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Federated learning (FL) enables participating parties to collaboratively build a global model with boosted utility without
disclosing private data information. Appropriate protectionmechanisms have to be adopted to fulill the opposing requirements
in preserving privacy and maintaining high model utility. In addition, it is a mandate for a federated learning system to
achieve high eiciency in order to enable large-scale model training and deployment. We propose a uniied federated learning
framework that reconciles horizontal and vertical federated learning. Based on this framework, we formulate and quantify the
trade-ofs between privacy leakage, utility loss, and eiciency reduction, which leads us to the No-Free-Lunch (NFL) theorem
for the federated learning system. NFL indicates that it is unrealistic to expect an FL algorithm to simultaneously provide
excellent privacy, utility, and eiciency in certain scenarios. We then analyze the lower bounds for the privacy leakage, utility
loss, and eiciency reduction for several widely-adopted protection mechanisms, including Randomization, Homomorphic

Encryption, Secret Sharing and Compression. Our analysis could serve as a guide for selecting protection parameters to meet
particular requirements.

CCS Concepts: · Security and privacy; · Computing methodologies→ Artiicial Intelligence; · Machine Learning; ·
Distributed methodologies;

Additional Key Words and Phrases: federated learning, privacy, utility, eiciency, trade-of,divergence, optimization

1 INTRODUCTION

The rapid expansion of large-scale datasets has sparked a demand for distributed learning. With the enforcement
of data privacy regulations such as the General Data Protection Regulation (GDPR), the data owned by one
company is not allowed to be disclosed to others. Federated learning (FL) [24, 25, 28, 31, 32] meets this requirement
by allowing multiple parties to train a machine learning model collaboratively without sharing private data. In
recent years, FL has achieved signiicant progress in developing privacy-preserving machine learning systems. It
has been extended from the conventional horizontal federated learning (HFL) to the vertical federated learning
(VFL) scenarios [18, 22, 46]. HFL typically involves a large amount of parties with diferent samples but share the
same feature space. While VFL typically involves a handful of parties that own distinct features of the same set

∗Corresponding author

Authors’ addresses: Xiaojin Zhang, xiaojinzhang@ust.hk, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong; Yan

Kang, yangkang@webank.com, Webank, Shenzhen, China; Kai Chen, kaichen@cse.ust.hk, Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong; Lixin Fan, lixinfan@webank.com, Webank, Shenzhen, China; Qiang Yang, qyang@cse.ust.hk, WeBank and

Hong Kong University of Science and Technology, Hong Kong.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2157-6904/2023/5-ART $15.00

https://doi.org/10.1145/3595185

ACM Trans. Intell. Syst. Technol.

https://doi.org/10.1145/3595185
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3595185&domain=pdf&date_stamp=2023-05-05


2 • Trovato and Tobin, et al.

of sample instances. HFL is popular in healthcare and mobile applications [2, 21, 27, 36], while VFL is widely
adopted in inance and advertisement [4, 23, 39].
Preserving privacy is of immense practical importance when federating across diferent parties. Although

the private data of each client is not shared with other collaborators, the private information might still be
reconstructed by semi-honest parties upon observing the shared model information [14, 15, 26, 47, 51]. The
fundamental requirement for maintaining privacy is to keep potential privacy leakage below an acceptable
level. This is accomplished by reducing the dependence between shared model information and private data. To
protect private data of the participants, many protection mechanisms have been proposed, such as Randomization

Mechanism [1, 17, 41], Secret Sharing [5, 6, 38], Homomorphic Encryption (HE) [16, 48], and Compression Mechanism

[33]. However, the adoption of these protection mechanisms might result in a certain amount of utility loss and
eiciency reduction, as compared with a federated model trained without any protection [11, 23]. As a result,
theoretical analysis of the trade-of between privacy leakage, utility loss, and eiciency reduction is critical for
guiding FL practitioners to choose better protection parameters or design smarter FL algorithms.

Motivated by this goal, the work [50] proposed a statistical framework to analyze the privacy-utility trade-of
in FL on a rigorous theoretical foundation. However, its trade-of analysis did not involve eiciency, which is
a crucial factor in designing FL algorithms. Besides, [50] did not consider the VFL setting, which has a broad
range of applications in inance and advertisement. These gaps inspire us to investigate the following crucial
open problem: is it possible to design a protection mechanism that simultaneously achieves ininitesimal privacy

leakage, utility loss, and eiciency reduction? Our main inding is crystallized in a No-Free-Lunch (NFL) Theorem
(Theorem 4.6) that provides a negative answer for this question in certain scenarios under a uniied FL framework
that reconciles both HFL and VFL settings. For the outline of our work, please refer to Figure 6.

Our contributions are as follows:

• We propose a uniied FL framework (see Section 5) for HFL and VFL. The uniied FL framework provides a
conceptual view of the relationship between privacy leakage, utility loss, and eiciency reduction through
the lens of the protector and the adversary. Our No-Free-Lunch theorem is formulated based on this
framework, and thus it applies to both HFL and VFL.

• We provide a No-Free-Lunch theorem (Theorem 4.6) for federated learning, which quantiies the trade-
of between privacy leakage (Def. 3.3), utility loss (Def. 3.4) and eiciency reduction (Def. 3.5). This
quantiication indicates that the weighted summation of the privacy leakage, utility loss, and eiciency
reduction is greater than a problem-dependent non-zero constant. It characterizes the amount of utility
and eiciency that is inevitable to lose in the case that the privacy leakage budget is unduly low.

• We apply the NFL theorem to analyze trade-ofs between privacy leakage, utility loss, and eiciency
reduction for widely-adopted protection mechanisms, including Randomization, Homomorphic Encryption,
Secret Sharing and Compression. The trade-of is characterized via the lower bounds derived for privacy
leakage, utility loss, and eiciency reduction.

2 RELATED WORK

The related work for attacking mechanisms and protection mechanisms in federated learning and privacy-utility-

eiciency trade-of are briely reviewed in this section.

2.1 Atacking Mechanisms and Protection Mechanisms in Federated Learning

We focus on semi-honest adversaries who faithfully follow the federated learning protocol but may infer the
private information of other participants based on the exposed model information.

In HFL, [15, 47, 51, 52] demonstrate that adversaries could exploit gradient information to restore the private
image data to pixel-level accuracy, with distinct settings of prior distributions and conditional distributions.
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A variety of protection mechanisms have been proposed in HFL to prevent private data from being deduced
by adversarial participants. The most popular ones are Homomorphic Encryption (HE) [16, 48], Randomization

Mechanism [1, 17, 41], Secret Sharing [5, 6, 38] and Compression Mechanism [33]. Another school of FL [19, 20]
tries to protect privacy by splitting a neural network into private and public models and sharing only the public
one [19, 23].
VFL has two kinds of privacy leakage: feature leakage and label leakage. It is challenging for the adversary

to infer the features of other parties because, in production VFL, participating parties typically have black-box
knowledge about each other. The literature has proposed mainly two kinds of label inference attacks in VFL:
the gradient-based [26] and the model-based [14] attacks. [26] also demonstrated three noise-based protections
that can prevent gradient-based attacks. [53] proposed a data encoding protection mechanism called CoAE that
can thwart model-based attacks efectively in some scenarios. Crypto-based protections are widely adopted in
federated logistic regression and XGBoost. However, they are seldom applied to VNN that involves complex
neural networks for their high communication and computational cost.

2.2 Privacy-Utility-Eficiency Trade-of

In the past decade, there has been wide interest in understanding the privacy-utility trade-of [10, 30, 35, 37,
42, 44, 50]. [10, 30] quantiied the privacy-utility trade-of using the solution of the optimization problem. [37]
provided a privacy-utility trade-of region for the special case with i.i.d. data sources and known distribution. [35]
illustrated that the optimal privacy-utility trade-of could be solved using a standard linear program and provided
a closed-form solution for the special case when the data to be released is a binary variable. [44] measured
distortion using the expected Hamming distance between the input and output databases and measured privacy
leakage using identiiability, diferential privacy, and mutual-information privacy separately. [42] provided a
trade-of when utility and privacy were evaluated using �2-based information measures. [43] analyzed the
trade-of between the speed of error convergence and the wall-clock time for distributed SGD. [7] analyzed
the trade-of between communication, privacy, and accuracy for distributed statistical tasks. The accuracy is
measured using statistical mean estimation, frequency estimation, and distribution estimation separately, and the
privacy is measured using diferential privacy. However, none of these works focus on federated learning and
measure utility using model performance.

The work [50] proposed a quantitative trade-of between utility and privacy in horizontal federated learning
by exploiting some key properties of the privacy leakage and the triangle inequality of the divergence. [29]
evaluated the accuracy-privacy-cost trade-of for federated learning empirically. In this work, we ofer a general
theoretical analysis of the trade-of between privacy, utility, and eiciency that applies to both HFL and VFL.

3 A UNIFIED FEDERATED LEARNING FRAMEWORK

In this section, we irst introduce general notations used throughout this work. Then, we propose a uniied
federated learning framework with a conceptual view of the relationship between privacy leakage, utility loss,
and eiciency reduction. Next, we provide formal deinitions for key components of this framework, including
protection and attacking mechanisms, privacy leakage, utility loss, and eiciency reduction. We then formulate
the goal of the protector as a constrained optimization problem and put forward a critical question with which
we are concerned. Our No-Free-Lunch theorem provides an answer for this problem formulated based on this
framework, and thus it applies to both HFL and VFL.

