
SIAM J. OPTIM. c© 2010 Society for Industrial and Applied Mathematics
Vol. 20, No. 6, pp. 2807–2832

TRADING ACCURACY FOR SPARSITY IN OPTIMIZATION
PROBLEMS WITH SPARSITY CONSTRAINTS∗

SHAI SHALEV-SHWARTZ† , NATHAN SREBRO‡ , AND TONG ZHANG§

Abstract. We study the problem of minimizing the expected loss of a linear predictor while
constraining its sparsity, i.e., bounding the number of features used by the predictor. While the re-
sulting optimization problem is generally NP-hard, several approximation algorithms are considered.
We analyze the performance of these algorithms, focusing on the characterization of the trade-off
between accuracy and sparsity of the learned predictor in different scenarios.

Key words. sparsity, linear prediction

AMS subject classifications. 68T99, 68W40

DOI. 10.1137/090759574

1. Introduction. In statistical and machine learning applications, although
many features might be available for use in a prediction task, it is often beneficial
to use only a small subset of the available features. Predictors that use only a small
subset of features require a smaller memory footprint and can be applied faster. Fur-
thermore, in applications such as medical diagnostics, obtaining each possible “fea-
ture” (e.g., test result) can be costly, and so a predictor that uses only a small number
of features is desirable, even at the cost of a small degradation in performance relative
to a predictor that uses more features.

These applications lead to optimization problems with sparsity constraints. Fo-
cusing on linear prediction, it is generally NP-hard to find the best predictor subject
to a sparsity constraint, i.e., a bound on the number of features used [7, 19]. In this
paper we show that by compromising on prediction accuracy, one can compute sparse
predictors efficiently. Our main goal is to understand the precise trade-off between
accuracy and sparsity and how this trade-off depends on properties of the underlying
optimization problem.

We now formally define our problem setting. A linear predictor is a mapping x �→
φ(〈w,x〉), where x ∈ X def

= [−1,+1]d is a d-dimensional vector of features, w ∈ R
d is

the linear predictor, 〈w,x〉 is the inner-product operation, and φ : R → Y is a scalar
function that maps the scalar 〈w,x〉 to the desired output space Y. For example, in
binary classification problems we have Y = {−1,+1}, and a linear classification rule
is x �→ sgn(〈w,x〉). In regression problems, Y = R, φ is the identity function, and
the linear regression rule is x �→ 〈w,x〉.

The loss of a linear predictor w on an example (x, y) is assessed by a loss function
L(〈w,x〉, y). Note that φ does not appear in the above expression. This is convenient
since in some situations the loss also depends on the preimage of φ. For example, the
hinge-loss that is used in support vector machines [29] is defined as L(〈w,x〉, y) =

∗Received by the editors May 20, 2009; accepted for publication (in revised form) June 21, 2010;
published electronically August 19, 2010.

http://www.siam.org/journals/siopt/20-6/75957.html
†School of Computer Science and Engineering, The Hebrew University, Admond Safra Campus,

Jerusalem, Israel (shais@cs.huji.ac.il).
‡Toyota Technological Institute, Chicago, IL 60637 (nati@tti-c.org).
§Statistics Department, Rutgers University, New Brunswick, NJ 08901 (tzhang@stat.rutgers.edu).

This author was partially supported by the following grants: NSF DMS-1007527, NSA-081024, and
AFOSR-10097389.

2807

2808 SHAI SHALEV-SHWARTZ, NATHAN SREBRO, AND TONG ZHANG

max{0, 1 − y〈w,x〉}. Other notable examples of loss functions are the squared loss,
L(〈w,x〉, y) = (〈w,x〉 − y)2, the absolute loss, L(〈w,x〉, y) = |〈w,x〉 − y)|, and the
logistic loss, L(〈w,x〉, y) = log(1+exp(−y〈w,x〉)). Throughout this paper, we always
assume the following.

Assumption 1.1. L : R× Y → R is convex with respect to its first argument.
Given a joint distribution over X × Y, the risk of a linear predictor w is its

expected loss:

(1.1) R(w) = E(x,y)[L(〈w,x〉, y)].
Often, we do not know the distribution over examples, but instead approximate it
using the uniform probability over a finite training set. In that case, the empirical
risk is 1

m

∑m
i=1 L(〈w,xi〉, yi). Since this expression is a special case of the objective

given in (1.1), we stick to the more general definition given in (1.1). In some situations,
one can add regularization to the empirical risk. We discuss regularized risk in later
sections.

The sparsity of a linear predictor w is defined to be the number of nonzero
elements of w and denoted using the �0 notation:

(1.2) ‖w‖0 = |{i : wi �= 0}|.
In this paper, we study the problem of computing sparse predictors. That is,

we are interested in linear predictors that on one hand achieve low risk while on the
other hand have low �0 norm. Sometimes these two goals are contradictory. Thus, we
would like to understand the trade-off betweenR(w) and ‖w‖0. Ultimately, to balance
the trade-off, one aims at (approximately) solving the following sparsity constrained
optimization problem:

(1.3) min
w:‖w‖0≤B0

R(w).

That is, find the predictor with minimal risk among all predictors with �0 norm
bounded by some sparsity parameter B0. Regrettably, the constraint ‖w‖0 ≤ B0 is
nonconvex, and solving the optimization problem in (1.3) is NP-hard [7, 19].

To overcome the hardness result, two main approaches have been proposed in
the literature. In the first approach, we replace the nonconvex constraint ‖w‖0 ≤
B0 with the convex constraint ‖w‖1 ≤ B1. The problem now becomes a convex
optimization problem that can be solved efficiently. It was observed that the �1 norm
sometimes encourages sparse solutions. But, it can be shown that the solution of an
�1 constrained risk minimization is not always sparse. Moreover, it is important to
quantify the sparsity one can obtain using the �1 relaxation.

The second approach for overcoming the hardness of solving (1.3) is called forward
greedy selection (also known as boosting). In this approach, we start with the all-
zeros predictor, and at each step we change a single element of the predictor in a
greedy manner so as to maximize the decrease in risk due to this change. Here, early
stopping guarantees a bound on the sparsity level of the output predictor. But, the
price of early stopping is a suboptimal accuracy of the resulting predictor (i.e., the
risk, R(w), can be high).

In this paper we study trade-offs between accuracy and sparsity for �0 or �1
bounded predictors. We provide results to answer the following questions: Given an
excess risk parameter ε, for what sparsity level B can we efficiently find a predictor
with sparsity level ‖w‖0 ≤ B and risk bounded by R(w̄) + ε, where w̄ is an unknown

SPARSITY IN OPTIMIZATION PROBLEMS WITH CONSTRAINTS 2809

reference predictor? Moreover, how does B depend on ε and on properties of the loss
function L, the distribution over examples, and the reference vector w̄?

1.1. Additional notation and definitions. The set of integers {1, . . . , d} is
denoted by [d]. For a vector w, the support of w is defined to be supp(w) = {i ∈ [d] :
wi �= 0}. For i ∈ [d], the vector ei is the all-zeros vector except 1 in the ith element.

The following definitions characterize two types of loss functions.
Definition 1.1 (Lipschitz loss). A loss function L : R × Y → R is ρ-Lipschitz

continuous if

∀y ∈ Y, ∀a, b |L(a, y)− L(b, y)| ≤ ρ|a− b|.

Examples of 1-Lipschitz loss functions are the hinge loss, L(a, y) = max{0, 1−ya},
and the absolute loss, L(a, y) = |a− y|. See section 3 for details.

Definition 1.2 (smooth loss). A loss function L : R× Y → R is β-smooth if

∀y, ∀a, b L(a, y)− L(b, y) ≤ L′(b, y) (a− b) +
β (a− b)2

2
,

where L′(b, y) is the derivative of L with respect to its first argument at (b, y).
In Lemma B.1 we also show how this translates into a smoothness property of the

risk function R(w). Examples of smooth losses are the logistic loss and the quadratic
loss. See section 3 for details.

Finally, the following definition characterizes properties of the risk function.
Definition 1.3 (strong convexity). R(w) is said to be λ-strongly convex if

∀w,u, R(w)−R(u)− 〈∇R(u),w − u〉 ≥ λ

2
‖w− u‖22.

Similarly, R(w) is λ-strongly convex on a set F ⊂ [d] if the above inequality holds for
all w,u such that supp(w) ⊆ F and supp(u) ⊆ F . Finally, R(w) is (k, λ)-sparsely-
strongly convex if for any F ⊂ [d] such that |F | ≤ k, R(w) is λ-strongly convex
on F .

1.2. Outline. The paper is organized as follows. In section 2 we describe our
main results, showing the trade-off between sparsity and accuracy in different sce-
narios. Several examples are mentioned in section 3. Next, in section 4 we formally
show that some of the relation between accuracy and sparsity outlined in section 2
are tight. In section 5 we put our work in context and review related work. In partic-
ular, we show that the algorithms we present in section 2 for studying the trade-off
between sparsity and accuracy are variants of previously proposed algorithms. Our
main contribution is the systematic analysis of the trade-off between sparsity and ac-
curacy. Despite the fact that some of our results can be derived from previous work,
for the sake of completeness and clarity, we provide complete proofs of all our results
in Appendix A.

2. Main results. We now state our main findings. We present four methods for
computing sparse predictors. In the first method, we first solve the �1 relaxed problem
and then use randomization for sparsifying the resulting predictor. In the second
method, we take a more direct approach and describe a forward greedy selection
algorithm for incrementally solving the �1 relaxed problem. For this approach, we
show how early stopping provides a trade-off between sparsity and accuracy. Finally,
in the last two methods we do not use the �1 constraint at all, but only rely on early

2810 SHAI SHALEV-SHWARTZ, NATHAN SREBRO, AND TONG ZHANG

Algorithm 1 Randomized Sparsification.

Input: vector w� ∈ R
d

let w(0) = 0
for k = 1, 2, . . .
sample rk ∈ [d] according to
the distribution Pr[rk = j] = |w�

j |/‖w�‖1
let w(k) = w(k−1) + sign(w�

rk) e
rk

end

Output: ‖w�‖1

k w(k)

stopping of another greedy method. We show that these methods are guaranteed to
be comparable to the other methods and sometimes they significantly outperform the
other methods. They also have the advantage of not relying on any parameters.

