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 Trading Costs and Returns for US Equities:  
Estimating Effective Costs from Daily Data 

Abstract 
 The effective cost of trading is usually estimated from transaction-level trade and 

quote data. This study proposes a Gibbs estimate that is based on daily closing prices. In 

a broad sample of US firms over a period when both high-frequency TAQ and daily 

CRSP data are available (1993-2005), an annual Gibbs estimate based on daily data 

achieves a correlation of 0.965 with the TAQ value. The approach is extended to a panel 

specification in which effective costs for individual stocks are driven by a latent common 

factor. In the comparison sample, the estimated series for the common factor based on 

daily data achieves a correlation of 0.447 with the corresponding TAQ value at a daily 

frequency (0.670 at a monthly frequency). The firm-specific factor loadings estimated 

from daily data are also positively correlated with the loadings estimated from 

transactions data.  

The Gibbs estimates are employed in asset pricing specifications over a longer 

historical sample (1927-2005).  The results offer only weak support for the view that 

effective cost (as a characteristic) affects expected stock returns, except when interacted 

with a January seasonal dummy variable. An asset’s return covariance with the common 

factor of effective cost is not found to be a determinant of expected returns. The 

difference between these results and those of analyses based on other liquidity proxies 

indirectly suggests the importance of trading volume. The latter quantity is used in most 

daily liquidity proxies, but does not enter the effective cost estimates constructed here. 

 

 

JEL classification codes: C15, G12, G20
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1. Introduction and summary of results 

Investigations into the role of liquidity and transaction costs in asset pricing must 

generally confront the fact that while many asset pricing tests make use of US equity returns 

from 1926 onwards, the high-frequency data used to estimated trading costs are usually not 

available prior to 1983. Accordingly, most studies either limit the sample to the 1983-present 

period of common coverage or use the longer historical sample with liquidity proxies estimated 

from daily data. The present paper falls into the latter group. It proposes a new approach to 

estimate of the effective cost of trading and the common variation in this cost. These estimates 

are then used in conventional asset pricing specifications with a view to ascertaining the role of 

trading cost as a characteristic and as a risk factor in explaining expected returns.1 

For the purchase of a security, the effective cost is the execution price less the midpoint 

of the prevailing bid and ask quotes (and vice versa for a sale). Although it does not resolve the 

trade-related temporary and permanent (price impact) components of the price change, it is 

simple to compute (from detailed trade and quote records), easy to interpret, and is widely used 

as a measure of market quality.2 Since 2000 the SEC has required US market centers to report 

                                                 
1 Recent asset pricing analyses that cover a sample where high frequency data are available 

include Brennan and Subrahmanyam (1996), Easley, Hvidkjaer and O'Hara (2002),  Sadka 

(2004), Korajczyk and Sadka (2006). Analyses that use proxies based on daily data include 

Amihud (2002), Pastor and Stambaugh (2003), Acharya and Pedersen (2005), and Spiegel and 

Wang (2005). Closing daily or annual bid-ask quotes are sometimes available over samples 

longer than those of the high-frequency data. Studies that use closing spreads include Stoll and 

Whalley (1983), Amihud and Mendelson (1986), Eleswarapu and Reinganum (1993), 

Eleswarapu and Reinganum (1993), Reinganum (1990). Chalmers and Kadlec (1998). Easley 

and O'Hara (2002) survey the area. 
2 Lee (1993) is representative of early work. Stoll (2006) is a recent example.  
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summary statistics of their effective costs based on the orders they actually receive and execute 

(Reg NMS Rule 605, formerly designated Rule 11ac1-5, often called “dash five”). 

To estimate the effective cost from daily closing prices, the study starts with the Roll 

(1984) model of price dynamics. Hasbrouck (2004) suggests a Bayesian Gibbs approach to this 

model, and applies it to futures transaction data. The present study generalizes the model and 

applies it to daily CRSP US equity data. The paper develops two models. The basic market-

adjusted model generates annual estimates of effective cost at the firm level. The latent common 

factor version allows for time variation in effective cost with commonality across firms. The 

latter model generates estimates of the common factor at a daily frequency and, for each firm, an 

annual estimate of the loading on this factor. 

 All of the CRSP/Gibbs estimates are compared to corresponding values of effective cost 

level and variation computed using high-frequency (TAQ) data. This comparison sample spans 

1993-2005, and comprises roughly 300 firms per year (approximately 3,900 firm-years). In the 

comparison sample, the CRSP/Gibbs estimate of average effective cost achieves a correlation of 

0.965 with the TAQ value. The CRSP/Gibbs estimate of the common effective cost factor is 

highly correlated with the cross-firm average of the TAQ values (0.447 at the daily frequency; 

0.585, weekly; 0.670, monthly).  The CRSP/Gibbs estimates of the firm-level loadings on this 

factor are moderately correlated (0.328) with the corresponding TAQ-based estimates. Overall, 

subject to some qualifications discussed in the body of the paper, these findings suggest that the 

CRSP/Gibbs estimates are strong proxies for the high-frequency measures. The estimates are 

extended to span the full CRSP daily sample (1926 to present). 

 The paper then turns to applications of these proxies in asset pricing specifications. The 

earlier papers in this area view liquidity as a characteristic that drives a wedge between the 

returns an investor might realize net of trading costs and the gross returns that form the basis for 

most asset pricing tests (Amihud and Mendelson (1986)). Later analyses emphasize the effects of 

liquidity variation, both in time and cross-section. Pastor and Stambaugh (2003) note that a 

trading cost that covaries positively with an asset’s (gross) return increases the risk in the net 
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return. This effect is magnified if a low (gross) return increases the likelihood of a forced 

liquidation, and consequent involuntary realization of the trading cost. This argues in favor of 

treating market-wide liquidity as a risk-factor. Pastor and Stambaugh find that the covariance 

between an asset’s return and the common liquidity factor is priced.  

 Acharya and Pedersen (2005) analyze an overlapping generations model populated with 

myopic (one-period) agents. In their model the effects of liquidity on expected returns appear in 

diverse terms including a characteristic effect (as in the earlier papers), covariance between gross 

return and the liquidity factor (as in Pastor and Stambaugh), and a term in the covariance 

between an asset’s liquidity and the common liquidity factor. Intuitively, the last term captures 

the extent to which the trading cost can be diversified in a portfolio. They find support for these 

effects using the Amihud (2002) illiquidity measure. Korajczyk and Sadka (2006) also find 

liquidity to be a risk factor, using high-frequency measures constructed over 1983-2000. 

 Relative to these studies the results for expected returns and effective costs obtained in 

the present paper, however, are less supportive of liquidity and liquidity-risk effects. In diverse 

samples across listing venues and time, effective cost as a characteristic tends to be a positive 

(but not uniformly significant) determinant of expected returns. The relationship is nevertheless 

marked by strong seasonality. The impact of effective cost in January is uniformly large and 

significantly positive. This confirms in a larger and broader sample, the seasonality results 

reported by Eleswarapu and Reinganum (1993). 

 The analysis finds no support for the role of market-wide effective cost as a risk factor. In 

estimations of return-generating processes, the addition of this component (or its innovation) to a 

specification that includes the three Fama-French factors results in a negligible improvement in 

explanatory power. In expected return specifications, the coefficients of effective-cost betas are 

close to zero. When the beta of asset’s effective cost relative to the market-wide effective cost is 

added as a characteristic (as in the Acharya-Pedersen framework), the estimated effect on 

expected return tends to be positive but insignificant. 
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 The present results on the role of liquidity variation are therefore somewhat weaker than 

the findings of other studies. While a full discussion of the sources of this divergence is deferred 

until later in the paper, one consideration in particular stands out. The effective cost estimate 

used in the present paper is a narrow measure of trading cost and is based solely on closing 

prices. The daily-based liquidity proxies used in all of the other studies incorporate trading 

volume. The overall results therefore may simply attest to the importance of trading volume, and 

a definition of liquidity that is broad enough to encompass the dimensions of trading activity that 

volume reflects. Trading costs per se may be unimportant, while liquidity (in the larger sense of 

economic distortions attributed to the trading process) may still be relevant. 

 The paper is organized as follows. Section 2 describes the specification and 

computational procedures used the basic market-adjusted model, in which the effective cost is 

assumed static. Section 3 discusses the latent common-factor model, which allows for dynamic 

common variation in effective cost. Data sources and sample construction are discussed in 

Section 4. Results for the basic market-adjusted and latent common factor models are presented 

in Sections 5 and 6. Section 7 applies the effective cost estimates in asset pricing specifications. 

A discussion of the results in Section 8 concludes the paper. 

2. Bayesian estimation of effective cost 

a. The Roll model 

Roll (1984) suggests a simple model of security prices in a market with transaction costs. 

The specifications estimated in this paper are variants of the Roll model, but the basic version is 

useful for describing the estimation procedure. The price dynamics may be stated as: 

 1t t t

t t t

m m u
p m cq

−= +
= +

. (1) 

where mt is the log quote midpoint prevailing prior to the tth trade (“efficient price”), pt is the log 

trade price. The qt are direction indicators, which take on the values +1 (for a buy) or –1 (for a 

sale) with equal probability. The disturbance ut reflects public information and is assumed to be 
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uncorrelated with qt. Roll motivates c as one-half the posted bid-ask spread, but since the model 

applies to transaction prices, it is natural to view c as the effective cost. The model has 

essentially the same form under time aggregation. In particular, although the model is sometimes 

estimated with transaction data (e.g., Schultz (2000)), it was originally applied to daily data, with 

qt being interpreted as the direction variable for the last trade of the day.  

 The Roll model implies  

 ( )1 1t t t t t t tp m c q m c q c q u− −Δ = + − + = Δ + ,  (2) 

from which it follows that ( )1,t tc Cov p p −= − Δ Δ , where ( )1,t tCov p p −Δ Δ is the first-order 

autocovariance of the price changes.  The usual estimate of c is the sample analog of this, termed 

here the “moment estimate” because it uses a sample moment (the sample autocovariance) in lieu 

of the population value, and to distinguish it from the Gibbs estimate.  

