive assignments (that may be further 
decomposed into sub-tasks) that will either be subcontracted out to the other robots via 
the negotiation protocol, or executed.  Thus, each robot trader will maintain a portfolio of 
assignments, tasks sent to the executive to be executed, and subcontracts.  An auction 
mechanism and some form of scheduler will be necessary to determine which tasks to 
send to the executive and which tasks to re-assign to other robots.  Finally, each robot 
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trader will keep track of its wealth by updating its personal account after each relevant 
transaction.  Thus, the operator-traders and the robot-traders will be identical except for 
the operator-traders’ ability to translate commands from the operator into tasks that are 
recognized by the robots, and the robot-traders’ ability to schedule tasks for execution.  
Note that robots or operator-traders could then break down these tasks into sub-tasks.   

Implementation 1: Cognitive Colonies Simulation 

An initial version of the TraderBots approach was developed by the Cognitive 
Colonies group (http://www.frc.ri.cmu.edu/projects/colony/), including Tony Stentz, 
Scott Thayer, and Bruce Digney, and tested on a distributed sensing problem in several 
simulated interior environments built by Vanessa De Gennaro and Brian Fredrick. A 
group of robots, located at different starting positions in known simulated worlds, were 
assigned the task of visiting a set of pre-selected observation points as shown below in 
Figure 41. This problem is similar to a version of the distributed traveling salesman 
problem, where the observation points are the cities to visit. Each robot was equipped 
with a map of the world, which enabled it to calculate the cost associated with visiting 
each of these cities. The costs were the lengths of the shortest paths between cities in an 
eight-connected grid, interpreted as money. Thus, the robots bid for each city based on 
their estimated costs to visit that city. 

Figure 41: Screen shot from simulator used in Cognitive Colonies project 

The interface between the human operator and the team of robots was a software agent, 
the operator executive (exec). The exec conveyed the operator's commands to the 
members of the team, managed the team revenue, monitored the team cost, and carried 
out the initial city assignments. Being a self-interested agent, the exec aimed to assign 
cities quickly while minimizing revenue flow to the team. In our initial implementation, 
the exec adopted a greedy algorithm for assigning tasks.  

Once the exec had completed the initial city assignments, the robots negotiated amongst 
themselves to subcontract city assignments. Each of the robots, in turn (the initial 
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implementation was fully synchronous), offered all the cities on its tour (individually) to 
all the other robots for a maximum price equal to the auctioneer's cost reduction by 
removing that city from its tour. Each bidder then submitted a bid for that city greater 
than the cost for adding the city to its tour. In this initial implementation, only single-city 
deals were considered, and the robots continued to negotiate amongst themselves until no 
new, mutually profitable deals were possible. Thus, negotiations ceased once the system 
settled into a local minimum of the global cost.  

Figure 42: Sampling of simulated worlds used in Cognitive Colonies project 

The worlds shown above are a sample of the worlds we used to run test simulations. If 
you click on the floorplan of Worlds 1 through 4 on the project web page, 
http://www.frc.ri.cmu.edu/projects/colony/sim_gal.shtml, you can view a simulator 
movie run in that world and read a description explaining the movie. If you click on the 
Field Robotic Center (FRC) World floor plan, shown on the same web page, you will be 
taken to a listing of movies, each illustrating different scenarios. The FRC World 
simulations are important because they indicated the performance we could expect for 
our implementation on the robotic platform described next. 

Implementation 2.1: Cognitive Colonies Robots 

An initial version of the approach was next implemented on the Cognitive 
Colonies robotic system.  The aim of the Colonies project was to build a group of robotic 
aids for urban reconnaissance. Ten PioneerII-DX robots, built by Activmedia 
Incorporated, (shown in Figure 43) were used in the project.  