2.1. Randomized sparsification of low �1 predictors. In the �1 relaxation
approach, we first solve the problem

(2.1) min
w:‖w‖1≤B1

R(w).

Letw� be an optimal solution of (2.1). Althoughw� may be sparse in some situations,
in general we have no guarantees on ‖w�‖0. Our goal is to find a sparse approximation
of w�, while not paying too much in the risk value. A simple way to do this is to use
the randomized sparsification procedure given in Algorithm 1, which was originally
proposed by Maurey in [22]. See also section 5 for additional references.

Intuitively, we view the prediction 〈w,x〉 as the expected value of the elements
in x according to the distribution vector w/‖w‖1. The randomized sparsification
procedure approximates this expected value by randomly selecting elements from [d]
according to the probability measure w/‖w‖1.

Clearly, if we run the sparsification procedure for k iterations, we have ‖w(k)‖0 ≤
k. The following theorem shows how the excess risk of w(k) depends on k and on
‖w�‖1. The bounds are not new and special cases of this theorem have been derived
before in [2, 6, 14, 16, 24, 27].

Theorem 2.1. Let L : R×Y → R be a loss function, and let R(w) be as defined
in (1.1), where the expectation is w.r.t. an arbitrary distribution over X ×Y. Let w�

be the input of the randomized sparsification procedure (Algorithm 1), and let w be its
output after performing k iterations. Then, for any ε > 0, with probability of at least
1/2 over the choice of r1, . . . , rk we have R(w)−R(w�) ≤ ε, provided that

k ≥
⎧⎨
⎩
2

ρ2 ‖w�‖2
1

ε2 if L is ρ Lipschitz,

β ‖w�‖2
1

ε if L is β smooth.

The above theorem implies that on average, if we repeat the randomized procedure
twice and choose the w with minimal risk, then we obtain R(w) − R(w�) ≤ ε. Fur-
thermore, for any δ ∈ (0, 1), if we repeat the randomized procedure �log(1/δ)� times
and choose the w with minimal risk, then the probability that R(w)− R(w�) > ε is
at most δ.

Let w̄ ∈ R
d be an arbitrary (unknown) predictor. The guarantees given in Theo-

rem 2.1 tell us that if ‖w̄‖1 = B1, then we can find a predictor with R(w)−R(w̄) ≤ ε,
provided that k is sufficiently large and the lower bound on k depends on the �1 norm

SPARSITY IN OPTIMIZATION PROBLEMS WITH CONSTRAINTS 2811

of w̄. We next show that by assuming more about the risk function, we can have a
result that involves the �0 norm of the reference vector. In particular, we will assume
that the risk is strongly convex on the support of w̄. The importance of strongly
convex risk in this context stems from the following lemma in which we show that if
the risk is strongly convex, then ‖w̄‖21 can be bounded using the �0 norm of w̄ and
the strong convexity parameter.

Lemma 2.2. Let F ⊂ [d] and assume that R(w) is λ-strongly convex on F . Let

w̄ = argmin
w:supp(w)=F

R(w).

Then

‖w̄‖1 ≤
√

2 ‖w̄‖0 (R(0)−R(w̄))

λ
.

Combining the above lemma with Theorem 2.1 we immediately get the following
corollary.

Corollary 2.3. Let F ⊂ [d] and assume that R(w) is λ-strongly convex on F .
Let

w̄ = argmin
w:supp(w)=F

R(w),

let w� be a minimizer of (2.1) with B1 =
√

2 ‖w̄‖0 (R(0)−R(w̄))
λ , and let w be the output

of the randomized sparsification procedure (Algorithm 1). Then, for any ε > 0, with
probability of at least 0.5 over the choice of r1, . . . , rk we have R(w) − R(w̄) ≤ ε,
provided that the following holds:

k ≥
⎧⎨
⎩
‖w̄‖0 4 ρ2 (R(0)−R(w̄))

λ ε2 if L is ρ Lipschitz,

‖w̄‖0 2 β (R(0)−R(w̄))
λ ε if L is β smooth.

In section 3 we demonstrate cases in which the conditions of Corollary 2.3 hold.
Note that we have two means to control the trade-off between sparsity and accuracy.
The first way to control the trade-off is by using the parameter ε. The second way
is by using the reference vector w̄, since by choosing w̄ for which the risk is strongly
convex on supp(w̄) we obtain better sparsity guarantee, but the price we pay is that
this restriction might increase the risk of w̄. For more details see section 3.

2.2. Forward greedy selection. The approach described in the previous sub-
section involves two steps. First, we solve the �1 relaxed problem given in (2.1) and
only then we apply the randomized sparsification procedure. In this section we de-
scribe a more direct approach in which we solve (2.1) using an iterative algorithm that
alters a single element of w at each iteration. We derive upper bounds on the number
of iterations required to achieve an ε accurate solution, which immediately translates
to bounds on the sparsity of the approximated solution. Variants of Algorithm 2 and
its analysis were proposed before by several authors [6, 10, 32]. The version we have
here includes a closed form definition of the step size and a stopping criterion that
depends on the desired accuracy ε.

The algorithm initializes the predictor vector to be the zero vector w(1) = 0. On
iteration k, we first choose a feature by calculating the gradient of R at w(k) (denoted

θ(k)) and finding its largest element in absolute value. Then we calculate a step size

2812 SHAI SHALEV-SHWARTZ, NATHAN SREBRO, AND TONG ZHANG

Algorithm 2 Forward Greedy Selection.

Parameters: positive scalars B1, ε
let w(0) = 0
for k = 0, 1, 2, . . .

let θ(k) = ∇R(w(k))

let rk = argmaxj |θ(k)j |
let ηk = min

{
1, (〈θ

(k),w(k)〉+B1 ‖θ(k)‖∞)
4B2

1 β

}
let w(k+1) = (1− ηk)w

(k) + ηk sgn(−θ
(k)
rk)B1 e

rk

Stopping condition: 〈θ(k),w(k)〉+B1 ‖θ(k)‖∞ ≤ ε

ηk and update the predictor to be a convex combination of the previous predictor
and the singleton B1 e

rk (with appropriate sign). The step size and the stopping
criterion are based on our analysis. Note that the update form ensures us that for all
k, ‖w(k)‖1 ≤ B1 and ‖w(k)‖0 ≤ k.

The following theorem upper bounds the number of iterations required by the
forward greedy selection algorithm. The theorem holds for the case of smooth loss
functions. As mentioned previously, variants of this theorem have been given in
[6, 10, 32].

Theorem 2.4. Let L : R × Y → R be a convex β-smooth loss function, and let
R(w) be as defined in (1.1), where the expectation is w.r.t. an arbitrary distribution
over X × Y. Suppose that the forward greedy selection procedure (Algorithm 2) is
run with parameters B1, ε, and let w� be a minimizer of (2.1). Then the algorithm
terminates after at most

k ≤
⌈
8 β B2

1

ε

⌉

iterations, and at termination, R(w(k))−R(w�) ≤ ε.
Since a bound on the number of iterations of the forward greedy selection algo-

rithm translates into a bound on the sparsity of the solution, we see that the guarantee
we obtain from Theorem 2.4 is similar to the guarantee we obtain from Theorem 2.1
for the randomized sparsification. The advantages of the direct approach we take here
is its simplicity—we do not need to solve (2.1) in advance, and we do not need to rely
on randomization.

Next, we turn to derivation of the sparsification result for the case where L is ρ-
Lipschitz but is not β-smooth. To do so, we approximate L by a β-smooth function.
This can always be done, as the following lemma indicates.

Lemma 2.5. Let L be a proper, convex, ρ-Lipschitz loss function, and let L̃ be
defined as follows:

(2.2) ∀y ∈ Y, L̃(a, y) = inf
v

[
β

2
v2 + L(a− v, y)

]
.

Then L̃ is β-smooth, and

∀y ∈ Y, a ∈ R, 0 ≤ L(a, y)− L̃(a, y) ≤ ρ2

2 β
.

Let R̃(w) = E[L̃(〈w,x〉, y)]. Clearly, for all w we have 0 ≤ R(w) − R̃(w) ≤ ρ2

2β .
As a direct corollary we obtain what follows.

SPARSITY IN OPTIMIZATION PROBLEMS WITH CONSTRAINTS 2813

Corollary 2.6. Let L : R×Y → R be a ρ-Lipschitz convex loss function, and let
R(w) be as defined in (1.1), where the expectation is w.r.t. an arbitrary distribution
over X ×Y. Suppose that the forward greedy selection procedure (Algorithm 2) is run
with parameters B1, ε on the function R̃(w) = E[L̃(〈w,x〉, y)], where L̃ is as defined

in (2.2) and β = ρ2

ε . Then the algorithm stops after at most

k ≤
⌈
8 ρ2B2

1

ε2

⌉

iterations, and when it stops we have R(w(k))−R(w�) ≤ ε, where w� is a minimizer
of (2.1).

The above corollary gives a similar guarantee to the one given in Theorem 2.1 for
the case of Lipschitz loss functions.

Finally, if the risk function is strongly convex on the support of a vector w̄, we
can obtain the same guarantee as in Corollary 2.3 for the forward greedy selection
algorithm by combining Theorem 2.4 and Corollary 2.6 with the bound on the �1
norm of w̄ given in Lemma 2.2.

To summarize this subsection, we have shown that the forward greedy selection
procedure provides the same guarantees as the method which first solves the �1 re-
laxed problem and then uses randomized sparsification. The forward greedy selection
procedure is a deterministic, more direct, simple, and efficient approach. In the next
subsection we provide an even better method.