 The moment estimate is feasible, however, only if the first-order sample autocovariance 

is negative. In samples of daily frequency this is often not the case. In annual samples of daily 

returns, Roll found positive autocovariances in roughly half the cases. Harris (1990) discusses 

this and other aspects of this estimator. His results show that positive autocovariances are more 

likely for low values of the spread. Accordingly, one simple remedy is to assign an a priori value 

of zero. Another problem arises when there is no trade on a particular day, in which case CRSP 

reports the midpoint of the closing bid and ask. If these days are retained in the sample, the 

estimated cost will generally be biased downwards, because the midpoint realizations do not 

include the cost. If these days are dropped from the sample, there may be heteroscedasticity since 

the efficient price innovations may span multiple days. 

b. Bayesian estimation using the Gibbs sampler 

 Hasbrouck (2004) advocates a Bayesian approach. Completing the Bayesian specification 

requires specification of the distribution of ut. I assume here that ( )2~ . . . 0,
d

t uu i i d N σ . The prior 

distributions for parameters are discussed below. 
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 The data sample is denoted { }1 2, , , Tp p p p≡ … .  The unknowns comprise both the model 

parameters { }2, uc σ and the latent data, the trade direction indicators { }1, , Tq q q≡ … . (Knowing p 

and q suffices to determine { }1, , Tm m m≡ … .)  The parameter posterior density ( ), uf c pσ  is not 

obtained in closed-form, but is instead characterized by a random draws (from which means and 

other summary statistics may be computed). The random draws are generated using a Gibbs 

sampler whereby each unknown is drawn in turn from its full conditional (posterior) distribution. 

First, c and q are initialized to arbitrary feasible values. Then c is drawn from ( )2 , ,uf c q pσ ; 2
uσ  

is drawn from ( )2 , ,uf c q pσ ; q1 is drawn from ( )2
1 2 3, , , , ,u Tf q c q q q pσ … , and so on. 

 The draws are described in more detail below, but one central feature of the model 

warrants emphasis. In the expression for tpΔ  given by equation (2), if the tqΔ  are known (or 

taken as given), the equation describes a simple linear regression, with coefficient c. The linear 

regression perspective is a dominant theme of the present analysis. It simplifies implementation 

using standard results from Bayesian statistics, and suggests ways in which the model may be 

generalized. 

Simulating the coefficient(s) in a linear regression coefficients 

 The standard Bayesian normal regression model is y Xb e= +  where y is a column vector 

of n observations of the dependent variable, X is an ( )n k× matrix of fixed regressors, β is a 

vector of coefficients and the residuals are zero-mean multivariate normal ( )~ 0, ee N Ω . Given 

eΩ and a normal prior on β, ( )~ ,N β ββ μ Ω , the posterior is ( )* *~ ,N β ββ μ Ω  where 

( ) ( )1* 1 1 1 1
e eX X X yβ β β βμ μ

−− − − −′ ′= Ω + Ω Ω + Ω  and ( ) 1* 1 1
eX Xβ β

−− −′Ω = Ω + Ω .  Carlin and Louis 

(2000), Lancaster (2004), and Geweke (2005) are contemporary textbook treatments.  

In the present applications it is often necessary to impose inequality restrictions on the β. 

Typically, one or more coefficients is restricted to the positive domain. It is straightforward to 

show that when the β prior is restricted as β β β< < , the posterior has the same parameters the 

in the unrestricted case, but truncated to the same interval as the prior (see, for example, Geweke 

(2005), section 5.3.1). Hajivassiliou, McFadden and Ruud (1996) discuss computationally 

efficient procedures for making random draws from truncated multivariate normal distributions. 
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Simulating the error covariance matrix 

 The usual conjugate prior for eΩ in the general normal case is the inverted Wishart (see 

Carlin and Louis, p. 146). All of the applications in the present analysis, however, involve 

diagonal (but not necessarily scalar) eΩ , i.e., where the diagonals are of the form 2
i Iσ  for 

1,i m= …  (finite). In this simpler case, it is convenient to handle the 2
iσ independently. Assume 

that a set of regression errors  for 1, ,ie i n= …  is i.i.d. ( )20,N σ . If the parameter prior is 

( )2 ~ ,IGσ α β  where IG denotes the inverted gamma distribution, then the posterior is 

( )2 * *~ ,IGσ α β  where * 2nα α= +  and 
1* 1 2 2ieβ β

−−⎡ ⎤= +⎣ ⎦∑ . 

Simulating the trade direction indicators 

 The remaining step in the sampler involves drawing { }1, , Tq q q≡ … when 2 and uc σ  are 

known. The procedure is sequential. The first draw is  1 2 , Tq q q… , the second draw is 

2 1 3, , Tq q q q… , the third draw is 3 1 2 4, , , Tq q q q q… , etc., where the “|” notation denotes the 

conditional draw. The full set of conditioning information includes the price changes 

{ }2 , Tp p pΔ ≡ Δ Δ…  and the parameters c and 2
uσ .   

The first realization of tu  to enter the observed prices is 2u . This may be written as a 

function of 1q as ( )2 1 2 2 1u q p cq cq= Δ − +  (given 2q , etc.). A priori, ( )2
2 ~ 0, uu N σ  and 1 1q = ±  

with equal probability.  The posterior odds ratio of a buy vs. a sell is 

 
( )
( )

( )( )
( )( )

2 11 2

1 2 2 1

1Pr 1 ,
Pr 1 , 1

f u qq q
q q f u q

= += +
=

= − = −

…
…

 

where f is the normal density function with mean zero and variance 2
uσ . The right hand side of 

this is easily computed, and 1q  is drawn using the implied (Bernoulli) probability. 

 To draw q2, note that given everything else, we may write ( )2 2 2 2 1u q p cq cq= Δ − +  and 

( )3 2 3 3 2u q p cq cq= Δ − + . Given the assumed serial independence of the ut,  the posterior odds 

ratio is 

 
( )
( )

( )( ) ( )( )
( )( ) ( )( )

2 1 3 2 2 3 2

2 1 3 2 2 3 2

Pr 1 , , 1 1
Pr 1 , , 1 1

q q q f u q f u q
q q q f u q f u q

= + = + = +
=

= − = − = −

…
…
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Again, we compute the right-hand side and make the draw. In this fashion, we progress through 

the remaining tq . For all draws of tq  (except the first and last) the posterior odds ratio involves 

only the adjacent disturbances 1 and t tu u + . The posterior odds ratio for the last draw is 

 
( )
( )

( )( )
( )( )

1 1

1 1

1Pr 1 , ,
Pr 1 , , 1

T TT T

T T T T

f u qq q q
q q q f u q

−

−

= += +
=

= − = −

…
…

 

 In some samples, for a subset of times, the trade directions may be known. These tq may 

simply be left at their known values. A related situation arises from the CRSP convention of 

reporting quote midpoints on days with no trades. For these days we fix 0tq = , implying that 

t tp m= , i.e. that the quote midpoint is observed without error. This may be formally justified by 

positing a more general model that admits the possibility of no trade. If the no-trade probability 

is denoted π, for example, the general model would allow tq  to take on values 0, +1, and –1  

with probabilities π, ( )1 2π− , and ( )1 2π− . Assuming that the no-trade days are known, that 

buys and sells are equally likely given a trade occurrence, and that we do not wish to estimate or 

characterize π, however, the more general model is observationally equivalent to the simpler one. 

 Another sort of observational equivalence is slightly more troublesome. It is natural to 

assume that trading costs are (at least on average) non-negative, i.e., 0c > . This is an economic 

assumption, however. From a statistical viewpoint, the model is observationally equivalent to 

one in which 0c <  and all trade directions have the opposite signs (“buys” have 1tq = − , etc.). 

Simulated posteriors for c are in consequence bimodal, symmetric about the origin. To rule out 

this “mirror” situation, it is convenient to impose the restriction 0c >  on the prior. 

Bayesian analyses sometimes use improper priors, often with the purpose of establishing 

an explicit connection to classical frequentist approaches. For example, letting 1
β
−Ω  approach 

zero in the Bayesian regression model discussed above leads to posterior estimates that converge 

to the usual frequentist ones (e.g., Geweke, p. 81). The present situation does not, however, 

admit this device. The regressors in equation (2) are the Δqt, which are simulated. If the tq drawn 

in one iteration (sweep) of the sampler all happen to have the same sign, then all of the 0tqΔ = , 

and the computed regression is uninformative (for this sweep). In this case, a draw must be made 
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from the prior distribution. Although this is an infrequent occurrence, it effectively rules out a 

prior for c that is proper but extremely diffuse.  

c. The basic market-adjusted model and sampler specification 

 The models estimated in this paper generalize on the basic Roll model in various 

respects. The discussion now turns to the first of two models actually estimated. It is 

straightforward to add other regressors to equation (2). The motivation for doing so is that, 

intuitively, the procedure tries to allocate transaction price changes between “true” (efficient 

price) returns and transient trading costs. Anything that helps explain either component will 

sharpen the resolution. Return factors are obvious candidates for supplemental regressors. The 

basic market-adjusted model is: 

 t t mt tp c q r uβΔ = Δ + + ,  (3) 

where mtr is the excess market return on day t. It is assumed that the market return is independent 

of tqΔ . This would be the case if the trade direction indicators for the component securities are 

mutually independent, implying a diversification of bid-ask bounce. Note that although the 

present goal is improved estimation of c, it is likely that estimation of β will also be enhanced. 

 In the present applications (all involving US equity data), the prior for c is the normal 

density with mean parameter equal to zero and variance parameter equal to 0.052 restricted to 

nonnegative values, denoted ( )2 20, 0.05N μ σ+ = = . The 2and μ σ  appearing here are only 

formal parameters: the actual mean and and variance of the distribution will differ due to the 

truncation. The prior for β is ( )21, 1N μ σ= = ; that for 2
uσ  is inverted gamma, 

( )12 121 10 , 1 10IG α β− −= × = × .  

 The sampler then follows the following program: 

• Step 0 (initializations). Although the limiting behavior of the sampler is invariant to 

starting values, “reasonable” initial guesses may hasten convergence. The tq that do not 

correspond to midpoint reports are set to the sign of the most recent price change, with q1 

set (arbitrarily) to +1. 2
uσ  is initially set to 0.0004 (roughly corresponding to a 30% 
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annual idiosyncratic volatility). No initial values are required for c and β, as they are 

drawn first. 

• Step 1. Based on the most recently simulated values for 2 and the u tqσ , compute the 

posterior for the regression coefficients ( )and c β and make a new draw. 

• Step 2. Given ,  and the tc qβ , compute the implied tu , update the posterior for 2
uσ  and 

make a new draw. 