ACM Trans. Intell. Syst. Technol.
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Table 1. Table of Notation

Notation Meaning

�� Privacy leakage (Def. 3.3)

�� Utility loss (Def. 3.4)

�� Eiciency reduction (Def. 3.5)

� Private information, including private data and statistical information

�fed parameter for the federated model

� O
�

Unprotected model information of client �

� S
�

Protected model information of client �

�O
�

Distribution of unprotected model information of client �

�S
�

Distribution of protected model information of client �

WS
�

Support of �S
�

WO
�

Support of �O
�

W� Union of the supports of �S
�
and �O

�
�B
�

Adversary’s prior belief distribution about the private information of client �

�A
�

Adversary’s belief distribution about client � after observing the protected private information

�O
�

Adversary’s belief distribution about client � after observing the unprotected private information

JS( · | | · ) Jensen-Shannon divergence between two distributions

TV( · | | · ) Total variation distance between two distributions

3.1 Notations

We adhere to the tradition of using uppercase letters to indicate the random variables, such as � , and lowercase
letters to denote the speciic values they take on. We represent [�] as {1, 2, · · · , �}. We use lowercase letters such
as � and � to denote probability density functions and uppercase letters such as � and � to denote distributions.
The probability density function � at value � is represented by ��� (�), and the subindex represents the

random variable. The conditional density function is denoted by the notation ��� |�� (� |�). Let � and � represent
the probability densities (or probability masses) of � and � for distributions � and � over R� . The Jensen-
Shannon divergence, which is a smoothed variation of the Kullback-Leibler divergence, is deined as JS(� | |�) =
1
2 [KL (�,�) + KL (�,�)] with� = (� +�)/2. Let TV(� | |�) denote the total variation distance between � and
� , which is deined as TV(� | |�) = sup�⊂R� |� (�) −� (�) |. The detailed description of notations is illustrated in
Table 1.

3.2 The Conceptual View of the Unified Federated Learning Framework

In this section, we propose a uniied federated learning framework that uniies HFL and VFL through a conceptual
view of the relationship between privacy leakage, utility loss, and eiciency reduction via the lens of the protector
and the adversary. We irst introduce HFL and VFL and unify their terminologies and notations. Then, we
elaborate on this conceptual view.
HFL has two representative aggregation implementations: FedAvg and FedSGD, which are mathematically

equivalent. Our framework applies to both aggregations. For illustrative purposes, we use FedAvg to explain the
procedure of secure horizontal federated learning:

1 With the global model state from the server, each client � trains its local model using its private data set

�� , and obtains the local model � O
�
.

ACM Trans. Intell. Syst. Technol.
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2 In order to prevent the semi-honest adversaries from inferring other clients’ private information ��
according to � O

�
, each client � adopts a protection mechanism � to convert model � O

�
to protected model

�S
�
, and sends �S

�
to the server.

3 The server aggregates �S
�
, � = 1, · · · , � to generate a new global model �Sagg.

4 Each client � downloads the global model �Sagg and uses it to update its local model.

The processes 1○- 4○ iterate until the utility of the aggregated model �Sagg does not improve.

Fig. 1. Illustration of the HFL procedure (let) and VFL procedure (right). For the HFL seting, we consider the server as the

adversary who aims to infer individual clients’ private data. For the VFL seting, we consider client 1 (has no labels) as the

adversary who wants to recover the labels owned by client 2.

In VFL, without loss of generality, we consider a 2-client scenario where client 1 (has no labels) is the adversary
who wants to recover the labels owned by client 2. The overall secure vertical federated learning procedure is
illustrated on the right panel of Fig. 1 and summarized as follows:

1 Client 1 and 2 compute their model outputs �1 and �2 based on their local bottom model information using
their corresponding local data sets, respectively.

2 Client 1 sends �1 to client 2.

3 Client 2 aggregates �1 and �2 and then feeds the aggregated result to its top model � O2,� to generate the
predicted labels, which further is used to compute loss against the ground truth label �.

4 Client 2 updates its top model � O2,� and continues to compute the derivatives �1 and �2 of the loss � w.r.t. �1
and �2, respectively.

5 In order to prevent the adversarial client 1 from inferring labels of client 2 based on �1, client 2 adopts

protection mechanism� to convert �1 to protected �S1 , and sends �S1 to client 1.

6 Clients 1 and 2 update their local bottom model �S
1,�

and � O
2,�

based on �S1 and �2, respectively.

The processes 1○- 6○ iterate until the utility of the joint model �Sjoint does not improve.

For the convenience of our analysis, we unify the terminologies and notations used for HFL and VFL (summa-
rized in Table 2). The inal trained model in HFL is typically called aggregated model, while the one in VFL is

ACM Trans. Intell. Syst. Technol.
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called joint model. We refer to them as federated model. The private information of HFL typically involves private
features, labels, and statistical information; the one we study in this work for VFL is private labels. We refer to
them all as private information. In HFL, the information exploited by the attacker to infer the private information
of protector � is �S

�
if the attacker is the server, and is �Sagg if the attacker is the client (see Figure 1 left). In VFL,

the exploited information is referred to as �S
�
(see Figure 1 right). We unify them as� S

�
and� S

fed
. The utility of

the federated model of HFL is usually deined as 1
�

∑�
�=1�� (�

S
agg), while the one of VFL is � (�Sjoint). We unify

them as� (� S
fed
).

Table 2. Unified terminologies and notations for HFL and VFL

Horizontal FL Vertical FL Uniied FL
global model aggregated model joint model federated model

privacy
private data or

statistical information
private labels private information

information exposed
to the attacker

�S
�
(attacker: server)

or �Sagg (attacker: client)
�S
�

� S
�

or� S
fed

utility
1
�

∑�
�=1�� (�

S
agg) � (�Sjoint) � (� S

fed
)

Horizontal and vertical federated learning are the two primary forms of federated learning. While they have
distinct training procedures, their privacy-preserving problem can be boiled down to the competition between
the adversary and the protector. The former tries to learn as much private information on � as possible via
privacy attacks. At the same time, the latter applies protection mechanisms to mitigate privacy leakage while
maintaining utility loss and eiciency reduction below an acceptable level.

Figure 2 gives our proposed uniied federated learning framework that illustrates the relationship between the
privacy leakage �� , utility loss �� and eiciency reduction �� through the lens of the adversary and the protector.
Speciically, to protect the privacy of its local data � , the protector converts the plain-text message ��� to
protected one���S exposed to the adversary aiming to mitigate the privacy leakage while maintaining the
utility loss below an acceptable level. On the other hand, the adversary launches privacy attacks on protected
model information� S aiming to infer as much information on � as possible. Since protection mechanisms
may jeopardize model utility and reduce eiciency, the protector needs to control the strength of the applied
protection mechanism to strike a balance between private leakage, utility loss, and eiciency reduction.
The uniied FL framework provides a conceptual view of the relationship between �� , �� , and �� through the

lens of the protector and the adversary, regardless of the underlying FL architecture. Thus, it also reconciles
other FL architectures, such as peer-to-peer (P2P) FL. In this work, we propose the No-Free-Lunch (NFL) theorem
that quantiies the trade-of between �� , �� , and �� from the perspective of the protector of our uniied federated
learning framework. Thus, the NFL theorem applies to HFL, VFL, and P2P FL (e.g., Swarm Learning [45]).

3.3 Protection and Privacy Atacking Mechanisms

3.3.1 Protection Mechanisms. The data protector applies certain protection mechanisms to the exposed model
information to mitigate privacy leakage. We formally deine the protection mechanism as follows:

Deinition 3.1 (Protection Mechanism and Protected Distribution). The protection mechanism� : R� →

R
� maps the original model information� O

�
, which follows a distribution � O

�
, to its protected (or distorted)

counterpart� S
�
, which follows a distribution �S

�
. The objective of � is to protect private data so that the

ACM Trans. Intell. Syst. Technol.
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Fig. 2. The unified federated learning framework (including HFL and VFL) illustrates the relationship between privacy

leakage �� , utility loss �� , and eficiency reduction �� . � denotes the private data, which can be either features or labels.���

denotes the message encoded with knowledge of � . It is sent from the data owner to the adversary. In HFL,��� can be

model parameters, model gradients, and model outputs sent from individual clients to the server. In VFL,��� is typically

the intermediate gradient (see Figure 1 (right)) sent from the client with labels to adversarial clients.� denotes any model

information derived from��� that the privacy atack can leverage to infer � . In HFL,� typically includes model parameters

and model gradients. In VFL,� includes intermediate gradients, model parameters, and model gradients.�fed denotes the

federated model. We use superscripts � and O to distinguish the protected information and the plain-text one, respectively.

dependency between� S
�

and �� is reduced, compared to the dependency between the unprotected information

� O
�

and �� . The distribution �
S
�
is referred to as the protected distribution of client � .

EXAMPLE: We take the randomization mechanism as an illustrative example and introduce the protected
distribution. Assume that � O

�
∼ � O

�
= N(�0, Σ0), and �� ∼ N(0, Σ� ), where Σ0 = diag(�21 , · · · , �

2
�), Σ� =

diag(�2� , · · · , �
2
� ). Then the protected parameter � S

�
= � O

�
+ �� ∼ N(�0, Σ0 + Σ� ). That is, the protected

distribution �S
�
= N(�0, Σ0 + Σ� ). Please refer to Section D for more details.

In this work, we consider widely-adopted protection mechanisms, including Randomization Mechanism,
Homomorphic Encryption, Secret Sharing and Compression Mechanism.

3.3.2 Privacy Atacking Mechanisms. The requirement of adopting speciic protection mechanisms depends
on the adversary’s threat model. We consider the adversary to be semi-honest, he/she faithfully adheres to the
federated learning protocol, yet may execute privacy attacks on exposed data to deduce the private information
of other participants.

Let �� denote private features or labels in horizontal federated learning and denote labels in vertical federated
learning. Let�� represent the model information exposed by client � . Let ��� |�� represent the probability density
function of the posterior distribution ��� |�� . Next, we introduce the Bayesian Inference Attack that estimates
the private information by maximizing the posterior belief ��� |�� .