Figure 43: Robot team used in Cognitive Colonies project 

The robots were each equipped with onboard computing as well as 16 sonar sensors for 
obstacle detection and a forward pointing camera for map construction.  The distributed 
TSP scenario was initially tested using 4 of these robots in a cluttered environment.  The 
robots only negotiated with the OpTrader in this implementation.  Inter-robot negotiation 
was implemented later.  The operator was able to specify goals to be visited via a GUI.  
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Implementation 2.2: Cognitive Colonies Robots II 

This initial implementation of TraderBots on the Pioneer robots was further 
enhanced by Zlot et al. [131] and tested on a distributed exploration and mapping task.   

 

Figure 44: Team of Pioneer II-DX robots 

The experiments were run on the same team of ActivMedia PioneerII-DX robots. Each 
robot is equipped with a ring of 16 ultrasonic sensors, which are used to construct 
occupancy grids of the environment as the robot navigates. Each robot is also equipped 
with a KVH ECORE TM 1000 fiber optic gyroscope used to track heading information. 
Due to the high accuracy of the gyroscopes (2-4 degrees drift/hr), we use the gyro-
corrected odometry at all times rather than employing a localization scheme. Using 
purely encoder-based dead reckoning the positional error can be as high as 10% to 25% 
of the distance traveled for path lengths on the order of 50 – 100m, while using gyro-
corrected odometry reduces the error to the order of 1% of the distance traveled.  

Implementation 3: FIRE simulation 

A third implementation focuses on the space application domain, and more 
specifically, presents simulation results for market-based coordination of a group of 
heterogeneous robots engaged in information gathering on a Martian outpost.   
In this implementation the market-based, multi-robot planning capability, is designed as 
part of a distributed, layered architecture for multi-robot control and coordination6. More 
specifically, this architecture is an extension to the traditional three-layered robot 
architecture (illustrated in Figure 45) that enables robots to interact directly at each layer 
– at the behavioral level, the robots create distributed control loops; at the executive level, 
they synchronize task execution; at the planning level, they use the TraderBots approach 
to assign tasks, form teams, and allocate resources.   

                                                 
6 See Goldberg et al.[55] and Simmons et al. [106] for more details about this layered architecture. 
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Figure 45: Extended three-layer architecture 

This implementation is tested using a 3D graphical simulator developed for the project 
(see Figure 46). 

Figure 46: Screen shot from 3D graphical simulator 

The market-based planning layer of each robot has two main components: a "trader" that 
participates in the market, auctioning and bidding on tasks, and a “scheduler” that 
determines task feasibility and cost for the trader, and interacts with the executive layer 
for task execution.  The focus of the development and testing of the current system has 
been on a characterize task that will fit within the broader scenario of the Martian 
outpost.  In this task, a user/scientist specifies a region on the Mars surface, indicating 
that rocks within that region are to be characterized with an appropriate sensing 
instrument.  The scientist may also specify the locations of rocks, if known.   
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Implementation 4: CTA Robots 

An implementation of the TraderBots approach on a team of Pioneer robots 
enables the reported results.  The details of the robotic system used in this 
implementation are presented next.   

Robotic Platform 

The robot team (shown in Figure 1) consists of a homogenous set of off-the-shelf 
mobile robot platforms outfitted with additional sensing and computing.  Serving 
as the mobility platform is an ActivMedia Pioneer II DX indoor robot.  A Mobile 
Pentium 266 with MMX is the main processor.  Attached is a 1-gigabyte hard 
drive for program and data storage and 802.11b wireless card for ad-hoc 
communication between robots. Encoder data from the drive wheels is collected 
onboard from which dead reckoning position (x, y, θ) is calculated. Encoders 
provide a relatively accurate measure of linear travel, but relatively inaccurate 
angle measurement, such that small errors in angle compound over time resulting 
in large displacement errors.  A solution to these pose errors is the addition of 
alternate angle measurements using a fiber optic rate gyroscope (KVH E-Core 
1000). The gyroscope provides highly stable and accurate angle measurement 
(four degrees drift per hour).  Robots sense their environment using an 180
 
scanning laser range finder (SICK LMS 200). Horizontal scan-range-data is 
incorporated with position data to create a 2D map. In addition to providing 
information to the operator, the map is used for local navigation and cost 
estimation during trading.  