• Step 3. Given 2,  and uc β σ , make draws for 1 2, , , Tq q q… . Go to step 1.  

To ease the computational burden, each sampler is run for only 1,000 sweeps. Although 

this value is small by the standards of most MC analyses, it appears to be sufficient in the present 

case. Experimentation with up to 10,000 sweeps did not materially affect the mean parameter 

estimates. Of the 1,000 draws for each parameter, the first 200 are discarded to “burn in” the 

sampler, i.e., remove the effect of starting values. The average of the remaining 800 draws (in 

principle the posterior mean) is used as a point estimate of the parameter in subsequent analysis 

d. An illustration 

The essential properties of the estimator may be illustrated by considering two simulated 

price paths. The paths correspond to situations typical of US equities. Both paths are of length 

250 (roughly a year of daily observations). The standard deviation for the efficient price 

innovation is 0.02uσ =  (i.e., about two percent, corresponding to an annual standard deviation 

of about thirty-two percent). For simplicity, 0β = . One simulated series of tu and one simulated 

series of tq are used for both paths. The price paths are identical except for the scaling of the 

effective cost: c is either set to 0.01 or 0.10, and 0β = . For each path the Gibbs sampler is run 

for 10,000 sweeps, with the first 2,000 discarded. The remaining 8,000 draws are used to 

characterize the posteriors. 

 Figure 1 illustrates the simulated 90% confidence regions for the parameter posteriors. 

Panel A depicts the posterior when 0.01c = ; Panel B, when 0.10c = . To facilitate comparisons, 

the horizontal axes ( )uσ are identical. The vertical axes ( )c are shifted, but have the same scale. 
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 The results are striking. In Panel A ( )0.01c = , the joint confidence region is large and 

negatively sloped. In Panel B ( )0.10c = , the confidence region is circular, centered around the 

population values, and compact. 

 To develop the intuition for this result, recall that the Gibbs procedure generates 

conditional random draws for the trade direction indicators. These draws characterize the 

posteriors for the trade direction indicators, and the sharpness of these posteriors corresponds 

very closely to what one might guess on the basis of looking at the price paths. When c is large 

relative to the efficient price increments, the price path appears distinctly “spikey” (with many 

reversals), as a consequence of the large bid-ask bounce. It is easy to confidently identify buys 

and sells, and the parameter posterior is concentrated. When c is small, however, the reversals 

are less distinct. It is less certain whether a given trade is a buy or sell. The allocation of the price 

change between the transient (bid-ask) component and the permanent change in the security 

value is less clear. This naturally leads to greater uncertainty (less concentration) and the 

negative correlation (downward slope) implied by the posterior in Panel A. 

 This illustration has implications for studies of US equities. The posted half-spread in a 

large, actively traded issue might be roughly one penny on a share price of $50, implying 

0.0002c = . No approach using daily trade data is likely to achieve a precise estimate of such a 

magnitude. The posted half-spread for a thinly traded issue might be twenty-five cents on a five-

dollar stock, implying 0.05c = . This is likely to be estimated much more precisely. 

3. Estimating variation in effective cost 

The estimation of a liquidity measure is rarely an end in itself. One usually seeks to 

explain liquidity variation in the cross-section (across firms) or over time, or to relate this 

variation to other quantities of economic interest. This section describes a general approach to 

modeling liquidity variation and the specific model used to characterize latent commonality. 

To assess variation in any liquidity estimate, the simplest strategy is to partition the 

sample across firms and/or time periods, form estimates over the subsamples, and use the 

subsample values in further analysis. Cross-sectional variation in liquidity for US equities, for 
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example, might be analyzed by computing an estimate for each firm using a year of daily data 

and then regressing these estimates against capitalization, etc. Time variation is often 

characterized using estimates formed over shorter intervals, typically one month (as in, e.g., 

Pastor and Stambaugh (2003) or Acharya and Pedersen (2005)) . 

This two-step approach is most attractive when the subsamples are large enough that the 

estimation errors in the liquidity measures are small relative to the between-subsample variation 

of interest. The analysis of the estimates in the second step may involve additional procedures to 

minimize the effects of these errors, such as forming portfolio averages. The first estimation, 

though, is simply the procedure discussed in the last section, and needs no further elaboration. 

An alternative approach is to model the liquidity variation directly within the price 

change specification. This general technique is widely used in other financial econometrics 

contexts. In asset pricing applications, for example, time variation in betas and risk-premia is 

commonly modeled by placing parametric functions, typically linear projections on conditioning 

variables, directly in the return specifications (see Jagannathan, Skoulakis and Wang (2006) and 

references therein). The remainder of this section develops this one-step approach for modeling 

effective costs. 

a. The case of observed liquidity determinants 

The approach follows from the interpretation of the price-change equation as a linear 

regression specification. By using linear projections to model cost variation, estimation can 

proceed by repeated applications of the Bayesian regression model. The price change equation in 

all cases may be written as 

 , 1 , 1 for 1, ,  firms and 2, ,it it it i t i t i mt itp c q c q r u i N t Tβ− −Δ = − + + = =… …  (4) 

Here, cit denotes the cost for firm i at time t. It is assumed that the and it itq u are independent 

across firms. All commonality in efficient price movements is driven by the market factor. 

 To modify the Gibbs sampler developed for the basic market-adjusted model, note that at 

the point where we need to simulate the itq , the values of cit will be known (taken as given). 
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Thus, these draws may be accomplished with a straightforward modification of the procedure 

described in section 2.b: it suffices to replace all terms involving cqt with it itc q . 

 We now turn to the specification of cit. Let it it ic Z γ= where itZ is a set of known 

conditioning variables and iγ  is a firm-specific coefficient vector. Candidate variables might 

include forecast volatility, market capitalization, earnings surprises, and/or dummy variables for 

splits, changes in regulation, etc. With this functional form, the price change may be written 

 ( ), 1 , 1it it it i t i t i i mt itp q Z q Z r uγ β− −Δ = − + + ,  (5) 

Thus, given all other variables and parameters, and i iγ β are regression coefficients. The draws 

may be accomplished by applying the Bayesian normal regression model. Since the uit are 

assumed independent across firms, the computation may be performed separately for each firm. 

 It will generally be necessary, however, to impose some restrictions in order to insure the 

non-negativity of the cit. One might, for example, transform the conditioning variables so that 

they are non-negative, and impose 0iγ > in the coefficient prior. 

b. The latent common factor (LCF) model 

 Bayesian Gibbs sampling approaches have been applied to multivariate models involving 

latent factors (Geweke and Zhou (1996) present a treatment of the APT, for example.) Thus, with 

sufficient additional structure, it is not even essential that the conditioning variables be 

observable. A major goal of the present study is characterization of common variation in 

effective cost.  This is accomplished with the model:  

 0 1it i i tc zγ γ= +   (6) 

where tz is an unobserved factor common to the effective costs of all firms. Putting this into the 

price change equation and rearranging yields: 

 ( ) ( ) ( ), 1 0 1 1 1 , 1 1it it i t i i mt i it t i i t t itp q q r q z q z uγ β γ γ− − −Δ − − − = − +  (7) 

Written in this form, the zt are coefficients in a panel regression involving N firms and T–1 price 

changes: 
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It is common in factor analysis to hypothesize that the unobserved factor is a standard normal 

variate. Normalizing the mean and variance to zero and unity fixes a scaling of the factor 

loadings (γ0j and γ1j) that would otherwise be indeterminant. As the present application also 

requires non-negativity,  the prior is that the tz are identically and independently distributed as 

( )0,1N +  variates. 

 As noted, the specification is essentially a panel regression, the form of which fits within 

the Bayesian regression framework summarized earlier. This panel regression is included as an 

additional step in a sweep of the sampler. The prior for γ0i is ( )2 20, 0.05N μ σ+ = = ; and for γ1i, 

( )2 20, 0.02N μ σ+ = = . In starting up the sampler, the zt are initialized to random draws from 

( )0,1N + . 

At first glance the LCF model might seem to make impossible demands on the data. The 

price change specification, for example, contains terms such as 1i t itz qγ , that are the product of 

three unobserved quantities. The best evidence in support of the procedure is the comparison of 
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daily-based and high-frequency estimates presented in Section 6.a. It is useful at this point, 

though, to note certain structural features of the model that facilitate identification. 

Firstly, the model attributes all variation and commonality in effective costs to zt. There is 

no idiosyncratic variation in the effective costs, nor is there commonality in the trade directions. 

Return commonality, of course, is still allowed via the mtrβ  term in the specification. Secondly, 

the distributional assumptions are strong, even by the usual standards of Bayesian analysis. The 

present analysis not only assumes pervasive normality, but also nonnegativity. This assumption, 

when invoked for all the determinants of cit, ensures the nonnegativity of cit itself. This in turn 

helps resolve the reversal components of price changes, implicitly identifying qit. The common 

factor zt is essentially identified by the cross-sectional features of the price changes (and the 

normalization). In the panel regression, a realization of zt enters 2N price changes (the price 

change at times t and t+1 for each of the N securities).  Alternatively, viewed from the 

perspective of inference, 2N price changes are contributing to the estimation of each zt.  

c. Extensions 

The procedure used here involves little more than repeated application of the standard 

Bayesian normal regression model. The approach can be applied to any liquidity measure that is 

obtained as a regression coefficient. The Pastor-Stambaugh gamma measure is such a quantity. 

The Amihud illiquidity measure is defined as the average of a ratio, but one might construct a 

similar quantity as the coefficient in a regression of tr  against dollar volume.  The Amivest 

liquidity ratio might be modified likewise. (Note, however, that in the present application, the 

distributions of key latent variables, qit and zt in particular, are concentrated. Sample distributions 

of trading volumes are very diffuse. This may create convergence problems in modeling their 

regression coefficients.)  



Page 18 

4. Data and implementation 

a. Sample construction 

Most of the Gibbs estimates in the paper are computed in annual samples of daily data. 

These data are taken from the 1926-2005 CRSP daily dataset, restricted to ordinary common 

shares (CRSP share code 10 or 11) that had a valid price for the last trading day of the year, and 

had no changes of listing venue or large splits within the last three months of the year. For 

purposes of assessing the performance of the Gibbs estimates, the analysis uses TAQ data 

produced by the NYSE for the period covering 1993-2005. The asset pricing tests also using the 

Fama-French return factors (downloaded from Ken French’s web site). 