ACM Trans. Intell. Syst. Technol.
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Deinition 3.2 (Bayesian Inference Attack). Given the distorted model information� S
�
, the Bayesian Inference

Attack inds data � that maximizes the posterior belief:

argmax
�

IH(� |�) = argmax
�

[I(� |�) + H(�)], (1)

where IH(� |�) = log ��� |� S
�
(� |�) corresponds to the logarithm of the posterior belief, I(� |�) = log �� S

�
|��

(� |�)

measures the logarithm of the likelihood based on the observed model information � , and H(�) = log ��� (�)
represents the logarithm of the prior belief ��� (�). According to Bayes’ theorem, maximizing the logarithm of
posterior ��� |� S

�
(� |�) on �� involves maximizing summation of log(�� S

�
|��

(� |�)) and log(��� (�)).

Below, we introduce some representative privacy attacks (see Table 3) that fall under the family of the Bayesian
Inference Attack.

Table 3. Privacy atacking mechanisms that fit the Bayesian inference atack. For Gradient Inversion atacks, � denotes the

observed gradient, and� corresponds to �S
�

in the let panel of Figure 1. For Label Inference atacks,� corresponds to �S1 in

the right panel of Figure 1).

Attack Work I(� |�) H(�) Type

Gradient
Inversion

DLG [52] � − 1
2�2 ∥� − ∇�L(�,�)∥22 Constant Horizontal

Inverting Gradients [15]
⟨∇�L(�,� ), �⟩

∥∇�L(�,� ) ∥ · ∥�∥
TV(�) Horizontal

Improved DLG [51] � − ∥� − ∇�L(�,�)∥22 Label(�) Horizontal

GradInversion [47] � − 1
2�2 ∥� − ∇�L(�,�)∥22 Group(�) Horizontal

Label
Inference

Norm-based Scoring [26] � (
∑�
�=1 ✶{� (�) ∈ [�� , �� ]} · ✶{� ∈ �� }) Constant Vertical

Direct Label Inference [14] � (
∑�
�=1 ✶{� ∈ [�� , �� ]} · ✶{� ∈ �� }) Constant Vertical

Privacy Attacks in HFL. The following attacking mechanisms proposed for HFL it into the Bayesian inference
attack framework formulated in Eq. (1). These attacks infer private data � through maximizing the similarity
between the observed gradient � and the estimated gradient ∇�L(�,�) with diferent prior on � (� here
corresponds to �S

�
in the left panel of Figure 1).

• Deep Gradient Leakage (DLG) [52]: H(�) is constant; I(� |�) is the negative ℓ2 distance between the observed
gradient � and the estimated gradient ∇�L(�,�).

• Inverting Gradients [15]: H(�) is the TV loss of estimated data, denoted as TV(�); I(� |�) corresponds to
the cosine similarity between the observed gradient � and the estimated gradient ∇�L(�,�).

• Improved DLG [51]): H(�) is the prior with the label information of � , denoted as Label(�); I(� |�) corre-
sponds to the negative ℓ2 distance between the observed gradient � and the estimated gradient ∇�L(�,�).

• GradInversion [47]: H(�) is the group consistency of estimated data, denoted as Group(�); I(� |�) corre-
sponds to the negative ℓ2 distance between the observed gradient � and the estimated gradient ∇�L(�,�).

Privacy Attacks in VFL. We focus on label inference attacks because labels may contain sensitive user infor-
mation, and they are typically valuable assets in real-world VFL applications such as inance, healthcare, and
advertisement. More speciically, we consider gradient scoring attack and direct label inference attack, which
comply with the Bayesian inference attack framework. Both attacks are mounted by client 1, aiming to infer
labels owned by client 2 based on back-propagated gradient� (� here corresponds to �S1 in the right panel of
Figure 1).

ACM Trans. Intell. Syst. Technol.
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• Gradient Scoring Attack. I(� |�) = �
(∑�

�=1 ✶{� (�) ∈ [�� , �� ]} · ✶{� ∈ �� }
)
, where � : R� → [0, 1] denotes

a scoring function; � represents one data point; �� and �� denotes the lower bound and upper bound,
respectively;� represents the total number of classes; �� represents class �; � (·) computes the logarithm
of the normalized input. H(�) = constant. The gradient scoring attack typically applies to the binary
classiication task. The attacker needs to design a scoring function satisfying that � (�) ∈ [�1, �1] if the
corresponding data of� belongs to the negative class, and � (�) ∈ [�2, �2] if the corresponding data of�
belongs to the positive class. A case in point is the Norm-based Scoring Attack (NBS) [26], which observes
that ∥� ∥2 of the positive instances are generally larger than that of the negative ones and formulates the
attacking problem as the classiication problem.

• Direct Label Inference Attack (DLI) [14]. DLI is tailored to the VFL scenario where the top model owned by
client 2 is an activation function (e.g., softmax) [28], the adversary has access to the gradients of the inal
activation function, and thus it can infer labels through the signs of back-propagated gradients. In DLI,

I(� |�) = �
(∑�

�=1 ✶{�� ∈ ([�� , �� ]} · ✶{� ∈ �� }
)
, where �� = −∞ and �� = 0 if � ∈ �� ; �� = 0 and �� = +∞

otherwise; H(�) = constant. Thus, if�� < 0 its corresponding data point � belongs to class �� and if��>0
the data point � does not belong to class �� .

Remark:Attacking mechanisms, such as the model completion attack [14], that use the cumulative information
over rounds and is beyond the scope of our article.

3.4 Privacy Leakage, Utility Loss and Eficiency Reduction

In this section, we formally deine privacy leakage, utility loss, and eiciency reduction (depicted in Figure 2).
The privacy leakage (Deinition 3.3) measures the variation between the adversary’s prior and posterior

beliefs on private information. The adversary obtains the posterior belief by mounting a Bayesian inference
attack (Deinition 3.2) on the protected model information. Thus, we formally call the privacy leakage the
Bayesian privacy leakage. The protected model information may lead to the federated model with lower utility
(Deinition 3.4) and the federated training with less eiciency (Deinition 3.5) in certain scenarios.

Let �A
�
, � O

�
and � B

�
represent the attacker’s belief distributions about �� upon observing the protected

information, the original information and without observing any information, respectively, and the probability
density functions of which are � A

��
, � O
��
, and � B

��
. Speciically, � A

��
(�) =

∫
W�

��� |�� (� |�)��S
�
(�), � O

��
(�) =∫

W�
��� |�� (� |�)�� O

�
(�), and � B

��
(�) = ��� (�).

We use JS divergence to measure the privacy leakage instead of KL divergence. The advantage of JS divergence
over KL divergence is that it is symmetrical, and its square root satisies the triangle inequality [12]. This property
facilitates the quantiication of the trade-ofs.

Deinition 3.3 (Bayesian Privacy Leakage). Let ��,� represent the privacy leakage of client � , which is deined as:

��,� =

︃
JS(�A

�
| |� B
�
), (2)

where JS(�A
�
| |� B
�
) =

1
2

∫
D�

� A
��

(�) log
� A
��

(� )

�M
��

(� )
d� (�) + 1

2

∫
D�

� B
��

(�) log
� B
��

(� )

�M
��

(� )
d� (�), �A

�
and � B

�
represent the

attacker’s belief distribution about �� upon observing the protected information and without observing any
information, respectively, and � M

��
(�) = 1

2 (�
A
��

(�) + � B
��

(�)).
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Furthermore, the Bayesian privacy leakage in FL resulting from releasing the protected model information is
deined as:

�� =

1

�

�︁

�=1

��,� .

Remark:

(1) The local model information�� represents the model parameters, model gradients and model outputs, all of
which may optionally be exchanged or get exposed to semi-honest adversaries.

(2) If the private information �� is continuous, then

JS(�A
�
| |� B
�
) =

1

2

[
KL

(
�A
�
, �M
�

)
+ KL

(
� B
�
, �M
�

)]

=

1

2

∫

D�

� A�� (�) log
� A
��

(�)

� M
��

(�)
d� (�) +

1

2

∫

D�

� B�� (�) log
� B
��

(�)

� M
��

(�)
d� (�).

If the private information �� is discrete, then

JS(�A
�
| |� B
�
) =

1

2

[
KL

(
�A
�
, �M
�

)
+ KL

(
� B
�
, �M
�

)]

=

1

2

︁

�∈D�

� A�� (�) log
� A
��

(�)

� M
��

(�)
+
1

2

︁

�∈D�

� B�� (�) log
� B
��

(�)

� M
��

(�)
.

When evaluating the utility loss, we consider the scenario when each protector is assigned a private key (if
one exists).

Deinition 3.4 (Utility Loss). The utility loss of client � (denoted as ��,� ) measures the variation in utility of

client � with the federated model drawn from unprotected distribution � O
fed

and the utility of the federated model

drawn from protected distribution �S
fed
:

��,� = E� O
fed

∼�O
fed
[�� (�

O
fed)] − E� S

fed
∼�S

fed
[�� (�

S
fed)],

where�� represents the utility function of client � . Furthermore, the utility loss in FL system is deined as:

�� = E� O
fed

∼�O
fed
[� (� O

fed)] − E� S
fed

∼�S
fed
[� (� S

fed)],

where� represents the utility function of the FL system.

Eiciency reduction is another criterion we consider in this work, and deined as follows.