Figure 47: Robot Team  

Architecture 

Design and implementation of the system supporting the TraderBots architecture 
was focused on extensibility and scalability.  The system can be conceptualized as 
a 4-tier structure (as illustrated in Figure 2): hardware, hardware abstraction, 
autonomous navigation, and multi-robot (inter-robot) communication. The 
hardware layer consists of the motors, encoders, laser sensor and gyroscope.  A 
process called RobotCntl, which serves as a hardware abstraction to higher-level 
processes, controls all components of the hardware layer.  RobotCntl manages the 
state of the hardware, collects, timestamps, and provides access to data, and 
interprets and executes hardware control commands from higher-level processes.  
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Two separate processes, TaskExec and DataServer, in conjunction with the 
hardware abstraction layer accomplish autonomous navigation. TaskExec 
executes local navigation with a map provided from DataServer.  DataServer 
aggregates position and laser range data from the hardware abstraction level and 
provides maps to other processes that require map information.  In addition to 
receiving map data from DataServer, TaskExec broadcasts its position to other 
robots and receives the position of other robots through the CommRelay.  These 
positions are placed in TaskExec’s navigation map as obstacles to implement a 
collision avoidance mechanism between robots. At the highest level of control is 
the Trader process.  The Trader is responsible for coordinating with other robots 
through CommRelay and determining task allocations.  Once tasks are allocated, 
the Trader maintains a schedule for its commitments and periodically sends tasks 
to be executed to the TaskExec.  The Trader also keeps a local map for cost 
estimation during trading. Note that different versions of D* ([108], [109], [110]) 
maps are used for cost estimation during trading and for navigation during task 
execution. 

 

Figure 48: Architectural Layout  

Communication 

Communication between modules occurs in two ways: intra-robot (between 
modules on a single robot) and inter-robot (between modules on different robots).  
These two instances use different techniques reflecting their unique situations. 
Intra- robot communication happens between processes on one robot such as 
TaskExec and RobotCntl or Trader and DataServer.  These links are assumed to 
be high-speed and reliable since the processes run on the same robot.  The basic 
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assumption is that this channel is high bandwidth, low latency and reliable.  In 
this implementation we use a communication package called RTC (Real Time 
Communication) [86], which provides inter-process-communication between 
processes on the same machine or machines with reliable links.  Inter-robot 
communication differs from intra-robot communication with respect to bandwidth 
and reliability.  Inter-robot communications use wireless Ethernet that is orders of 
magnitude less capable in terms of bandwidth in comparison to intra-robot 
communication, and suffers from reliability problems due to radio interference. In 
order to avoid re-transmission problems in an unreliable wireless environment, we 
use UDP (User Datagram Protocol), a connectionless datagram protocol built on 
IP (Internet Protocol), for transmitting data between robots. All RTC messages 
destined for another robot are sent to the CommRelay and packaged as UDP 
messages.  The UDP messages are then sent via UDP to the destination robot and 
received by that robot’s CommRelay.  They are then converted back into RTC 
messages and sent to the appropriate modules using the intra-robot 
communication protocol. 

Figure 49: Inter-robot and Intra-robot Communication 

As described above, communication between processes on different robots is 
realized through a point-to-point UDP-based message-passing scheme.  Thus, 
each RoboTrader is not instantly able to determine which other RoboTraders it is 
connected to at any given time.  In order to keep track of which other traders are 
reachable, each RoboTrader sends out a periodic hunt signal to all existing robots 
whether they are known to be alive or not.  All traders that receive the hunt signal 
record the sender as connected, and send an acknowledgement (ACK).  The 
original sender waits a predetermined amount of time (10 seconds) for ACKs.  
The senders of any ACKs that arrive within the time interval are recorded as 
being connected, and at the end of the time interval all other traders are marked as 
disconnected.  Additionally, the senders of any other signals (e.g. auction calls, 
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bids) can opportunistically be marked as connected by the recipients of these 
messages. 