In consideration of computational limits described more fully below, the full latent 

common factor model is estimated in each year (1926-2005) only for a random sample of 150 

firms (300, after 1985) that possessed a full data record for that year (and had no splits or 

changes in listing venue during the year). For day t, the average (across draws) of zt is taken as a 

point estimate of the effective cost factor on that day. These estimates are then used as fixed 

regressors in estimating the LCF model for the remaining CRSP firms. Broad CRSP coverage of 

Nasdaq stocks starts in 1985. In this and subsequent years, the sample of firms used to estimate 

the full latent common factor model consists of 150 listed (NYSE/Amex firms) and 150 Nasdaq 

firms, randomly selected from a sample stratified by market capitalization. Prior to 1985, the 

sample is limited to 150 listed firms. 

The 300 firms/year in 1993-2005 are also used as the basis for the comparison sample. 

Liquidity measures for these firms were estimated from the TAQ dataset. These 3,900 CRSP 

firm-years were matched to TAQ subject to the criteria of: agreement of ticker symbol; 

uniqueness of ticker symbol; the correlation (over the year) between the TAQ and CRSP closing 

prices had to be above 0.9; and, on fewer than 2% of the days did TAQ report trades when CRSP 

did not (or vice versa). Subject to these criteria, 3,777 firms were matched between TAQ and 

CRSP. Summary statistics for the comparison sample. 
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Gibbs estimates (indeed, all Markov chain Monte Carlo procedures) tend to be 

computationally intensive. For a sample of N firms over T days, each sweep for the basic market-

adjusted model requires N ordinary least squares time-series regression over the firm’s return 

series (N regressions of size T).  Each sweep of the latent-common factor model, however, also 

requires a generalized least-squares panel regression with NT observations. Additional effort for 

the latent common factor model also arises from unbalanced data. The basic model can be 

estimated separately for each firm. If the data record for a given firm only covers a portion of 

what is generally available for other firms, the price-change regression is simply computed using 

a shorter sample. Computation of the panel GLS regression, however, requires construction of 

large matrices that are correctly aligned with respect to firm and time. The computational time 

and programming overhead necessary to accommodate firms with incomplete records was 

substantial. These considerations motivated the use of restricted samples described above. 

b. TAQ liquidity measures 

In the comparison sample, the effective cost for firm i on day t is computed as a trade-

weighted average for all trades relative to the prevailing quote midpoint. Similar results were 

obtained using unweighted averages.3  In principle the effective cost measures the cost of an 

order executed as a single trade. When the order is executed in multiple trades, the price impact 

of a trade also contributes to the execution cost. For each firm in the comparison sample, a 

representative price impact coefficient is estimated as the λi coefficient in: 

 ( )it i itit
p Signed Dollar Volumeλ εΔ = + . (9) 

                                                 
3 The prevailing quote is assumed to be the most recent quote posted two seconds or more prior 

to the trade. This is within the “1 to 2 seconds” rule that Piwowar and Wei (2006) find optimal 

for their 1999 sample, but it is likely that reporting conventions have changed over the sample 

used here. 
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The specification was estimated using price changes and signed volume aggregated over five-

minute intervals. A separate estimate was computed for each month. Reported summary statistics 

are based on the average of the monthly values. Variants of specfication (9) were used, with 

qualitatively similar results. 

c. CRSP liquidity measures 

The study considers various alternative daily liquidity proxies. The simplest is the 

moment estimate of the effective cost based on the traditional Roll model, that 

is ( ), , 1,i t i tCov p p −− Δ Δ . When the autocovariance is positive, the moment estimate is set to zero. 

(This occurs for roughly one-third of the firm-years in the comparison sample.) The statistics 

reported in the paper use only those days on which trading occurred, but similar results are 

obtained when all prices (including non-trade days) are used. 

In addition, the analysis includes the proportion of days with no price changes relative to 

the previous close (Lesmond, Ogden and Trzcinka (1999)) and the Amihud (2002) illiquidity 

measure ( )I return Dollar volume= . The study does not include Pastor and Stambaugh 

(2003) gamma measure because the authors caution against its use as a liquidity measure for 

individual stocks, noting the large sampling error in the individual estimates (p. 679). 

5. Results for the basic market-adjusted model 

a. Comparison sample 

Table 1 presents summary statistics for the TAQ and CRSP liquidity variables. Since the 

effective costs are logarithmic, the means correspond to effective costs of about one percent. 

Proportion of zero returns is restricted to the unit interval by construction. At its median value, 

the TAQ-based price impact coefficient λ implies that a $10,000 buy order would move the log 

price by 610,000 7 10 0.0007−× × = , i.e., seven basis points. The median value for the 

illiquidity ratio suggests that $10,000 of daily volume would move the price by 
610,000 0.07 10 0.0007,−× × =  as well. The summary statistics of both the CRSP moment and 
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Gibbs estimates of effective costs are close to the TAQ values. All liquidity measures exhibit 

extreme values; the coefficients of skewness and kurtosis are large, particularly for the illiquidity 

measure. 

The discussion now focuses more closely on effective costs. Figure 2 presents annual 

box-and-whisker plots the TAQ and CRSP/Gibbs estimates. There are several notable features of 

the TAQ values. First, the distributions do not appear stationary. Although the fifth percentile 

(indicated by the lower limit of the whisker) is relatively stable, the ninety-fifth percentile (upper 

limit of the whisker) has declined from about 0.05 in 1993 to 0.02 in 2005. The median (marked 

by the horizontal line in the box) has declined from roughly 0.01 in 1993 to 0.004 in 2005.  This 

decline may reflect changes in trading technology and regulation, but it may also arise from 

changes in the composition of the sample. 

The second important feature is that cross-sectional variation generally appears to be 

much larger than the aggregate time series variation. The smallest range between the fifth and 

ninety-fifth percentiles is about 0.01 (in 2005), and for most the sample the range is at least 0.02. 

This dominates the roughly 0.006 decline in the median over the period. This suggests that tests 

of liquidity effects are likely to be more powerful if they are based on cross-sectional variation.  

The general features of the CRSP/Gibbs distributions closely match those of the TAQ. To 

more rigorously assess the quality of the CRSP/Gibbs estimates and other liquidity proxies, 

Table 2 presents the correlation coefficients. The standard (Pearson) correlation between the 

TAQ and CRSP/Gibbs estimate of effective cost is 0.965.4  The Spearman correlation, a more 

appropriate measure if the proxy is being used to rank liquidity, is 0.872. Because liquidity 

proxies are often used in specifications with explanatory variables that are themselves likely to 

                                                 
4 This and other reported correlations are computed as a single estimate, pooled over years and 

firms. The values are very similar, though, to the averages of annual cross-sectional correlations. 

Over the 13-year sample, the lowest estimated correlation between the CRSP/Gibbs estimate and 

the TAQ value was 0.903 (in 2005). 
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be correlated with liquidity, the table also presents partial correlations that control for logarithm 

of end-of-year share price and logarithm of market capitalization (Pearson: 0.943; Spearman: 

0.678). Not only are the CRSP/Gibbs estimates strong proxies in the sense of correlation, but 

they are also good point estimates of the TAQ measures. A regression of the latter against the 

former would ideally have unit slope and zero intercept. In the comparison sample, the estimated 

regression is /0.001 0.935TAQ CRSP Gibbs
i i ic c e= + + .  Finally, by any of the four types of correlation 

considered here, the conventional moment estimate of effective cost is dominated by the 

CRSP/Gibbs estimator. 

The table also reports correlations for the alternative TAQ and CRSP liquidity measures. 

The two TAQ-based liquidity measures (effective cost and price impact coefficient) are 

moderately positively correlated (0.513, Pearson). This is qualitatively similar to the findings of 

Korajczyk and Sadka (2006). Among the daily proxies, the Amihud illiquidity measure is most 

strongly correlated with the TAQ-based price impact coefficient, with the CRSP/Gibbs effective 

cost estimate being second. 

b. Historical estimates of effective cost, 1926-2005 

The basic market-adjusted model is estimated annually for all ordinary common shares in 

the CRSP daily data base. Figure 3 graphs effective costs, separately for NYSE/Amex (listed) 

and Nasdaq, averaged over market capitalization quartiles. 

Effective costs for NYSE/Amex issues (upper graph) exhibit considerable variation over 

time. The highest values are found immediately after the 1929 crash and during the Depression. 

It is likely that this reflects historic lows for per-share prices coupled with a tick size that 

remained at one-eighth of a dollar, which together imply an elevated proportional cost. 

Subsequent peaks in effective cost generally also coincide with local minima of per share prices. 

After the Depression, however, average effective costs don’t rise above one percent for the three 

highest capitalization quartiles. The largest variation is confined to the bottom capitalization 

quartile.  
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The Nasdaq estimates (lower graph) begin in 1985. As for the listed sample, the largest 

variation arises in the lowest capitalization quartile. The temporal variation, however, may also 

reflect changes in sample composition. In the early 1990s, Nasdaq listed firms that were 

especially young and volatile (Fama and French (2004); Fink, Fink, Grullon and Weston (2006)). 

6. Results for the latent common factor (LCF) model 

a. Comparison sample 

Analysis of the comparison sample is aimed at investigating the correlation of 

CRSP/Gibbs estimates with TAQ values. In the LCF model interest centers on the estimated 

latent liquidity factor zt and the factor loadings (γ0i and γ1i) in equ. (6). We first consider the 

factor itself. To facilitate comparison, note that equ. (6) averaged over all firms in the year yields 

0 1t tc zγ γ= + , where the bars indicate cross-firm averages. In principle, therefore, zt should be 

perfectly correlated with the cross-firm average effective cost. 

The factor zt is estimated at a daily frequency, and the TAQ average effective cost may be 

computed at a daily frequency as well. It is helpful, though, to begin with a graphic presentation 

of the weekly averages (Figure 4). To remove the long-term time trend (previously discussed in 

connection with Figure 2), and enhance comparability, both series are standardized within each 

year to have zero mean and unit variance. Vertical lines in the figure demarcate years. The TAQ 

average is plotted on the top graph; the CRSP/Gibbs factor zt on the bottom. The skew in the 

CRSP/Gibbs series (pronounced peaks, absence of valleys) is simply a consequence of the 

nonnegativity requirement imposed on the factor. Nevertheless many of the peaks in the two 

series correspond. 