Deinition 3.5 (Eiciency Reduction). Let ��,� represent the eiciency reduction of client � . The eiciency
reduction of client � measures the variation in eiciency with the models drawn from the unprotected and
protected distributions � O

�
and �S

�
, which is deined as:

��,� = E� S
�
∼�S

�
[� (� S

�
)] − E� O

�
∼�O

�
[� (� O

�
)],

where� denotes a mapping from the model information to the eiciency measured in terms of the communication
cost (e.g., the transmitted bits) or the training cost. Furthermore, the eiciency reduction in FL system is deined
as:

�� =
1

�

�︁

�=1

��,� .
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3.5 The Competition Between The Protector and The Adversary

The Goal of the Protector The goal of protector � is formulated as an optimization problem that aims at
inding a protected distribution �S

�
achieving the minimum utility loss and eiciency reduction under the privacy

constraint �� , which is formally expressed as

min
�S
�

�� · ��,� + �� · ��,� , (3)

subject to ��,� ≤ �� . (4)

where �� represents the preference of the protector towards model utility, and �� represents the preference of the
protector towards eiciency.
The Goal of the Adversary Let �� be the client �’s private information. Let� S

�
represent the client �’s

model information exposed to the adversary. The goal of the adversary is formally expressed as

max
�
�� |�

S
�

��,� := JS(�A
�
| |� B
�
), (5)

where ��� |� S
�
represents the adversary’s posterior distribution of the private information �� upon observing the

exposed model information� S
�
.

Competition Between the Protector and the Adversary Given the goal of the protector and the adversary
formally stated in Eq. (3) and Eq. (5), the competition between the protector and the adversary is formally
expressed as

min
�S
�

�� · ��,� + �� · ��,� ,

subject to max�
�� |�

S
�

��,� ≤ �� .
(6)

where �� is the privacy level required by client � .
Remark: This optimization problem can be extended to satisfy the personalized requirement of the federated

learning system. For example, if the eiciency reduction of the federated learning system is required not to exceed
�� , then the optimization problem is expressed as

min
�S
�

��,� ,

subject to max�
�� |�

S
�

��,� ≤ �� , ��,� ≤ �� .
(7)

A natural question is: is it possible to design a protection mechanism that simultaneously achieves ininitesimal

privacy leakage, utility loss, and eiciency reduction? In the following section, we provide a negative answer for
this question in certain scenarios, which leads to our No-Free-Lunch Theorem (Theorem 4.6).

4 NO FREE LUNCH THEOREM IN FEDERATED LEARNING

In this section, we propose the No-Free-Lunch (NFL) theorem (Theorem 4.6), stating that it is unrealistic to expect
a privacy-preserving FL algorithm to simultaneously achieve the ininitesimal privacy leakage, utility loss, and
eiciency reduction in certain scenarios.
Before elaborating on the NFL theorem, we introduce Assumption 4.1 and Assumption 4.2, under which

the federated learning scenarios we analyze guarantee the existence of trade-ofs between privacy, utility, and
eiciency.

Assumption 4.1 is proposed in [50] and illustrated in Figure 3. We present it here for completeness. Intuitively,
it states that the cumulative density of the near-optimal parameters is bounded, which rules out scenarios where
the utility is constant and most parameters are near-optimal parameters.

ACM Trans. Intell. Syst. Technol.
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Assumption 4.1. let WS
fed

represent the support of the protected distribution �S
fed

of the federated model
information. Let W∗

fed
represent the set of parameters achieving the maximum utility

W∗
fed = argmax

�∈Wfed

� (�),

where� represents the utility of the federated learning system. Given a non-negative constant � , the near-optimal

parameters is deined as

W� =

{
� ∈ WS

fed : |� (�∗) −� (�) | ≤ �,∀�∗ ∈ W∗
fed

}
.

Let � = Δ be the maximum constant that satisies:
∫

WS
fed

✶{� ∈ WΔ}�
S
�fed

(�)�� ≤
TV(� O

fed
| |�S

fed
)

2
, (8)

where �S
�fed

represents the probability density function of the protected federated model information� S
fed
. We

assume that Δ is positive, i.e., Δ > 0.

Fig. 3. Illustration of Assumption 4.1. The blue area represents the probability that the realization of the protected model

information� S
fed

falls inside the near-optimal parameters WΔ. It is referred to as the cumulative probability density of the

near-optimal parameters. Note that we use model parameters with one dimension in this figure for illustrative purposes.

Remark: The Eq. (8) states that the cumulative density of the near-optimal distorted parameters is upper-

bounded by
TV(�O

fed
| |�S

fed
)

2 , which is at most 1
2 . Therefore, the utility is not constant, and most distorted parameters

are sub-optimal.
Remark: If the distribution of the protected model information is continuous and TV(� O

fed
| |�S

fed
) = 0, then

there does not exist a positive constant Δ satisfying Eq. (8), which implies that Assumption 4.1 does not hold.
From Lemma C.3 of [50], the utility equals 0.
Let �O

��
represent the probability density of unprotected model information of client � , and �S

��
represent

the probability density of protected model information of client � . The following Assumption 4.2 states that the
distorted parameters have higher communication cost than that of the original parameters with high probability.
Therefore, the expected communication cost of the distorted parameter is higher than that of the original parameter.
This assumption rules out scenarios where the communication cost is constant, and the communication cost of
most distorted parameters is smaller than that of the original parameters. We provide an example for illustration
in Figure 4.
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Assumption 4.2. Let� O
max = argmax�∈WO

�
� (�). Let Ξ� denote the minimum non-negative constant satisfying

that� (� O
max)−Ξ� ≤ � (�), ∀� ∈ WS

�
. LetU� represent the set of distorted parameters with improved probability

density. Speciically,U� = {� ∈ WS
�

: �S
��

(�) ≥ �O
��

(�)}. We denoteW+
�,Ξ�

as the set of distorted parameters

with high probability density, and the communication cost of which is larger than that of the original parameters
with a gap of at least 2 · Ξ� . We denote W+

�,Ξ�
as:

W+
�,Ξ�

=

{
� ∈ U� : � (� O

max) + 2 · Ξ� ≤ � (�) and �S�� (�) ≥ 2 · �O
��

(�)
}
.

We denote W−
�,Ξ�

= U� \W
+
�,Ξ�

. Let Γ� denote the maximum constant satisfying that

∫

U�

✶{� ∈ W+
�,Ξ�

}�S�� (�)��

︸                                  ︷︷                                  ︸
term 1

−

∫

U�

✶{� ∈ W−
�,Ξ�

}�S�� (�)��

︸                                  ︷︷                                  ︸
term 2

≥ Γ� · TV(�
O
�
| |�S

�
), (9)

where �S
��

denotes the probability density function of the protected model information and �O
��

denotes the

probability density function of the original model information. We assume that Ξ� and Γ� are positive, i.e.,
Ξ� > 0, Γ� > 0,∀� ∈ [�].

Fig. 4. Illustration of Assumption 4.2. The let panel shows the relationship between the sets W+
�,Ξ�

, W−
�,Ξ�

, U� , and WS
�
.

The right panel illustrates Eq. (9). In the right panel, the blue area (term 1 in Eq.(9)) and red area (term 2 in Eq.(9)) represent

the probability that the realization of the protected model information falls insideW+
�,Ξ�

andW−
�,Ξ�

, respectively, and the

blue area is larger than the red area. Note that we use model parameters with one dimension for illustrative purposes.

Remark: The Eq. (9) states that the diference between the distorted parameters’ cumulative density in W+
�,Ξ�

andW−
�,Ξ�

is lower-bounded by a non-negative value. Therefore, it conveys that the expected communication

cost of the distorted parameter is higher than that of the original parameter. Since Ξ� > 0, the communication
cost is not constant.
In the next section, we introduce the quantitative trade-ofs between privacy and eiciency and between

privacy and utility, respectively. These two trade-ofs lead to the main conclusion of our No-Free-Lunch theorem
formulated in Theorem 4.6.

4.1 Trade-of between Privacy and Eficiency

The following Lemma 4.1 bounds eiciency reduction using the distortion measured by total variation distance
TV(� O

fed
| |�S

fed
). The intuition is that a larger distortion leads to a higher eiciency reduction. The analysis is

deferred to Lemma B.3.
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Lemma 4.1. Let Assumption 4.2 hold, and �� be deined in Deinition 3.5. Let � O
fed

and �S
fed

represent the
distribution of the aggregated parameter before and after being protected. Let Ξ = min�∈[� ] Ξ� , and Γ =

min�∈[� ] Γ� . Then, we have:

�� ≥ Ξ · Γ ·
1

�

�︁

�=1

TV(� O
�
| |�S

�
).

The following Lemma 4.2 illustrates the quantitative relationship between �� and total variation distance.
Lemma 4.2 applies to both discrete (see proof in [50]) and continuous private information (see Lemma B.1).

Lemma 4.2. Let ��,� be deined in Deinition 3.3, � O
�

and �S
�
represent the distribution of the parameter of client

� before and after being protected. Then, we have:

�� ≥ �1 −
1

�

�︁

�=1

�2 · TV(�
O
�
| |�S

�
), (10)

where�1 =
1
�

∑�
�=1

︃
JS(� O

�
| |� B
�
), and�2 =

1
2 (�

2� − 1), ��=max�∈W� ,�∈D�

���log
(
��� |�� (� |� )

��� (� )

)���, and �=max�∈[� ] ��

represents the maximum privacy leakage over all possible information � released by the clients, and [�] =

{1, 2, · · · , �}.

Intuitively, a larger distortion would increase communication costs while decreasing privacy leaks. The Lemma
4.3 demonstrates how the summation of privacy leakage and eiciency reduction is lower bounded by a constant
that depends on the nature of the scenario.

Lemma 4.3 (No free lunch theorem (NFL) for privacy and eiciency). Let �� be deined in Def. 3.3, and let �� be
deined in Def. 3.5, with Assumption 4.2 we have:

�� +�� · �� ≥ �1,

where �1 =
1
�

∑�
�=1

︃
JS(� O

�
| |� B
�
) and �� =

1
2ΞΓ (�

2� − 1).