2.3. Fully corrective greedy selection. The forward greedy selection method
described in the previous subsection is a nice and simple approach. However, intu-
itively, this method is wasteful since at each iteration, we may increase the support of
the solution, although it is possible that we can reduce the risk by modifying only the
weights of the current support. It makes sense to first fully adjust the weights of the
current features so as to minimize the risk and only then add a fresh feature to the
support of the solution. In this subsection we present our last method, which exactly
does this. In addition, the new method does not enforce the constraint ‖w‖1 ≤ B1

at all. This stands in contrast to the two methods described previously in which we
are required to tune the parameter B1 in advance. Nevertheless, as we will show
below, the new method achieves the same guarantees as the previous methods, and
sometimes it even achieves improved guarantees. At the end of the subsection, we
present an additional postprocessing procedure which does not modify the sparsity of
the solution but may improve its accuracy.

The fully corrective algorithm is similar to the noncorrective algorithm described
in the previous subsection with two main differences. First, in Algorithm 3 we adjust
the weights so as to minimize the risk over the features aggregated so far. This is what
we mean by fully corrective. Second, we now do not enforce the constraint ‖w‖1 ≤ B1.

Algorithm 3 Fully Corrective Forward Greedy Selection.

let w(0) = 0
let F (0) = ∅
for k = 1, 2, . . .

let rk = argminj minα R(w(k−1) + αej)

let F (k) = F (k−1) ∪ {rk}
let w(k) = argminw R(w) such that (s.t.) supp(w) ⊆ F (k)

end

2814 SHAI SHALEV-SHWARTZ, NATHAN SREBRO, AND TONG ZHANG

Although in Algorithm 3 we choose rk to be the feature which leads to the largest
decrease of the risk, from the proof, we can see that identical results hold by choosing

rk = argmax
j

|∇R(w(k))j |

as in Algorithm 2. Moreover, if R(w) can be represented as R(w) = Q(Xw), where
each row of the matrix X is one example, and let Xj be the jth column of X , with
normalization 〈Xj , Xj〉 = 1, then we may also choose rk to optimize the quadratic
approximation function

rk = argmin
j

min
α

∥∥∥αXj −∇Q(Xw(k−1))
∥∥∥2
2
,

and again identical results hold. For prediction problems, this formulation leads to
the fully corrective version of the functional gradient boosting method [12], where this
quadratic approximation is equivalent to a regression problem.

We now turn to the analysis of the fully corrective algorithm. Our first theorem
provides a similar guarantee to the one given in Theorem 2.4. However, as mentioned
before, the fully corrective algorithm is parameter free, and therefore we obtain a
guarantee which holds simultaneously for all values of B1.

Theorem 2.7. Let L : R × Y → R be a convex β-smooth loss function, and let
R(w) be as defined in (1.1), where the expectation is w.r.t. an arbitrary distribution
over X × Y. Suppose that the fully corrective procedure (Algorithm 3) is run for k
iterations. Then for any scalar ε > 0 and vector w̄ such that

k ≥ 2 β ‖w̄‖21
ε

,

we have R(w(k))−R(w̄) ≤ ε.
Naturally, if our loss function is Lipschitz but is not smooth, we can run the fully

corrective algorithm on the modified loss L̃ (see Lemma 2.5) and obtain a guarantee
similar to the one in Corollary 2.6. Similarly, if the risk function is strongly convex
on the support of w̄, we can use Lemma 2.2 to obtain the same guarantee as in
Corollary 2.3. Therefore, we have shown that the fully corrective method provides
the same guarantees as the previous approaches, with the important advantage that
B1 appears only in the analysis but does not affect the algorithm.

Finally, we show that with a more restricted assumption on the risk function, we
can obtain an exponentially better dependence on 1

ε for the fully corrective algorithm.
Theorem 2.8. Let L : R × Y → R be a convex β-smooth loss function, and let

R(w) be as defined in (1.1), where the expectation is w.r.t. an arbitrary distribution
over X × Y. Suppose that the fully corrective procedure (Algorithm 3) is run for k
iterations. Let λ > 0 be a scalar and assume that R is (k+ ‖w̄‖0, λ)-sparsely-strongly
convex. Then, for any ε > 0 and w̄ ∈ R

d such that

k ≥ ‖w̄‖0 β

λ
log

(
R(0)−R(w̄)

ε

)
,

we have R(w(k)) ≤ R(w̄) + ε.
Remark 2.1. It is possible to show that the result of Theorem 2.8 still holds if we

use an �2 regularized risk; that is, define R(w) = E[L(〈w,x〉, y)] + λ
2 ‖w‖22. Note that

in this case, the optimal solution will in general be dense, since the �2 regularization

SPARSITY IN OPTIMIZATION PROBLEMS WITH CONSTRAINTS 2815

Algorithm 4 Post Processing Replacement Steps.

Input: F (0) ⊂ [d]
for t = 0, 1, . . .

let w(t) = argminw R(w) s.t. supp(w) ⊆ F (t)

let rt+1 = argminj minα R(w(t) + αej)

let F ′ = F (t) ∪ {rt+1}
let w′ = argminw R(w) s.t. supp(w) ⊆ F ′

let q = argminj∈F ′ |w′
j |

let δt = R(w(t))−R(w′ − w′
qe

q)
if (δt ≤ 0) break

let F (t+1) = F ′ − {q}
end

tends to spread the weights of the solution over many features. However, since Theo-
rem 2.8 holds for any reference vector w̄ and not only for the minimizer of the risk, it
suffices that there will be some sparse vector w̄ that achieves a low risk. In this case,
Theorem 2.8 guarantees that we will find w(k) whose risk is only slightly higher than
that of w̄ and whose sparsity is only slightly worse than w̄.

Adding replacement steps as postprocessing. We can always try to improve
the solution without changing its sparsity level. The procedure given in Algorithm
4 suggests one way to do this. The basic idea is simple. We first perform one fully
corrective forward selection step, and second we remove the feature that has the
smallest weight. We accept such a replacement operation only if it leads to a smaller
value of R(w). The resulting procedure is summarized in Algorithm 4.

We may also use a slightly simpler replacement procedure that skips the opti-
mization step in F ′. That is, we simultaneously take

rt+1 = argmax
j

|∇R(w(t))j |, q = argmin
j∈F (k)

|w(t)
j |,

and let F (t+1) = (F (t) ∪ {rt+1})− {q}. Similar results hold for this alternative.
Clearly, Algorithm 4 can only improve the objective. Thus, for any t we have

R(w(t)) ≤ R(w(0)). The following theorem states that we can have an actual decrease
of R by running Algorithm 4 as postprocessing to Algorithm 3.

Theorem 2.9. Let L : R × Y → R be a convex β-smooth loss function, and let
R(w) be as defined in (1.1), where the expectation is w.r.t. an arbitrary distribution
over X ×Y. Let λ > 0 be a scalar, k be an integer, and w̄ ∈ R

d be a vector such that

k + 1 ≥ ‖w̄‖0(1 + 4β2/λ2),

and assume that R is (k + 1 + ‖w̄‖0, λ)-sparsely-strongly convex. Additionally, let T
be an integer such that

T ≥ λ(k + 1− ‖w̄‖0)
2 β

log

(
R(0)−R(w̄)

ε

)
.

Then if the fully corrective procedure (Algorithm 3) is run for k iterations and its last
predictor is provided as input for the postprocessing replacement procedure (Algorithm
4), which is then run for T iterations, then when the procedure terminates at time t
(which may be smaller than T), we have R(w(t))−R(w̄) ≤ ε.

2816 SHAI SHALEV-SHWARTZ, NATHAN SREBRO, AND TONG ZHANG

The above theorem tells us that under the strong convexity condition, one may
approximate R(w̄) to arbitrary precision using a number of features which is at most
a constant (1 + 4β2/λ2) approximation factor. Comparing this sparsity guarantee to
the guarantee given in Theorem 2.8, we note that the sparsity level in Theorem 2.9
does not depend on log(1/ε). Only the run time depends on the desired accuracy level
ε. In particular, if k is close to its lower bound, then the required number of iterations

of Algorithm 4 becomes O(‖w̄‖0 β
λ log(R(0)−R(w̄)

ε)), which matches the bound on the
number of iterations of Algorithm 3 given in Theorem 2.8. However, since Algorithm
4 does not increase the sparsity of the solution, decreasing ε solely translates to an
increased run time while not affecting the sparsity of the solution. On the flip side,
the dependence of the sparsity of the solution on β/λ is linear in Theorem 2.8 and
quadratic in Theorem 2.9.

It is worth pointing out that the result in Theorem 2.9 is stronger than results
in the compressed sensing literature, which consider the least squares loss, and the
bounds are of the flavor R(w̄(t)) ≤ CR(w̄) with some constant C > 1. For such a
bound to be useful, we have to assume that R(w̄) is close to zero. This assumption
is not needed in Theorem 2.9. However, if we do assume that R(w̄) is close to
the global minimum, then it is not difficult to see that w̄(t) is close to w̄ from the
sparse strong convexity assumption. This implies a recovery result similar to those
in compressed sensing. Therefore from the numerical optimization point of view, our
analysis is more general than compressed sensing, and the latter may be regarded as
a specialized consequence of our result.

Note that a more sophisticated combination of forward and backward updates is
done by the FoBa algorithm of [33]. The more aggressive backward steps in FoBa can
lead to further improvement, in the sense that one may solve the sparse optimization
problem exactly (that is, w(k) contains only k = ‖w̄‖0 features). However, this
requires additional assumptions. Most notably, it requires that w̄ will be the unique
minimizer of R(w). In contrast, in our case w̄ can be an arbitrary competing vector, a
fact that gives us an additional control on the trade-off between sparsity and accuracy.
See the discussion in section 5 for more details.

We note that in practice it should be beneficial to include some replacement steps
during the entire run of the algorithm and not only as postprocessing steps. However,
the analysis of such an algorithm is more complex because it depends on how to
integrate the forward steps in Algorithm 3 and the replacement steps in Algorithm 4.
This paper considers only the simple situation that Algorithm 4 is run as a post-
processing procedure, for which the theoretical result can be more easily stated and
interpreted.

A summary of our results is given in Table 1.

3. Examples. In this section we provide concrete examples that exemplify the
usefulness of the bounds stated in the previous section.

We first list some loss functions.
Squared loss. L(a, y) = 1

2 (a − y)2. The domain Y is usually taken to be a
bounded subset of R. The second derivative of L w.r.t. the first argument is the
constant 1, and therefore the squared loss is 1-smooth.