More formally, the (Pearson) correlation between the two weekly series is 0.585; the 

Spearman correlation is 0.594. Choice of averaging period affects the correlations. The 

correlation at the daily frequency (the highest available) drop modestly, to 0.447 (and 0.450 for 

the Spearman). The asset pricing tests presented later, however, are conducted at a monthly 
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frequency. The correlation between zt and the TAQ measure averaged over monthly intervals is 

0.670 (and 0.689 for the Spearman). 

We now turn to the estimated factor loadings. For each firm/year in the comparison 

sample, we estimate the regression: 

 0 1
TAQ TAQ TAQ

it i i t itc c eγ γ= + +  (10) 

where TAQ
tc is the cross-firm average effective cost. This regression is simply the analog of the 

linear specification (6) used in the daily CRSP/Gibbs analysis. In principle, 1
TAQ
iγ  in (10) should 

be identical to γ1i in (6). In the comparison sample, the estimated correlation is 0.328, Pearson 

(0.365, Spearman). While this is lower than most of the proxy correlations reported, it should be 

noted that in the asset pricing tests these proxies are averaged within portfolios, which 

presumably enhances the precision. 

 In summary, the analysis of the comparison sample establishes a good case for the 

validity of the LCF CRSP/Gibbs estimates as proxies for the corresponding TAQ values.  

b. Results in the full CRSP sample, 1926-2005 

Figure 5 graphs the effective cost common factor zt over the 1926-2005 period. For visual 

clarity, the figure plots monthly averages. Many of the peaks sensibly correspond to 

contemporaneous news events, of which several are identified. The small drop in the average 

level of zt post-1985 coincides with the inclusion of Nasdaq firms in the CRSP data (and in the 

panel sample used to estimate the factor). 

When the liquidity factor is viewed as a risk factor in modeling stock returns, it is 

sometimes more appropriate to focus on the innovation in the series (i.e., the new information). 

The innovations are constructed as AR(1) residuals. (This specification was chosen by 

minimizing the Bayesian Information Criterion across ARMA specifications through the fifth 

order. Due to the Nasdaq inclusion, separate estimations were made for the pre- and post-1985 

periods.) 
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7. Asset pricing results 

This section presents empirical analyses aimed at determining whether the level and 

covariation of effective cost is a priced characteristic and whether the common component of 

effective cost is a priced risk factor. 

a. Specifications 

The empirical analysis follows the GMM approach summarized in Cochrane (2005) (pp. 

241-243), modified to allow for characteristics and applied to portfolios constructed according to 

various rankings. The specification for expected returns is 

 t tER Zβλ δ= +  (11) 

where Rt is a vector of excess returns relative to the risk-free rate for N assets; λ is a K-vector of 

factor risk premia; β is a matrix of factor loadings; Zt is an N×M matrix of characteristics; and δ 

is an M-vector of coefficients for the characteristics. The factor loadings are the projection 

coefficients in the K-factor return generating process: 

 t t tR a f uβ= + +  (12) 

where a is a constant vector; ft is a vector of factor realizations; and, ut is a vector of 

idiosyncratic zero-mean disturbances. The equilibrium conditions that follow from the usual 

economic arguments imply 0δ =  and ( )ta Efβ λ= − . If all factors are excess returns on traded 

portfolios (a condition met for all factors except for the liquidity factor) the second condition 

reduces to 0a = . 

 The parameter estimates are equivalent to those obtained from a two-pass procedure in 

which estimates of β are obtained via ordinary least squares (OLS) time-series regression of (12), 

and then used on the right-hand side in an OLS estimation of (11). In practice (as described in 

Cochrane) these two steps are combined into a single GMM estimation. By doing this, the 
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standard errors of the λ and δ estimates are corrected for the estimation error in the β values (as 

well as heteroscedasticity).5 

 The results reported are a representative among a large set of potential specifications. 

Three sets of factors are considered. The first set consists solely of the Fama-French excess 

market return mt ftr r−  factor. The second set adds the Fama-French smbt and hmlt factors. The 

third set consists of the three FF factors and the innovation in the liquidity common factor tz .  

 Three specifications for the set of characteristics Zt are considered:  

• (basic) the level estimate of effective cost from the basic market-adjusted model: 

itc where itc  is the (portfolio average) of the cost estimates over the prior year. 

• (common factor) intercept and slope estimates from the LCF model: the portfolio average 

of γ0i and γ1i estimated over the prior year. 

• (seasonal basic) a January dummy variable, both by itself and interacted with the level 

estimate of the effective cost: ( ), , and 1Jan Jan Jan
t t it t itd d c d c−  

As the characteristics are not de-meaned, Zt also includes a constant term. 

                                                 
5 More precisely, the moment conditions used in estimation are: 
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These suffice to identify estimates of , , ,  and a β λ δ that equal those from the two-pass OLS 

procedure. The first two (vector) conditions are the ( )1N K +  normal equations that identify the 

estimates of  and a β ; the second two conditions are the K M+ normal equations that identify 

the estimates of λ and δ. Cochrane shows that under the assumption of normality, the GMM 

standard errors are asymptotically equivalent to those constructed with the Shanken (1992) 

correction. 
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 The basic specification can be motivated as a straightforward test of whether effective 

cost is a priced characteristic. The common factor specification extends this test to encompass 

liquidity covariation. The seasonal basic specification examines the prominence of January 

seasonality.  

b. Portfolio formation 

Portfolios are formed annually based on information available at the end the prior year: 

market capitalization at the close of the prior year; and, CRSP/Gibbs estimates of the basic 

market-adjusted and latent common factor models estimated over the prior year. Results are 

reported for two sets of portfolios. Twenty-five effective cost/beta portfolios are formed by 

independent quintile rankings on effective cost and beta estimated using the basic market 

adjusted model. Note that although the Gibbs estimate of beta is used for constructing the 

rankings, the beta used in the expected return specification (11) is the estimate from the return-

generating process (12). This makes the results more comparable to those of other studies, and 

ensures that differences in results are primarily due to differences in liquidity measures. 

 Twenty-five effective cost intercept/loading portfolios are formed by independent 

quintile rankings on γ0i and γ1i estimated using the latent common factor model. This second set 

maximizes variation across the portfolios in γ0i and γ1i, and so can reasonably be expected to 

illuminate the effects of stochastic liquidity variation and covariaton. 

Separate portfolio sets are formed for NYSE, Amex and Nasdaq listings. Although 

securities from all listing venues should in principle be priced according to the same model, data 

limitations (noted above) precluded forming a single set of portfolios with approximately 

constant characteristics over the full sample.  

c. Properties of the factors 

Table 3 presents summary statistics for the factors discussed above and related series 

over the three sample periods. All three Fama-French factors have positive average returns in all 
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sample periods. The risk-free rate is the most persistent series. Moderate positive autocorrelation 

is also exhibited by the common liquidity factor, but not its innovation series. 

Table 4 presents the correlations between these series. Most importantly, the effective 

cost factor is not highly correlated with any of the three Fama-French factors. It is, however, 

moderately positively correlated with mt ftr r− . This is what might be expected from the positive 

association between spreads (and effective costs) and volatility. The effective cost factor 

innovation is slightly negatively correlated with the market return and size factors. 

d. Results for the effective cost/beta portfolios 

To characterize their general features, Table 5 reports means for firm counts and other 

variables for the odd-numbered effective cost/beta portfolios. Note that the effective cost in the 

highest quintile is sharply higher, relative to the lower quintiles. This is consistent with the 

positive skewness of effective costs noted in connection with Table 1. Also, sorting on effective 

cost leads to a similar ranking in the intercept and loading coefficient estimates (γ0i and γ1i). 

Table 6 reports estimates of the expected return specifications. Results for NYSE (1927-

2005), Amex (1962-2005) and Nasdaq (1985-2005) samples are given in Panels A, B and C, 

respectively.  For brevity, Table 6 does not report the estimates of the return generating process 

(cf. equation (12)). One feature of these estimates, however, is noteworthy. Specification (1) 

employs excess market return as the sole factor; specification (2) adds the Fama-French size and 

book-to-market factors; specification (3) also includes the innovation in the latent common factor 

of effective cost. In the NYSE (1927-2005) sample, across all twenty-five portfolios, the average 

adjusted R2 for the return-generating model is 0.762 when only excess market return is used. 

Adding the two Fama-French factors increases the average to 0.870. With the further addition of 

the effective cost common factor innovation, this increases to 0.872. Thus, the incremental 

explanatory power of the effective cost factor is weak.  

 This weakness is consistent with the general insignificance of the estimated factor risk 

premia for tz  in specifications (3) and (6). Only in specification (3) for the NYSE is this 

coefficient large, and in that case it has the wrong sign. 
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 Specification (4) includes as a characteristic the average effective cost from the basic 

market-adjusted model. Its coefficient is positive in all samples, but statistically significant only 

for the Amex. Specifications (5) and (6) include the intercepts and loadings from the latent 

common factor model. The coefficients are positive, but (again, with the exception of the Amex 

sample) of marginal significance.6 

 Specification (7) examines the seasonality of the effective cost result. The January 

dummy Jan
td is included to pick up seasonality unrelated to effective cost. The interacted 

variables ( )and 1Jan Jan
t it t itd c d c− are of more interest. In all three samples the coefficient of 

Jan
t itd c  is significantly positive. This implies that effective cost plays a particularly large role in 

January. 

 It is difficult, however, to account for the magnitude of the coefficients. Unlike some 

liquidity proxies, the effective cost can be directly interpreted in the context of simple trading 

strategies. An agent executing a round-trip purchase and sale of a stock in principle pays twice 

the effective cost. Thus, even under the extreme assumption that the marginal agent is pursuing 

such a strategy (selling at December’s closing bid and buying at January’s closing ask), the 

coefficient of effective cost should be at most two. In the NYSE and Amex samples, the 

estimated coefficients exceed four. 

e. Results for the liquidity intercept/loading portfolios 

Forming portfolios on the basis of stocks’ γ0i and γ1i estimates should in principle make it 

more likely to detect the effects of liquidity risk on expected returns. Table 7 reports variable 

means for the odd-numbered portfolios. The ordering of the portfolio averages for γ0i and γ1i are 

similar to those of the portfolios formed on effective cost and beta, but the ranges are larger. 