It is possible for a connected RoboTrader F to become perceived as disconnected 
at a later time if a trader T who had detected that robot previously ceases to 
communicate with it.  This can happen both in the case of a communication 
problem (out of range or a malfunction) or a robot death.  When the disconnection 
occurs, T waits for a specified interval (1 minute) to attempt to reconnect to F 
either through the hunt-acknowledge protocol, or by receiving any other message 
from F.  If no such message arrives, then T assumes that there is a problem with 
F.  To handle the possible fault, T first asks the other connected traders if they can 
connect to F.  This may be possible if F is out of communications range of T, but 
is within range of some other robot R that is also reachable by T.  If any other 
traders are connected to F, then T reverts to believing that F is alive and begins 
the 1-minute disconnection timer once again (in case F suffers a fault before 
reconnecting to T).  Otherwise, T assumes F has suffered a robot death and thus is 
out of commission until it receives a message from F again. The handling of robot 
death and other robustness issues in the TraderBots approach is reported in detail 
in a recent publication submission to the International Conference on Robotics 
and Automation [42]. 

Execution 

The TaskExec module performs the execution level of the architecture. This 
module is in charge of monitoring and arbitration of tasks, allowing for sequential 
and/or parallel execution. The TaskExec module combines the virtues of 
SAUSAGES [58] and DAMN [87] to create a task network in which simultaneous 
tasks can have their outputs combined through an arbiter. The basic building 
blocks for the task network are tasks. Tasks share a common structure that allows 
them to be transparently called by the TaskExec independent of the specific 
function that the task performs.  Thanks to this common structure, tasks can be 
dynamically added and removed from the task network.  

The most important member functions of a task are: 

§ startTask(): this function is called once by the TaskExec before the task is 
executed for the first time.  

§ runOnce(): this function is called once each execution cycle, for as long as the 
task is active 

§ endTask(): this function should be called by the task itself, when its 
termination criterion has been met. The TaskExec will also call it if the task 
executes beyond its assigned termination time. 

The TaskExec is the executor of the task network. It starts, executes, monitors and 
terminates tasks as required. It also allows for dynamic changes in the task network 
and operates as follows: 

§ Process inputs from sensors, and put them in maps and data structures that are 
accessible to all tasks 

§ Check start-conditions of all tasks. If the start conditions of one or more tasks 
are satisfied, start the tasks by calling the startTask() member of the tasks. Tasks 
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will be considered active from this moment until their termination. There are 
two kinds of start conditions for a task: (1) at a specified time, and (2) after 
completion of its predecessor: It is also possible to condition the start on the 
successful termination of the task, and specify a different task to be executed if 
the predecessor fails. 

§ Call runOnce() for all the tasks that are active. Each task processes the changes 
in the world and generates an output, or a vote. If a task has complete control of 
a resource, the output can be a direct command to the resource. If the task has 
shared control of a resource, the output of the task will be a vote on the desired 
behavior of the controlled resource. If a task has finished, it calls endTask(), to 
indicate its termination. 

§ Check termination conditions for all active tasks. If a task remains active 
beyond its scheduled execution time, the TaskExec will terminate the task.  

Tasks can have control of two types of resources: exclusive and shared. Exclusive 
resources (for example science instruments on a space exploration robot) are unique 
to a task, and can be controlled directly from the task. Shared resources (for 
example motors and multi-purpose sensors) are common to several tasks, and need 
to be arbitrated to perform an action. The most common kind of arbitrated resources 
are steering angle and speed. In the current implementation, all the tasks that 
participate in the selection of a steering angle and speed share a set of arcs with a 
different curvature and speed associated to each one of them. When the runOnce() 
function is called, the tasks issue votes on each one of the arcs. After all the tasks 
have been called for the current execution cycle, the TaskExec combines the votes 
from all the active tasks and executes the arc corresponding to the winning vote. 
The RoboTrader sends sequences of tasks to the TaskExec to be executed. In the 
current implementation the TaskExec maintains a single execution queue, and new 
tasks are added to the end to the current execution queue. If the queue was empty 
before the arrival of new tasks, the new tasks are executed immediately. The 
TaskExec reports success or failure of an executed task to the RoboTrader when a 
task terminates. 