Absolute loss. L(a, y) = |a − y|. The domain Y is again a bounded subset of
R. Now L is not differentiable. However, L is 1-Lipschitz.

Logistic-loss. L(a, y) = log(1 + exp(−y a)). The domain Y is {+1,−1}. The
derivative of L w.r.t. the first argument is the function L′(a, y) = −y

1+exp(y a) . Since

SPARSITY IN OPTIMIZATION PROBLEMS WITH CONSTRAINTS 2817

Table 1

Summary of results.

Properties of loss and distribution #features needed to
guarantee

R(w) −R(w̄) ≤ ε

L is ρ-
Lipschitz

L is
β-smooth

R is λ-
strongly
convex on
supp(w̄)

R is
sparsely

λ-
strongly
convex

X ‖w̄‖21 ρ2

ε2

X ‖w̄‖21 β
ε

X X ‖w̄‖0 1
λ ε

X X ‖w̄‖0 β
λ ε

X X X ‖w̄‖0 min
{

β
λ
log

(
1
ε

)
, 1 + 4β2

λ2

}

L′(a, y) ∈ [−1, 1] we get that L is 1-Lipschitz. In addition, the second derivative of L
is −y 1

1+exp(y a)
1

1+exp(−y a) ∈ [− 1
4 ,

1
4], and therefore L is 1

4 smooth.

Hinge-loss. L(a, y) = max{0, 1 − y a}. The domain Y is {+1,−1}. Like the
absolute loss, the hinge-loss is not differentiable but is 1-Lipschitz.

Theorem 2.1 implies that without making any additional assumption on the dis-
tribution over X × Y, for any B1 and ε we can compute a predictor w such that

R(w) ≤ min
w′:‖w′‖1≤B1

R(w′) + ε

and ‖w‖0 ≤ 8
√
2B2

1

ε2 for absolute-loss and hinge-loss, ‖w‖0 ≤ B2
1

ε for squared-loss, and

‖w‖0 ≤ B2
1

4 ε for logistic-loss.
Next, we discuss possible applications of Theorems 2.8–2.9. Let L be the squared-

loss function, and assume that Y = [+1,−1]. Therefore, for any w̄ we have R(0) −
R(w̄) ≤ 1. We can rewrite R(w) as

R(w) =
1

2
E[(〈w,x〉 − y)2]

=
1

2
wT

E[xxT]w+ 〈w,E[y x]〉+ 1

2
E[y2].

Thus, R(w) is a quadratic function of w, and therefore is λ-strongly convex where λ
is the minimal eigenvalue of the matrix E[xxT]. Assuming that the instances x are
uniformly distributed over {+1,−1}d, then the features of x are uncorrelated, have
zero mean, and have a unit variance. Therefore, the matrix E[xxT] is the identity
matrix, and thus R is 1-strongly convex. Applying Theorem 2.8 we obtain that for any
w̄ we can efficiently find w such that R(w) ≤ R(w̄) + ε and ‖w‖0 ≤ 2 ‖w̄‖0 log(1/ε).
Furthermore, applying Theorem 2.9 we obtain that one can find w such that R(w) is
only slightly larger than R(w̄) and ‖w‖0 ≤ 5 ‖w̄‖0.

2818 SHAI SHALEV-SHWARTZ, NATHAN SREBRO, AND TONG ZHANG

The argument above relies on the assumption that we fully know the conditional
probability of the target y. This is a rather unrealistic assumption. It is more rea-
sonable to assume that we have an independently and identically distributed sample
of n examples from the distribution over X × Y, where n � d, and let us redefine
R using the uniform distribution over this sample. Now R(w) is no longer strongly
convex, as the rank of the matrix E[xxT] is n, while the dimension of the matrix
is d � n. However, with high probability over the choice of the n examples, R(w)
is (k, λ)-sparsely-strongly convex with n = O(k ln d) and λ = 1

2 . This condition is
often referred to as RIP (restricted isometry property) in the compressed sensing
literature [4], which follows from concentration results in the random matrix litera-
ture. Therefore, we can still apply Theorem 2.8 and get that for any w̄ and k such
that k ≥ 2 ‖w̄‖0 log(1/ε), we can efficiently find w such that R(w) − R(w̄) ≤ ε and
‖w‖0 ≤ k.

The strong convexity assumption given in Theorems 2.8–2.9 is much stronger
than the one given in Corollary 2.3. To see this, note that the condition given in
Theorem 2.8 breaks down even if we merely duplicate a single feature, while the
condition of Corollary 2.3 is not affected by duplication of features. In fact, the
condition of Corollary 2.3 still holds even if we construct many new features from the
original features as long as w̄ will not change. Of course, the price we pay for relying
on a much weaker assumption is an exponentially worse dependence on 1/ε.

Finally, as mentioned at the end of the previous section, the guarantees of Theo-
rems 2.8–2.9 hold even if we add to R(w) an �2 regularization term. For example, it
holds for the problem of �2 regularized logistic regression:

R(w) = E[log(1 + exp(−y 〈w,x〉))] + λ
2 ‖w‖22.

Since now R(w) is everywhere strongly convex, we get that for any w̄ we can efficiently
find w such that R(w) ≤ R(w̄) + ε and ‖w‖0 ≤ O(‖w̄‖0) in time O(log(1/ε)).
Here, it is important to emphasize that the minimizer of R(w) will in general be
dense, since the �2 regularization tends to spread weights on many features. However,
Theorems 2.8–2.9 hold for any reference vector and not only for the minimizer of
R(w). It therefore suffices that there is a sparse vector which gives a reasonable
approximation to R(w), and the theorem tells us that we will be competitive with
this vector. We thus have two ways to control the trade-off between accuracy (i.e., low
risk) and sparsity. One way is through the parameter ε. The second way is by choosing
the reference vector w̄. We can have a sparser reference vector, over a noncorrelated
set of features, but this can also lead to a reference vector with higher risk.

4. Tightness. In this section we argue that some of the relations between spar-
sity, accuracy, and the �1 norm derived in section 2 are tight, and better guarantees
cannot be obtained without adding more assumptions. This means that the proce-
dures of section 2 are optimal in the sense that no other procedure can yield better
sparsity guarantees (better by more than a constant factor).

The following two theorems establish the tightness of the bounds given in Theo-
rem 2.1.

Theorem 4.1. For any B1 > 2 and l > 0, there exists a data distribution
such that a (dense) predictor w with ‖w‖1 = B1 can achieve mean absolute-error
(L(a, b) = |a − b|) less than l, but for any ε ≤ 0.1, at least B2

1/(45 ε
2) features must

be used for achieving mean absolute-error less than ε.
Theorem 4.2. For any B1 > 2 and l > 0, there exists a data distribution

such that a (dense) predictor w with ‖w‖1 = B1 can achieve mean squared-error

SPARSITY IN OPTIMIZATION PROBLEMS WITH CONSTRAINTS 2819

(L(a, b) = (a− b)2) less than l, but for any ε ≤ 0.1, at least B2
1/(8 ε) features must be

used for achieving mean squared-error less than ε.

5. Related work. The problem of finding sparse solutions to optimization prob-
lems using greedy methods or using the �1 norm was extensively studied in different
disciplines. Some of the results we derive are variants of known techniques. Below we
review related work, focusing on the contribution of this paper.

5.1. Randomized sparsification. As mentioned before, the randomized spar-
sification procedure (Algorithm 1) is not new and dates back to Maurey [22]. It was
also previously proposed by [24] as a tool for obtaining generalization bounds for Ad-
aBoost (but their bound also depends on log(m), where m is the number of examples
in the input distribution). Studying neural networks with bounded fan-in, [16] pro-
vided an upper bound similar to Theorem 2.4 for the special case of the squared-error
loss. See also [2, 6, 14, 27]. These authors also derived results similar to our result
in Theorem 2.1 (although with less generality). To the best of our knowledge the
dependence on �0 we obtain in Corollary 2.3 is new.

5.2. Forward greedy selection. Forward greedy selection procedures for mini-
mizing a convex objective subject to a polyhedron constraint date back to the Frank–
Wolfe algorithm [10]. In fact, our Algorithm 2 can be viewed as a variant of the
Frank–Wolfe algorithm in which the step size is determined using a closed form.
Similar algorithms were proposed in [6, 32]. Again, our data-dependent closed-form
expression for determining the step size is different than the line search given in Al-
gorithm 1.1 of [6]. We note that [6] also gives the step size 2/(t + 3), but this step
size is not data-dependent. The bound we derive in Theorem 2.4 is similar to Theo-
rem 2.2 of [6], and similar analysis can be also found in [32] and even in the original
analysis of Wolfe. To the best of our knowledge, the bound we derive for nonsmooth
but Lipschitz functions, based on the approximation given in Lemma 2.5, is novel.
Additionally, as for the randomized sparsification procedure, we can obtain results
with respect to the �0 norm, with the additional strong convexity requirement on the
support of w̄, using Lemma 2.2.

Our fully corrective algorithm (Algorithm 3) is very similar to Algorithm 4.2 in [6],
with one major difference —our algorithm does not enforce the constraint ‖w‖1 ≤ B1

at all. This stands in contrast to many variants of the fully corrective algorithm stud-
ied in the context of (the dual of) the minimum enclosing ball (MEB) problem by sev-
eral authors (see, e.g., [1,6] and the references therein). This difference stems from the
fact that our goal is not to solve the minimization problem with an �1 constraint but
rather to solve the minimization problem with an �0 constraint. As discussed previ-
ously, a major advantage of not enforcing the constraint ‖w‖1 ≤ B1 is that we are not
required to tune the parameter B1 in advance. Another important advantage is that
we can derive results with respect to an arbitrary competing vector, w̄, which can be
quite different from the minimizer of the convex optimization problem with the �1 con-
straint. See more discussion about the importance of this issue in the next subsection.