                                                 
6 Spiegel and Wang (2005) also find a weak liquidity effect using the Gibbs estimates for 

effective cost developed in an earlier draft of this paper. They furthermore find that in explaining 

returns, effective cost is dominated by idiosyncratic volatility. 
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Estimates of the expected return specifications are given in Table 8. The results are 

similar to those found for the effective cost/beta portfolios.  The coefficients of loading on the 

innovation in the effective cost common factor are small. The γ0i and γ1i coefficient estimates are 

positive. They are generally of marginal significance (with the exception, this time, of the 

Nasdaq estimates). The seasonality pattern for the effective cost level is similar to that found for 

the effective cost/beta portfolios. 

8. Discussion and conclusion 

The results presented in the last section suggest that the unexpected stochastic variation 

in aggregate effective cost is not strongly related to stock returns, that a firm’s sensitivity to this 

factor (as a characteristic) has weak explanatory power for expected returns, and that the level of 

effective cost is related to expected returns mainly through a seasonal component. The 

seasonality of liquidity effects is noted in Eleswarapu and Reinganum (1993). The present 

analysis confirms the presence of this phenomenon in a longer and broader sample. 

 The equivocal findings regarding the importance of effective cost variation and risk, 

however, contrast with the stronger conclusions found by Pastor and Stambaugh (2003), Acharya 

and Pedersen (2005), and Korajczyk and Sadka (2006) using different liquidity measures. There 

are various possible explanations for this. First, the CRSP/Gibbs estimates of effective cost may 

not be sufficiently precise proxies for the values actually used by agents in making their 

decisions. This seems unlikely, however, since the analysis of the comparison sample  

establishes strong correlation between the CRSP/Gibbs estimates and those formed directly from 

the trade and quote data. Second, the asset-pricing specifications used here may lack the power 

necessary to detect stochastic liquidity effects. The papers mentioned above span a range of 

approaches comparable to that found in other asset-pricing contexts, but the present paper 

employs a general method used by at least one (Acharya and Pedersen). 

A third possibility is that effective cost per se may not be the relevant trading cost 

measure used by investors. As noted earlier it does not explicitly measure the price impact 

effects that come into play when the trading strategy involves splitting an order over time. 
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Although effective cost and price impact are conceptually distinct, however, they are in practice 

correlated. From Table 1, the correlation between effective cost and price impact (both estimated 

from TAQ) is 0.513, suggesting that effective cost is a partial proxy for price impact in the cross-

section. Korajczyk and Sadka (2006) find high canonical correlations between the common 

factors extracted from effective costs and those extracted from price impact, suggesting that the 

proxy relationship also picks up time series variation. This provides a basis for the assertion that 

results estimated using effective cost have relevance for other liquidity measures. 

The effective cost used to measure liquidity in the present study is unique, however, in 

one important respect. Alone among the daily-based liquidity proxies commonly used in asset 

pricing studies (the Pastor-Stambaugh gamma, the Amivest liquidity ratio and the Amihud 

illiquidity ratio), the effective cost estimate does not incorporate volume. This can be viewed as a 

limitation, since many microstructure-based measures (such as the price impact) involve a size-

related component. On the other hand, most of these measures involve signed order flow, instead 

of the unsigned volume used in the daily proxies. The microstructure measures also generally 

assume that order flow is exogenous to price and liquidity dynamics. In fact, volume endogeneity 

with price dynamics arises from portfolio rebalancing, momentum trading, hedging and other 

price-driven strategies. The feedback from trading costs to order placement strategy causes 

volume to depend on liquidity variation.  

Thus, although effective cost is a narrow measure of trading cost, measures derived from 

volume may reflect factors that extend beyond the usual notion of liquidity as immediacy. That 

these measures have power for explaining expected returns may indicate the importance of 

defining liquidity broadly enough to encompass the full range of costs and distortions associated 

with the trading process. Such definitions and interpretations, however, are not invariable 

straightforward. Chordia, Subrahmanyam and Anshuman (2001) find strong explanatory power 

in summary measures of trading activity such as the level and volatility of turnover. Surprisingly 

they find that turnover volatility is negatively related to expected returns. This is contrary to the 
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notion that turnover volatility might be acting as proxy for liquidity risk. Further exploration of 

alternative definitions and measures of liquidity may yet offer clarification. 
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Table 1. Summary statistics for the comparison sample, 1993-2005 

The comparison sample consists of approximately 150 Nasdaq firms and 150 NYSE/Amex firms selected in a 
capitalization-stratified random draw in each of the years 1993-2005. Values in the table are based on annual 
estimates for the 3,777 firms that could be matched between CRSP and TAQ. Effective cost is the difference 
between the log transaction price and the prevailing log quote midpoint. For each firm, the TAQ estimate is the 
annual average of this value over all trades, trade-weighted. The CRSP moment estimate is ( )1,t tCov p p −− Δ Δ  

where Δpt is the log price change and the covariance is estimated over all trading days in the year. The estimate is 
set to zero if the covariance is positive. The CRSP Gibbs values are estimates from the basic market-adjusted model; 
Proportion of zero returns is the fraction of trading days that had a zero price change from the previous day. The 
Amihud (2002) illiquidity measure is I return Dollar volume= , averaged over all days with non-zero volume. 

The price impact coefficient is λ in the regression ( )t tt
p Signed Dollar Volumeλ εΔ = + , estimated annually using 

log price changes and signed dollar volumes aggregated over five-minute intervals.     

Estimate Source Mean Median Std. Dev. Skewness Kurtosis 
Effective cost TAQ  0.0106 0.0054 0.0146 4.61 54.7 
Effective cost CRSP Gibbs 0.0112 0.0061 0.0141 4.97 62.8 
Effective cost CRSP Moment 0.0106 0.0056 0.0152 4.35 52.1 

Proportion of zero returns CRSP 0.1363 0.1071 0.1171 1.02 0.9 
Price impact ( )610λ ×  TAQ 28.1500 7.4098 70.6173 7.84 101.2 

Amihud Illiquidity ratio ( )610I ×  CRSP 3.6592 0.0709 20.0366 16.56 395.8 

Market capitalization ($ Million) CRSP 2,587.7190 196.9200 14,407.3199 18.55 502.9 
Price (end of year, $/share) CRSP      20.8442   14.5000      29.4357  11.38   229.8 
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Table 2. Correlations between liquidity proxies for the comparison sample 

The comparison sample consists of approximately 150 Nasdaq firms and 150 NYSE/Amex firms selected in a 
capitalization-stratified random draw in each of the years 1993-2005. Values in the table are based on annual 
estimates for the 3,777 firms that could be matched between CRSP and TAQ. Effective cost is the difference 
between the log transaction price and the prevailing log quote midpoint. For each firm, the TAQ estimate is the 
annual average of this value over all trades, trade-weighted. The CRSP moment estimate is ( )1,t tCov p p −− Δ Δ  

where Δpt is the log price change and the covariance is estimated over all trading days in the year. The estimate is 
set to zero if the covariance is positive. The CRSP Gibbs values are estimates from the basic market-adjusted model; 
Proportion of zero returns is the fraction of trading days that had a zero price change from the previous day. The 
Amihud (2002) illiquidity measure is I return Dollar volume= , averaged over all days with non-zero volume. 

The price impact coefficient is λ in the regression ( )t tt
p Signed Dollar Volumeλ εΔ = + , estimated annually using 

log price changes and signed dollar volumes aggregated over five-minute intervals. Partial correlations are adjusted 
for log(end-of-year price) and log(market capitalization). 

 
Eff. cost 

(TAQ) 
Eff. cost, 

Gibbst 
Eff. cost, 
Moment 

Prop. zero 
returns 

Price 
Impact 
(TAQ) Illiquidity 

Pearson correlation       
Eff. cost (TAQ) 1.000 0.965 0.878 0.611 0.513 0.612 
Eff. cost, Gibbs 0.965 1.000 0.917 0.579 0.450 0.589 
Eff. cost, Moment 0.878 0.917 1.000 0.451 0.378 0.504 
Prop. zero returns 0.611 0.579 0.451 1.000 0.311 0.252 
Price impact (TAQ) 0.513 0.450 0.378 0.311 1.000 0.668 
Illiquidity 0.612 0.589 0.504 0.252 0.668 1.000 

Spearman correlation       
Eff. cost (TAQ) 1.000 0.872 0.636 0.770 0.735 0.937 
Eff. cost, Gibbs 0.872 1.000 0.791 0.620 0.577 0.778 
Eff. cost, Moment 0.636 0.791 1.000 0.417 0.363 0.592 
Prop. zero returns 0.770 0.620 0.417 1.000 0.510 0.704 
Price impact (TAQ) 0.735 0.577 0.363 0.510 1.000 0.824 
Illiquidity 0.937 0.778 0.592 0.704 0.824 1.000 

Pearson partial correlation       
Eff. cost (TAQ) 1.000 0.943 0.805 0.366 0.268 0.567 
Eff. cost, Gibbs 0.943 1.000 0.866 0.359 0.189 0.517 
Eff. cost, Moment 0.805 0.866 1.000 0.193 0.107 0.397 
Prop. zero returns 0.366 0.359 0.193 1.000 0.068 0.103 
Price impact (TAQ) 0.268 0.189 0.107 0.068 1.000 0.610 
Illiquidity 0.567 0.517 0.397 0.103 0.610 1.000 

Spearman partial correlation       
Eff. cost (TAQ) 1.000 0.678 0.382 0.564 0.024 0.631 
Eff. cost, Gibbs 0.678 1.000 0.682 0.285 –0.123 0.361 
Eff. cost, Moment 0.382 0.682 1.000 0.101 –0.182 0.288 
Prop. zero returns 0.564 0.285 0.101 1.000 –0.021 0.341 
Price impact (TAQ) 0.024 –0.123 –0.182 –0.021 1.000 0.375 
Illiquidity 0.631 0.361 0.288 0.341 0.375 1.000 
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Table 3. Summary statistics for return factors and related series 

rft is the one-month Treasury bill rate (Ibbotson and Associates); rmt is the CRSP valued-weighted average 
NYSE/Amex/Nasdaq return; smbt and hmlt are the Fama-French size and value/growth factors (from Kenneth 
French’s website). zt is the average monthly effective cost common factor, estimated from the latent common factor 
model; tz  is the corresponding innovations series estimated as the AR(1) residuals. 