Trading 

Trading is a key component of the TraderBots approach.  A RoboTrader assigned 
to each robot is responsible for opportunistically optimizing the tasks the robot 
commits to executing.  An OpTrader serves as an interface agent between the 
operator and the robot team. Each trader maintains a portfolio in which it keeps 
track of its commitments, schedule, currently executing tasks, and tasks it trades to 
others.  Two forms of contract types are allowed during trading: subcontracts and 
transfers. If the contract type is a subcontract, it implies the auctioneer is interested 
in monitoring the progress of the task and will hence expect a report when the task 
is completed; payment is made only after the subcontracted task is completed.  Note 
that a subcontracted task can be traded in turn to another robot, but only as another 
subcontract.  Each robot only needs to keep track of the robot it won the subcontract 
from and the robot it subcontracted the task to.  Once the task is executed, the 
completion of the task is reported along the chain of robots linked by the 
subcontracts until the initial auctioneer is notified.  If on the other hand, the contract 
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type is a transfer, payment is made as soon as the task is traded, and no further 
communication concerning that task is necessary between the auctioneer and 
bidder. Each trader has an internal alarm that prompts it to auction all tasks in its 
schedule periodically.  Note that tasks being executed are removed from the 
schedule and hence cannot be traded.  This implementation decision was based on 
the assumption that a task cannot be transferred once it is started.  For application 
domains where this assumption is not true, this restriction can be removed.  In 
contrast, in application domains where idle time for robots is highly costly, 
introducing a larger execution window by sending a higher number of tasks to the 
TaskExec and removing them from future auctions will be more suitable.  A trader 
initiates an auction by sending out a call for bids.  Traders within communication 
range compute and submit bids to this auction.  Once the specified deadline expires, 
the auctioneer resolves the call by making a profit-maximizing allocation based on 
the bids it received.  If a trader receives an award for a bid it submitted, it accepts or 
rejects that award based on its current state.  Note that an award is binding after it 
has been accepted.  Two methods of call resolution are used in the current 
implementation of TraderBots.  The RoboTraders assign at most the single most 
profitable bid submitted to the auction.  The OpTrader, and RoboTraders who 
discover they are in a fault state due to a malfunction, use a greedy algorithm for 
resolving calls so that tasks are allocated more rapidly; this greedy allocation is 
done because they cannot execute the tasks themselves and in the case of a 
malfunction, because the robot can expect a robot death with higher probability and 
hence aims to reassign tasks quickly.  The greedy algorithm assigns the most 
profitable bid submitted by each trader that participates in the auction while 
assuring that no task gets assigned more than once and no bidder gets assigned 
more than one task during each auction.  All bids are limited to single-task bids in 
this implementation.  Dias and Stentz explore the comparative advantages of 
different negotiation strategies in a previous publication [37]. 

In order to participate in an auction, robots need to calculate the costs of tasks.  A 
robot announcing an auction must determine its reservation price, i.e. the highest 
price it is willing to pay to subcontract or purchase a task.  A robot bidding in an 
auction must calculate the expected cost of the tasks being offered.  These 
valuations are based on marginal costs – the difference in between the cost of the 
current schedule with those tasks and the cost of the schedule without those tasks.  
For a single task, an auctioneer’s valuation is the savings resulting from removing 
that task from its schedule and reordering the remaining tasks in the schedule in an 
efficient manner.  A bidder’s marginal cost for a single task is the estimated cost of 
efficiently inserting the task into its schedule. When a trader initiates an auction, the 
call is sent to all robots marked as connected by that trader.  This allows the trader 
to clear the auction as soon as it receives bids from all connected robots, rather than 
waiting for the auction deadline.  
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