The sparsity bound we derive in Theorem 2.7 depends logarithmically on 1/ε. A
linear convergence result for a modified Frank–Wolfe algorithm with additional “away”
steps (similar to our replacement steps) was derived by [13]. However, their bound
requires strong convexity while our bound requires only sparsely strong-convexity.
Furthermore, we derive convergence rates with respect to the �0 norm of the competing
vector while the result of [13] deals only with convergence to the minimizer of the
problem with respect to the �1 constraint. Such an analysis is clearly not satisfactory

2820 SHAI SHALEV-SHWARTZ, NATHAN SREBRO, AND TONG ZHANG

in our case. In the context of solving the dual of the MEB problem, [1] proves
linear convergence for Frank–Wolfe with away steps under milder conditions than the
strong-convexity assumption of [13]. It seems that the result proved by [1] gives a
local linear convergence rate, but unfortunately not an improved global complexity
bound. More important, the results of [1], like the convergence analysis of [13], deals
only with convergence to the solution of the convex problem (with the �1 constraint).
In contrast, our analysis is with respect to the nonconvex problem of minimizing the
objective with an �0 constraint.

The postprocessing step we perform (Algorithm 4) is in some sense similar to
the idea of the modified Wolfe algorithm with the additional “away” steps—see, for
example, [1,13]. It is also similar to Algorithm 5.1 in [6] and is also employed in [15].
As before, a major difference is that we do not aim at solving the convex optimization
problem with the �1 constraint and therefore do not enforce this constraint at all. As
discussed previously, the advantages of not enforcing this constraint are that we do
not need to tune the parameter B1 and that we can give guarantees with respect to
an arbitrary competing vector. Additionally, the result we derive in Theorem 2.8 tells
us that we can approximate R(w̄) to arbitrary precision using a number of features
which is at most a constant approximation factor. Clearly, such a result cannot be
obtained from the convergence analysis given in [1, 6, 13, 15].

Finally, we mention that forward greedy selection algorithms are called boosting in
the machine learning literature (see, e.g., [11]). It was observed empirically that fully
corrective algorithms are usually more efficient than their corresponding noncorrective
versions (see, e.g., [30, 31]). In this paper we give a partial theoretical explanation
to this empirical observation. For regression with the quadratic loss, this method is
referred to as matching pursuit in the signal processing community [18].

5.3. Sparsistency of the lasso. The use of the �1 norm as a surrogate for
sparsity has a long history (e.g., [28] and the references therein), and much work
has been done on understanding the relationship between the �1 norm and sparsity.
Studying sparsity properties of the “lasso” and feature selection techniques, several
recent papers establish exact recovery of a sparse predictor based on the �1 relax-
ation (e.g., [34] and the references therein). One of the strongest results is the one
derived for the FoBa algorithm of [33]. However, for exact recovery much stronger
conditions are required. In particular, all results that establish exact recovery require
that the data will be generated (at least approximately) by a sparse predictor. In
contrast, our bounds hold with respect to any reference predictor w̄. In practical
applications, such as medical diagnosis, this is a big difference. For example, if the
task is to predict illness using medical tests, it is very natural to assume that there
exists a very sparse predictor with error of, say, 0.1, while a very dense predictor is
required to achieve error below 0.05. In this case, exact recovery of a sparse predictor
is impossible (because the best predictor is dense), but one can still compromise on
the accuracy and achieve a very sparse predictor with a reasonable level of accuracy.
Another requirement for exact recovery is that the magnitude of any nonzero element
of w is large. We do not have such a requirement. Finally, all exact recovery results
require the sparse eigenvalue condition. This condition is often referred to as RIP in
the compressed sensing literature [4]. In contrast, as discussed in previous sections,
some of our results require much weaker conditions. This is attributed to the fact
that our goal is different—we do not care about finding w� exactly but solely concern
about finding some w, with a good balance of low risk and sparsity. By compromising
on accuracy, we get sparsity guarantees under much milder conditions.

SPARSITY IN OPTIMIZATION PROBLEMS WITH CONSTRAINTS 2821

5.4. Compressed sensing. As mentioned previously, recent work on compressed
sensing [4, 5, 8, 9] also provides sufficient conditions for when the minimizer of the �1
relaxed problem is also the solution of the �0 problem. But, again, the assumptions are
much stronger. We note that in compressed sensing applications, we have a control
on the distribution over X (i.e., the design matrix). Therefore, the sparse eigenvalue
condition (equivalently, RIP) is under our control. In contrast, in machine learning
problems the distribution over X is provided by nature, and RIP conditions usually
do not hold.

5.5. Learning theory. �1 norm have also been studies in learning theory as a
regularization technique. For example, [17] showed that multiplicative online learning
algorithms can be competitive with a sparse predictor, even when there are many
irrelevant features, while additive algorithms are likely to make many more errors.
This was later explained by the fact that multiplicative algorithms can be derived from
an entropy regularization, which is strongly convex with respect to the �1 norm, while
additive algorithms are derived from an �2 regularization (see, e.g., [25]). Similarly,
[20] considered PAC (probably approximately correct) learning of a sparse predictor
and showed that �1 norm regularization is competitive with the best sparse predictor,
while �2-regularization does not appear to be. In such a scenario we are not interested
in the resulting predictor being sparse (it won’t necessarily be sparse), but only in
its generalization performance. In contrast, in this paper we are interested in the
resulting predictor being sparse, but do not study �1-regularized learning. The fact
that we learn a sparse predictor can be used to derive generalization bounds as well
(for example, as in [24]). However, if we are only interested in prediction performance
and generalization bounds, it is not necessarily true that sparsity is the best method
for obtaining good generalization properties.

6. Discussion and future work. We described and analyzed a few efficient
methods for sparsity constrained optimization problems encountered in statistics and
machine learning. The sparsity bounds we obtain depend on the accuracy of the
computed predictor. They also depend on the �1 norm of a reference predictor ei-
ther explicitly (Theorems 2.1, 2.4, 2.7) or implicitly by imposing a strong convexity
assumption and bounding the �1 norm of the reference vector using its �0 norm (Corol-
lary 2.3 and Theorems 2.8 and 2.9). In all cases, the trade-off between sparsity and
accuracy is controlled by the excess loss allowed (ε) and by choosing a reference vector
with low �1 norm.

As we have shown in section 4, some of the sparseness bounds we derived are
tight, in the sense that there exists a distribution for which the relation between
‖w‖0, ‖w̄‖1, and ε cannot be improved.

There are several possible extensions to this work. First, our fully corrective
greedy selection algorithms assume that the domain of R is the entire Euclidean
space. In some cases it is desirable to impose additional convex constraints on w. We
believe that our proof technique can be generalized to include simple constraints, such
as box constraints. Another interesting direction is to further quantify the advantage
of fully corrective methods over nonfully corrective methods.

Currently, our technique for obtaining bounds that involve the �0 of w̄ assumes
that the risk R is strongly convex on the support of w̄. While this condition is
reasonable in the case of regression problems with the squared loss, it is less likely
to hold in classification problems when other loss functions are used. Developing
alternative techniques for obtaining bounds that involve the �0 norm of w̄ in binary
classification problems is therefore a challenging task.

2822 SHAI SHALEV-SHWARTZ, NATHAN SREBRO, AND TONG ZHANG

Appendix A. Proofs.

A.1. Proof of Theorem 2.1. Without loss of generality, we assume that w�
i ≥

0 for all i. Let r = (r1, . . . , rk) be the sequence of random indices the randomized
sparsification procedure chooses, and let w be the output of the procedure. Note that
w is a function of r, and therefore it is a random variable.

Let x be a given vector. Then it is easy to verify that

(A.1) Er[〈w,x〉] = 〈w�,x〉.

In the following, we first analyze the expected value of R(w) − R(w�) for the two
possible assumptions on L.

Lemma A.1. Assume that the conditions of Theorem 2.1 hold and that L is
β-smooth. Then

Er [R(w)−R(w�)] ≤ β ‖w�‖21
2 k

.

Proof. Since L is β-smooth, we can use the first inequality in Lemma B.1 to get
that

R(w)−R(w�) ≤ 〈∇R(w�),w −w�〉+ β

2
Ex[(〈w −w�,x〉)2].

Taking expectation over r and using (A.1) we get

Er[R(w)−R(w�)] ≤ β

2
Er,x[(〈w −w�,x〉)2]

=
β

2
Ex,r[(〈w −w�,x〉)2],

where in the last equality we used the linearity of expectation. Next, we note that
for any x the expression Er

[
(〈w −w�,x〉)2]] is the variance of the random variable

〈w,x〉 = ‖w�‖1

k

∑k
i=1 xri . Since each random variable xri is in [−1,+1], its variance

is at most 1. Therefore, using the fact that the random variables are independent,

we obtain that the variance of 〈w,x〉 is at most
‖w�‖2

1

k . This holds for any x and
therefore also for the expectation over x, and this concludes our proof.

Next, we deal with the case of Lipschitz loss function.
Lemma A.2. Assume that the conditions of Theorem 2.1 hold and that L is

ρ-Lipschitz. Then

Er [R(w)−R(w�)] ≤ ρ ‖w�‖1√
k

.

Proof. Since L is ρ-Lipschitz, we have for all (x, y)

L(〈w,x〉, y)− L(〈w�,x〉, y) ≤ ρ |〈w,x〉 − 〈w�,x〉|.

Taking expectation over r and (x, y) we get

Er[R(w)]−R(w�) ≤ ρExEr[|〈w,x〉 − 〈w�,x〉|]
≤ ρ

√
ExEr[|〈w,x〉 − 〈w�,x〉|2],

SPARSITY IN OPTIMIZATION PROBLEMS WITH CONSTRAINTS 2823

where the last inequality follows from Jensen’s inequality. The same argument as in
the previous lemma concludes our proof.

Equipped with the above we are now ready to prove Theorem 2.1. First, since
w� is a minimizer of R over the �1 ball of radius ‖w�‖1 and since w is in this ball,
we obtain that R(w) − R(w�) is a nonnegative random variable. Therefore, using
Markov’s inequality, we get that with probability of at least 0.5 we have

R(w)−R(w�) ≤ 2Er[R(w)−R(w�)].

Plugging the bounds on Er[R(w)−R(w�)] from the previous two lemmas, letting the
right-hand side be ε, and solving for k we conclude our proof.