  Mean Std.Dev. First-order  
autocorrelation 

1926-2005 rft 0.0030 0.0026 0.9727 
 mt ftr r−  0.0065 0.0547 0.1070 

 mt ftr r−  0.0391 0.0388 0.2249 

 smbt 0.0024 0.0336 0.0761 
 hmlt 0.0041 0.0359 0.1772 
 zt 0.4861 0.2763 0.5522 
 tz  0.0004 0.2287 0.0285 

1962-2005 rft 0.0046 0.0023 0.9524 
 mt ftr r−  0.0045 0.0445 0.0600 

 mt ftr r−  0.0345 0.0283 0.0682 

 smbt 0.0023 0.0320 0.0655 
 hmlt 0.0046 0.0289 0.1301 
 zt 0.4365 0.2586 0.5653 
 tz  –0.0107 0.2125 –0.0016 

1985-2005 rft 0.0039 0.0017 0.9494 
 mt ftr r−  0.0069 0.0443 0.0423 

 mt ftr r−  0.0348 0.0282 0.1228 

 smbt 0.0006 0.0344 –0.0305 
 hmlt 0.0033 0.0319 0.0938 
 zt 0.3855 0.2802 0.5763 
 tz  –0.0040 0.2300 –0.0000 
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Table 4. Correlations for return factors 

rft is the one-month Treasury bill rate (Ibbotson and Associates); rmt is the CRSP valued-weighted average 
NYSE/Amex/Nasdaq return; smbt and hmlt are the Fama-French size and value/growth factors (from Kenneth 
French’s website). zt is the average monthly effective cost common factor, estimated from the latent common factor 
model; tz  is the corresponding innovations series estimated as the AR(1) residuals. 

 rft mt ftr r−  mt ftr r−  smbt hmlt zt tz  

rft 1.000 –0.069 –0.067 –0.059 0.013 –0.109 –0.031 

mt ftr r−  –0.069 1.000 0.069 0.326 0.216 –0.063 –0.197 

mt ftr r−  –0.067 0.069 1.000 0.045 0.193 0.401 0.369 

smbt –0.059 0.326 0.045 1.000 0.094 –0.021 –0.150 

hmlt 0.013 0.216 0.193 0.094 1.000 0.100 0.029 

zt –0.109 –0.063 0.401 –0.021 0.100 1.000 0.828 

tz  –0.031 –0.197 0.369 –0.150 0.029 0.828 1.000 
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Table 5. Summary statistics for portfolios constructed on effective cost and beta rankings 

Twenty-five portfolios are constructed as the intersection of independent quintile rankings on the Gibbs estimates of 
effective cost (cit) and beta (βit), estimated over the prior year using the basic market-adjusted model. Table reports 
mean values for odd-numbered portfolios over the sample. γ0i and γ1i are the Gibbs estimates of the intercept and 
loading for the latent common factor model. 

 cit Rank βit Rank No. firms cit βit γ0i γ1i 
NYSE 1927-2005 1 1   42.8 0.0021  0.346   0.0020   0.0028 
  3   48.4 0.0021  0.901   0.0020   0.0035 
  5   30.8 0.0023  1.626   0.0021   0.0045 
 3 1   41.6 0.0056  0.323   0.0047   0.0043 
  3   42.2 0.0056  0.901   0.0043   0.0057 
  5   46.3 0.0056  1.731   0.0042   0.0071 
 5 1   45.9 0.0223  0.283   0.0193   0.0085 
  3   39.7 0.0194  0.899   0.0155   0.0097 
  5   47.9 0.0174  1.725   0.0127   0.0119 
Amex 1962-2005 1 1   26.5 0.0032  0.129   0.0034   0.0034 
  3   25.7 0.0032  0.625   0.0034   0.0049 
  5   23.6 0.0035  1.462   0.0038   0.0064 
 3 1   25.1 0.0101  0.103   0.0090   0.0057 
  3   24.2 0.0102  0.628   0.0088   0.0078 
  5   27.9 0.0101  1.455   0.0086   0.0107 
 5 1   26.0 0.0379  0.039   0.0350   0.0110 
  3   28.3 0.0351  0.631   0.0317   0.0117 
  5   21.0 0.0366  1.376   0.0319   0.0153 
Nasdaq 1985-2005 1 1   28.7 0.0051  0.092   0.0049   0.0049 
  3  119.7 0.0044  0.611   0.0042   0.0061 
  5  177.6 0.0046  1.561   0.0048   0.0087 
 3 1  108.8 0.0146  0.049   0.0135   0.0062 
  3  108.7 0.0144  0.606   0.0127   0.0092 
  5  102.1 0.0141  1.505   0.0121   0.0128 
 5 1  177.0 0.0459 -0.021   0.0431   0.0124 
  3  102.9 0.0480  0.597   0.0443   0.0156 
  5   43.3 0.0482  1.410   0.0435   0.0187 
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Table 6. Expected return estimates for portfolios constructed on effective cost and beta rankings 

Table reports estimates for β and δ in the specification t tER Zβλ δ= +  where Rt is a vector of excess returns 
(relative to the risk-free rate); λ is a K-vector of factor risk premia; β is a matrix of factor loadings; Zt is an N×M 
matrix of characteristics; and δ is an M-vector of coefficients for the characteristics. The factor loadings are the 
projection coefficients in the K-factor return generating process: t t tR a f uβ= + + , estimated via OLS. The factors 
considered are the excess market return (rmt–rft), the Fama-French size and book-to-market factors (smbt and hmlt), 
and the innovation in the common liquidity factor ( )tz . The characteristics considered are an intercept, the Gibbs 
estimate of effective cost using the basic market-adjusted model, the liquidity intercept and loading (γ0i and γ1i) 
estimated from the latent common factor model, a January monthly dummy variable ( )Jan

td , and the January dummy 

interacted with the Gibbs estimate of the effective cost ( )( ) and 1Jan Jan
t it t itd c d c− . Coefficient estimates are ordinary 

least squares. T-statistics are corrected for joint estimation of factor loadings, heteroscedasticity and autocorrelation. 
In each panel, the model is estimated for twenty-five portfolios constructed as the intersection of independent 
quintile rankings on the Gibbs estimates of effective cost (cit) and beta (βit), estimated over the prior year using the 
basic market-adjusted model. 

A. NYSE, 1927-2005. 
  (1) (2) (3) (4) (5) (6) (7) 

Factors mt ftr r−  0.00757 0.00565 0.00302 0.00448 0.00412 0.00482 0.00448 
  (3.67) (1.65) (1.05) (0.78) (0.62) (0.74) (0.76) 
 smbt  0.00637 0.00079 –0.00695 –0.00673 –0.00696 –0.00695 
   (0.67) (0.14) (–1.19) (–0.83) (–0.84) (–1.17) 
 hmlt  –0.00084 0.01381 –0.00384 –0.00436 –0.00287 –0.00384 
   (–0.05) (1.50) (–0.36) (–0.33) (–0.21) (–0.35) 
 tz    –0.17580   –0.03750  
    (–2.99)   (–0.40)  

Intercept    0.00186 0.00075 –0.00043 0.00100 Charac- 
teristics     (0.44) (0.16) (–0.07) (0.22) 

 cit    1.11512    
     (1.47)    
 γ0i     1.21937 1.21771  
      (1.53) (1.53)  
 γ1i     0.44924 0.45227  
      (0.35) (0.35)  
 Jan

td        0.01026 
        (1.07) 
 Jan

t itd c        4.18978 
        (3.05) 
 ( )1 Jan

t itd c−        0.83560 
        (1.03) 
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Table 6. Expected return estimates for portfolios constructed on effective cost and beta rankings (continued) 

B. Amex, 1962-2005. 
 Variable (1) (2) (3) (4) (5) (6) (7) 

Factors mt ftr r−  0.00844 –0.00750 –0.00882 0.00917 0.00018 –0.00053 0.00917 
  (2.64) (–1.99) (–2.10) (0.84) (0.01) (–0.05) (0.92) 
 smbt  0.00933 0.01224 –0.02910 –0.02733 –0.03108 –0.02910 
   (2.49) (2.08) (–2.69) (–2.57) (–2.45) (–3.05) 
 hmlt  0.01144 0.00831 –0.00604 –0.00190 0.00099 –0.00604 
   (3.85) (1.46) (–0.81) (–0.26) (0.12) (–0.84) 
 tz    –0.06599   0.11158  
    (–0.76)   (1.09)  

Intercept    0.01594 0.01447 0.01741 0.01440 Charac- 
teristics     (2.55) (2.55) (2.61) (2.31) 

 cit    1.57349    
     (3.16)    
 γ0i     1.30782 1.32085  
      (2.84) (2.84)  
 γ1i     1.44763 1.43494  
      (1.52) (1.50)  
 Jan

td        0.01839 
        (1.68) 
 Jan

t itd c        5.80286 
        (6.20) 
 ( )1 Jan

t itd c−        1.18900 
        (3.03) 
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Table 6. Expected return estimates for portfolios constructed on effective cost and beta rankings (continued) 

C. Nasdaq, 1985-2005 
 Variable (1) (2) (3) (4) (5) (6) (7) 

Factors mt ftr r−  0.00898 –0.00474 –0.00375 0.00601 0.00463 0.00380 0.00601 
  (2.07) (–0.86) (–0.61) (0.68) (0.62) (0.42) (0.75) 
 smbt  0.01379 0.01262 0.00095 –0.01268 –0.01325 0.00095 
   (2.31) (1.83) (0.07) (–1.11) (–1.26) (0.08) 
 hmlt  0.01099 0.01202 0.00825 0.00897 0.00864 0.00825 
   (3.26) (3.25) (1.94) (1.81) (1.84) (1.98) 
 tz    0.01524   0.03160  
    (0.18)   (0.31)  

Intercept    –0.00288 –0.00455 –0.00307 –0.00428 Charac- 
teristics     (–0.46) (–0.65) (–0.43) (–0.66) 

 cit    0.28111    
     (1.36)    
 γ0i     0.11675 0.11556  
      (0.52) (0.51)  
 γ1i     1.94321 1.94179  
      (1.88) (1.87)  
 Jan

td        0.01687 
        (0.92) 
 Jan

t itd c        2.44436 
        (5.58) 
 ( )1 Jan

t itd c−        0.08445 
        (0.45) 
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Table 7. Summary statistics for portfolios constructed on liquidity factor intercept and loading rankings 

Twenty-five portfolios are constructed as the intersection of independent quintile rankings on the Gibbs estimates of 
γ0i and γ1i estimated over the prior year using the latent common factor model. Effective cost (cit) and beta (βit) are 
estimated over the prior year using the basic market-adjusted model. Table reports mean values for odd-numbered 
portfolios over the sample. 