4.2 Trade-of between Privacy and Utility

The Lemma 4.4 demonstrates how the total variation distance between the protected and unprotected distributions
lower bounds utility loss.

Lemma 4.4. Let Assumption 4.1 hold, and �� be deined in Deinition 3.4. Let � O
fed

and �S
fed

represent the
distribution of the federated model information before and after being protected. Then, we have:

�� ≥
Δ

2
· TV(� O

fed | |�
S
fed).

With Lemma 4.2 and Lemma 4.4, it is now natural to provide a quantitative relationship between the utility
loss and the privacy leakage.

Lemma 4.5 (No free lunch theorem (NFL) for privacy and utility). Let �� be deined in Def. 3.3, and let �� be
deined in Def. 3.4 at the convergence step, with Assumption 4.1 we have:

�� +�� · �� ≥ �1, (11)
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where ��=max�∈W� ,�∈D�

���log
(
��� |�� (� |� )

��� (� )

)���, and �=max�∈[� ] �� represents the maximum privacy leakage over all

possible information� released by client � , and [�] = {1, 2, · · · , �},�1 =
1
�

∑�
�=1

︃
JS(� O

�
| |� B
�
),�� =

�

4Δ (�
2� −1),

and � =

1
�

∑�
�=1 TV(�

O
�
| |�S
�
)

TV(�O
fed

| |�S
fed

)
.

Remark: If the distribution of the protected model information is continuous, and TV(� O
fed

| |�S
fed
) = 0, then

Assumption 4.1 does not hold, and the utility loss is equal to 0 (from Lemma C.3 of [50]).

4.3 Trade-of between Privacy, Utility and Eficiency

The Theorem 4.6 illustrates the quantitative trade-of between privacy leakage, utility loss, and eiciency reduction,
which shows that the weighted summation of these three metrics is larger than a problem-dependent constant
(also exhibited in Figure 5). It implies that simultaneously achieving ininitesimal privacy leakage, utility loss,
and eiciency reduction is unrealistic in certain scenarios. The complete analysis is deferred to Appendix C.

Theorem 4.6 (No free lunch theorem (NFL) for privacy, utility and eiciency). Let �� be deined in Def. 3.5,
�� be deined in Def. 3.3, and let �� be deined in Def. 3.4 at the convergence step. Let Assumption 4.1 and
Assumption 4.2 hold, then we have that:

�� +
��

2
· �� +

��

2
· �� ≥ �1, (12)

where �� = max�∈W� ,�∈D�

���log
(
��� |�� (� |� )

��� (� )

)���, � = max�∈[� ] �� , �1 =
1
�

∑�
�=1

︃
JS(� O

�
| |� B
�
), �� =

�

4Δ (�
2� − 1),

�� =
1

2ΞΓ (�
2� − 1), � =

∑�
�=1 TV(�

O
�
| |�S
�
)

TV(�O
fed

| |�S
fed

)
.

Fig. 5. Privacy-Utility-Eficiency Trade-ofs

Note that �1 measures the discrepancy between the prior belief and the posterior belief of the attacker and
is typically a positive constant in real-world applications. Theorem 4.6 states that the weighted summation
of the privacy leakage, utility loss, and eiciency reduction is greater than or equal to �1 in certain scenarios,
indicating that a protection mechanism cannot be expected to achieve exceptional privacy, utility, and eiciency
simultaneously in scenarios where Assumption 4.1 and Assumption 4.2 hold.
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5 APPLICATIONS

In this section, we apply the No-Free-Lunch theorem to four well-adopted protection mechanisms for quantifying
their trade-ofs between privacy leakage, utility loss, and eiciency reduction.
We measure eiciency in terms of the communication cost and denote � > 0 as a small constant. �1 =

1
�

∑�
�=1

︃
JS(� O

�
| |� B
�
) and�2 = (�2� − 1)/2 are two constants independent of the protection mechanisms adopted,

and� is the dimension of the parameter.

Table 4. Comparison of homomorphic encryption, secret sharing, randomization, and compression in terms of privacy-utility-

eficiency trade-of characterized via lower bounds for �� , �� , and �� . LB denotes lower bound.

Paillier HE Secret Sharing Randomization Compression

�� (LB) �1 − �2 ·
[
1 −

(
2�
�2

)� ]
�1 −

�2
�

�∑
�=1

(
1 −

�∏
�=1

2�

�
�
�
+�
�
�

)
1 −

3�2
2 · min

{
1, �2

�

︂
�∑
�=1

1

�4
�

}
�1 − �2 ·

(
1 −

�∏
�=1
��

)

�� (LB)
0

(Assumption 4.1
does not hold)

0
(Assumption 4.1
does not hold)

Δ

100 · min

{
1, �2

�

︂
�∑
�=1

1

�4
�

}
Δ

2 ·

(
1 −

�∏
�=1
��

)

�� (LB) Ξ · Γ ·
[
1 −

(
2�
�2

)� ] N/A
(Assumption 4.2
does not hold)

Ξ·Γ
100 min

{
1, �2

�

︂
�∑
�=1

1

�4
�

}
Ξ · Γ ·

(
1 −

�∏
�=1
��

)

5.1 Randomization Mechanism

Let� O
�

be the parameter sampled from distribution � O
�

= N(�0, Σ0), where �0 ∈ R
� , Σ0 = diag(�21 , · · · , �

2
�) is a

diagonal matrix. The distorted parameter� S
�

=� O
�

+ �� , where �� ∼ N(0, Σ� ) and Σ� = diag(�2� , · · · , �
2
� ). The

bounds for privacy leakage, utility loss and eiciency reduction for randomization mechanism is illustrated in
the following theorem. The full proof is deferred to Appendix D.

Theorem 5.1. For randomization mechanism, the privacy leakage is bounded by

�� ≥ �1 −
�2

100
·min



1, �2�

√√
�︁

�=1

1

�4�



.

The utility loss is bounded by

�� ≥
Δ

200
·min



1, �2�

√√
�︁

�=1

1

�4�



.

The eiciency reduction is bounded by

�� ≥
ΞΓ

100
min



1, �2�

√√
�︁

�=1

1

�4�



.

5.2 Paillier Homomorphic Encryption

The Paillier encryption mechanism proposed by [34] is an asymmetric additive homomorphic encryption
mechanism, which was widely applied in FL [3, 8, 13, 40, 49]. Paillier encryption contains three parts: key
generation, encryption, and decryption. Let ℎ represent the plaintext, and � represent the ciphertext. Let (�,�)
represent the public key, and (�, �) represent the private key. Note that the primes � and � are rather large.
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Encryption. Randomly select � and encode ℎ as:

� = �ℎ · �� mod �2,

where � = � · �, � and � are two selected primes. Note that � is an integer selected randomly, and � ∈ Z∗
�2
.

Therefore, � can divide the order of �.

Decryption. Using the private key (�, �) to decrypt the ciphertext � as:

ℎ = �(�� mod �2) · � mod �,

where �(�) = �−1
�
, � = (�(�� mod �2))−1 mod �, � = ���(� − 1, � − 1), and ��� represents the least common

multiple.
Let� O

�
= (�1

�
, · · · , ��

�
) represent the plaintext parameter that follows a degenerate distribution. Let� S

�

represent the ciphertext parameter that follows a uniform distribution over [0, �2−1]� . To facilitate the calculation
of the total variation distance between the unprotected distribution of� O

�
and the protected distribution of� S

�
,

we relax the discrete unprotected distribution to a continuous distribution using a parameter � > 0. Assuming
that� O

�
follows a uniform distribution over [�1

�
− �, �1

�
+ �] × [�2

�
− �, �2

�
+ �] × · · · × [��

�
− �, ��

�
+ �], we can

calculate the total variation distance between the distribution of� O
�

and the distribution of� S
�
. The following

Theorem 5.2 provides bounds for privacy leakage and eiciency reduction using the magnitude of the ciphertext
�. The bound for privacy leakage decreases with �, which could guide the selection of � to adapt to privacy and
eiciency requirements. The full proof is deferred to Appendix E.

Theorem 5.2. For Paillier algorithm, the utility loss is 0, the privacy leakage is bounded by:

�� ≥ �1 −�2 ·

[
1 −

(
2�

�2

)�]
.

The eiciency reduction is bounded by

�� ≥ Ξ · Γ ·

[
1 −

(
2�

�2

)�]
.

5.3 Secret Sharing Mechanism

Various privacy-preserving protocols based on MPC (especially secret sharing) have been proposed to build
secure machine learning models, including linear regression, logistic regression, and recommendation systems.
[5, 6, 38] were proposed to distribute secrets between participants.
Note that TV(� O

fed
| |�S

fed
) = 0 for secret sharing mechanism. From Lemma C.3 of [50], the utility loss equals

0. The communication cost for the parameter of the secret sharing mechanism is not guaranteed to satisfy
Assumption 4.2, and the analysis of the lower bound of the eiciency reduction is beyond the scope of our article.

Let� O
�

represent the original model information that follows a uniform distribution over [�1
�
− �, �1

�
+ �] ×

[�2
�
− �, �2

�
+ �] · · · × [��

�
− �, ��

�
+ �]. Let� S

�
represent the distorted model information that follows uniform

distribution over [�1
�
− �1

�
, �1
�
+ � 1

�
] × [�2

�
− �2

�
, �2
�
+ � 2

�
] · · · × [��

�
− ��

�
, ��
�
+ ��

�
]. The following Theorem 5.3

measures utility loss and provides the lower bound for privacy leakage. The full proof is deferred to Appendix F.