A.2. Proof of Lemma 2.2. Since supp(w̄) = F and since w̄ is optimal over
the features in F , we have that 〈∇R(w̄), w̄〉 = 0. Therefore, using the assumption
that R is λ-strongly convex on F we obtain

R(0)−R(w̄) = R(0)−R(w̄)− 〈∇R(w̄),0− w̄〉
≥ λ

2
‖w̄− 0‖22,

which implies that

‖w̄‖22 ≤ 2 (R(0)−R(w̄))

λ
.

Finally, we use the fact that w̄ has effective dimension of ‖w̄‖0 to get that

‖w̄‖21 ≤ ‖w̄‖0 ‖w̄‖22.
Combining the above inequalities we conclude our proof.

A.3. Proof of Theorem 2.4. For all t, let εt = R(w(t)) − R(w�) be the sub-
optimality of the algorithm at iteration t. The following lemma provides us with an
upper bound on εt. Its proof uses duality arguments (see, for example, [3, 23]).

Lemma A.3. 〈θ(k),w(k)〉+B1 ‖θ(k)‖∞ ≥ εk.
Proof. We denote the Fenchel conjugate of R by R�. The Fenchel dual problem

of (2.1) is to maximize over θ ∈ R
d the objective −R�(θ)−B1 ‖θ‖∞. Therefore, the

weak duality theorem tells us that for any θ

−R�(θ)−B1 ‖θ‖∞ ≤ R(w�) ≤ R(w(k)).

Thus,

(A.2) εk ≤ R(w(k)) +R�(θ) +B1 ‖θ‖∞.

In particular, it holds for θ(k) = ∇R(w(k)). Next, we use [3, Proposition 3.3.4] to get

that for θ(k) = ∇R(w(k)) we have R(w(k)) +R�(θ(k)) = 〈w(k), θ(k)〉. Combining this
with (A.2) we conclude our proof.

The next lemma analyzes the progress of the algorithm.
Lemma A.4. The sequence ε1, ε2, . . . is monotonically nonincreasing. Further-

more, let T be the minimal integer such that εT ≤ 4βB2
1 . Then, for t < T we have

εt − εt+1 ≥ 2 β B2
1 and for t ≥ T we have

εt − εt+1 ≥ ε2t
1

8 β B2
1

.

2824 SHAI SHALEV-SHWARTZ, NATHAN SREBRO, AND TONG ZHANG

Proof. To simplify the proof, we assume without loss of generality that sgn(θ
(t)
rt) =

−1. Denote u(t) = ηt(B1e
rt − w(t)), and thus we can rewrite the update rule as

w(t+1) = (1 − ηt)w
(t) + ηt B1 e

rt = w(t) + u(t). Let Δt = εt − εt+1 = R(w(t)) −
R(w(t+1)). Using the assumption that L is β-smooth and Lemma B.1 we obtain that

Δt ≥ −〈θ(t),u(t)〉 − β ‖u(t)‖21
2

.

Next, we use the definition of u(t), the triangle inequality, and the fact that ‖w(t)‖1 ≤
B1 to get that

‖u(t)‖1 ≤ ηt(‖B1e
rt‖1 + ‖w(t)‖1) ≤ 2 ηt B1.

Therefore,

Δt ≥ −〈θ(t),u(t)〉 − 2 β η2t B
2
1(A.3)

= ηt

(
〈θ(t),w(t)〉 −B1 〈θ(t), ert〉

)
− 2 β η2t B

2
1 .

The definition of rt implies that 〈θ(t), ert〉 = −‖θ(t)‖∞. Therefore, we can invoke

Lemma A.3 and obtain that 0 ≤ εt ≤ 〈θ(t),w(t)〉 −B1 〈θ(t), ert〉. Next, we note that
ηt is defined to be the maximizer of the right-hand side of (A.3) over [0, 1]. Therefore,
for any η ∈ [0, 1] we have

Δt ≥ η
(
〈θ(t),w(t)〉 − B1 〈θ(t), ert〉

)
− 2 β η2 B2

1

≥ η εt − 2 β η2 B2
1 .(A.4)

If εt ≤ 4βB2
1 , then by setting η = εt

4 β B2
1
we obtain Δt ≥ ε2t

8 β B2
1
. If εt > 4 βB2

1 , then

setting η = 1 gives Δt ≥ 2 βB2
1 .

We are now ready to prove Theorem 2.4. First, the inequality (A.4) with η = 1
and t = 0 implies that

ε0 − ε1 = Δ0 ≥ ε0 − 2βB2
1 .

This means that ε1 ≤ 2βB2
1 . Therefore starting from t ≥ 1 we can apply the same

argument of Lemma B.2, and this concludes our proof.

A.4. Proof of Lemma 2.5. For simplicity, we omit the second argument of L
and L̃ throughout the proof. We first prove that L̃ is β-smooth. The proof uses ideas
from convex analysis. We refer the reader to [3, 23] and see also a similar derivation
in [26]. The definition of L̃ implies that it is the infimal convolution of L and the
quadratic function (β/2)v2. Therefore, using the infimal convolution theorem [23,
Chapter 16] we obtain that the Fenchel conjugate of L̃ is L̃�(θ) = 1

2β θ
2 + L�(θ),

where L� is the Fenchel conjugate of L. Since the quadratic function is strongly
convex, we obtain that L̃� is a 1/β strongly convex function, and thus its Fenchel
conjugate, namely, L̃, is β-smooth [25, Lemma 15]. Next, we turn to the proof of

|L(a)− L̃(a)| ≤ ρ2

2 β . Let f(v) = β
2 v

2 + L(a− v). On one hand, L̃(a) ≤ f(0) = L(a).

On the other hand, since L(a)− L(a− v) ≤ ρ |v|, we have

f(v) =
β

2
v2 + L(a) + L(a− v)− L(a) ≥ β

2
v2 + L(a)− ρ |v|.

SPARSITY IN OPTIMIZATION PROBLEMS WITH CONSTRAINTS 2825

Therefore,

L̃(a) = inf
v
f(v) ≥ L(a) + inf

v

[
β

2
v2 − ρ v

]
= L(a)− ρ2

2 β
.

This concludes our proof.

A.5. Proof of Theorem 2.7. We start with the following lemma, which states
that if the greedy algorithm has not yet identified all the features of w̄, then a single
greedy iteration yields a substantial progress.

Lemma A.5. Let F, F̄ be two subsets of [d] such that F̄ − F �= ∅, and let

w = argmin
v:supp(v)=F

R(v), w̄ = argmin
v:supp(v)=F̄

R(v).

Assume that L is β-smooth and that

(A.5) R(w̄)−R(w)− 〈∇R(w), w̄ −w〉 ≥ λ

2
‖w− w̄‖22.

Then

R(w)−min
α

R(w + αej) ≥
(
R(w)−R(w̄) + λ

2 ‖w − w̄‖2)2
2 β

(∑
i∈F̄−F |w̄i|

)2 ,

where j = argmaxi |∇R(w(k))i|.
Proof. To simplify notation, denote F c = F̄ − F . For all j ∈ F c and η > 0, we

define

Qj(η) = R(w) + η sgn(w̄j) 〈∇R(w), ej〉+ η2 β

2
.

Next, using the assumption that L is smooth and Lemma B.1 we obtain that

R(w + η sgn(w̄j) e
j) ≤ Qj(η).

Since the choice of j = argmaxi |∇R(w(k))i| achieves the minimum of minj minη Qj(η),
the lemma is a direct consequence of the following stronger statement

(A.6) R(w)−min
j

Qj(η) ≥
(
R(w)−R(w̄) + λ

2 ‖w− w̄‖2)2
2 β

(∑
i∈F̄−F |w̄i|

)2
for an appropriate choice of η. Therefore, we now turn to prove that (A.6) holds.

Denote s =
∑

j∈F c |w̄j |; we obtain that

s min
j

Qj(η) ≤
∑
j∈F c

|w̄j |Qj(η)(A.7)

≤ sR(w) + η
∑
j∈F c

w̄j (∇R(w))j + s
η2 β

2
.

Since we assume that w is optimal over F , we get that (∇R(w))j = 0 for all j ∈ F .
Additionally, wj = 0 for j �∈ F and w̄j = 0 for j �∈ F̄ . Therefore,∑

j∈F c

w̄j (∇R(w))j =
∑
j∈F c

(w̄j − wj) (∇R(w))j

=
∑

j∈F̄∪F

(w̄j − wj) (∇R(w))j

= 〈∇R(w), w̄ −w〉.

2826 SHAI SHALEV-SHWARTZ, NATHAN SREBRO, AND TONG ZHANG

Combining the above with the assumption given in (A.5) we obtain that

∑
j∈F c

w̄j (∇R(w))j ≤ R(w̄)−R(w)− λ

2
‖w− w̄‖22.

Combining the above with (A.7) we get

s min
j

Qj(η) ≤ sR(w) + s
η2 β

2

− η

(
R(w)−R(w̄) +

λ

2
‖w− w̄‖2

)
.

Setting η = (R(w) − R(w̄) + λ
2 ‖w − w̄‖2)/(β s) and rearranging terms we conclude

our proof of (A.6).
Equipped with the above lemma we now turn to prove Theorem 2.7. Note that

the lemma assumes that R(w) is λ-strongly convex on the relevant support ((A.5)).
Since Theorem 2.7 does not make such an assumption, we will apply the lemma with
λ = 0 (this merely requires that R is convex, which follows from our assumption that
L is convex). The rest of the conditions stated in Lemma A.5 hold, and therefore

R(w(k))−R(w(k+1)) ≥
(
R(w(k))−R(w̄)

)2
2 β

(∑
i∈F̄−F (k) |w̄i|

)2
≥
(
R(w(k))−R(w̄)

)2
2 β ‖w̄‖21

.

Denote εk = R(w(k))−R(w̄), and note that the above implies that εk+1 ≤ εk− ε2k
2β ‖w̄‖2

1
.

Our proof is concluded by combining the above inequality with Lemma B.2.