 

 γ0i Rank γ1i Rank No. firms cit βit γ0i γ1i 
NYSE 1927-2005 1 1 26.9 0.0015 0.724 0.0015 0.0019 
  3 47.9 0.0026 0.933 0.0015 0.0049 
  5 47.3 0.0049 1.126 0.0014 0.0127 
 3 1 46.6 0.0036 0.710 0.0041 0.0018 
  3 43.0 0.0054 0.998 0.0041 0.0049 
  5 38.8 0.0090 1.194 0.0041 0.0131 
 5 1 51.2 0.0121 0.738 0.0143 0.0017 
  3 37.3 0.0168 0.984 0.0163 0.0049 
  5 51.4 0.0259 1.058 0.0194 0.0147 
Amex 1962-2005 1 1 22.2 0.0024 0.384 0.0028 0.0022 
  3 27.2 0.0038 0.670 0.0026 0.0064 
  5 25.8 0.0075 0.925 0.0027 0.0185 
 3 1 29.4 0.0071 0.448 0.0087 0.0020 
  3 24.8 0.0095 0.797 0.0086 0.0064 
  5 23.0 0.0158 0.901 0.0088 0.0190 
 5 1 20.3 0.0250 0.541 0.0292 0.0022 
  3 24.9 0.0337 0.653 0.0338 0.0065 
  5 32.0 0.0436 0.704 0.0357 0.0200 
Nasdaq 1985-2005 1 1 64.9 0.0034 0.623 0.0039 0.0026 
  3 123.8 0.0048 0.906 0.0037 0.0077 
  5 114.7 0.0088 1.080 0.0037 0.0225 
 3 1 124.4 0.0112 0.499 0.0128 0.0022 
  3 106.0 0.0139 0.767 0.0127 0.0076 
  5 93.1 0.0201 0.771 0.0128 0.0228 
 5 1 112.4 0.0353 0.282 0.0397 0.0022 
  3 92.5 0.0444 0.457 0.0446 0.0076 
  5 135.2 0.0574 0.499 0.0484 0.0255 
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Table 8. Expected return estimates for portfolios constructed on liquidity factor intercept  
and loading rankings. 

Table reports estimates for β and δ in the specification t tER Zβλ δ= +  where Rt is a vector of excess returns 
(relative to the risk-free rate); λ is a K-vector of factor risk premia; β is a matrix of factor loadings; Zt is an N×M 
matrix of characteristics; and δ is an M-vector of coefficients for the characteristics. The factor loadings are the 
projection coefficients in the K-factor return generating process: t t tR a f uβ= + + , estimated via OLS. The factors 
considered are the excess market return (rmt–rft), the Fama-French size and book-to-market factors (smbt and hmlt), 
and the innovation in the common liquidity factor ( )tz . The characteristics considered are an intercept, the Gibbs 
estimate of effective cost using the basic market-adjusted model, the liquidity intercept and loading (γ0i and γ1i) 
estimated from the latent common factor model, a January monthly dummy variable ( )Jan

td , and the January dummy 

interacted with the Gibbs estimate of the effective cost ( )( ) and 1Jan Jan
t it t itd c d c− . Coefficient estimates are ordinary 

least squares. T-statistics are corrected for joint estimation of factor loadings, heteroscedasticity and autocorrelation. 
In each panel, the model is estimated for twenty-five portfolios constructed as the intersection of independent 
quintile rankings on the Gibbs estimates of effective cost (cit) and beta (βit), estimated over the prior year using the 
basic market-adjusted model. 

A. NYSE, 1927-2005. 
 Variable (1) (2) (3) (4) (5) (6) (7) 

Factors mt ftr r−  0.00755 0.00710 0.00764 0.01662 0.01949 0.01941 0.01662 
  (3.67) (3.12) (3.20) (1.08) (0.88) (0.92) (1.05) 
 smbt  0.00412 0.00381 –0.00693 –0.00666 –0.00663 –0.00693 
   (2.71) (2.55) (–1.06) (–0.91) (–0.86) (–1.03) 
 hmlt  –0.00124 –0.00239 –0.01184 –0.01442 –0.01429 –0.01184 
   (–0.44) (–0.75) (–1.04) (–0.99) (–1.03) (–1.00) 
 tz    0.03501   –0.02305  
    (0.42)   (–0.16)  

Intercept    –0.00780 –0.01156 –0.01154 –0.00886 Charac- 
teristics     (–0.63) (–0.62) (–0.63) (–0.69) 

 cit    1.18642    
     (1.42)    
 γ0i     1.21408 1.21443  
      (1.46) (1.46)  
 γ1i     0.57275 0.57190  
      (0.63) (0.62)  
 Jan

td        0.01279 
        (1.27) 
 Jan

t itd c        3.94894 
        (2.67) 
 ( )1 Jan

t itd c−        0.93529 
        (1.05) 
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Table 8. Expected return estimates for portfolios constructed on liquidity factor intercept  
and loading rankings. (continued) 

B. Amex, 1962-2005. 
 Variable (1) (2) (3) (4) (5) (6) (7) 

Factors mt ftr r−  0.00868 –0.00769 –0.00814 0.03185 0.00829 0.01045 0.03185 
  (2.68) (–1.65) (–1.35) (1.41) (0.36) (0.41) (1.54) 
 smbt  0.00456 0.00530 –0.02795 –0.02298 –0.02933 –0.02795 
   (0.94) (0.60) (–2.51) (–2.43) (–2.07) (–2.83) 
 hmlt  0.02199 0.02143 –0.01496 –0.01450 –0.01208 –0.01496 
   (2.61) (1.99) (–1.13) (–1.06) (–0.77) (–1.24) 
 tz    –0.02314   0.17932  
    (–0.17)   (0.92)  

Intercept    –0.00323 0.01040 0.01346 –0.00429 Charac- 
teristics     (–0.22) (0.57) (0.74) (–0.31) 

 cit    1.56484    
     (2.87)    
 γ0i     1.33776 1.36922  
      (2.76) (2.82)  
 γ1i     1.08496 1.01960  
      (1.73) (1.59)  
 Jan

td        0.01279 
        (1.19) 
 Jan

t itd c        6.20826 
        (6.59) 
 ( )1 Jan

t itd c−        1.14271 
        (2.66) 
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Table 8. Expected return estimates for portfolios constructed on liquidity factor intercept  
and loading rankings. (continued) 

C. Nasdaq, 1985-2005 
 Variable (1) (2) (3) (4) (5) (6) (7) 

Factors mt ftr r−  0.00943 –0.00720 –0.00681 0.00223 –0.03122 –0.03159 0.00223 
  (2.16) (–1.12) (–0.88) (0.21) (–1.43) (–1.27) (0.23) 
 smbt  0.01458 0.01412 –0.00051 –0.01509 –0.01524 –0.00051 
   (1.98) (1.56) (–0.03) (–0.85) (–0.83) (–0.03) 
 hmlt  0.02159 0.02265 0.00767 0.00087 0.00053 0.00767 
   (3.48) (3.75) (0.55) (0.05) (0.02) (0.59) 
 tz    0.04805   0.06739  
    (0.69)   (0.19)  

Intercept    0.00192 0.04034 0.04095 0.00051 Charac- 
teristics     (0.25) (1.64) (1.24) (0.06) 

 cit    0.29523    
     (1.10)    
 γ0i     0.19558 0.19568  
      (0.73) (0.73)  
 γ1i     1.18753 1.18551  
      (2.10) (1.96)  
 Jan

td        0.01699 
        (0.95) 
 Jan

t itd c        2.39502 
        (5.20) 
 ( )1 Jan

t itd c−        0.10434 
        (0.43) 
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Figure 1. Posteriors for simulated price paths 

A quote-midpoint series of length 250 (roughly a year’s worth of daily data) is simulated using using a volatility 
0.02uσ = ; 250 realizations are also generated for the trade direction indicators (qt). Using these values, two price 

series are simulated: one using an effective cost of c=0.01, the other with c=0.10. For each series, the joint parameter 
posterior is estimated using 10,000 draws of a Gibbs sampler. The shaded regions indicate the ninety-percent 
confidence regions. In panels, the horizontal ( )uσ  axis and the scale of the vertical (c) axis are identical. 
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Figure 2. TAQ and CRSP/Gibbs estimates of effective cost in the comparison sample 

The comparison sample consists of approximately 150 Nasdaq firms and 150 NYSE/Amex firms selected in a 
capitalization-stratified random draw in each of the years 1993-2005. For each firm in each year, the effective cost is 
estimated from TAQ data and from CRSP daily data using the Gibbs procedure. The figure depicts the cross-
sectional distributions for these estimates year-by-year, with TAQ estimates on the left and Gibbs estimates on the 
right. The upper and lower ranges of the box-and-whisker figures demarcate the fifth and ninety-fifth percentiles; the 
upper and lower edges of the boxes correspond to the twenty-fifth and seventy-fifth percentiles; the line drawn 
across the box indicates the median. 
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Figure 3. Average effective costs 1926-2005 

Average Gibbs effective cost estimates for all ordinary common shares in the CRSP daily database. NYSE/Amex 
and Nasdaq firms are analyzed separately; subsamples are quartiles based on end-of-year market capitalization. 
Fama-French NYSE breakpoints are used to construct the samples. 
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Figure 4. Effective cost commonality in the comparison sample, 1993-2005 

The comparison sample consists of approximately 150 Nasdaq firms and 150 NYSE/Amex firms selected in a 
capitalization-stratified random draw in each of the years 1993-2005. Using TAQ data, the daily effective cost is 
computed for each firm and averaged weekly (top graph). Using CRSP data, the latent common factor (LCF) model 
of effective costs is estimated over the panel sample consisting of (approximately) 300 firms in each year. The 
procedure generates daily estimates for the liquidity factor. The plotted values are weekly averages (bottom graph). 
Both TAQ and CRSP estimates are standardized (annually) to have zero mean and unit variance. 
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Figure 5. Effective cost common factor, 1926-2005 

For each year, 1926-2005, 150 firms are drawn from the CRSP NYSE/Amex firms using capitalization-stratified 
sampling. In year 1985-2005, this sample is augmented by 150 Nasdaq firms. The latent common factor is estimated 
for each year over these panels (150 or 300 stocks). The figure depicts monthly averages of the estimated common 
factor. 
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