Theorem 5.3. For secret sharing mechanism, the utility loss �� = 0, the privacy leakage is bounded by

�� ≥ �1 −�2 ·
1

�

�︁

�=1

(
1 −

�∏

�=1

2�

�
�

�
+ �

�

�

)
.
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5.4 Compression Mechanism

For the compression mechanism, the client does not transfer all the parameters to the server. Let� O
�
(�) (� S

�
(�))

denote dimension � of� O
�

(� S
�
). Let �� represent a random variable that follows the Bernoulli distribution.

Speciically, �� takes the value 1 with probability �� , and 0 with probability 1−�� . Each dimension � of the distorted
parameter� S

�
(�) is deined as

� S
�
(�) =

{
� O
�
(�) if �� = 1,

0, if �� = 0.

The following Theorem 5.4 provides bounds for privacy leakage, utility loss and eiciency reduction using the
compression probability. The full proof is deferred to Appendix G.

Theorem 5.4. For compression mechanism, the privacy leakage is lower bounded by

�� ≥ �1 −�2 ·

(
1 −

�∏

�=1

��

)
.

The utility loss is bounded by

�� ≥
Δ

2
·

(
1 −

�∏

�=1

��

)
.

The eiciency reduction �� is bounded by

�� ≥ Ξ · Γ ·

(
1 −

�∏

�=1

��

)
.

6 CONCLUSION AND FUTURE WORK

In this work, we propose a uniied federated learning (FL) framework that reconciles both HFL and VFL. Under this
uniied FL framework, we provide the No-Free-Lunch (NFL) theorem that quantiies the trade-of between privacy
leakage, utility loss, and eiciency reduction for well-deined scenarios. We then leverage our proposed NFL
theorem to analyze the lower bounds of the widely-adopted protection mechanisms, including the randomization
mechanism, Paillier mechanism, secret sharing mechanism, and compression mechanism.

Lots of problems are worth investigating. In this work, we use the Jensen-Shannon (JS) divergence instead of
the commonly-used KL divergence to measure privacy leakage. The JS divergence is expressed as the summation
of two KL divergences. Thus, it inherits the advantages of KL divergence. Besides, JS divergence satisies the
triangle inequality, which facilitates the theoretical analysis. One potential question is, if we use a generalized
version of JS-divergence weighted using a hyperparameter � [9], are we still able to bound the privacy leakage
and quantify the trade-of analysis?
The optimal privacy-utility-eiciency trade-of is cast as a constrained optimization problem in which the

utility loss and eiciency reduction are minimized subject to a predeined constraint for privacy leakage. The
optimization problem and the derived lower bounds provide an avenue for proposing meta-algorithms that search
the optimal hyperparameter characterizing the protection mechanism. Designing a meta-algorithm that seeks to
determine the ideal protection hyperparameter at each communication round is an intriguing problem. Whether
it is possible to design an algorithm that can learn the hyperparameter adaptively is another promising research
direction.
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A OUTLINE OF OUR WORK

Fig. 6. Outline of our work.

B LOWER BOUNDS FOR PRIVACY LEAKAGE, UTILITY LOSS AND EFFICIENCY REDUCTION

When the private information � is discrete, the privacy leakage could be lower bounded by the total variation

distance between � O
�

and �S
�
, as is shown in the following lemma.

Lemma B.1. Let ��,� be deined in Deinition 3.3. Let � O
�

and �S
�
represent the distribution of the parameter of

client � before and after being protected. Then for any client � , we have that

��,� ≥

︃
JS(� O

�
| |� B
�
) −

1

2
(�2� − 1)TV(� O

�
| |�S

�
). (13)

Furthermore, we have that

�� ≥
1

�

�︁

�=1

︃
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�
| |� B
�
) −

1

�

�︁

�=1

1

2
(�2� − 1) · TV(� O

�
| |�S

�
).

To provide a lower bound for privacy leakage when the private information � is discrete, we irst show the

following lemma.

Lemma B.2. Let � O
�

and �S
�

represent the distribution of the parameter of client � before and after being

protected. Let �A
�

and � O
�

represent the belief of client � about � after observing the protected and original

parameter. Then we have

JS(�A
�
| |� O
�
) ≤

1

4
(�2� − 1)2TV(� O

�
| |�S

�
)2.
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Proof. Recall that JS(�A
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Bounding
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O
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Notice that
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From the deinition of � , we know that for any� ∈ W� ,

�−� ≤
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≤ �� ,

Therefore, for any pair of parameters�,� ′ ∈ W� , we have
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Therefore, the irst term of Eq. (14) is bounded by
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sup
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Combining Eq. (15) and Eq. (16), we have
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2min{� M
��

(�), � O
��

(�)}

≤
1

2
(�2� − 1)TV(� O

�
| |�S

�
), (18)

where the third inequality is due tomin{� M
��

(�), � O
��

(�)} ≥ min{� A
��

(�), � O
��

(�)} ≥ inf
�∈W�

��� |�� (� |�). Combining

Eq. (17) and Eq. (18), we have

JS(�A
�
| |� O
�
) ≤

1

2



︁

�∈D�

���(� A�� (�) − �
O
��

(�))
���
�����log

� M
��

(�)

� O
��

(�)

�����


≤

1

4
(�2� − 1)2TV(� O

�
| |�S

�
)2

︁

�∈D�

inf
�∈WO

�

��� |�� (� |�)

≤
1

4
(�2� − 1)2TV(� O

�
| |�S

�
)2.

□

With the above lemma, now we are ready to show Lemma B.1 when the private information � is discrete, the

analysis is similar to the continuous scenario.

Proof. The square root of JS divergence satisies triangle inequality, which implies that
︃
JS(� O

�
| |� B
�
) −

︃
JS(�A

�
| |� B
�
) ≤

︃
JS(�A

�
| |� O
�
),
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where
︃
JS(� O

�
| |� B
�
) is a problem-dependent constant,

︃
JS(�A

�
| |� B
�
) represents the privacy leakage, and

︃
JS(�A

�
| |� O
�
) ≤

1
2
(�2� − 1)TV(� O

�
| |�S

�
) from Lemma B.2. Therefore, ∀� ∈ [�], we have that

︃
JS(� O

�
| |� B
�
) ≤ ��,� +

1

2
(�2� − 1)TV(� O

�
| |�S

�
).

□

LemmaB.3. Let Assumption 4.2 hold, and �� be deined in Deinition 3.4. Let �
O
�
and �S

�
represent the distribution

of the federated model information before and after being protected. Let Ξ = min�∈[� ] Ξ� , and Γ = min�∈[� ] Γ� .

Then we have,

�� ≥ Ξ · Γ ·
1

�

�︁

�=1

TV(� O
�
| |�S

�
). (19)

Proof. Let U� = {� ∈ W� : ��S
�
(�) − �� O

�
(�) ≥ 0}, and V� = {� ∈ W� : ��S

�
(�) − �� O

�
(�) < 0}, where

W� represents the union of the supports of �S
�
and � O

�
.

For any� ∈ V� , the deinition ofV� implies that �� O
�
(�) > ��S

�
(�) ≥ 0. Therefore,� belongs to the support

of � O
�
, which is denoted as WO

�
. Therefore we have that

V� ⊂ WO
�
. (20)

Similarly, we have that

U� ⊂ WS
�
. (21)

Recall that �S
�
represents the distribution of the aggregated parameter after being protected, and �S

��
(�) represents

the corresponding probability density function.

W+
�,Ξ�

is deined as:

W+
�,Ξ�

=

{
� ∈ U� : � (� O

max) + 2 · Ξ� ≤ � (�) and �S�� (�) ≥ 2 · �O
��

(�)
}
,

where� O
max = argmax�∈WO

�
� (�).

We denote W−
�,Ξ�

= U� \W
+
�,Ξ�

. From Assumption 4.2, Γ� represents the maximum constant satisfying that

∫

U�

(✶{� ∈ W+
�,Ξ�

} − ✶{� ∈ W−
�,Ξ�

})�S�� (�)�� ≥ Γ� · TV(�
O
�
| |�S

�
), (22)

where �S
��

denotes the probability density function of the protected model information and �O
��

denotes the

probability density function of the original model information. Then we have
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��,� =

[
E�∼�S

�
[� (�)] − E�∼�O

�
[� (�)]

]

=

[∫

W�

� (�)��S
�
(�) −

∫

W�

� (�)�� O
�
(�)

]

=

[∫

U�

� (�) [��S
�
(�) − �� O

�
(�)] −

∫

V�

� (�) [�� O
�
(�) − ��S

�
(�)]

]

=

∫

U�

� (�)✶{� ∈ W+
�,Ξ�

}[��S
�
(�) − �� O

�
(�)] +

∫

U�

� (�)✶{� ∈ W−
�,Ξ�

}[��S
�
(�) − �� O

�
(�)]

−

∫

V�

� (�)✶{� ∈ WO
�
}[�� O

�
(�) − ��S

�
(�)]

≥ 2Ξ� ·

∫

U�

✶{� ∈ W+
�,Ξ�

}(�S�� (�) − �O
��

(�))�� − Ξ� ·

∫

U�

✶{� ∈ W−
�,Ξ�

}(�S�� (�) − �O
��

(�))��

≥ 2Ξ� ·

∫

U�

✶{� ∈ W+
�,Ξ�

}
�S
��

(�)

2
�� − Ξ� ·

∫

U�

✶{� ∈ W−
�,Ξ�

}�S�� (�)��

≥ Ξ� · Γ� · TV(�
O
�
| |�S

�
),

where the irst inequality is due to � (� O
max) + 2Ξ� ≤ � (�), ∀� ∈ W+

�,Ξ�
, and � (� O

max) − Ξ� ≤ � (�), ∀� ∈ U� ,

the second inequality is due to the �S
��

(�) − �O
��

(�) ≥
�S
��

(� )

2
, ∀� ∈ W+

�,Ξ�
, and the third inequality is due to∫

U�
(✶{� ∈ W+

�,Ξ�
} − ✶{� ∈ W−

�,Ξ�
})�S

��
(�)�� ≥ Γ� · TV(�

O
�
| |�S

�
) from Assumption 4.2.