A.6. Proof of Theorem 2.8. Denote εk = R(w(k)) − R(w̄). The definition
of the update implies that R(w(k+1)) ≤ mini,α R(w(k) + α ei). The conditions of
Lemma A.5 hold, and therefore we obtain that (with F = F (k))

εk − εk+1 = R(wk)−R(w(k+1)) ≥
(
εk +

λ
2 ‖w − w̄‖2)2

2 β
(∑

i∈F̄−F |w̄i|
)2

≥ 4εk
λ
2 ‖w− w̄‖2

2 β
(∑

i∈F̄−F |w̄i|
)2 ≥ εk

∑
i∈F̄−F |w̄i|2

β
λ

(∑
i∈F̄−F |w̄i|

)2
≥ εk

β
λ |F̄ − F | ≥

εk
β
λ ‖w̄‖0

.

(A.8)

Therefore, εk+1 ≤ εk(1 − λ
β ‖w̄‖0

). Applying this inequality recursively we obtain

εk+1 ≤ ε0(1 − λ
β ‖w̄‖0

)k+1. Therefore, if εk ≥ ε, we must have ε ≤ ε0(1 − λ
β ‖w̄‖0

)k.

Using the inequality 1 − x ≤ exp(−x) and rearranging terms we conclude that k ≤
β ‖w̄‖0 log

(
ε0
ε

)
.

A.7. Proof of Theorem 2.9. We first prove the following lemma.
Lemma A.6. Let L : R × Y → R be a convex β-smooth loss function, and let

R(w) be as defined in (1.1), where the expectation is w.r.t. an arbitrary distribution
over X ×Y. Suppose that the postprocessing backward procedure (Algorithm 4) is run

SPARSITY IN OPTIMIZATION PROBLEMS WITH CONSTRAINTS 2827

for t iterations with input F (0), and denote |F (0)| = k. Let λ > 0 be a scalar and
w̄ ∈ R

d be a vector such that

k + 1 ≥ ‖w̄‖0(1 + 4β2/λ2),

and assume that R is (k + 1 + ‖w̄‖0, λ)-sparsely-strongly convex. Then

R(w(t)) ≤ R(w̄) + min
[
δt/α,Δ0(1 − α)t

]
,

where α = 2β
λ(k+1−‖w̄‖0)

and Δ0 = max(0, R(w(0))−R(w̄)).

Proof. We first analyze the effect of one replacement step. To simplify notation,
we use the shorthand w instead of w(t) and F instead of F (t). We also denote
F̄ = supp(w̄). Let F̃ = F̄ ∪ F , and let

w̃ = argmin
w:supp(w)⊆F̃

R(w).

Let k̄ = ‖w̄‖0. In a replacement step, we first perform a forward step. We can
therefore apply the analysis of the fully corrective forward selection, and in particular
we obtain from (A.8) with w̄ replaced by w̃ that

(A.9) R(w)−R(w′) ≥ (R(w)−R(w̃))
β
λ |F̃ − F | ≥ (R(w)−R(w̃))

β
λ k̄

.

Next, we remove the smallest element of w′, denoted w′
q. Since w′ minimizes the loss

over F ′ and q ∈ F ′, we have that (∇R(w′))q = 0. Therefore, from the β-smoothness
of R we obtain

R(w′ − w′
qe

q)−R(w′) ≤ −w′
q (∇R(w′))q +

β

2
(w′

q)
2 =

β

2
(w′

q)
2.

The definition of δt = R(w)−R(w′−w′
qe

q) yields that the left-hand side of the above
equals to R(w)−R(w′)− δt, and therefore we obtain that

(A.10)
β

2
(w′

q)
2 ≥ R(w)−R(w′)− δt.

Combining the above with (A.9) gives that

(A.11) (w′
q)

2 ≥ 2

β

(
(R(w)−R(w̃))

β
λ k̄

− δt

)
.

Next, we derive an upper bound on (w′
q)

2. We have

(w′
q)

2 ≤
∑

j∈F−F̄

(w′
j)

2/|F − F̄ |

≤ ‖w′ − w̄‖22/(k + 1− k̄)

≤ 2[‖w′ − w̃‖22 + ‖w̄ − w̃‖22]/(k + 1− k̄)

≤ 4[R(w′) +R(w̄)− 2R(w̃)]/λ(k + 1− k̄).

Comparing the above upper bound with the lower bound given in (A.11) we obtain

2

β

(
(R(w)−R(w̃))

β
λ k̄

− δt

)
≤ 4[R(w′) +R(w̄)− 2R(w̃)]

λ(k + 1− k̄)
.

2828 SHAI SHALEV-SHWARTZ, NATHAN SREBRO, AND TONG ZHANG

To simplify notation, let s = λ
βk̄

and recall that α = 2 β
λ(k+1−k̄)

. Rearranging the above

inequality and using the definitions of s and α we obtain

δt ≥s (R(w)−R(w̃))− α (R(w′) +R(w̄)− 2R(w̃))

=s (R(w)−R(w̄) +R(w̄)−R(w̃))

− α (R(w′)−R(w̄) + 2 (R(w̄)−R(w̃))) .

Next, using (A.9) we know that

R(w′) ≤ R(w)− s(R(w)−R(w̃)).

Subtracting R(w̄) from both sides and using the fact that R(w̃) ≤ R(w̄) we obtain
that

R(w′)−R(w̄) ≤ R(w)−R(w̄)− s(R(w)−R(w̃)) ≤ (R(w)−R(w̄))(1 − s).

Thus,

(A.12) δt ≥ (s− α(1− s)) (R(w)−R(w̄)) + (s− 2α) (R(w̄)−R(w̃)) .

Now using simple algebraic manipulations and the assumption k+1 ≥ k̄(1+4β2/λ2)
we obtain

s− 2α =
λ2(k + 1− k̄)− 4β2k̄

βk̄λ(k + 1− k̄)
=

λ2(k + 1)− k̄(λ2 + 4β2)

βk̄λ(k + 1− k̄)
≥ 0,

and

s− α(1 − s) = s− 2α+ α+ α s ≥ α.

Combining this with (A.12) we get δt/α ≥ R(w) − R(w̄). This proves the first half
of the desired bound. Moreover, if we let Δt = R(w)−R(w̄) at the beginning of the
tth iteration, then the inequality δt/α ≥ R(w)−R(w̄) implies that

Δt −Δt+1

α
=

R(w(t))−R(w(t+1))

α
≥ R(w(t))−R(w′ − w′

qe
q)

α
=

δt
α

≥ Δt.

Therefore, Δt+1 ≤ Δt(1 − α) ≤ Δ0(1 − α)t+1. This proves the second half of the
desired bound.

We can now easily prove Theorem 2.9. We have two cases. First, if the stopping
condition is met, then from the above lemma we obtain that R(w(t))−R(w̄) ≤ δt/α ≤
0 ≤ ε. Second, if we perform t iterations without breaking, then we get

ε ≤ Δ0(1− α)t ≤ Δ0e
−α t ≤ (R(0)−R(w̄))e−α t.

Rearranging the above and using the definition of α concludes our proof.

A.8. Proofs of Theorem 4.1 and Theorem 4.2. Fix some B1 > 2, l > 0, and
ε < 0.1. To prove the theorems, we present an input distribution D, then demonstrate
a specific (dense) predictor with ‖w‖1 = B1 and mean error l, and finally present a
lower bound on mean error of any sparse predictor, from which we can conclude that
any predictor u with mean error at most ε must satisfy ‖u‖0 ≥ Ω(B2

1/(ε
α), with α = 1

for squared-error and 2 for absolute-error.

SPARSITY IN OPTIMIZATION PROBLEMS WITH CONSTRAINTS 2829

The data distribution. Consider an instance space X = {+1,−1}d and a target
space Y = {+1,−1}. The distribution D over X × Y is as follows. First, the label
Y is uniformly distributed with Pr[Y = 1] = 1

2 . Next, the features X1, . . . , Xn are
identically distributed and are independent conditioned on Y , with Pr[Xi = y|Y =
y] = 1+a

2 , where a = 1/B1. In such an example, the “information” about the label is
spread among all features, and in order to obtain a good predictor, this distributed
information needs to be pulled together, e.g., using a dense linear predictor.

A dense predictor. Consider the predictor w with wi = 1/(da) for all fea-
tures i. To simplify our notation, we use the shorthand E [〈w,x〉 | y] for denoting
E [〈w,x〉 | Y = y]. Verifying that for both values of y we have

E [〈w, X〉 | y] = d
1

da
a y = y,

Var[〈w, X〉 | y] = 1− a2

d a2
,

(A.13)

we immediately obtain that

(A.14) E[(〈w, X〉 − Y)2] =
1− a2

d a2
≤ 1

d a2
.

Additionally, using Jensen’s inequality we obtain that

(A.15) E[|〈w, X〉 − Y |] ≤
√
E[(〈w,X〉 − Y)2] ≤

√
1

d a2
.

Recall that a = 1/B1 and choose the dimension to be d = B2
1/l

α, where α = 1 for
the squared-error and α = 2 for the absolute error. This implies that for both cases,
‖w‖1 = B1 and R(w) ≤ l.

Sparse prediction. Consider any predictor u with only B0 nonzero coefficients.
For such a predictor we have

∑
u2
i ≥ (

∑
ui)

2/B0. Denote ρ =
∑

i ui. Fix some
y ∈ {±1} and denote μy = E[〈u, X〉|y]. We have

E[〈u, X〉|y] = y a ρ and Var[〈u, X〉 | y] = (1 − a2)‖u‖22.
We start with the case of the squared-error.

E[(〈u, X〉 − y)2|y] = Var[〈u, X〉 | y] + (μy − y)2

= (1− a2)‖u‖22 + (1 − aρ)2

≥ (1− a2)ρ2/B0 + (1− aρ)2.

(A.16)

Thus,

E[(〈u, X〉 − Y)2] ≥ (1− a2)ρ2/B0 + (1− aρ)2.

If |ρ| < B1/2, then the right-hand side of the above is at least 1/4. Otherwise,

E[(〈u, X〉 − Y)2] ≥ (1 − a2)B2
1

4B0
=

B2
1 − 1

4B0
.

Since we assume that B1 ≥ 2, we have B2
1 − 1 ≥ B2

1/2, and we conclude that

E[(〈u, X〉 − Y)2] ≥ min

{
1

4
,
B2

1

8B0

}
.