Therefore, we have that

�� =
1

�

�︁

�=1

��,� ≥
1

�

�︁

�=1

Ξ� · Γ� · TV(�
O
�
| |�S

�
)

≥ Ξ · Γ ·
1

�

�︁

�=1

TV(� O
�
| |�S

�
).

□

C TRADE-OFF BETWEEN PRIVACY, UTILITY AND EFFICIENCY

First, we quantify the trade-of between privacy and eiciency. The following lemma illustrates that the summation

of the privacy leakage and the eiciency reduction is lower bounded by a problem-dependent constant.

Lemma C.1 (No free lunch theorem (NFL) for privacy and eiciency). Let �� be deined in Def. 3.3, and let �� be

deined in Def. 3.5, with Assumption 4.2 we have:

�� +�� · �� ≥ �1,

where �1 =
1
�

∑�
�=1

︃
JS(� O

�
| |� B
�
) and �� =

1
2ΞΓ

(�2� − 1).

Proof. First, from Lemma 4.2 we have that

�� ≥
1

�

�︁

�=1

︃
JS(� O

�
| |� B
�
) −

1

�

�︁

�=1

1

2
(�2� − 1) · TV(� O

�
| |�S

�
),
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From Lemma 4.1, we have

�� ≥ Ξ · Γ ·
1

�

�︁

�=1

TV(� O
�
| |�S

�
).

Combining the above two equations, we have that

1

�

�︁

�=1

︃
JS(� O

�
| |� B
�
) ≤ �� +

1

2ΞΓ
(�2� − 1)�� ,

where �� =
1
�

∑�
�=1 ��,� .

The above equation could be further simpliied as

�1 ≤ �� +���� ,

where �1 =
1
�

∑�
�=1

︃
JS(� O

�
| |� B
�
) and �� =

1
2ΞΓ

(�2� − 1). □

The trade-of between privacy and utility was the main result shown in [50], the analysis of which is applicable

to a more general deinition for utility loss (Deinition 3.4). The following lemma illustrates that utility loss is

lower bounded by the total variation distance between the unprotected and protected distributions.

Lemma C.2. [50] Let Assumption 4.1 hold, and �� be deined in Deinition 3.4. Let � O
fed

and �S
fed

represent the

distribution of the aggregated parameter before and after being protected. Then we have,

�� ≥
Δ

2
· TV(� O

fed | |�
S
fed).

With Lemma B.1 and Lemma C.2, it is now natural to provide a quantitative relationship between the utility

loss and the privacy leakage (Theorem C.3).

Theorem C.3. [50][No free lunch theorem (NFL) for privacy and utility] Let �� be deined in Def. 3.3, and let ��
be deined in Def. 3.4 at the convergence step, with Assumption 4.1 we have:

�� +�� · �� ≥ �1, (23)

where ��=max�∈W� ,�∈D�

���log
(
��� |�� (� |� )

��� (� )

)���, and �=max�∈[� ] �� represents the maximum privacy leakage over all

possible information� released by client � , and [�] = {1, 2, · · · , �},�1 =
1
�

∑�
�=1

︃
JS(� O

�
| |� B
�
),�� =

�

4Δ (�
2� −1),

and � =

1
�

∑�
�=1 TV(�

O
�
| |�S
�
)

TV(�O
fed

| |�S
fed

)
.

With Theorem C.1 and Theorem C.3, our main result Theorem 4.6 is proven.

D ANALYSIS FOR RANDOMIZATION MECHANISM

Randomization mechanism adds random noise such as Gaussian noise to model gradients [1, 17, 41].

• Let� O
�

be the model information sampled from distribution � O
�

= N(�0, Σ0), where �0 ∈ R� , Σ0 =

diag(�21 , · · · , �
2
�) is a diagonal matrix.

• The protected model information � S
�

= � O
�

+ �� , where �� ∼ N(0, Σ� ) and Σ� = diag(�2� , · · · , �
2
� ).

Therefore,� S
�

follows the distribution �S
�
= N(�0, Σ0 + Σ� ).

• The protected model information� S
fed

=
1
�

∑�
�=1 (�

O
�

+ �� ) follows distribution �
S
fed

= N(�0, Σ0/� + Σ�/�).

The following lemmas establish bounds for the privacy leakage and utility loss, and eiciency reduction using

the variance of the noise �2� .
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Lemma D.1. For randomization mechanism, the privacy leakage is bounded by

�� ≥ �1 −
3�2

2
·min



1, �2�

√√
�︁

�=1

1

�4�



,

and the eiciency reduction is

�� ≥
ΞΓ

100
min



1, �2�

√√
�︁

�=1

1

�4�



.

Proof. From Lemma 4.2 we have that

�� ≥
1

�

�︁

�=1

︃
JS(� O

�
| |� B
�
) −

1

�

�︁

�=1

1

2
(�2� − 1) · TV(� O

�
| |�S

�
).

From Lemma C.2 of [50], we have that

1

100
min



1, �2�

√√
�︁

�=1

1

�4�



≤ TV(� O

�
| |�S

�
) ≤

3

2
min



1, �2�

√√
�︁

�=1

1

�4�



. (24)

Then we have that

�� ≥ �1 −
3�2

2
·min



1, �2�

√√
�︁

�=1

1

�4�



.

From Lemma 4.1 and Eq. (24), we have that

�� ≥
1

�

�︁

�=1

Ξ · Γ · TV(� O
�
| |�S

�
)

≥
ΞΓ

100
min



1, �2�

√√
�︁

�=1

1

�4�



.

□

Lemma D.2. For randomization mechanism, the utility loss is bounded by

�� ≥
Δ

200
·min



1, �2�

√√
�︁

�=1

1

�4�



.

Proof. From Lemma C.2 of [50], we have that

TV(� O
fed | |�

S
fed) ≥

1

100
min



1, �2�

√√
�︁

�=1

1

�4�



. (25)

From Lemma 4.4, we have that

�� ≥
Δ

2
· TV(� O

fed | |�
S
fed). (26)
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Combining the Eq. (25) and Eq. (26), we have

�� ≥
Δ

200
·min



1, �2�

√√
�︁

�=1

1

�4�



.

□

E ANALYSIS FOR PAILLIER HOMOMORPHIC ENCRYPTION

The Paillier encryption mechanism was proposed by [34] is an asymmetric additive homomorphic encryption

mechanism, which was widely applied in FL [3, 8, 40, 49]. We irst introduce the basic deinition of Paillier

algorithm in federated learning [13]. Paillier encyption contains three parts including key generation, encryption

and decryption. Let ℎ represent the plaintext, and � represent the ciphertext.

Key Generation. Let (�,�) represent the public key, and (�, �) represent the private key. Select two primes � and

� that are rather large, satisfying that gcd(��, (� − �) (� − 1)) = 1. Select � randomly satisfying that � ∈ Z∗
�2
. Let

� = � · �, � = lcm(� − 1, � − 1), and � = (�(�� mod �2))−1 mod �.

Encryption. Randomly select � and encode ℎ as:

� = �ℎ · �� mod �2,

where � = � · �, � and � are two selected primes. Note that � is an integer selected randomly, and � ∈ Z∗
�2
.

Therefore, � can divide the order of �.

Decryption. Using the private key (�, �) to decrypt the ciphertext � as:

ℎ = �(�� mod �2) · � mod �,

where �(�) = �−1
�
, � = (�(�� mod �2))−1 mod �, and � = lcm(� − 1, � − 1).

Let� represent the number of dimension of the parameter.

• Let� O
�

represent the plaintext that follows a uniform distribution over [�1
�
− �, �1

�
+ �] × [�2

�
− �, �2

�
+ �] ×

· · · × [��
�
− �, ��

�
+ �].

• Assume that the ciphertext� S
�

follows a uniform distribution over [0, �2 − 1]� .

• Let� O
fed

represent the federated plaintext that follows a uniform distribution over [�̄1 − �, �̄1 + �] × [�̄2 −

�, �̄2 + �] · · · × [�̄� − �, �̄� + �], where �̄� =
∑�
�=1 �

�
�
.

• The federated ciphertext� S
fed

follows a uniform distribution over [0, �2 − 1]� .

Intuitively, longer ciphertext should theoretically increase eiciency and decrease privacy leakage. The follow-

ing lemma provides lower bounds for privacy leakage and eiciency reduction for Paillier mechanism.

Lemma E.1. For Paillier mechanism, the privacy leakage is bounded by

�� ≥ �1 −�2 ·

[
1 −

(
2�

�2

)�]
, (27)

and the eiciency reduction is bounded by

�� ≥ Ξ · Γ ·

[
1 −

(
2�

�2

)�]
.
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Proof. Let� O
�

represent the plaintext�, and� S
�

represent the ciphertext � . Recall for encryption, we have

that

� = �� · �� mod �2 .

The ciphertext� S
�

follows a uniform distribution over [0, �2 − 1]� , and the plaintext� O
�

follows a uniform

distribution over [�1
�
− �, �1

�
+ �] × [�2

�
− �, �2

�
+ �] · · · × [��

�
− �, ��

�
+ �], and ��

�
∈ [0, �2 − 1], ∀� = 1, 2, · · · ,�.

Then we have that

TV(� O
�
| |�S

�
) =

∫

[�1
�
−�,�1

�
+� ]

∫

[�2
�
−�,�2

�
+� ]

· · ·

∫

[��
�
−�,��

�
+� ]

((
1

2�

)�
−

(
1

�2

)�)
��1��2 · · ·���

=

[(
1

2�

)�
−

(
1

�2

)�]
· (2�)� .