2830 SHAI SHALEV-SHWARTZ, NATHAN SREBRO, AND TONG ZHANG

Thus, if we want that R(w) will be at most ε, we must have

B2
1

8B0
≤ ε ⇒ B0 ≥ B2

1

8 ε
,

which concludes the proof of Theorem 4.2.
Next, we consider the case of the absolute-error (Theorem 4.1). Since we consider

only B1 > 2, we have 0.05 < 0.25 ≤ Pr[Xi = Y |y] ≤ 0.75 < 0.95, with the loss being
an affine function (degree one polynomial) of X . We can therefore use Lemma B.3 to
get that

E [|〈u, X〉 − Y | | y] ≥ 0.2
√
E [(〈u, X〉 − Y)2 | y].

Combining the above with (A.16) we obtain that

E[|〈u, X〉 − Y |] ≥ 0.2
√
(1− a2)ρ2/B0 + (1− aρ)2.

The rest of the proof follows analogously to the case of squared-error.

Appendix B. Technical lemmas.
Lemma B.1. Let L : R × Y → R be a convex β-smooth loss function, and let

R(w) be as defined in (1.1), where the expectation is w.r.t. an arbitrary distribution
over X × Y. Then for any vectors w,u we have

R(w + u)−R(w)− 〈∇R(w),u〉 ≤ β

2
Ex[(〈u,x〉)2] ≤ β ‖u‖21

2
.

Proof. Since L is β-smooth, we have for any w,u and (x, y), L(〈w + u,x〉, y) −
L(〈w,x〉, y) − L′(〈w,x〉, y) 〈u,x〉 ≤ 1

2 β(〈u,x〉)2. Taking expectation over (x, y) and
noting that ∇R(w) = E[L′(〈w,x〉, y)x] we get

R(w+ u)−R(w)− 〈∇R(w),u〉 ≤ β

2
E[〈u,x〉2].

This gives the first inequality in the lemma. For the second inequality we use the
Hölder inequality and the assumption ‖x‖∞ ≤ 1 to get that E[〈u,x〉2] ≤ E[‖u‖21 ‖x‖2∞] ≤
‖u‖21.

Lemma B.2. Let r > 0 and let ε0, ε1, . . . be a sequence such that εt+1 ≤ εt − r ε2t
for all t. Let ε be a positive scalar and k be a positive integer such that k ≥ ⌈

1
r ε

⌉
.

Then εk ≤ ε.
Proof. We have

ε1 ≤ ε0 − rε20 ≤ 1/(4r),

where the maximum is achieved at ε0 = 1/(2r).
Next, we use an inductive argument to show that for t ≥ 1 we have

(B.1) εt ≤ 1

r(t + 1)
,

which will imply the desired bound in the lemma. Equation (B.1) clearly holds for t =
1. Assume that it holds for some t ≥ 1. Let ηt = rεt, so we know that ηt ≤ 1/(t+1),
and we need to show that ηt+1 ≤ 1/(t+ 2). The assumption εt+1 ≤ εt − rε2t gives

ηt+1 ≤ ηt − η2t = ηt(1 − ηt) ≤ ηt
1 + ηt

=
1

1 + 1/ηt
≤ 1

t+ 2
,

SPARSITY IN OPTIMIZATION PROBLEMS WITH CONSTRAINTS 2831

where the first inequality is because 1 ≥ 1 − η2t = (1 − ηt)(1 + ηt) and the second
inequality follows from the inductive assumption.

The following lemma generalizes the Khintchine inequality also to biased random
variables. We use the lemma in order to obtain lower bounds on the mean-absolute
error in terms of the bias and variance of the prediction.

Lemma B.3. Let x = (x1, . . . , xd) be a sequence of independent Bernoulli random
variables with 0.05 ≤ Pr[xk = 1] ≤ 0.95. Let Q be an arbitrary polynomial over d
variables of degree r. Then

E[|Q(x)|] ≥ (0.2)r E[|Q(x)|2] 12 .
Proof. Using Hölder’s inequality with p = 3/2 and q = 3 we have

E[|Q(x)|2] =
∑

x∈{0,1}d

Pr(x)|Q(x)|2

=
∑
x

(
Pr(x)2/3|Q(x)|2/3

)(
Pr(x)1/3|Q(x)|4/3

)

≤
(∑

x

Pr(x)|Q(x)|
)2/3(∑

x

Pr(x)|Q(x)|4
)1/3

.

Taking both sides of the above to the power of 3/2 and rearranging, we obtain that

(B.2) E[|Q(x)|] ≥ E[|Q(x)|2] 12
(
E[|Q(x)|2] 12 /E[|Q(x)|4] 14

)2
.

We now use Corollary (3.2) from [21] to get that

E[|Q(x)|2] 12 ≥ σ4,2(α)
r
E[|Q(x)|4] 14 ,

where

σ4,2(α) =

√
(1 − α)2/4 − α2/4

(1− α)α2/4−1 − α(1 − α)2/4−1
.

We conclude our proof by combining the above with (B.2) and noting that for α ∈
(0.05, 0.5) we have σ4,2(α)

2 ≥ 0.2.

REFERENCES

[1] S. D. Ahipasaoglu, P. Sun, and M. J. Todd, Linear convergence of a modified Frank-Wolfe
algorithm for computing minimum volume enclosing ellipsoids, Optim. Methods Softw.,
23 (2008), pp. 5–19.

[2] A. R. Barron, Universal approximation bounds for superposition of a sigmoidal function,
IEEE Trans. Inform. Theory, 39 (1993), pp. 930–945.

[3] J. Borwein and A. Lewis, Convex Analysis and Nonlinear Optimization, Springer, New York,
2006.

[4] E. J. Candes and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51
(2005), pp. 4203–4215.

[5] E. J. Candes, Compressive sampling, in Proceedings of the International Congress of Math.,
Madrid, Spain, 2006.

[6] K. L. Clarkson, Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm, in
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
2008, pp. 922–931.

2832 SHAI SHALEV-SHWARTZ, NATHAN SREBRO, AND TONG ZHANG

[7] G. Davis, S. Mallat, and M. Avellaneda, Greedy adaptive approximation, J. Constr. Ap-
prox., 13 (1997), pp. 57–98.

[8] D. L. Donoho, Compressed Sensing, Technical report, Stanford University, Palo Alto, CA,
2006.

[9] D. L. Donoho, For most large underdetermined systems of linear equations, the minimal �1-
norm solution is also the sparsest solution, Comm. Pure Appl. Math., 59 (2006), pp. 907–
934.

[10] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Res. Logist. Quart.,
3 (1956), pp. 95–110.

[11] Y. Freund and R. E. Schapire, A short introduction to boosting, J. Japanese Soc. Artif.
Intell., 14 (1999), pp. 771–780.

[12] J. H. Friedman, Greedy function approximation: A gradient boosting machine, Ann. Statist.,
29 (2001), pp. 1189–1232.

[13] J. Guélat and P. Marcotte, Some comments of Wolfe’s “away step”, Math. Program., 35
(1986), pp. 110–119.

[14] L. K. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates
for projection pursuit regression and neural network training, Ann. Statist., 20 (1992),
pp. 608–613.

[15] P. Kumar and E. Alper Yildirim, An Algorithm and a Core Set Result for the Weighted
Euclidean One-Center Problem, INFORMS J. Comput., 21 (2009), pp. 614–629.

[16] W. Sun Lee, P. L. Bartlett, and R. C. Williamson, Efficient agnostic learning of neural
networks with bounded fan-in, IEEE Trans. Inform. Theory, 42 (1996), pp. 2118–2132.

[17] N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm, Mach. Learn., 2 (1988), pp. 285–318.

[18] S. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans.
Signal Process., 41 (1993), pp. 3397–3415.

[19] B. Natarajan, Sparse approximate solutions to linear systems, SIAM J. Computing, 24 (1995),
pp. 227–234.

[20] A. Y. Ng, Feature selection, l1 vs. l2 regularization, and rotational invariance, in Proceedings
of the Twenty-First International Conference on Machine Learning, 2004.

[21] K. Oleszkiewicz, On a Nonsymmetric Version of the Khinchine-Kahane Inequality, Progr.
Probab. 56, Birkhauser, Boston, 2003.

[22] G. Pisier, Remarques sur un résultat non publié de B. Maurey, 1980–1981.
[23] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[24] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, Boosting the margin: A new

explanation for the effectiveness of voting methods, Ann. Statist., 26 (1998), pp. 1651–
1686.

[25] S. Shalev-Shwartz, Online Learning: Theory, Algorithms, and Applications, Ph.D. thesis,
The Hebrew University, Jerusalem, 2007.

[26] S. Shalev-Shwartz and Y. Singer, On the equivalence of weak learnability and linear sepa-
rability: New relaxations and efficient boosting algorithms, Machine Learning Journal, 80
(2008), pp. 141–163.

[27] S. Shalev-Shwartz and N. Srebro, Low �1 norm and guarantees on sparsifiability, in Sparse
Optimization and Variable Selection, Joint ICML/COLT/UAI Workshop, 2008.

[28] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc B., 58
(1996), pp. 267–288.

[29] V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
[30] M. Warmuth, K. Glocer, and S. V. N. Vishwanathan, Entropy regularized lpboost, in

Proceedings of the Algorithmic Learning Theory (ALT) 19th International Conference,
2008.

[31] M. Warmuth, J. Liao, and G. Ratsch, Totally corrective boosting algorithms that maximize
the margin, in Proceedings of the 23rd International Conference on Machine Learning,
2006.

[32] T. Zhang, Sequential greedy approximation for certain convex optimization problems, IEEE
Trans. Inform. Theory, 49 (2003), pp. 682–691.

[33] T. Zhang, Adaptive forward-backward greedy algorithm for sparse learning with linear models,
in Proceedings of the 22nd Annual Conference on Neural Information Processing Systems,
2008.

[34] P. Zhao and B. Yu, On model selection consistency of Lasso, J. Mach. Learn. Res., 7 (2006),
pp. 2541–2567.