From Lemma 4.2 we have that

�� ≥
1

�

�︁

�=1

︃
JS(� O

�
| |� B
�
) −

1

�

�︁

�=1

1

2
(�2� − 1) · TV(� O

�
| |�S

�
).

Combining the above two equations, we have that

�� ≥
1

�

�︁

�=1

︃
JS(� O

�
| |� B
�
) −

1

�

�︁

�=1

1

2
(�2� − 1) · TV(� O

�
| |�S

�
)

=

︃
JS(� B

�
| |� O
�
) −

1

�

�︁

�=1

1

2
(�2� − 1) ·

[(
1

2�

)�
−

(
1

�2

)�]
· (2�)�

= �1 −
1

�

�︁

�=1

1

2
(�2� − 1) ·

[(
1

2�

)�
−

(
1

�2

)�]
· (2�)�

= �1 −�2 ·

[
1 −

(
2�

�2

)�]
.

From Lemma 4.1, we have that

�� ≥
1

�

�︁

�=1

Ξ · Γ · TV(� O
�
| |�S

�
)

≥ Ξ · Γ ·

[
1 −

(
2�

�2

)�]
.

□

For Paillier mechanism, the distorted parameter given secret key becomes the original parameter. The following

lemma shows that the utility loss for Paillier mechanism is 0.

Lemma E.2. For Paillier mechanism, the utility loss �� = 0.

Proof. Let �S
fed

represent the distribution of the distorted parameter which is decrypted by the client. Note

that TV(� O
fed

| |�S
fed
) = 0. From Lemma C.3 of [50], the utility loss is equal to 0. □
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F ANALYSIS FOR SECRET SHARING MECHANISM

Many MPC-based protocols (particularly secret sharing) are used to build secure machine learning models, such

as linear regression, logistic regression, recommend systems, and so on. [5, 6, 38] were developed to distribute a

secret among a group of participants.

Let� represent the number of dimension of the model information.

• Let� O
�

represent the original model information that follows a uniform distribution over [�1
�
− �, �1

�
+

�] × [�2
�
− �, �2

�
+ �] · · · × [��

�
− �, ��

�
+ �].

• Let� S
�

represent the distorted model information that follows a uniform distribution over [�1
�
− �1

�
, �1
�
+

� 1
�
] × [�2

�
− �2

�
, �2
�
+ � 2

�
] · · · × [��

�
− ��

�
, ��
�
+ ��

�
].

Lemma F.1. For secret sharing mechanism, the lower bound for privacy leakage is

�� ≥ �1 −�2 ·
1

�

�︁

�=1

(
1 −

�∏

�=1

2�

�
�

�
+ �

�

�

)
.

Proof. Notice that� S
�

follows a uniform distribution over [�1
�
− �1

�
, �1
�
+ � 1

�
] × [�2

�
− �2

�
, �2
�
+ � 2

�
] · · · × [��

�
−

��
�
, ��
�
+ ��

�
], and� O

�
follows a uniform distribution over [�1

�
− �, �1

�
+ �] × [�2

�
− �, �2

�
+ �] · · · × [��

�
− �, ��

�
+ �],

and � < ��
�
, ��
�
, ∀� = 1, 2, · · · ,�. Then we have that

TV(� O
�
| |�S

�
)

=

∫

[�1
�
−�,�1

�
+� ]

∫

[�2
�
−�,�2

�
+� ]

· · ·

∫

[��
�
−�,��

�
+� ]

((
1

2�

)�
−

�∏

�=1

(
1

�
�

�
+ �

�

�

))
��1��2 · · ·���

=

((
1

2�

)�
−

�∏

�=1

(
1

�
�

�
+ �

�

�

))
· (2�)� .

Therefore, we have that

�� ≥
1

�

�︁

�=1

︃
JS(� O

�
| |� B
�
) −

1

�

�︁

�=1

1

2
(�2� − 1) · TV(� O

�
| |�S

�
)

=

1

�

�︁

�=1

︃
JS(� O

�
| |� B
�
) −

1

�

�︁

�=1

1

2
(�2� − 1) ·

((
1

2�

)�
−

�∏

�=1

(
1

�
�

�
+ �

�

�

))
· (2�)� .

where the irst inequality is due to Eq. (10) in Lemma 4.2. Then we have that

�� ≥ �1 −�2 ·
1

�

�︁

�=1

(
1 −

�∏

�=1

2�

�
�

�
+ �

�

�

)
.

□

Lemma F.2. For secret sharing mechanism, the utility loss �� = 0.
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Proof. For secret sharing mechanism, the federated model information does not change after being protected,

which implies that � O
fed

= �S
fed
. Therefore, we have that

�� =

1

�

�︁

�=1

��,�

=

1

�

�︁

�=1

[�� (�
O
fed) −�� (�

S
fed)]

=

1

�

�︁

�=1

[
E�∼�O

fed
[�� (�)] − E�∼�S

fed
[�� (�)]

]

= 0.

□

The communication cost for the model information of secret sharing mechanism is not guaranteed to satisfy

Assumption 4.2, and the analysis of the lower bound of the eiciency reduction is beyond the scope of our article.

G ANALYSIS FOR COMPRESSION MECHANISM

To facilitate the analysis, we simplify the compression mechanism as follows. Let �� be a random variable sampled

from Bernoulli distribution. The probability that �� is equal to 1 is �� .

� S
�
(�) =

{
� O
�
(�) if �� = 1,

0, if �� = 0.
(28)

Let� represent the number of dimension of the model information.

• Let� O
�

represent the original model information that follows a uniform distribution over [�1
�
− �, �1

�
+

�] × [�2
�
− �, �2

�
+ �] · · · × [��

�
− �, ��

�
+ �].

• Each dimension � of the distorted model information� S
�
(�) takes the value identical with that of� O

�
with

probability �� , and 0 with probability 1 − �� .

• Let� O
fed

represent the federated plaintext that follows a uniform distribution over [�̃1 − �, �̃1 + �] × [�̃2 −

�, �̃2 + �] · · · × [�̃� − �, �̃� + �], where �̃� = 1
�

∑�
�=1 �

�
�
.

• Each dimension � of the distorted model information� S
fed

(�) takes the value identical with that of� O
fed

with probability �� , and 0 with probability 1 − �� .

Lemma G.1. For compression mechanism, the privacy leakage is lower bounded by

�� ≥ �1 −�2 ·

(
1 −

�∏

�=1

��

)
.

The eiciency reduction is lower bounded by

�� ≥ Ξ · Γ ·

(
1 −

�∏

�=1

��

)
.

Proof. The original model information� O
�

follows a uniform distribution over [�1
�
− �, �1

�
+ �] × [�2

�
− �, �2

�
+

�] · · · × [��
�
− �, ��

�
+ �], where� represents the dimension of� O

�
. Besides,
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� S
�
(�) =

{
� O
�
(�) with probability �� ,

0, with probability 1 − �� .
(29)

Then we have that

TV(� O
�
| |�S

�
) =

∫

[�1
�
−�,�1

�
+� ]

∫

[�2
�
−�,�2

�
+� ]

· · ·

∫

[��
�
−�,��

�
+� ]

((
1

2�

)�
−

�∏

�=1

( ��
2�

))
��1��2 · · ·���

=

((
1

2�

)�
−

�∏

�=1

( ��
2�

))
· (2�)� .

From Lemma 4.2 we have that

�� ≥
1

�

�︁

�=1

︃
JS(� O

�
| |� B
�
) −

1

�

�︁

�=1

1

2
(�2� − 1) · TV(� O

�
| |�S

�
).

Combining the above two equations, we have that

�� ≥
1

�

�︁

�=1

︃
JS(� O

�
| |� B
�
) −

1

�

�︁

�=1

1

2
(�2� − 1) · TV(� O

�
| |�S

�
)

=

︃
JS(� B

�
| |� O
�
) −

1

�

�︁

�=1

1

2
(�2� − 1) ·

((
1

2�

)�
−

�∏

�=1

( ��
2�

))
· (2�)�

= �1 −�2 ·

(
1 −

�∏

�=1

��

)
.

From Lemma 4.1, we have that

�� ≥
1

�

�︁

�=1

Ξ · Γ · TV(� O
�
| |�S

�
)

≥ Ξ · Γ ·

((
1

2�

)�
−

�∏

�=1

( ��
2�

))
· (2�)�

= Ξ · Γ ·

(
1 −

�∏

�=1

��

)
.

□

Lemma G.2. For compression mechanism, the utility loss is bounded by

�� ≥
Δ

2
·

(
1 −

�∏

�=1

��

)
.

Proof. Recall that� O
fed

follows a uniform distribution over [�̃1−�, �̃1+�] × [�̃2−�, �̃2+�] · · ·× [�̃� −�, �̃� +�],

where �̃� = 1
�

∑�
�=1 �

�
�
. Besides,
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� S
fed (�) =

{
� O

fed
(�) with probability �� ,

0, with probability 1 − �� .
(30)

Then we have that

TV(� O
fed | |�

S
fed) =

∫

[�̃1−�,�̃1+� ]

∫

[�̃2−�,�̃2+� ]

· · ·

∫

[�̃�−�,�̃�+� ]

((
1

2�

)�
−

�∏

�=1

( ��
2�

))
��1��2 · · ·���

=

((
1

2�

)�
−

�∏

�=1

( ��
2�

))
· (2�)� .

From Lemma 4.4, we have

�� ≥
Δ

2
· TV(� O

fed | |�
S
fed). (31)

Therefore,

�� ≥
Δ

2
·

((
1

2�

)�
−

�∏

�=1

( ��
2�

))
· (2�)�

=

Δ

2
·

(
1 −

�∏

�=1

��

)
.

□
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